This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SOLID-STATE CIRCUITS

IMCU: A 28-nm Digital In-Memory
Computing-Based Microcontroller
Unit for TinyML

Chuan-Tung Lin", Graduate Student Member, IEEE,
Paul Xuanyuanliang Huang™, Graduate Student Member, IEEE,
Jonghyun Oh, Member, IEEE, Dewei Wang ™,
and Mingoo Seok™, Senior Member, IEEE

Abstract— Tiny machine learning (TinyML) envisions execut-
ing a deep neural network (DNN)-based inference on an edge
device for improving battery life, latency, security, and privacy.
Toward this vision, recent microcontroller units (MCUs) integrate
in-memory computing (IMC) hardware to leverage its high
energy efficiency and throughput in vector-matrix multiplication
(VMM). However, those existing works require large IMC hard-
ware, severely increasing the area overhead. In addition, most
existing works use analog-mixed-signal (AMS) IMC hardware,
exhibiting limited robustness over process, voltage, and temper-
ature (PVT) variations. Finally, none can support a practical
software development framework such as TensorFlow Lite for
Microcontrollers (TFLite-micro). Due to these limitations, those
MCUs did not present the performance for the standard bench-
mark MLPerf-Tiny, which makes it difficult to evaluate them
against the state-of-the-art neural (not necessarily IMC-based)
MCUs. In this article, we design a new IMC-based MCU, titled
iMCU, for TinyML to address those challenges. In the design
process, we: 1) define the optimal set of acceleration targets and
2) devise an area-efficient computation flow that requires the
least amount of IMC hardware yet still provides a significant
acceleration. In addition, we develop: 1) state-of-the-art digital
IMC macros and 2) create the accelerator based on the macros,
which can support the proposed computation flow in a fully
pipelined manner. Combining those innovations, we prototyped
the iMCU in a 28-nm CMOS. The measurement results show
that the iMCU significantly outperforms the prior IMC-based
MCUs in compute density, energy efficiency, and SRAM density
(total SRAM size/total SRAM area). It also achieves a compact
footprint of 2.73 mm?2.

Index Terms— Deep learning, hardware/software co-design, in-
memory computing (IMC), microcontroller units (MCUs), neural
network accelerators, tiny machine learning (TinyML).

I. INTRODUCTION

HE advancements in machine learning (ML) have
made us envision ultra-low-power microcontroller units
(MCUs) with limited power and memory budget to perform

Manuscript received 7 October 2023; revised 14 December 2023 and
15 January 2024; accepted 31 January 2024. This article was approved by
Associate Editor Meng-Fan Chang. This work was supported by NSF under
Grant 1919147. (Corresponding author: Mingoo Seok.)

The authors are with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA (e-mail: ms4415@columbia.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2024.3362274.

Digital Object Identifier 10.1109/JSSC.2024.3362274

ML tasks at the edge. Tiny ML (TinyML), which aims to
collect data, execute ML models, and analyze the data in real-
time on ultra-low-power devices near sensors, provides critical
benefits, such as security and privacy. TinyML can also reduce
latency and extend the battery life by avoiding the cost of
transmitting data wirelessly [1], [2], [3], [4], [5], [6], [7].

The intensive computation required by ML inference moti-
vates much research in custom hardware design. SRAM-
based in-memory computing (IMC) has been proposed for
improving energy efficiency and throughput in vector—matrix
multiplication (VMM) [8], [9], [10], [11], [12], [13], [14],
[15]. The conventional digital accelerator architecture requires
accessing data in on-chip SRAM, one row at a time, which
limits the throughput and energy efficiency. On the other
hand, by combining the memory cells and computation ele-
ments inside a memory macro, IMC can perform multiple
multiply-and-accumulate (MAC) operations without row-by-
row accesses. The custom hardware design also reduces the
macro’s area and the lengths of critical wires, resulting in
reduced dynamic power consumption.

Most existing IMC-based MCUs use analog—mixed-signal
(AMS) IMC macros, which use capacitors and transistors for
computation and analog-to-digital converters (ADCs). AMS
IMC is capable of achieving high energy efficiency and
area efficiency. However, analog computing hardware may
produce incorrect VMM results across process, voltage, and
temperature (PVT) variations, thereby degrading the accuracy
of inferences [16]. Digital IMC hardware, on the contrary,
uses digital arithmetic circuits, such as compressors, adders,
and accumulators, performing MAC operations robustly across
PVT variations [16], [17], [18], [19], [20], [21], [22]. But
digital IMC hardware tends to consume more silicon area.

On the other hand, in developing an MCU, we must
co-optimize its hardware and software stack to map ML
tasks to resource-constrained devices flexibly. Supporting a
software development flow to port ML models onto an
MCU is important. Such a development flow should include
model development (data engineering, model selection, and
hyperparameter tuning/neural architecture search) and model
deployment (software suite, model compression, and code gen-
eration). TensorFlow Lite for microcontrollers (TFLite-micro)

0018-9200 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7345-1916
https://orcid.org/0009-0001-8650-1222
https://orcid.org/0009-0006-5970-8144
https://orcid.org/0000-0002-9722-0979

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

is one of such flows. It can optimize TensorFlow models and
convert the model file into a reduced-size binary file with less
complexity. Unfortunately, none of the existing IMC-based
MCUs can support such a practical software development
framework [1], posing a significant limitation.

To address these challenges, in this article, we present a new
digital IMC-based MCU, titled iMCU [23], which integrates
a 32-b RISC-V-based MCU with a digital IMC accelerator.
We architect the iMCU to improve energy efficiency, latency,
and silicon area. Specifically, we optimally choose acceleration
targets and devise an area-efficient computation flow that
requires the least amount of additional hardware yet still
provides a significant acceleration. We also design the state-
of-the-art digital IMC circuits (titled D6CIM, [24]) and a fully
pipelined accelerator based on them. In addition, we developed
a custom iMCU library, and the iMCU supports a stan-
dard software development flow for the standard benchmark
MLPerf-Tiny. We also investigated the performance of the
iMCU while sweeping various microarchitecture parameters
such as IMC sizes, scratchpad sizes, bus widths, and clock
speeds.

We prototyped the iMCU in a 28-nm CMOS. The measure-
ment results show that the iMCU significantly outperforms
the best prior IMC-based MCU [22] by 288 in the figure-of-
merit (FoM), which is defined as a product of compute density,
energy efficiency, and SRAM density (SRAM size/SRAM
area). Using only a small amount of IMC hardware, it also
achieves a compact footprint of 2.73 mm?.

The rest of this article is organized as follows. Section II
introduces the existing MCUs for TinyML and IMC-based
MCUs. Section III presents the hardware architecture and
software development framework of the iMCU. We then
describe the proposed computation flow and microarchitecture
optimization in Section I'V. Section IV details the IMC accel-
erator architecture and the digital IMC macro. We discuss the
measurement results in Section V and conclude this article in
Section VI.

II. RELATED WORKS

We have been seeing different companies and research
groups propose neural accelerators to improve computing
performance for on-device inference. ARM presents the Ethos-
US55 micro neural processing unit (microNPU), which can
work with the Cortex-M processor to offer better energy
efficiency for MAC operations [25]. Syntiant offered the
neural decision processor (NDP), which contains a deep neural
network (DNN) datapath for always-on applications in battery-
powered devices [26]. Silicon Labs proposed the matrix—vector
processors (MVPs), which work as co-processors to accelerate
the matrixed floating-point (FP) multiplications and additions,
offloading intensive computations from an MCU core.

On the other hand, some of the recent processors have inte-
grated IMC-based accelerators to perform efficient VMM for
ML inference. Jia et al. [27] integrated a mixed-signal SRAM-
based IMC accelerator for VMM and a digital near-memory-
computing accelerator for vector elementwise computation.
Ueyoshi et al. [28] use an analog SRAM-based IMC core for
high energy efficiency for low-precision computation and a

IEEE JOURNAL OF SOLID-STATE CIRCUITS

tx [23 &}'Bj L
] clk
DMEM | DMA@ . | UART | | GPIO
256 KB
_ 32
t ARM APB bus
32
i t ARM AHB bus
f=2
2 -
8 Scratch ||Weight Input
RISC-V pad buffer buffer
IMEM
<>} 128 KB e CPU 48 KB IMC
(host) Adder |
Clock tree cluster
generator 32KB
L] Digital IMC accelerator

Fig. 1. Proposed iMCU architecture.

digital custom datapath for higher precision computation. Such
an approach can execute some layers with the analog IMC
while other layers with the digital custom datapath, depending
on the precision requirement of each layer. Chang et al. [29]
proposed a Cortex M3 core with embedded RRAM-based IMC
and vector modules. The RRAM module is a high-density
and non-volatile data storage, and the vector module sup-
ports vector addition, multiplication, and activation functions.
Wang et al. [22] presented a hybrid in-/near-memory compute
SRAM using an 8T transposable bitcell.

III. ARCHITECTURE DESIGN

A. Hardware Architecture and Software Framework

Fig. 1 details the overall organization of the iMCU, which
consists of: 1) a 32-b RISC-V CPU core (host processor);
2) a digital IMC accelerator which contains the IMC macro
cluster; 3) instruction memory (IMEM); 4) data memory
(DMEM); 5) a direct memory access (DMA) module; 6)
a universal asynchronous receiver—transmitter (UART); 7) a
general-purpose 10 (GPIO); and 8) a 32-b ARM AHB/APB
bus.

Fig. 2 shows the matching software development framework
for the iMCU. It starts with training an 8-b DNN model via
TensorFlow, which produces a TF file. Then, we convert the
TF file into the TFLite file by fusing a batch norm layer into
a convolution layer. This helps avoid adding explicit hardware
support for batch-norm-related computation. The next step is
to convert the TFLite file into the C header file (model.cc).
Then, we compile the header file with the input data file
(input.cc) and the TFLite-micro library file using the RISC-V
g++ compiler, which produces a binary file. We convert the
binary file into instruction and data hexadecimal files and store
them in IMEM and DMEM, respectively.

Using the framework, we develop the software for the
following DNN models: tiny-conv, tiny-embedding-conv (both
from TFLite-micro [1]), and ResNetvl (from MLPerf-Tiny,
an open-source benchmark suite, provides a set of DNNs in
C++ to evaluate MCUs [2]) (see Fig. 3). ResNetvl achieves
86.96% on CIFAR-10, and tiny-conv achieves 91.34% on
GSCD (four keywords).

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: iMCU: A 28-nm DIGITAL IMC-BASED MICROCONTROLLER UNIT FOR TinyML 3
[W sorim | R e[o
E o | .| Custom ol 2 Il Add
|85 [E] mcuis 5| S |5 ____ __Edothers
AHERE JHIE ! |
i i [—
Quantlzz.atllon. Flel & |S] modelee IHERE 100M 4 \ 1
aware training: > 3 > o BN g b4 | 119X .
TensorFlow/Keras = i > o
E 2| inputcc— S oy ' ' asax
= s 2] = 3 10Mm !
e (&] f . 4 - | |
= TFLite-micro S , \
C+lib o | B ! !
1M v
Fig. 2. Proposed software development framework for the iMCU.
100k +
ResNetv1 S = 100ky ==y = S
i Accelerate Accelerate
Baseline convolution convolution
and add

AP8

E
23
223
S
£
o

tiny-embedding-conv tiny-conv

2:
by
= o
o uw

o

Fig. 3. Target neural network models: ResNetvl, tiny-embedding-conv,
and tiny-conv. Abbreviations: 16C3: 16 features 3times3 convolution, AP8:
8times8 average pooling, FC10: ten fully connected.

8C10x8
Relu

8C10x8
Relu
FC4

Softmax

tiny-conv ResNetv1

Addition: 0.61%
Average pooling: 0.02%
Fully-connected: 0.01%
Softmax: 0.01%

Fully-connected: 1.33%
Softmax: 0.2%

Fig. 4. Workload profiling: tiny-conv and ResNetvl1.

B. Workload Profiling and Division

We begin our iMCU architecture design by identifying the
parts of a DNN workload worth acceleration. This allows
us to incorporate minimal hardware in the accelerator to
support those parts only. We first profiled the computation
complexity of each layer using SPIKE (a functional simulator
for RISC-V processors [30]). The simulation results show that
the convolution layer is the most dominant, followed by the
addition layer (see Fig. 4). From these data, we can estimate
that if we accelerate convolution layers by 500x, we can
reduce the total cycle count by 119x. If we accelerate addition
layers, as well, we estimate to gain an additional 3.6 x speedup
(total 434x) (see Fig. 5). We have found that all other layers
(pooling, fully connected, softmax) are not worth accelerating
since they only marginally reduce the total cycle count.

C. Area-Efficient Computation Flow and Memory Sizing

We develop the computation flow (sequences) that requires
the least amount of IMC hardware yet still delivers a signif-
icant acceleration. Many existing works use arbitrarily large
amounts of IMC hardware to store more than one (potentially
all) layer of weight data of a DNN model before starting com-
putation [22], [27], [29]. Such architecture, however, severely

Fig. 5. Latency improvement estimation shows that convolution and add
layers are worth accelerating.

(a) 200k,

160k 1

[PO SXreduction . .

120k § EE 23% increase‘;

80k -

Latency (cycles)*

Weight size
of all the layers;

. Weight size of
. the largest layer

40k 1

0

*Cycles estimated
from the simulator

50 100 150 200

IMC size (KB)

(b) 350k
300k

250k

200k

Latency (cycles)*

150k 1)
[

100k T T T T T
0 10 20 30 40 50

Scratch pad size (KB)

*Cycles estimated
from the simulator

Fig. 6. (a) Proposed computation flow enables 5x IMC area reduction at a
23% latency penalty. (b) Small scratch pad cannot buffer the largest output
data, worsening latency.

increases area overhead since IMC hardware is generally larger
than regular SRAM.

In this work, we devise an alternative flow in which DMEM
stores all the weights. Since DMEM is implemented in the
dense foundry 6T bitcells, it has a more compact area. The
IMC hardware buffers the weight data of only one layer right
before the accelerator computes the layer. This can largely
reduce the size requirement of the IMC hardware. The cost
is to increase data movement costs between DMEM and IMC
hardware. However, we found that the area savings largely
outweigh the cost: it reduces the IMC hardware’s area by 5x
at a 23% increase in the cycle count [see Fig. 6(a)]. This is
because we perform 100—10 000 VMM s for each layer, thereby
amortizing the data movement cost over those many VMMs.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
| , Digital IMC Address
DMA | RISC-V CPU | accelerator 0x0010_0000 “
[l Start the program and [Space 0x0012_0000
| LT L
[l convolution layer M 0x0018_0000
! ! 256 KB
| onfigure DMAto | | DMEM
! | transfer activation/weight| | 0x001C_0000 _
i
Transfer the data ! ! 0x0020_0000 igi
from DMEM to cigital [| o
IMC accelerator | 1 scratch pad
0x0020_C000
'"‘9"“9'1 Configure digital INC i i _
[l accelerator to perform 0x0021_8000 —
: R Digital IMC
i thelconvolution|zye : INVEC _IMC__ QUAN accelerator
} } 0x0020_807F config registers
| |
! ! 0x0023_8000 | ™57K B Digital IMC
| | 0x0023,FFFF clustoy
i i 0x0030_0000
! ! DMA
| | 0x0040_0000
| GPIO
° } Continue executing } 0x0050_0000
£ | remaining layers | UART
& 1 " 1 0x0060_0000
Fig. 7. Proposed computation flow and the memory map.
1000 4 1000 4 1000
iMCU design point
100 1004 . . . 100
— iMCU design point ~ 1 |!II(EU_dSslgr_1 p_m_nt_ o
o Q X
g < <
@ 9 8
N -
2104 %104 010
2] k1 z
S 3 z
§ a
[
14 G 1 1
»
> < - > < ° > <
3z § 3 ze: § 3 3 § %
£e§ ¢ % SE8 ¢ 3 SE8 % %
[E g ? £ K] @ g 2
Fig. 8. Based on the proposed computation flow, we set the sizes of the

IMC macro cluster, the in-accelerator scratch pad, and the DMEM to support
the target workloads.

We also envision the scratch pad in the accelerator to fully
buffer the output of one layer to be used as the next layer’s
input. This helps avoid costly DMEM accesses. As shown in
Fig. 6(b), if the scratchpad size is smaller than the largest
output activation data among layers, we must temporarily
buffer the data in the main memory (DMEM), increasing
latency. We found that the largest output data size is 32 kB,
setting the scratchpad size to 48 kB.

Fig. 7 shows the proposed computation flow for an end-
to-end inference. First, the host starts the program. When it
reaches a convolution layer (or an addition layer), it configures
DMA to transfer the weight data of the layer from the
DMEM to the IMC cluster. Only for the input layer does it
transfer the input data from the DMEM to the in-accelerator
scratchpad. Upon data transfer completion, the host configures
layer-related configurations such as input, filter, and output
dimensions, stride and padding sizes, input and output offsets,
and the starting addresses of the input, weight, output data
accesses, etc. In addition, the host configures which digital
IMC macros to use so the accelerator can clock-gate unused
macros. Then, the accelerator starts to compute on the layer,
which involves many iterations of three sub-tasks: input vector
preparation, IMC operation, and output quantization. Finally,
it stores the layer output in the scratchpad and then interrupts
the host. The host resumes executing the program.

IEEE JOURNAL OF SOLID-STATE CIRCUITS

—O Latency 3.0
—A— Power consumption <
500k 4 =
2.5 <=
X c
2 400k 2
° 2.0 2
g 5
> 300K 1.5 2
Q Q
g o
& 200K+ L1.0 &
- 3
1 2
100k F0.5
]
o

0

128 256 512 1024
Bus width (bit)

T T

2 4
*Cycles estimated 3 6
from RTL simulation

Fig. 9. Impact of the bus width on latency and bus power consumption.

Based on the computation flow, we determine the sizes of
the memory blocks and create the memory map (see Fig. 8).
Again, the IMC accelerator must buffer only one layer at a
time. We choose ResNetvl as our target model since it is
the most complex model among the MLPerf-Tiny benchmark.
Therefore, we can set the IMC cluster size to 32 kB (= 512
x 512 b), roughly matched to the largest layer of the target
model. The largest layer has 64 output channels and thus
requires the column size of the IMC cluster to be equal to or
greater than 512 b (= 64 x 8 b) for optimal mapping. Hence,
we set one dimension of the cluster to 512 b. Similarly, we set
the scratchpad size to 48 kB, slightly larger than the largest
output data size (32 kB). In addition, we found that the largest
model we target has 179 kB of weight data. Thus, we set the
DMEM size to 256 kB. In addition, we set the size of IMEM
to 128 kB to store the largest program among the targets. The
size of each memory is summarized in the memory map (see
Fig. 7).

D. Bus Width

The proposed computation flow moves weight data from
DMEM to the accelerator (specifically the IMC cluster) via an
on-chip bus. A wider bus improves the latency but increases
power consumption. To investigate this tradeoff, we sweep
the bus widths from 32 to 1024 b and simulate the latency
and power consumption. As shown in Fig. 9, regarding the
computation of one convolution and one addition layer, a
1024-b-wide bus reduces the latency over a 32-b bus by 6x.
Still, it increases the power consumption of the bus by 21x.
For the iMCU, we chose a 32-b bus to reduce bus power
consumption and silicon area.

E. Performance Analysis

We analyze the computation speedup that the proposed
accelerator enables, compared with the case that only the host
processor fulfills all computation needs. We use the functional
simulator (SPIKE) for this analysis. Overall, it achieves 434 x
speedup for ResNetv1. As shown in Fig. 10, it achieves higher
speedup for the computation of layers 1-5 because those layers
contain small weight data yet large input and output data
(see Fig. 11). Such layers can reuse the same weights across
more inputs, amortizing the performance overhead of moving

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: iMCU: A 28-nm DIGITAL IMC-BASED MICROCONTROLLER UNIT FOR TinyML 5

[Speedup L 8000 ¢
—&— Number of weight reuse n
1500 >
(]
-
6000 4
=
(X (=2}
> 1000 A T
° L 4000 3
LY
4 o
(/)] S
. <]
s00 2000 ©
£
>
Zz
0 - -0

0 1 2 3 4 5 6 7 8
Number of convolution layers in ResNetv1

Fig. 10. Speedup and weight reuses across the layers of ResNetvl.

-m Weight data size

40 - -/ Input and output data size
Macro utilization
© 100
304
L8 X
g 207 $
X L60 =
= N
o 101 Lao 5
@ o)
S
8
0- r20 =
: Lo
T T T T

- N hd < 'l © ~ -] -J

> > > > 2 32 3 > >

c c c c c c c c c

6 6 6 06 6 6 6 6 o

O 0O O o 0o o o o o

Fig. 11. Weight, input, and output data size across the layers of ResNetvl.

The macro utilization is low for the layers having small weight data and large
input and output data.

weight data from the DMEM to the IMC cluster. On the other
hand, computing layers with large weight data but small input
and output data pronounces the overhead of the data transfer
between the DMEM and the IMC cluster.

On the other hand, Fig. 11 shows the low macro utiliza-
tion for some of the layers. The two root causes of this
low utilization are twofold: 1) most CNN models have an
imbalanced weight data size among layers and 2) the iMCU
uses the IMC cluster that can fit the weight data of the largest
layer. Therefore, when the iMCU computes the smaller layers,
it inevitably exhibits low utilization. We could improve the
macro utilization by reducing the IMC cluster size. However,
it can significantly increase the latency for computing the
layers that cannot fit in the IMC cluster.

IV. IMC ACCELERATOR ARCHITECTURE
A. Pipeline Architecture

We devise the microarchitecture of the IMC accelerator to
support the computation flow in a fully pipelined manner.
Fig. 12 shows the proposed microarchitecture of the accel-
erator. It has three stages, each designed to take the same
64 cycles for the fully pipelined operation.

The first stage (INVEC) prepares input vectors. It uses two
512-B buffers operating in a ping-pong fashion to hide the
latency. Specifically, one buffer grabs 8-B data per cycle from

the scratchpad over 64 cycles. In parallel, the other buffer feeds
an input vector, again 8 B per cycle, to the IMC macro cluster.
The second stage (IMC) performs VMM using the 4 x 4 IMC
macro cluster (512 x 512 b). The cluster can complete one
multiplication between an 8-b 512d (dimension) vector and an
8-b 64 x512d matrix in 64 cycles. Because the data width from
the AHB bus is 32 b while the data width into the IMC macro
is 128 b, the weight buffer stores the weight data temporarily
before writing into the IMC macro.

The last stage (QUAN) performs the quantization. The IMC
stage’s result can have up to 25 bits, but we need to quantize
them to 8 b before storing them in the scratchpad. Simply
removing the LSBs is not optimal for inference accuracy.
Instead, we adopted a quantization scheme from TFLite-
micro [1], where the quantized value ¢ is defined as

q=2"-My-(r+2))

where n, My, and Z are the offline-computed hyperparameters
and r is the IMC stage’s result. Since QUAN has 64 cycles to
quantize a 64-D vector, QUAN uses only one two-input 32-
b adder, one two-input 64-b multiplier, and one 32-b shifter.
Note that although not ideal, the iMCU can support a layer
having the input and output size larger than the scratchpad.
Since it requires additional data loading, it incurs a latency
penalty.

B. Digital IMC Macro

Building upon [24], we designed a digital IMC macro for
the accelerator. Fig. 13 shows its circuit schematics. It uses a
time-sharing architecture to improve area efficiency. Specifi-
cally, the macro uses 128 x 128 compact 6T bitcells to store
the NN weights. Every 16 bitcells share two multiplication
units (NOR gates), and every 128 x 8 bitcells time-share a set
of eight 15-4 compressors and an adder tree.

The macro performs an 8-b 128 x 16d (dimension) VMM
in 64 clock cycles. It first activates two consecutive MAC
wordline (MWL) in each sub-module, which transfers two
weight bits to the two NOR gates in that sub-module. At the
same time, the row peripheral feeds the corresponding two
input activation bits via INbs to the NOR gates. Every eight
columns generate 16 8-b partial products. The compressors
and adder tree then add up 16 partial products and produce
partial sums, and the shift-accumulator performs shift-and-
accumulate of the partial sums. We repeat this process eight
times while feeding the rest of the input bits in the bit-serial
fashion and then again eight times for providing the rest of
the inputs corresponding to the weights in each sub-module.
Finally, the macro produces the VMM result, a 23-b 16-D
vector. The output is 23 b since the output bitwidth is equal
to the summation of the number of row address bits (7), weight
precision (8), and activation precision (8).

The macro achieves the state-of-the-art energy efficiency,
compute density, and weight density [24]. The macro achieves
an excellent weight density of 126 kB/mm?. In addition,
the macro achieves a compute density of 1.25 TOPS/mm?
(0.12 TOPS/mm?) at 1 V (0.6 V) and an energy efficiency
of 20.78 TOPS/W (43.24 TOPS/W) at 1 V (0.6 V) with a

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS
INVEC IMC QUAN
A A A
r N 0 NT N
Scratch pad (48KB) | Weight buffer (128b) 3
Bank || Bank || Bank % [| \ Bias Shift S
0 1 2 z | memory memory g
; 7 IMC cluster 512b x 512b 7O, | » z, 64x32b(64x32b | | 2
64 > > <
N mc | mc [mc | mc L VY d 4 4 5
5 7> macro | macro | macro | macro 4 A D 4
E 0 1 2 3 =
o 16] i
o s | 2] | Mc | mc | mc | mc Adder 3| . shifter
< m < macro | macro | macro | macro - tree H : H
§ 8— E e 4 5 6 7 : - g
o X 1:6 IMC IMC IMC IMC . -
g -g- N macro | macro | macro | macro -
3 = 8 9 10 1" 3, |~ Multiplier memory
b 2 A mc | mc | mc | mc 7 V1A %, R 64 x 32b
o —_— macro | macro | macro | macro 23) 7\ f\'/ 77 7"
fra / 12 13 14 15 71D /
Fig. 12. IMC accelerator microarchitecture.
128 { —®— Accelerator clock period: 160ns
Weight. Read/write controller] —&— Accelerator clock period: 40ns
vector I L L —&— Accelerator clock period: 2ns
] | Sub-module0 | |, Sub-moduieg | }SuT)-EEdulatﬁﬁ — 641
/oy (o] — ||y — Loy (o] I — [
MWL[0] | | | | I
Fvro—Le7 | ; '_l" 6T | ; Hor | ¥ E
MWL[1 | | | | 1 ‘ 5 321
s L H— AR H— T H— g
o ourl| our| ourl
S ooy 1|t);l—] 1T 2| e } I)—“v"- T 16+
§lmen £ G G 1 A ol =
8 t)T
5 [wwps || LT 2 |3 ! = 1|2
£ E—H 6T | mam 0 2l T 67 | T £ 84
w (WS 1 gl =1___|2 T e T T T T
2 | g 3 2 2 & 5 16 % e
ol Sub- | =M Sub- © o Host clock period (ns)
E [3:2] modulel '% moduled [-=—
3:2] B2 . .
. H | H | Fig. 15. Inference latency across the host and accelerator clock periods.
Mo ,
— Sub- :1 Sub-
[15:14] | module7 o A module15 ﬁg:r“] TM, th . TM, TABLE 1
Jnput 16X23b_,_{ ‘Adder tree and shift-accumulator I CONFIGURATION REGISTERS OF THE ACCELERATOR
Name Description Bitwidth
Fig. 13. Proposed 128 x 128 digital IMC macro. en_cpu_access Enable cpu to read or write data 1b
Start: clk_sel Select: no clock, host clock, IMC local clock 2b
(a) ST (b) sel_input_addr Select the address where input data is stored 2b
S@a sel_output_addr | Select the address where output data is stored 2b
IMC macro output_partial_sum| Output is the partial sums of the next computation [1b
. o bias_partial_sum | Bias is the partial sums of the next computation 1b
: H ack_layer_done Acknowledgement of the interrupt 1b
MWL[2] | compute_add_layer Enable executing add layer 1b
------------------ imc_macr Indi hich IMC macros ar 1
MWL[1] E R rie weight j' imc_macro_usage dicate which IMC macros are used 6b
[X X
MWLIOJE™" 3 rite weight E-
transfer
Fig. 14. (a) Our IMC macro has MWLs orthogonal to BLs. (b) Regular

SRAMs, such as the DMEM and the scratchpad, store and access data in a
row-major fashion.

50% input sparsity. Note that our model does not exhibit 50%
sparsity. We used the 50% sparsity data to evaluate the IMC
macro’s energy efficiency, which has been commonly done
in prior digital IMC works [19], [20]. We implement fully
digital circuits, including compressors and adders, to ensure
high robustness over PVT variations. The macro uses exact
arithmetic (no approximation), thus exhibiting 0% root mean
square percentage error (RMSPE).

A et R
/418187404 R S

Fig. 16. Die micrograph.

We investigated the impact of MWL direction on the data
transfer between the IMC macros and the DMEM. As shown

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: iMCU: A 28-nm DIGITAL IMC-BASED MICROCONTROLLER UNIT FOR TinyML 7
(a) Measurement —4— End-to-end latency (b) —0O— End-t d latency (C) % M rement —4— Energy efficiency —
T 140 —O— Energy consumption 300 = 7070.7v supply TA Energy consumption 160 ?j easureme o Throuhput 400 &
£ 2502 T O liso s E10 3508
> 120 = £ 66 R e
2 3005
S 100 2008 £ o4 a0 § £ a
2 g 3 e 2 28 250 €
=2 g0 5 = 130§ £ S
> 1505 T 607 H 17 200 2
c
S 60 S ¢ 58 L120 § 56 150
2 1008 £ 5] > 8 K]
5 4 3 2] L110 2] 100 ©
& 20 50 g W g 5, 5
S oot 8 > §
0 0 50 ———————————————— 9o 0 <
06 07 08 09 1.0 =20 -10 0 10 20 30 40 50 60 70 80 [06 07 08 09 1.0
VDD (V) Temperature (°C) & VDD (V)

Fig. 17.
energy efficiency and throughput measurement across VDDs.

(a) (b)

Convolution: data transfer
Convolution: compute

ooling + fully-connected + softmax

Fig. 18.

in Fig. 14(a), we chose our macro to have MWLs orthogonal
to BLs, like some of the prior macros [8], [16], [17], [18].
This orientation is also more suitable to the proposed macro’s
data flow. Therefore, our macro has to store the weight data
in a column-major fashion, but it receives an input vector in
a row-major fashion. On the other hand, other SRAMs, such
as the DMEM and the scratchpad, store and access the weight
and input data in a row-major, as shown in Fig. 14(b). As a
result, the IMC macro and the DMEM have a mismatch in the
direction of storing the weight data.

To mitigate this difficulty, we decided to modify the pro-
gram compilation process. Essentially, between compilation
and program loading, we transpose the weight matrix. This
modification enables the DMA to move weight data from the
DMEM to the IMC macros in the same continuous address
order. We have considered other options, such as modifying
the DMA to support the data transfer between two memory
blocks having different addressing orders. However, we did
not choose them since they increase hardware overhead.

C. Accelerator Clock

We use dual clocks for the host and the accelerator. The
IMC accelerator operates under either the host or IMC local
clock. We can also gate its clock for power savings. We can
select the clock by writing into the configuration register,
which controls the multiplexer. Initially, the IMC accelerator’s
clock is gated. For the data transfer between DMEM and the
accelerator, the IMC accelerator uses the host clock. Then,
it switches to the local clock for the computation. We disable
the host clock before clock switching to avoid metastability.
Once the accelerator finishes the computation, it interrupts the
host, which then gates the clock of the accelerator.

Measurement results. End-to-end latency and energy consumption in performing ResNetvl (a) across VDDs and (b) temperatures. (c) Accelerator

RISC-V CPU and bus

RISC-V CPU and b
RN\ IMC accelerator (c) and bus

BN\ IMC accelerator
DMA

IMEM

DMEM

UART and GPIO

1.11%
17.39%

23.43%
5.76% 0.9%

(a) Latency, (b) energy consumption, and (c) area breakdown of the iMCU.

We sweep host and accelerator clock frequencies to inves-
tigate their impact on the latency performance. As shown in
Fig. 15, if the host clock is slow, the accelerator clock has
little impact on the overall latency. This is because the DMA
operation dominates the execution time. If the host clock
is fast (its period shorter than 10 ns), the accelerator clock
will notably impact the latency performance. At the 5-ns host
clock period, speeding up the accelerator clock from 160 to
40 ns (2 ns) improves the latency by 1.5x (1.74x). However,
using fast clock indeed increases power consumption. It also
increases the energy consumption when the host, DMA, and
bus are idle (during the convolution/addition operation). Based
on this tradeoff, we set the host clock period to 40 ns (25 MHz)
and the accelerator clock to 5 ns (200 MHz).

In addition, we developed the clock gating for each macro
to save the clock power consumption for unused macros.
As shown in Fig. 11, for ResNetv1, except for the largest layer
(conv8), all the other layers use less than 50% of the macros
in the accelerator. Hence, we gate the clock for each idle
macro by setting the imc_macro_usage register (see Table I).
For ResNetvl, it can improve the energy consumption of the
iMCU by 37%.

D. Configuration Interface

The host configures the accelerator via programming special
registers in the accelerator. Table I summarizes the registers.
The start register allows the host to select the clock sources or
gate clock. We can configure the addresses of the input data
and the output data to be stored through sel_input_addr and
sel_output_addr registers. We can set the output_partial_sum
and bias_partial_sum registers to support a layer whose weight
data does not fit the IMC cluster size. They allow the
accelerator to buffer the results of partial layer computation.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE II
COMPARISON TO STATE-OF-THE-ART MCUs
. syntiant-9120-1v1-98mhz| xG24-DK2601B | NUCLEO-H7A3ZI-Q
L3 a2 deEeay e BB Syntiant [2] Silicon Labs [2] | STMicroelectronics [2]
Technology [nm] 28 28 65 22 nla n/a n/a
Host processor RISC-V 32b Cortex-M0 32b RISC-V 32b RISC-V 32b HiFi3 + Cortex-M0 32b | Cortex-M33 32b Cortex-M7 32b
Accelerator Digital IMC Digital IMC Analog IMC Analog IMC Digital accelerator |Digital accelerator| n/a
Activation precision [bit] 8 1-32 1-8 7 1-16 8 32
Weight precision [bit] 8 1-32 1-8 15 1-16 8 32
w IMEM size 128KB 16KB 128KB 512KB n/a 1.5MB9) 2.06MBS)
]
2 DMEM size 256KB 16KB 128KB 512KB 304KB 256KB 1.4MB
@
'—é IMC size 32KB 96KB 73.75KB 72KB n/a n/a n/a
=3
E In-accelerator scratch pad size 48KB 0KB 0KB 320KB 1024KB n/a n/a
g Total SRAM size 464KB 128KB 329.75KB 832KB 1328KB 256KB 1.4MB
Total SRAM area [mm?] 0.933 1.225 4.626 5414 nla n/a n/a
Total area [mm?] 2.03 1.85 8.56 10.24 7.75 nla n/a
IMC density [KB/mm?]
(INC sizefINIC area) 125.8 104.5 252 314 n/a n/a n/a
SRAM density [KB/mm?]
(Total SRAM size/total SRAM area) 4914 104.5 n3 153.7 na n/a n/a
Supply voltage [V] 0.6-1 0.6-1.1 0.85-1.2 0.55-0.9 0.9-11 n/a 0.74-1.3
' 6-35 (host) g g g
. Operating frequency [MHz] 29-310 (accelerator) 114-475 40-100 50-340 30-98 40-78 280
5 M te densit
E a°’°[;g;‘§,f“;qe“s' ¥ 1.25(1V,8b,8b) | 0.0273 (1.1V,8b,8b) [0.0094 (1.2V,8b,80)2| 12.88 (0.8V, 7b,1.5b) n/a n/a n/a
o -
o) = e['}g’ggl‘:,f]"“e"w 43.24 (0.6V,8b,8b)" |0.56-5.27 (0.6V,80,8b) | 6.25 (0.85V,8b,8b)2 | 600 (0.55V,7b,1.5b) nla nla nla
2 Iy
S A°°°'°’a[';’(’);g;:f;§]e density | 0301 (1v,8b,8b) | 0.0273 (1.1V,8b,8b) |0.0094 (1.2V,80,8b)2| 6.65 (0.9V,7b,1.5b) nla nla nla
£ -
A“”'”“j;g“:;,%{,] efficiency | g g6 (0.6v,8b,8b) |0.56-5.27 (0.6V,8b,8b) | 6.25 (0.85V,8b,80)2 | 298 (0.6V,7b,1.5b) nla nja nla
FoM = acc. compute density x acc,
anergy efficioney % SRAM donaity| 1039 (V. 8b,8b) | 3.61(0.6V, 8b,86) | 201 (1.2V, 8b, 8b) [179893 (0.9V, 7b, 1.5b) nla nla nla
MLPerf-tiny: Latency [ms] 60.9 n/a n/a n/a 5.1 239.98 158.13
ResNetv1 E 7
on CIFAR104 | Eneray °[‘:3?“"‘” on 102.18 n/a nla nla 139.4 2248.02 415113
1) Simulated. 2) Normalized to 8b weights and 8b activations. 3) n/a: not available. 4) The top-1 accuracy of all systems are above 85%, meeting the quality target in the benchmark suite.
(a) (b) (c)
p=0.0754 p=18.322 p=0.594
415 =0.0031 4{5=0.185 1o =0.065
0.7V supply 0.7V supply 0.7V supply
[7/] [7/] n 4
23 23 2
L L =
(3] (3] o 3
k] k] k]
. 2 . 2 =
[[[} 2
2 2 2
£ £ £
S 1 S 1 =
z z Z 1
0
0.072 0.076 0.080 80 81 82 83 84 85 86 87 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Accelerator throughput (TOPS) Accelerator energy efficiency (TOPS/W) Leakage power (mW)
Fig. 19. 15-chip measurement at 0.7 V and room temperature. (a) Accelerator throughput, (b) energy efficiency, and (c) leakage power.

The compute_add_layer register configures the accelerator to
compute an add or convolution layer. The host can clock-gate
each IMC macro through the imc_macro_usage register. The
host also sets the ack_layer_done register to acknowledge the
accelerator when the accelerator interrupts the host.

V. MEASUREMENT RESULTS

We prototyped the iMCU in a 28-nm CMOS. It takes
2.73 mm?. Fig. 16 shows the die photograph. The iMCU can
perform an end-to-end inference with various TinyML models.
For ResNetvl, it takes 60.9 ms and consumes 102.18 uJ per
inference at 0.7 V. Fig. 17(a) shows the latency and energy

consumption to perform ResNetvl across VDDs. As shown
in Fig. 17(b), we measure the end-to-end latency and energy
consumption across different temperatures. When the temper-
ature increases from —15 °C to 75 °C, the latency decreases
by 19%, and the energy consumption increases by 1.53x.

Fig. 18 shows the latency, energy, and area breakdown. After
the acceleration of convolution and addition, other operations
such as pooling, fully connected, and softmax take a larger
latency portion of 13%. The IMC accelerator consumes 59%
and 57% of the total energy and area, respectively.

Fig. 19 shows the maximum accelerator throughput, energy
efficiency, and leakage power across 15 dies at 0.7-V supply.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIN et al.: iMCU: A 28-nm DIGITAL IMC-BASED MICROCONTROLLER UNIT FOR TinyML 9
5 10M; VI. CONCLUSION
3 . . .) .
@ XG24-DK2601B NUCLEO-H7A3ZI-Q This article presents the iMCU for TinyML edge devices.
£ 1M Silicon Labs [2] STMicroelectronics [2] - ’
= ceqe-- It uses state-of-the-art digital IMC hardware for ensuring
é 100K E correct inference results across PVT variations. We propose
(<]) 87X a computation flow and several microarchitecture-level opti-
Q B B
> 10k L 2.9X H mizations to use the least amount of IMC hardware but
) Thiswork Tttt 'E achieve significant acceleration. In addition, the iMCU is fully
> 1k : programmable, supporting an industrial software development
2 syntiant-9120-1v1-98mhz @ 2 .
g Syntiant [2] framework. The test chip is prototyped in a 28-nm CMOS.
w 100 . . . The measurement shows the accelerator energy efficiency of

0 500 1000 1500

Total SRAM size (KB)

Fig. 20. EDP and SRAM size comparisons to the industrial MCU prototypes.

It gives the standard deviation over a mean (o/u) of 0.04 for
throughput, 0.002 for energy efficiency, and 0.11 for leakage.

We also count the 8-b additions and multiplications that
the IMC macros execute (OP_IMC) and divide it with the
total energy consumption of the digital IMC accelerator, which
gives the energy efficiency FoM of 8.86 TOPS/W at 0.6 V.
At the same VDD, the accelerator achieves a throughput of
29.4 GOPS. Fig. 17(c) shows the accelerator-level energy
efficiency and throughput across VDDs.

In addition, we divide the OP_IMC by the total energy
consumption of the iMCU, presenting the MCU-level energy
efficiency of 7.26 TOPS/W and the MCU-level compute den-
sity of 4.11 TOPS/mm? at 0.6 V. The prior IMC-based MCU
works do not report the MCU-level, end-to-end inference
energy efficiency. Therefore, we compare it to the ASIC [10],
finding that the iMCU still provides 6.4% higher end-to-end
inference efficiency and full programmability.

We compare the iMCU to the recent IMC-based MCUs.
As shown in Table II, compared with the state-of-the-art digital
IMC-based MCU [22], the iMCU achieves 1.7 x better accel-
erator energy efficiency and 11x better accelerator compute
density. The iMCU also achieves 5x better SRAM density
since the iMCU uses the least amount of IMC hardware
size and stores the weight data in the dense foundry SRAM.
In the FoM, the product of those three metrics, the iMCU
achieves 288x improvement over the prior state-of-the-art
IMC-based MCU [22]. The analog IMC-based MCU [14]
attains high energy efficiency and compute density, but the
activation and weight precision are limited to 7 and 1.5 b,
respectively. In addition, analog computing circuits are prone
to PVT variations and may produce incorrect outputs.

We also compare the iMCU to the industry prototypes. The
industry prototypes do not provide the aforementioned metrics,
such as energy efficiency, compute density, and SRAM density.
Still, they report the on-chip SRAM size, latency, and energy
consumption of the end-to-end inference using ResNetvl.
Therefore, we make a comparison based on those metrics.
As shown in Fig. 20, when compared with syntiant-9120-1v1-
98mhz, the iMCU achieves a similar energy-delay product
(EDP) while using 2.9x less SRAM. Compared with xG24-
DK2601B, the iMCU achieves an 87 better EDP while using
a similar amount of on-chip SRAM.

8.86 TOPS/W. The accelerator achieves a compute density of
0.301 TOPS/mm? and an SRAM density of 497.4 kB/mm?.
The iMCU achieves 288 x better FoM over the prior art.

REFERENCES

[1] D. Robert et al., “Tensorflow lite micro: Embedded machine learning
for tinyml systems,” in Proc. Mach. Learn. Syst., vol. 3, A. Smola,
A. Dimakis, and I. Stoica, Eds., 2021, pp. 800-811. [Online]. Available:
https://proceedings.mlsys.org/paper_files/paper/2021/file/d2ddeal8f00
665ce8623e36bd4e3c7c5-Paper.pdf

[2] C. Banbury et al., “MLPerf tiny benchmark,” 2021, arXiv:2106.07597.

[3] C. R. Banbury et al., “Benchmarking TinyML systems: Challenges and
direction,” 2020, arXiv:2003.04821.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, May 2015.

[6] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

[7]1 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, vol. 16, 2016, pp. 770-778.

[8] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” IEEE
J. Solid-State Circuits, vol. 55, no. 6, pp. 1733-1743, Jun. 2020.

[9] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3SRAM: An in-memory-

computing SRAM macro based on robust capacitive coupling computing

mechanism,” IEEE J. Solid-State Circuits, vol. 55, no. 7, pp. 1888-1897,

Jul. 2020.

B. Zhang et al,, “PIMCA: A programmable in-memory computing

accelerator for energy-efficient DNN inference,” IEEE J. Solid-State

Circuits, vol. 58, no. 5, pp. 1436-1449, May 2023.

A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient

SRAM with in-memory dot-product computation for low-power convo-

lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,

pp. 217-230, Jan. 2019.

N. Verma et al., “In-memory computing: Advances and prospects,” [EEE

Solid-State Circuits Mag., vol. 11, no. 3, pp. 43-55, Aug. 2019.

H. Jia et al., “Scalable and programmable neural network inference

accelerator based on in-memory computing,” IEEE J. Solid-State Cir-

cuits, vol. 57, no. 1, pp. 198-211, Jan. 2022.

P. Houshmand et al., “DIANA: An end-to-end hybrid digital and analog

neural network SoC for the edge,” IEEE J. Solid-State Circuits, vol. 58,

no. 1, pp. 203-215, Jan. 2023.

B. Zhang et al., “A 177 TOPS/W, capacitor-based in-memory computing

SRAM macro with stepwise-charging/discharging DACs and sparsity-

optimized bitcells for 4-bit deep convolutional neural networks,” in Proc.

IEEE Custom Integr. Circuits Conf. (CICC), Apr. 2022, pp. 1-2.

D. Wang et al., “DIMC: 2219TOPS/W 2569F2/b digital in-memory

computing macro in 28 nm based on approximate arithmetic hardware,”

in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2022,

pp. 266-268.

B. Yan et al., “A 1.041-Mb/mm? 27.38-TOPS/W signed-INT8 dynamic-

logic-based ADC-less SRAM compute-in-memory macro in 28 nm with

reconfigurable bitwise operation for Al and embedded applications,” in

IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65,

Feb. 2022, pp. 188-190.

Y.-D. Chih et al., “16.4 an 89TOPS/W and 16.3TOPS/mm? all-digital

SRAM-based full-precision compute-in memory macro in 22 nm for

machine-learning edge applications,” in IEEE Int. Solid-State Circuits

Conf. (ISSCC) Dig. Tech. Papers, vol. 64, Feb. 2021, pp. 252-254.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26

[27]

[28]

[29]

[30]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

H. Fujiwara et al., “A 5-nm 254-TOPS/W 221-TOPS/mm? fully-digital
computing-in-memory macro supporting wide-range dynamic-voltage-
frequency scaling and simultaneous MAC and write operations,” in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65,
Feb. 2022, pp. 1-3.

H. Mori et al., “A 4 nm 6163-TOPS/W/b 4790-TOPS/mm?%/b SRAM
based digital-computing-in-memory macro supporting bit-width flexibil-
ity and simultaneous MAC and weight update,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2023, pp. 132-134.

F. Tu et al.,, “A 28 nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8
reconfigurable digital CIM processor with unified FP/INT pipeline
and bitwise in-memory booth multiplication for cloud deep learning
acceleration,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, vol. 65, Feb. 2022, pp. 1-3.

J. Wang et al., “A 28-nm compute SRAM with bit-serial logic/arithmetic
operations for programmable in-memory vector computing,” [EEE J.
Solid-State Circuits, vol. 55, no. 1, pp. 76-86, Jan. 2020.

C.-T. Lin, P. X. Huang, J. Oh, D. Wang, and M. Seok, “IMCU: A 102-
nJ, 61-ms digital in-memory computingbased microcontroller unit for
edge TinyML,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC),
Apr. 2023, pp. 1-2.

J. Oh, C.-T. Lin, and M. Seok, “D6CIM: 60.4-TOPS/W, 1.46-
TOPS/mm2, 1005-Kb/mm? digital 6T-SRAM-based compute-in-
memory macro supporting 1-to-8b fixed-point arithmetic in 28-nm
CMOS,” in Proc. IEEE 48th Eur. Solid-State Circuits Conf. (ESSCIRC),
2023, pp. 1-11.

Ethos-U55. Accessed: Feb. 10, 2024. [Online]. Available: https://www.
arm.com/products/silicon-ip-cpu/ethos/ethos-u55

Syntiant Neural Decision Processors. Accessed: Feb. 10, 2024. [Online].
Available: https://www.syntiant.com/hardware

H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609-2621,
Sep. 2020.

K. Ueyoshi et al., “DIANA: An end-to-end energy-efficient digital and
ANAlog hybrid neural network SoC,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, vol. 65, Feb. 2022, pp. 1-3.

M. Chang et al., “A 40 nm 60.64TOPS/W ECC-capable compute-in-
memory/digital 2.25MB/768KB RRAM/SRAM system with embedded
cortex M3 microprocessor for edge recommendation systems,” in /EEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, vol. 65,
Feb. 2022, pp. 1-3.

Spike RISC-V ISA Simulator. Accessed: Feb. 10, 2024. [Online]. Avail-
able: https://github.com/riscv-software-src/riscv-isa-sim

Chuan-Tung Lin (Graduate Student Member,
IEEE) received the B.S. degree in electronics
engineering from National Chiao Tung University,
Hsinchu, Taiwan, in 2019, and the M.S. degree
in electrical engineering from Columbia University,
New York, NY, USA, in 2021, where he is currently
pursuing the Ph.D. degree.

His research interests include energy-efficient
architecture for machine learning algorithms and
VLSI circuit and system design.

Paul Xuanyuanliang Huang (Graduate Student
Member, IEEE) received the bachelor’s degree in
electrical engineering from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2018, and the master’s degree
in electrical engineering from Columbia University,
New York, NY, USA, in 2020, where he is currently
pursuing the Ph.D. degree with the VLSI Laboratory
led by Professor Mingoo Seok.

His research interests include design of high-
performance accelerator circuits for computing
applications.

IEEE JOURNAL OF SOLID-STATE CIRCUITS

Jonghyun Oh (Member, IEEE) received the B.S.
and Ph.D. degrees in electrical and computer engi-
neering from Seoul National University, Seoul,
South Korea, in 2015 and 2021, respectively.

In 2021, he was a Post-Doctoral Researcher with
the Inter-University Semiconductor Research Center,
Seoul National University. From September 2021 to
March 2023, he was a Post-Doctoral Research
Scientist at Columbia University, New York, NY,
USA. Since July 2023, he has been working on a
custom circuit design as a Hardware Engineer at
Apple, Cupertino, CA, USA. His main research interests include high-speed
interfaces, integrated voltage regulators, synthesizable digital architectures,
neuromorphic hardware accelerator design, and digital-type computing-in-
memory macro design.

Dr. Oh has served as a reviewer for various journals, including IEEE JOUR-
NAL OF SOLID-STATE CIRCUITS, IEEE SOLID-STATE CIRCUITS LETTERS,
IEEE AcCCESS, and IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS.

Dewei Wang received the B.S. degree in biomedical
engineering (BME) from Xi’an Jiaotong University,
Xi’an, China, in June 2017, and the M.S. degree in
BME and the Ph.D. degree in electrical engineering
from Columbia University, New York, NY, USA,
in December 2018 and May 2023, respectively.
His research interests include energy-efficient neu-
romorphic hardware and algorithm design.

Mingoo Seok (Senior Member, IEEE) received the
B.S. degree (summa cum laude) from Seoul National
University, Seoul, South Korea, in 2005, and the
M.S. and Ph.D. degrees from the University of
Michigan, Ann Arbor, MI, USA, in 2007 and 2011,
respectively, all in electrical engineering.

He was a Member of the Technical Staff with
Texas Instruments Inc., Dallas, TX, USA, in 2011.
Since 2012, he has been with Columbia University,
New York, NY, USA, where he is currently an
Associate Professor of electrical engineering. His
current research interests include ultra-low-power SoC design for emerging
intelligent systems, machine learning VLSI architecture and circuits, variation,
voltage, aging, thermal-adaptive circuits and architecture, on-chip integrated
power circuits, and nonconventional hardware design, including in-memory
computing and analog—mixed-signal computing hardware.

Dr. Seok is/was the Technical Program Committee Member for several
conferences, including the IEEE International Solid-State Circuits Confer-
ence (ISSCC) and the ACM/IEEE Design Automation Conference (DAC).
He received the 1999 Distinguished Undergraduate Scholarship from the
Korea Foundation for Advanced Studies, the 2005 Doctoral Fellowship from
the Korea Foundation for Advanced Studies, and the 2008 Rackham Pre-
Doctoral Fellowship from the University of Michigan. He received the 2009
AMD/CICC Scholarship Award for picowatt voltage reference work and
the 2009 DAC/ISSCC Design Contest for the 35-pW sensor platform design.
He received the 2015 NSF CAREER and 2019 Qualcomm Faculty Awards.
He also received the Best Paper Award from the IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION SYSTEMS in 2022. He serves/served
as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS I: REGULAR PAPERS from 2013 to 2015, IEEE TRANSACTIONS
ON VERY LARGE SCALE INTEGRATION SYSTEMS from 2015 to 2023, and
IEEE SOLID-STATE CIRCUITS LETTERS from 2017 to 2022. He also served
as the Guest Editor for the IEEE JOURNAL OF SOLID-STATE CIRCUITS
(JSSC). He is selected as the Solid-State Circuits Society (SSCS) Distin-
guished Lecturer for 2023-2025.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on July 24,2024 at 12:25:38 UTC from IEEE Xplore. Restrictions apply.

