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ABSTRACT
Thin-film transparent heaters (TFTHs) are gaining popularity in optoelectronics and a variety of domestic applications, including smart
windows, car defrosters, and other devices. The deposition and characterization of TFTHs made of gallium-doped zinc oxide (GZO) are
presented in this work. GZO thin films were deposited via pulsed laser deposition on glass substrates with varying oxygen partial pressures
from 0 to 10 mTorr during deposition. The samples demonstrated very low sheet resistance values between 5 and 17 Ω/sq from 0 to 10 mTorr,
respectively. UV/vis transmission spectra revealed that TFTHs have a high optical transparency above 80%. GZO-based TFTHs demonstrated
a consistent and repeatable joule heating effect, with temperatures reaching 76 ○C with a low input voltage of 10 V. This research could guide
the future use of GZO as a transparent conducting oxide material for many potential cost-effective applications from low-powered electronics
to lightweight and wearable devices.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134151

INTRODUCTION

Transparent conducting oxide (TCO) materials are materi-
als that possess sheet resistance values of 1–250 Ω/sq and optical
transmittance >85% in the visible wavelength region.1–4 Currently,
indium-doped tin oxide (ITO), the commercially used TCO, is fac-
ing more difficulties due to the high cost and scarcity of indium.
Indium, which is produced as a by-product of Zn, Cu, and Sn ores,
is a depleting resource resulting in a rapidly increasing price, mak-
ing it a lower performance-to-cost ratio option. Furthermore, ITO
films are also brittle, making them unsuitable for long-run bend-
able/foldable electronic devices. Therefore, considering the wide
range of applications requiring a flexible electrode, ITO fails to
satisfy such requirements.5–8

Numerous alternatives have been studied to find a replace-
ment for ITO for a variety of high-performance optoelec-
tronic applications. Some examples include graphene, networks of

carbon nanotubes in the form of 2D films, and conductive per-
colation networks with optimum transparency. In particular, these
materials demonstrated joule heating effects upon application of
voltage, which allows for them to possess the qualities of a trans-
parent heater. These qualities of a transparent heater can be used
for a wide range of applications, such as defrosting in mirrors and
windows, outdoor displays, smart windows, de-icing, and heaters in
wearable devices.9–12

Metal nanostructures, especially silver nanowires/mesh, are
among the most promising alternatives to ITO due to their excel-
lent electrical conductivity, mechanical stability, and high opti-
cal transmittance in the visible wavelength region for thin-film
heaters (TFHs).13–17 However, these silver-based nanowires suffer
from dissatisfactory interconnections between the random networks
and a high junction resistance.18–22 These disadvantages affect the
electrical and heating properties of the thin film. Other effective
alternatives are graphene and carbon nanotubes.23–25 They offer a

AIP Advances 13, 025249 (2023); doi: 10.1063/5.0134151 13, 025249-1

© Author(s) 2023

 24 July 2024 12:58:34

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0134151
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0134151
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0134151&domain=pdf&date_stamp=2023-February-10
https://doi.org/10.1063/5.0134151
https://orcid.org/0000-0002-5664-2032
https://orcid.org/0000-0002-4126-6089
https://orcid.org/0000-0003-1593-4597
https://orcid.org/0000-0002-8359-7038
https://orcid.org/0000-0003-4643-2733
mailto:j.z.beckford@spartans.nsu.edu
mailto:skpradhan@nsu.edu
https://doi.org/10.1063/5.0134151


AIP Advances ARTICLE scitation.org/journal/adv

high optical transparency and an excellent electrical and thermal
conductivity.26,27 However, carbon nanotubes and graphene tend
to be expensive during the fabrication process, which restricts their
widespread use in practical applications.28,29

Metal oxide-based TCOs, such as doped ZnO films, exhibit
an excellent electrical conductivity and a high optical transparency
and can overcome the previously stated difficulties better than the
above-mentioned materials. By substituting part of the Zn atoms
with higher valence elements, such as Al and Ga, the electrical char-
acteristics of ZnO films can be greatly improved.30–36 Gallium and
aluminum are the best dopants for maintaining the transparency
and conductivity of the ZnO film. The smaller ionic radius of the
Ga and Al atoms with respect to the Zn atoms allows them for
an effective substitution at the Zn site of the ZnO matrix during
doping. The close atomic size of Ga and Al, which are used as
a substitute element, also helps to prevent any kind of substan-
tial structural deformation in the unit cell. The addition of oxygen
during deposition has been proposed to tune the transparency and
conductivity of Ga-doped ZnO (GZO) thin films grown by the
ion-plating method.37

In this article, we investigate the effect of oxygen partial pres-
sure during thin film deposition on an effective, low-powered GZO
thin film grown by pulsed laser deposition (PLD) for transparent
heater applications. The films demonstrated low sheet resistance val-
ues (5 and 17 Ω/sq) and a high optical transmittance (>80%), which
encourage the use of the GZO material as a thin-film heater for dif-
ferent applications, such as automobile defrosters, LED displays, and
smart windows.

EXPERIMENT
Preparation of GZO target with the composition
Ga0.07Zn0.93O

High purity (99.99%) Ga2O3 and ZnO powders are used as
raw materials to prepare the Ga doped ZnO target in the compo-
sition of Ga0.07Zn0.93O through a solid state route. In the first step,
stoichiometric amounts of Ga2O3 and ZnO powders are taken and
thoroughly mixed for several minutes at room temperature using
a mortar and pestle. The powder mixture is poured into a high
temperature alumina crucible and placed inside the furnace at the
temperature of 800 ○C. Every 4 h, the powder mixture was quenched
and grinded until it breaks into an ultrafine form. Ultimately, the fine
powder of the Ga doped ZnO is pressed into a 1-in. dia punch via a
hydraulic press to make the final target. The prepared target went
into the final step of sintering at 1200 ○C for 12 h in air to obtain a
compact structure.

Deposition of GZO thin films

The above prepared GZO target was loaded into the PLD cham-
ber (Neocera make). GZO thin films are deposited at very high
vacuum with the base pressure of chamber in the order of 10−8

Torr. Before placing the substrates into the PLD chamber, the glass
substrates used for depositing the films were thoroughly cleaned
sequentially with acetone, methanol, and de-ionized (DI) water and
dried by flowing N2 gas. The GZO thin films were deposited on
glass substrates with the oxygen partial pressure ranging from 0
to 10 mTorr and at the substrate temperature of 350 ○C. During

deposition, the excimer laser energy used for this growth was var-
ied between 200 and 250 mJ per unit area with a repetition rate
of 7 Hz and the distance between the substrate and target was
maintained at 5 cm. Various numbers of laser pulses were used
to achieve the optimum thickness of the GZO thin film for our
study.
Characterization of GZO thin films

The structural, electrical, optical, and electro-thermal prop-
erties of the GZO thin films were investigated using a variety of
methods. The crystal structure of the films was examined using a
Panalytical X’Pert Pro high-resolution x-ray diffractometer using
Cu Kα radiation. The temperature dependent resistivity properties
of the films were measured using a linear four-probe employing
a Keithley nanovoltmeter and a current source connected to a PC
using LabVIEW software. A Perkin Elmer Lambda 950 UV/vis spec-
trometer was used to study the optical characteristics of the films
grown under various conditions. The electro-thermal properties
(heating effect of the GZO based TFTH) of the GZO thin films
were determined using an external DC voltage source, and the tem-
perature of the films is recorded with the help of an ultrasensitive
FLIR thermal camera. X-ray photoelectron spectroscopy (XPS) of
the samples was performed to verify the oxidation states and analyze
the composition of the GZO thin films.

RESULTS AND DISCUSSION
Structural properties

The x-ray diffraction (XRD) data of the GZO thin films
deposited on silicon substrates show the presence of a diffraction
peak at ∼34.56○, slightly higher than the standard ZnO powder
diffraction angle of 34.45○ (Fig. 1). The results show the possibil-
ity of the development of tensile stress in the plane of the film by
the substrate. This effect may be attributed to the doping of Ga into
ZnO as the radius of Zn is greater than that of Ga. As Ga exchanges
the element on the Zn site, the lattice parameter decreases along the
c-axis and increases the diffraction angle.

FIG. 1. X-ray diffraction patterns of GZO thin films at different oxygen partial
pressures.
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The results indicate that all films are polycrystalline and show
a preferential orientation in the (002) direction exhibiting the c-axis
perpendicular to the substrate. The presence of a (002) plane of GZO
and the intense peak at a 2θ angle of ∼34.56○ confirms the pres-
ence of GZO. The XRD data shift to lower diffraction angles with
the increase in the oxygen pressure during deposition. The contribu-
tion of oxygen identifies a decrease in oxygen vacancies present.38–42

A decrease in the oxygen vacancy results in a decrease in the out-
of-plane lattice parameter, thus moving the lattice closer to the
bulk value, as shown in previous studies on oxides and perovskite
structures.43–45 Figure 1 is normalized to provide more distinguished
shifted peaks in relation to the oxygen pressure. Using the Scherrer
equation,46,47 the calculated crystallite sizes of the films ranged from
10.7 to 21.3 nm when the oxygen partial pressure increased from 0
to 10 mTorr (Table I). The increase in the oxygen partial pressure
narrows the full width at half maximum (FWHM) of the (002) peak,
which shows an increase in the crystallite size of the film.
Optical properties

Figure 2 displays the optical transmittance spectra of the GZO
films deposited on glass substrates measured in air at room temper-
ature as a function of different oxygen partial pressures. The optical
transmission data shown in the figure exhibit an excellent trans-
parency in the visible wavelength region with an observed average
percentage transmission of over 80% and a sharp fall in the transmit-
tance at the absorption edge at ∼330 nm. The optical transmission of
the GZO films is slightly improved by increasing the oxygen partial
pressure (10 mTorr).

The Tauc plot has been used to determine the optical energy
bandgap of GZO thin film grown at different oxygen partial pres-
sures, as shown in Fig. 3. The bandgap of GZO thin films at 0 mTorr
oxygen partial pressure is ∼3.48 eV, which is a little bit higher than
the bulk ZnO, which may be due to the quantum confinement in
nanocrystalline GZO.48 Using a linear fitting of the data close to
the absorption edge from the Tauc plot, (αhν)2

= A(hν − Eg),49–52 at
oxygen partial pressures of 5 and 10 mTorr, the calculated bandgaps
are 3.32 and 3.44 eV, respectively. The reduction in the bandgap
could be attributed to a decrease in the charge carrier concentration
caused by the filling up of the oxygen vacancy sites as the oxy-
gen partial pressure is increased during deposition. This leads to
electron–electron collisions and agrees with the results of electrical
properties discussed later.53

Composition analysis

The XPS characterization is performed on the samples grown
at varying oxygen partial pressures (0–10 mTorr). The XPS

TABLE I. Variation of the 2θ peak, full width at half maximum (FWHM), grain size (D),
and optical bandgap (Eg) with the oxygen partial pressure (PO2).

Oxygen partial pressure
(PO2)

0
(mTorr)

5
(mTorr)

10
(mTorr)

2θ (○) 34.56 34.31 34.31
FWHM (○) 0.78 0.40 0.39
D (nm) 10.67 20.79 21.32
Eg (eV) 3.48 3.32 3.44

FIG. 2. Optical transmittance spectra of GZO thin films as a function of oxygen
partial pressure.

background was subtracted, and a Gaussian-shaped profile was used
to find the fitting peak for the high-resolution XPS spectra anal-
ysis. Figure 4 displays the oxygen peaks present in the samples
between 525 and 535 eV. The fitted peaks were split into three
separate peaks (lattice, vacancy, and adsorbed) to determine the
ratio of the metal-bonded oxygen to the oxygen vacancies.54,55 This
ratio is calculated by determining the area under each of the peaks
and taking their ratio.56 The Ovacancy/Olattice ratios for the films
grown under the oxygen partial pressures of 0, 5, and 10 mTorr are
found to be 0.94, 0.74, and 0.70, respectively. As expected, with an
increase in the oxygen partial pressure during deposition, the ratio
Ovacancy/Olattice was found to decrease, indicating an increase in the
oxygen concentration in the films.

Electrical properties

The GZO films are grown on glass substrates to determine the
electrical properties of the films. Temperature-dependent measure-
ments are performed using the linear four-probe technique, and the

FIG. 3. Tauc’s plot of GZO films grown under different oxygen partial pressures.
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FIG. 4. XPS graphs of GZO thin films
at different oxygen partial pressures: (a)
0 mTorr, (b) 5 mTorr, and (c) 10 mTorr.

results are shown in Fig. 5. ZnO is a very well-known wide bandgap
material semiconductor and shows a considerably higher resistivity
and exhibits a semiconducting behavior. In this study, the doping
percentage of Ga in the ZnO matrix of the deposited films is 7%
and the composition of the sample is Ga0.07Zn0.93O. The varying
oxygen partial pressure had an inverse effect on the GZO thin film
electrical conductivity due to the decrease in oxygen vacancies. The
sample grown at 0 mTorr oxygen partial pressure shows the for-
mation of vacancies, and the oxygen vacancies increase the carrier
concentration considerably. The observation of metallic character-
istic and lower resistivity of ZnO thin films is a combined effect
of Ga doping and oxygen vacancies, which act as donors and lead
to degeneracy. The temperature dependent resistivity from room
temperature to a higher temperature (90 ○C) of this film shows a
positive temperature coefficient of resistivity (TCR) as the resis-
tance of the sample increases with increasing temperature as shown
in Fig. 5(a). Hence, the observation of the metallic type charac-
teristic in resistivity–temperature measurement can be explained
by the formation of a degenerate band appearing in the sample,
where the Ga atoms are heavily doped in the ZnO semiconduc-
tor film as well explained by Mott et al.57 Similarly, positive TCR
characteristics are noticed and have also been reported by other
research groups through studying metal doped ZnO and other semi-
conducting material systems.58–61 Furthermore, 5 mTorr samples
also show the same behavior of the temperature dependent resistive
curve as shown in Fig. 5(b). This agrees with the trend seen in the

calculation of the bandgap of the films, which is found to decrease as
the charge carrier concentration increases. Furthermore, the oxygen
vacancy concentration decreased in the sample grown at 10 mTorr
oxygen partial pressure and favored a plunge in the number of oxy-
gen vacancies. The decrease in the carrier concentration of oxygen
vacancies also shifts the Fermi level below the conduction band
and, thus, explains the observed semiconducting behavior in the
resistivity–temperature curve by slightly decreasing the resistivity
with increasing the temperature as shown in Fig. 5(c).

Electro-thermal properties

After validating that the GZO thin films are transparent and
conductive, the electro-thermal properties of the films are studied
to test their application as TFTHs. The GZO thin films are supplied
with an external DC voltage, and the generated heat is monitored
(Fig. 6).

Using a FLIR camera, we recorded the thermal images of the
samples (Fig. 7). The FLIR images show a uniform heat distribu-
tion between the electrodes and the highest heat at the center of
the thin films. All films are conductive and generate heat at differ-
ent applied voltages ranging from 0 to 10 V. The sample grown at
10 mTorr partial oxygen pressure shows the highest temperature
of up to 76 ○C, which could be due to the higher resistive nature.
The oxygen vacancy is normally formed in GZO samples that are
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FIG. 5. Measurement of electrical prop-
erties (resistivity vs temperature) of GZO
thin films grown at different oxygen par-
tial pressures using the linear four-probe
technique: (a) 0 mTorr, (b) 5 mTorr, and
(c) 10 mTorr.

grown in a higher vacuum environment. However, a higher oxy-
gen partial pressure favors the reduction in oxygen vacancies as
observed in our 10 mTorr sample and also as confirmed through
the XPS study as well. This film can generate nearly 76 ○C of heat at
a DC voltage of only 10 V. This is a remarkable property that can
be used in various thin-film heating applications. We list the sev-
eral experimental research findings obtained by other researchers
about the GZO, AZO (Al-doped ZnO film), FTO (fluorine-doped

FIG. 6. Electro-thermal measurements of the GZO thin films grown on glass
substrates at different partial oxygen pressures using a DC power supply.

FIG. 7. Joule heating effect displayed by the GZO thin films at different oxygen
partial pressures of (a) 0 mTorr, (b) 5 mTorr, and (c) 10 mTorr, captured using a
FLIR camera.

AIP Advances 13, 025249 (2023); doi: 10.1063/5.0134151 13, 025249-5

© Author(s) 2023

 24 July 2024 12:58:34

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

TABLE II. Comparison study of different TCO thin films, such as AZO, GZO, fluorine-doped tin oxide (FTO), and AZO/FTO double layer thin films, through resistivity, substrate
temperature (Ts), optical transmission, thin film growth technique, applied voltage to measured heating effect in temperature (oC) of the current work (last row) with other reported
studies.

Resistivity Ts (○C) Transmission (%) Deposition method Applied volt. (V) Temperature (○C)
TCO thin film

materials

1.1 × 10−3 Ω cm 200 ∼94 RF magnetron sputtering 10 78.0 AZO thin films62

2.14 × 10−4 Ω cm RT ∼90 PLD 10 75.0 GZO thin films63

1.30 × 10−4 Ω cm 500 ∼90 RF magnetron sputtering 42 90.0 GZO thin films36

72.51 Ω. sq−1

(sheet resistance)
RT ∼80.8 RF magnetron sputtering 12 44.4 AZO thin films64

65.71 Ω. sq−1

(sheet resistance)
RT 79.7 Metal organic CVD 12 45.3 FTO thin films64

43.96 Ω. sq−1

(sheet resistance)
RT 82.1 Metal organic CVD 12 48.9 AZO/FTO double

layer thin films64

36.7 Ω. sq−1

(sheet resistance)
RT 82.1 Metal organic CVD 12 71.8 FTO/AZO double

layer thin films64

10.1 × 10−3 Ω cm 350 ∼81 PLD 10 76.0 GZO thin films
(this work)

tin oxide), and FTO/AZO double layer thin film materials for TFTHs
applications in Table II.

CONCLUSION

In conclusion, we were able to optimize and study a highly
transparent and conductive GZO thin film deposited on glass sub-
strates by varying the oxygen partial pressure from 0 to 10 mTorr
using PLD. The as-grown GZO films without oxygen displayed an
excellent electrical resistance as low as ∼5 Ω while remaining above
85% transparent in the visible wavelength region. The XPS study
revealed that increasing oxygen partial pressure favors the reduc-
tion in oxygen vacancies, which is normally seen in GZO samples
grown in a high vacuum environment. The GZO thin films demon-
strate excellent electro-thermal properties via the joule heating effect
when deposited under an oxygen partial pressure of 10 mTorr.
The 10 mTorr GZO thin film produced higher temperatures close
to 75 ○C with an applied voltage of ≤10 V. These results can be
used in various thin-film heating applications, such as automo-
bile defrosters, airplane de-icing, and energy-efficient, low-powered
smart windows.
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