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Abstract: We apply the Nb=1 solution of the Rapidly Decaying Fourier series to fit mid-spatial 
frequency surface errors. Using this basis enables definition of sharp spatial frequency bandlimits 
for mid-spatial frequency specification of optical surfaces. 

1. Introduction
Residual mid-spatial frequency (MSF) surface errors are consequences of sub-aperture manufacturing methods used
for the fabrication of radially symmetric and freeform optics [1]. Orthogonal decomposition of MSF errors has
previously been investigated to better understand and specify MSF errors on optical surfaces with a range of basis sets
for circular apertures [2,3], square apertures [4], and arbitrary apertures [5–8].

In this work, we consider the Nb = 1 solution of the Rapidly Decaying Fourier (RDF) series for circular 
apertures[9]. A benefit of this basis is its ability to produce sharp cutoffs in the frequency domain that enable definition 
of spatial frequency bandlimits with little residual error beyond that specified bandlimit. To illustrate this point, we 
first show relationships between the period and distribution of the MSF surface error and the amplitude coefficients 
of the Nb = 1 RDF basis using a map visualization method used in previous work [2–4]. We then compare the polar 
areal power spectral density (PSD) and the residual polar areal PSD [10,11] of a fitted experimental MSF surface to 
demonstrate the sharp cutoffs in the frequency domain.  

2. Methods
The RDF Nb=1 basis is defined by Eq. 1, where cm

n  is the amplitude coefficient, and the radial and azimuthal
components are defined in Eqs. 2 and 3, respectively. The n = 0 piston term in Eq. 1 is not included because it does
not capture surface oscillations. In Eq. 2, R is the surface radius, and the m

n  term in Eq. 2 describes the zeros crossing
and is approximately equal to the spatial frequency of the surface erorr.
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A least squares procedure in MATLAB is used to fit this basis to an MSF surface error, and the  cm
n  coefficients are 

plotted in a “coefficient map” where the x and y axis displays the n and m order for a particular coefficient, and the 
coefficient amplitudes are encoded in the z-axis. In Fig. 1, we show three purely sinusoidal MSF signatures 
distributions (radial, azimuthal, and raster), each with 200 nm amplitude. We highlight the peak locations in Fig.1 to 
illustrate the relationship between the coefficient peaks and the period and distribution of the MSF surface errors. Note 
that (1) the radial MSF error peaks in n value at m = 0 when n is equal to the number of radial oscillations across the 
part; (2) the azimuthal MSF error peaks in m at n = 1 when m equals the number of oscillations around the perimeter 
of the surface; (3) the linear raster MSF errors peaks follow a curved line starting at the intercept of n equal to the 
number of raster oscillations and ending approximately at the intercept of m equal to  times the number of raster 
oscillations.  
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Fig. 1. (a) Coefficient map of cm
n  values for radial MSF with 26 cycles across the part; (b) Coefficient map of cm

n 
values for azimuthal MSF with 9 cycles around the perimeter of the part; (c) Coefficient map of cm

n  values for
raster MSF with 25 cycles across the part. Note: the three color bar ranges are not equal.  

3. Results and Discussion
In this example, we demonstrate fitting an experimental MSF surface error shown in Fig. 2(a) from 0.11 cyc/mm to
10 cyc/mm. To capture both the radial and linear raster MSF errors in the surface, we fit from 1  n  90, and -284 
m  284 along a slope magnitude of  from the n and m intercepts, as shown in Fig. 2(b). Fig. 2(c) shows the
reconstructed surface and its polar areal PSD. In Fig. 2(d), we show the residual surface and its polar Areal PSD.

Fig. 2. (a) Complex MSF with both raster and radial errors with a diameter of 9 mm; (b) coefficient map fitted 
MSF surface error (c) fitted surface (scaled to Fig. 2(a)) and polar areal PSD of the fitted surface; (d) residual 
surface (scaled to Fig. 2(a)) and polar areal PSD of the residual surface. 

We note the difference in the cutoff spatial frequencies in the fitted spectra (12 cyc/mm) and the residual spectra (10 
cyc/mm) due to the linear approximation for the slope magnitude. Additional work is needed to determine a non-linear 
relationship between n and m to better match cutoff frequencies, resulting in a tighter band-limit specification. 
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