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ABSTRACT 
Artificial intelligence (AI) is rapidly transforming our world, making it imperative to educate the 10 

next generation about both the potential benefits and challenges associated with AI. This study 

presents a cross-disciplinary curriculum that connects AI and chemistry disciplines in the high school 

classroom. Particularly, we leverage machine learning (ML), an important and simple application of AI 

to instruct students to build an ML-based virtual pH meter for high-precision pH read-outs. We used a 

“codeless” and free ML neural network building software – Orange, along with a simple chemical topic 15 

of pH to show the connection between AI and chemistry for high-schoolers who might have 

rudimentary backgrounds in both disciplines. The goal of this curriculum is to promote student 

interest and drive in the analytical chemistry domain and offer insights into how the interconnection 

between chemistry and ML can benefit high-school students in science learning. The activity involves 

students using pH strips to measure the pH of various solutions with local relevancy and then 20 

building an ML neural network model to predict the pH value based on color changes of pH strips. The 

integrated curriculum increased student interest in chemistry and ML and demonstrated the relevance 

of science to their daily lives and global issues. This approach is transformative in developing a broad 

spectrum of integration topics between chemistry and ML and understanding their global impacts.  
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INTRODUCTION 
The ways of conducting chemical research and production are reforming with advances in 30 

automated instrumentation1, high-throughput manufacturing2, computing power3, and algorithms4 

which have provided an exponential growth of data and led to the exploration of data-driven 

approaches for the chemistry field.5 A particularly important example is the integration of machine 

learning (ML) into chemistry which has accelerated the pace of scientific discovery such as developing 

new drugs and materials6, predicting chemical reactions7, understanding the mechanisms of chemical 35 

reactions8, and studying the structure and function of enzymes, proteins, and other biological 

molecules.9 To better integrate ML into the chemistry field, it is critical to expose the next generation 

to the integration of ML with chemistry to promote their career interests in chemistry and related 

science, technology, engineering and mathematics (STEM) fields with an AI mindset. To achieve this, 

students should grasp key knowledge and practices in ML10 such as data acquisition, preparation, 40 

interpretation, and model building with domain knowledge in chemistry. Several publications have 

reported the implementation of ML and other AI technologies in chemistry classrooms.11–17 The 

activities include the introductions of (1) basic programming skills in Python13 and MATLAB16 

software, (2) building artificial neural networks for a variety of regression-type (chemometric) 

problems13,14,16, and (3) implementing computer vision for imaging classification12,17 and prediction11 of 45 

chemical variables. However, most activities are designed for undergraduate and graduate students. 

To date, there is scarce implementation of integrated ML and chemistry curriculums for lower school 

grades - from kindergarten (5-6 years old) to the 12th grade at ages of 17-18 (referred to as K-12). To 

fill this gap, we designed an integrated ML and chemistry curriculum with contents and activities 

suitable for high-school students who may have limited backgrounds in ML and chemistry. 50 

Integrating advanced technology into K-12 classrooms can enhance students’ motivation and 

engagement in science, leading to improved performance and interest in related careers.18 Particularly, 

incorporating ML in K-12 classrooms exposes students to AI and ML’s power and limitations. However, 

the way science topics and their connection with ML presented in existing K-12 classrooms is not well-

established.19 Science and ML are sometimes taught as parallel entities rather than integrated 55 

subjects, which diminishes students’ engagement. To fill this knowledge gap, we propose to develop an 

integrated ML and chemistry activity for high-school students with implications for real-world 

challenges to allow the students to better perceive the interplay of ML and chemistry. Consequently, 

students can learn about AI’s role in chemical fields while also developing computational and data 

literacy skills. 60 

INTEGRATED LEARNING OF ML AND CHEMISTRY 

Since chemistry and ML concepts are often abstract, we aim to develop an integrated ML and 

chemistry curriculum that is (1) within the scope of the high-school chemistry curriculum, (2) 

engaging by connecting to real-world problems and (3) facilitating the understanding of both ML and 
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chemistry concepts and their interplays. We propose to leverage the concept of color chemistry21 or the 65 

observation and understanding of different colors in chemical phenomena as engaging tools for 

digesting chemistry concepts and linking them to ML. Colored observations as a visual aid22, facilitate 

teaching and learning chemistry, especially in improving qualitative analysis and critical thinking 

skills. Further, colored chemical changes can be captured as images, which promotes the 

understanding of key ML concepts in the visualization and interpretation of imaging data, model 70 

comparison, error analysis, and interactive learning. In short, using color changes to represent 

chemical reactions, students may develop a deeper understanding of the underlying principles of ML 

and improve their ability to analyze data in the chemistry field. 

ML methods are well-known for their unmatched capability in imaging recognition, including the 

high-accuracy prediction of pH strip readings.23 Capturing pH strip photos with each color 75 

corresponding to a specific pH value not only provides a practical ML dataset but also allows the 

students to be fully exposed to the entire ML model construction process. Specifically, this practice 

involves all essential procedures for ML network development and assessment including (1) data 

acquisition through taking pH strip photos, (2) data preparation by cropping the images, (3) model 

generation through the construction of an ML network to predict pH values, and (4) model evaluation 80 

and optimization by comparing predicted results to pH meter readings. Moreover, this topic has local 

relevance as students can test samples such as ponds in their community, in-house aquatic tanks, 

soda drinks, and soils in their backyard. This curriculum also helps students understand the global 

impact of pH on soil and water quality, climate change, environmental health, plant growth, and 

human well-being. Thus, students can make a positive impact on building a sustainable future for 85 

themselves using the acquired ML and chemistry knowledge. 

In terms of educational technology, we chose Orange, an open-source ML and data mining 

toolkit.24 It provides a visual programming interface and offers a variety of ML algorithms that are 

suitable for beginners.25 Orange has a large and active community, with many resources and tutorials 

available, making it an accessible tool for those who may not have extensive programming experience. 90 

Additionally, Orange’s interactive visualizations can help students understand the relationships 

between data variables and ML algorithms, promoting teaching data literacy and scientific inquiry and 

serving as a stepping stone to more advanced ML tools. We have provided a short tutorial (see Step-by-

step Orange slides and video instructions in the Supporting Information) for creating ML neural 

networks for the pH prediction tasks.  95 

ACTIVITY 

We draw on three theoretical lenses to design the integrated learning activity: systems 

thinking26, learning by doing27, and engaging by relating.28 By engaging students in a real-world 

problem-solving activity, they can actively participate in the learning process, fostering a deeper 

understanding of the concepts and principles introduced in the curriculum. Specifically, the 100 
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curriculum was implemented in a high school general chemistry class in the Eastern United States 

consisting of sixteen students. Students engaged in five lessons in five days (90 minutes per day) 

(Figure 1). The first lesson took place in the traditional Chemistry classroom to cover basic concepts of 

pH and its measurement using overhead slides and lectures according to Next Generation Science 

Standards (NGSS) guidelines.29 At the end of the first lesson, the students were asked to collect real-105 

life aqueous samples that were relevant to their daily lives to be measured in lesson two (e.g., drinks, 

pond/lake water, cosmetics, kitchen ingredients). 

 

Figure 1. A flowchart highlights the main topics of the 5-lesson curriculum, integrating ML into high-accuracy pH strip prediction. 

The second lesson was held in a high-school chemistry laboratory for hands-on activities to 110 

engage students in pH measurement and to prepare ML datasets. Particularly, the students were 

grouped in 3-4 and instructed to measure the samples they collected using pH strips with a standard 

pH-color conversion chart as the reference. Solutions with known pH values prepared by the 

instructor before class were also distributed to the students. Students were then asked to measure the 

pH value of samples of their own and took a photo of the wet-colored pH strip immediately for later 115 

use as the ML testing dataset. pH strip photos of a series of standard solutions with known pH were 

captured by the instructors in advance as the training dataset and shown in Figure 2A and are 

available in the Supporting Information. Next, the instructor introduced the use of pH meters as 

high-cost and high-accuracy equipment and instructed the students to repeat the pH measurement of 

their samples using a pH meter (Figure 2A bottom).  120 

Further, the students measured their own samples and compared their readings with their 

group members to discuss the discrepancies among their visual pH-strip readings in locally relevant 

samples (Figure 2B) and the consistencies of values read from the pH meter. Afterward, the instructor 

discussed the tradeoff between cost, accuracy, and accessibility, the water quality issue in 

underdeveloped areas, and the importance of accessible techniques in specific scenarios like 125 

preventing food crises and securing human health. Finally, the instructor presented the students with 

a task to solve this particular problem – developing an ML-based imaging recognition method to create 

a virtual pH meter for underdeveloped areas. Students were instructed to crop the pH-strip photos 

while keeping only color-changed areas and a white-paper background (about 20-30% of the sizes of 

the pH strip) as a simple practice of data cleaning in ML (photos in Figure 2B). 130 
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Figure 2. (A) Top: photos of pH strip measured from different buffer solutions as ML training data; bottom: pH strip and meter readings of the 

buffer solution samples; (B) pH-strip photos and pH meter readings of real-life samples brought by students as the testing dataset for ML. 

 135 

The following three lessons were conducted in the media lab of the school library to access 

Orange software for ML practices. Students build upon their prior knowledge using pH training data to 

develop a model by relating and comparing the accuracy to underscore the importance of data 

quantity and quality in real-world applications like diabetic testing, lake pollution, and soil nutrient 

tests, to shape a sustainable future. 140 

The third lesson introduced students to the ML workflow using a short lecture accompanied by 

a hands-on activity to investigate supervised ML algorithms. Students were regrouped in sizes of 2-3 

and worked together to explore the image processing technique of feature extraction. Feature 

extraction is the conversion of data from the original format (e.g., an image) into a series of 

quantitative (e.g., numeric) or qualitative (e.g., text description) features that distinguish different 145 

objects and are essential for pH identification in a virtual pH meter. To learn about supervised 

learning and the ML workflow, students used animal sort cards as their data in the unplugged activity. 

Students picked five animals, used a table template to create labels for the animals as the variable 

name, and added quantitative and qualitative information. For example, one group may have labeled 

the animals with ears, tails, legs, and colors. For a black cat, the labels would include four legs, two 150 

ears, one tail, and black for the color. Then students would choose one animal and predict which 

group it would fit into based on features in the table. This unplugged activity was designed to help 

students understand the concept of feature extraction and how features could be used to classify 

different objects. 
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 155 

Figure 3. (A) A representative interface of Orange software for generating the ML network for pH strip reading; (B) a scatterplot illustrating pH 

readout using the student-developed MLnetwork (red dots) or students’ visual readings (green dots) versus the corresponding pH meter 

measurement as the ground truth to demonstrate the ML-enhanced pH strip reading precision as the key component; the dots are closer to 

the black reference line indicates relatively small errors in pH reading compared with the ground-truth measurement. (C) A comparison of the 

averaged percent errors in pH strip reading by human visual and by ML. (D) A scatterplot shows ML reading compared with the ground truth 160 

pH-meter value of poorly predicted samples; the left image shows the limitation of ML in detecting colors never seen in the training data; the 

right image shows the influence of poor data quality on ML.  

 

In the fourth lesson, students were introduced to the ML workflow. A representative interface of 

the ML network generated using Orange is shown in Figure 3A. First, the instructor modeled the 165 

process of developing clustering models. Then students applied their knowledge by completing a 

selection of challenges in a scavenger hunt using a traffic light dataset. Challenges included using the 

tool widgets in Orange to load the dataset, inspecting the dataset to identify the number of instances 

and attributes, using the image viewer to form a hypothesis, using a regression neural network to 

create image embedding visualizations (see more details of testdata and modeldata in the Supporting 170 

Information), and finally communicating results. To stimulate students’ critical thinking, the 

instructor prompted them to engage in discussions regarding how the algorithm clustered the traffic 

signs and what features were used by the algorithm to make those decisions. This activity was 

designed for students to get familiar with the Orange platform and its various functionalities for ML 

workflows. We chose the traffic light dataset to introduce ML workflow as it’s an existing dataset in the 175 

platform so that students could focus on learning ML workflow instead of hitting the hurdle of creating 

and loading datasets. Also, high school students in the United States are typically introduced to traffic 
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rules and regulations as part of their driver’s education, making the topic both relevant to their 

everyday experiences.  

The fifth lesson focused on supervised learning with vectorized image embedding (see Student 180 

Handout of Lesson 5 in the Supporting Information). Students participated in a code-along building 

of the training model. The code-along guided students through the process of uploading pH training 

data, creating image embeddings, and observing the data dimensions and features. Students also 

followed the workflow identifying the association of the image and pH values as inputs (image 

descriptions) and outputs or targets (pH value) to create a linear regression for prediction. After 185 

developing the training model, students validated their model performance by testing the original pH 

strip pictures they took before by comparing the ground truth (pH meter) vs. predicted value (virtual 

pH). In this activity, we also emphasized the important concept of ground truth, which refers to the 

accurate and objective data that serves as a reference for training and evaluating ML models30, 

provided by direct measurement. We showed the pH prediction results of the ML network the students 190 

developed compared with their visual readings (Figure 3B). Furthermore, we guided the students to 

compare both ML and visual readings against the ground truth measurements to validate that the ML 

methods would have a more accurate prediction than the visual readout. We further instructed the 

students to measure the percent errors of ML and visual reading using the formula [ML or visual value  

- pH meter value]/ pH meter value. The averaged percent errors (Figure 3C) of visual readings (18%) 195 

are 5.5 times higher than that of the ML reading (3.3%), which further demonstrates the power of ML 

in these prediction tasks. 

To underscore the importance of data quantity and quality in model prediction performance, 

students identified ML’s limitations due to outliers (left photo in Figure 3D) and misclassification of 

data resulting from noise and human error (right photo in Figure 3D). To expand the discussions, 200 

students were instructed to think about the tradeoff between accuracy and cost when detecting 

important chemical substances/pollutants, such as heavy metals. The students discussed the 

potential of colorimetric analyses in chemistry to address real-world problems, such as COVID-19 

detection which requires quick, economical, and accurate testing. These discussions were designed to 

help the students understand how the concepts they were learning could be applied to a sustainable 205 

future. 

RESULTS AND DISCUSSION  

The student-developed ML methods provide an average percent error of 3.3% in reading the pH 

strip values compared with the pH meter value, which is six times lower than those measured by the 

visual readings (18%) (Figure 3). The expenses of generating this virtual pH meter are only about the 210 

use of a smartphone camera to take photos while more data can be collected to further improve the 

ML reading accuracy. We used the pH strips from the same vendor throughout the study to avoid 

different pH-color responses. We intentionally left a white background using a clean white letter paper 

underneath the wetted pH strip as a normalization factor for ML to compensate for minute differences 

in white balance, camera mode, and lighting conditions in the imaging acquisition process. Overall, 215 

the high precision of an ML-based pH meter indicates its potential for practical uses in the school 
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environment with reduced cost, in field studies where sophisticated pH meters are more prone to be 

broken. The commercial standards for calibrating the pH meters have limited shelf life and are 

relatively expensive if intensive use is required.  

We collected pre-and post-survey responses, classroom video recordings, activity-specific 220 

assignments, and screen recordings, and conducted student interviews (see Student Learning 

Outcome Examples and Student Interview Protocol in the Supporting Information) after the project 

implementation. We conducted three evaluation constructs (i.e., career motivation, intrinsic 

motivation, and self-determination) from the Science Motivation Questionnaire II.31 Nine out of the 

sixteen students completed the pre- and post-survey. All three constructs are statistically different in 225 

pre-versus post-intervention showing that the intervention fosters students’ science motivation. Figure 

4A-C respectively showed changes in students’ science motivation from three representative items 

from each construct: “I am curious about discoveries in science” (intrinsic motivation), “Knowing 

science will give me a career advantage in the future” (career motivation), and “I spent a lot of time 

learning science” (self-determination). These results further highlight that the integrated ML and 230 

chemistry curriculum motivates the students in relevant careers. 
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Figure 4. Bar charts evaluating students’ science motivation from three representative items of (A) intrinsic motivation, (B) career motivation 

and (C) self-determination (blue bars) and after (green bars) the implemented integrated ML-Chemistry curriculum. 

EXPERIMENTAL SETUP 235 

The buffer solutions with known pH were prepared in a phosphate buffered saline (PBS) 

solution, pH 7.4 with additions of different amounts of 5 M HCl and 5 M KOH diluted in PBS. The 

ground truth pH values of the solutions were measured using a pH meter (Thermo Scientific Orion 

Star A120) one day before the lecture. The pH meter was calibrated using Thermo Scientific Orion All-

in-One pH Buffer kits containing standard buffer solutions of pH 10.01, 7.00, and 4.01, respectively. 240 

The instructors took about 100 pH strip photos of solutions with pH values ranging 1-13. A pH strip 

photo of 10 N sulfuric acid was also taken to demonstrate the outlier in ML. All the remaining pH strip 

measurements of buffer solutions and real-life samples were done in the lab class. 



  

Journal of Chemical Education 7/24/24 Page 10 of 12 

HAZARDS 

Hazards in this activity arise from the use of hydrochloric acid (5 M), sulfuric acid (10 N), and 245 

potassium hydroxide (5 M) in PBS during the standard solution preparation process by the instructor 

wearing appropriate laboratory protective equipment. 

CONCLUSION 

We developed an integrated ML and chemistry curriculum for high-school students by 

introducing colorimetric pH strip measurement to build an ML neural network to predict pH value. 250 

The student was instructed on the basic pH concept, the connection of pH to real-world examples and 

issues, and the implementation of an ML model to predict pH strip values. The student-developed ML-

network predicts pH 5.5 times more precisely than human visual reading. Our integrated ML and 

chemistry curriculum makes chemistry learning more accessible, engaging, and interconnected with 

real-world applications and also fosters science motivation, encourages critical thinking about ML 255 

applications, and expands students’ knowledge and understanding of AI and ML concepts. We 

envision that this integrated approach is transformative to developing a broad spectrum of integration 

topics between color chemistry in food, textile and apparel, medical, energy, and cosmetic fields and 

how ML can enhance signal readout precision in these fields along with understanding their global 

impacts. 260 
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