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1 | INTRODUCTION

The Erdds-Hooley Delta function is defined for a natural number n as

A(n) 1= max #{d|n : e* < d < e*™}.
ueR
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20f18 | FORD ET AL.

Erdés introduced this function in the 1970s [4, 5] and studied certain aspects of its distribution in
joint work with Nicolas [6, 7]. However, it was not until the work of Hooley in 1979 that A was
studied in more detail [15]. Specifically, Hooley proved that

Z A(n) < x(Log x)%_1 (1.1)

n<x

for any x > 1. Here and in the sequel we use the notation
Logx := max{l,logx} forx >0,
and also define
Log, x := Log(Logx); Log;x := Log(Log, x); Log,x := Log(Log;x).

See also Section 2 for our asymptotic notation conventions.
Hooley’s estimate (1.1) has been improved by several authors [2, 11-14, 17], culminating in the
bounds

xLog, x < ) A(n) < x(Log, x)''/*, 12)

n<x

with the lower bound established by Hall and Tenenbaum in [11] (see also [14, Theorem 60]), and
the upper bound recently established in [17]. The main result of the present paper is an improve-
ment of the lower bound in (1.2). Our estimate is given in terms of the best known lower bounds
for the normal order of A, so we discuss these first.

In [2], La Bretéche and Tenenbaum proved that

A(n) < (Log, x)%*¢

. s . log2 _
for all fixed € > 0 and all but o(x) integers n € [1,x] as x — oo, where 0 := TogZi1 /g2l =
0.6102...

To state the best known lower bound for the normal order, we need some additional notation,
essentially from [10].

Definition 1. If A is a finite set of natural numbers, the subsum multiplicity m(A) of A is defined
to be the largest number m so that there are a distinct subsets A, ..., A,, of A such that

Z 4= = Z a. (1.3)

a€A; a€A,

One can think of the subsum multiplicity as a simplified model for the Erdés-Hooley
Delta function.

Now take A to be a random set of natural numbers, in which each natural number a lies in A
with an independent probability of P(a € A) = 1/a. If k is a natural number, we define 3, to be
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION 30f18

the supremum of all constants ¢ < 1 such that
Dlim P(m(ANn|[D, D)) = k)=1.

It is shown in [10], by building on work in [18], that 3, exists and is positive for all k. We then
define the quantity

Ny = 1i£1_1}i£f %, (1.4)
thus 7, is the largest exponent for which one has 8, > k=1/7+=°M as k — co.
The main results of [10] can then be summarized as follows:
Theorem 1 [10].
(i) Wehaven, > n, wheren = 0.353327 ... is defined by the formula
log 2
e L 0

and ¢ is the unique number in (0,1/3) satisfying the equation 1 — ¢/2 = lim;_, , 2/72/loga .
; 0
witha, =2,a, =2+2anda; = ai_l +a;

— a?izforj € Z;.
(ii) Forany e > 0, one has the lower bound

-1

A(n) = (Log, x)¢ (1.6)
for all but o(x) integersn € [1,x] as x — oo.
As a consequence of these results, we see that
(Log, n)"~°W < (Log, n)*~°W < A(n) < (Log, n)?*+°W

as n — oo outside of a set of zero natural density. In particular < 7, < 6. Itis conjectured in [10]
that 7, = 7 (and in fact 8, = k=1/77°W ask - o).

The main purpose of this note is to obtain an analogue of the lower bound in (1.6) for the mean
value, thus improving the lower bound in (1.2).

Theorem 2. Foranye > 0and all x > 1, we have

Z A(n) >, x(Log, x)'*7+~° > x(Log, x)'*7~*.

n<x

Very informally, the idea of proof of the theorem is as follows. Our task is to show that the
mean value of A(n) is at least (Log, x)!*7+~¢. In our arguments, it will be convenient to use a
more ‘logarithmic’ notion of mean in which n is square-free and the prime factors of n behave
completely independently; see Section 2 for details. It turns out that for each natural number r in
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40f18 | FORD ET AL.

the range
(1+¢)Log,x <r<(2—-¢)Log, x, 1.7

there is a significant contribution (of size >, (Log, x)"+~¢), arising from (square-free) numbers n
whose number, w(n), of prime factors is precisely 7; summing in r will recover the final factor of
Log, x claimed.

Suppose we write r = (1 + a) Log, x for some ¢ < a < 1 — € and we define y such that

Log, y = a Log, x + O(y/Log, x).

It turns out that the dominant contribution to the mean from those numbers with w(n) = r comes
from those n that factor as n = n’n’”’, where n’ is composed of primes < y, n” is composed of
primes > y, w(n’) = 2a Log, x + O(4/Log, x) and w(n”) = (1 — a) Log, x + O(4/Log, x).

A pigeonholing argument (see Lemma 3.1) then gives a lower bound roughly of the form

!
A(n) > (Log, x)~°" max MA*(n”),
vy logy

where A*(,m) is the maximum number of divisors of m in an interval of the form (e*, ye*]. The two
factors fo(—’glj and A*(n'") behave independently. The arguments from [10] will allow us to ensure

that A*(n'") > (Log, x)"+—¢/? with high probability, while the constraints on n’ basically allow us

to assert that the L(_:; factor has bounded mean (after summing over all the possible values of
1

y/Log, x

from the restriction to n having exactly r prime factors, but this loss can be recovered by sum-
ming over the < 4/Log, x essentially distinct possible values of y, after showing some approximate
disjointness between events associated to different y (see Lemma 4.1).

w(n<y)). There is an unwanted loss of about (related to the Erdés-Kac theorem) coming

Remarks.

(a) The above-described behavior that A seems to exhibit is rather unusual. For most arithmetic
functions f, there is some constant ¢ > 0 such that the dominant contribution to the par-
tial sums Y . f(n) comes from integers n with about r, := ¢ Log, x prime factors. If we let
S(X) = X, w(m=r J (), then we often have Gaussian-like decay as r moves away from r,
meaning that S,(x) = Sr (x)e‘c("‘ro)z/ Log: ¥ for some ¢ > 0 (for example, when f is the kth
divisor function). For some arithmetic functions, we have the even stronger exponential decay
S, (x) = Sroe‘CV ~rol for some ¢’ > 0 (for example, when f is the indicator function of integers
with a divisor in a given dyadic interval [y, 2y]; see [9]). However, in the case of f = A, the
sums S,(x) appear to remain of roughly the same size for all r in the range (1.7); the lower
bounds we obtain in Theorem 3 for S,(x) are of the same order for all r in the range (1.7).

(b) A few months after the publication of an arXiv preprint of the present paper, La Breteche and
Tenenbaum [3] proved the following result:

x(Log, x)*/? <« Z A(n) < x(Log, x)*/? (x=1).

n<x
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION | 50f18

This improves Theorem 2 and the upper bound in (1.2) that was proven in [17]. To obtain this
improvement, La Bretéche and Tenenbaum refined the methods of [17] and of the present

paper.

2 | NOTATION AND BASIC ESTIMATES

Weuse X <Y,Y > X, or X = O(Y) to denote a bound of the form |X| < CY for a constant C.
If we need this constant to depend on parameters, we indicate this by subscripts, for instance
X < Y denotes a bound of the form |X| < C, Y where C; can depend on k. We also write X <Y
for X < Y <« X. All sums and products will be over natural numbers unless the variable is p, in
which case the sum will be over primes. We use 1{E} to denote the indicator of a statement E, thus
1{E} equals 1 when E is true and 0 otherwise. In addition, we write —E for the negation of E. We
use P for probability and E for probabilistic expectation.

Given an integer n, we write 7(n) := Zdl ,, 1 for its divisor-function and w(n) := ), pin 1 for the
number of its distinct prime factors.

It will be convenient to work with the following random model of square-free integers. For each
prime p, let n, be a random variable equal to 1 with probablhty ,and p with probablhty

1ndependent1y in p. Then for any x > 1, define the random natural number

=an

p<x

and similarly for any 1 < y < x define the natural number

Myx) - H np

y<p<x

In particular we may factor n_, into independent factors n_, = n_,ny, ,y for any 1 <y <x.
Observe that n_, takes values in the set S_, denoting the set of square-free numbers, all of whose
prime factors p are such that p < x, with

-1
P(n<x:n):%H<1+%>

p<x

forall n € S_,.. In particular, from Mertens’ theorem we have

el = —— ¥ {© @)

for any non-negative function f : N - R™.
We further note that

E[f(n.)logne,] = D E[f(n.)¥pln}log pl

p<x

(2.2)

1
-V [f(pn<x) fpnelogp oy o]

p<x
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60f18 | FORD ET AL.

We can also generalize (2.1) to

Logy Z M

Lo (2.3)

E[f(npy0)] =

neSb,,x)

where S, ) denotes the set of square-free numbers, all of whose prime factors lie in [y, x).
We have the following elementary inequality:

Proposition 2.1. Forany x > 1, we have

' An) > xE[A(n_10)).

n<x

Proof. We may take x to be sufficiently large. Restricting attention to numbers n < x of the form
n = mp where m < \/_/2 and \/E < p £ x/m, we observe that A(n) > A(m), and thus

dam= Y Am) YL

hex m<y/x/2 Vx<p<x/m

Hence, the Prime Number Theorem [16, Theorem 8.1] implies that

A(m)
ZA(n)>> Togx D Tm

n<x ms\/}/Z

1/10

Restricting further to those m in S<y, y = x/°, we conclude from (2.1) that

Z A(n) > x[E[A(n<y)11 {n., < \/—/2}]

24)

= x(E[aty)] — E[ati)1{ngy, > vx/2}]).

Note from Markov’s inequality and (2.2) that

1
[E[A(n<y)1]{n<y > \/;/2}] < W[E[A(n<y)log ney|
Te lA(pn<y)logp

p<y

logx Togx — 0 1pt n<y}] :

We have A(pn.,) < 2A(n.,) whenever p + n_,,. Thus, A(pn.)i{p t n_,} < 2A(n_,). Using this
bound and Mertens’ theorem [16, Theorem 3.4(a)], we conclude that

4(log(x'/1%) + 0(1))
logx — 0(1)

[E[A(n<y)1]{n<y > \/;/2}] <

Elat,)] < S E[aw.,)]

for large enough x. Combined with (2.4), this concludes the proof. O
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION | 70f18

Thus, to prove Theorem 2, it will suffice (after replacing x with x!/1) to establish the lower
bound

E[A(n.,)] >, (Log, x)!*7+7¢ (2.5)

for all € > 0, and x sufficiently large in terms of ¢. In fact we will show the following stronger
estimate.

Theorem 3. Let e > 0 and x > 0, and let r be an integer in the range
(1+¢)Log,x <7< (2—¢)Log, x.
Then
E[A(n ) Haw(n,,) = r}] >, (Log, x)7 .

Clearly, Theorem 3 implies (2.5) on summing over r.

We first record some basic information (cf. [14, Theorems 8 and 9; 19]) about the distribution of
w(n.,) (or more generally w(ny, ,)), reminiscent of the Bennett inequality [1] but with a crucial
additional square root gain in the denominator; it can also be thought of as a ‘large deviations’
variant of the Erd6s—Kac law.

Proposition 2.2. Let1 <y < x, with x sufficiently large, and let k be a positive integer with
k=t-(Log, x — Log, y),

where t < 10. Then we have

exp (—(Lng x — Log, Y)Q(t))

Vk

[P’(co(n[y’x)) = k) =

k]

where Q(t) = tlogt —t + 1.
Proof. By (2.3) we have

Logy _ 1
= ngRy’x, where Ry’x =

P(w(n, ) =k .
( [y.x) ) <P < <pp<x P - Pk

Note that

k
<Zy<P<x 1/p ) _ (Log, x — Log, y + O(1/ Logy))* « (Log, x — Log, )"

Ry,x < k! k! k!

by Mertens’ estimate [16, Theorem 3.4(b)] and our assumption that ¢t < 10. Using the Stirling
approximation k! < k1/2(k/e)*, we obtain the claimed upper bound.
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80f18 | FORD ET AL.

Lastly, we prove a corresponding lower bound. Let C be sufficiently large and assume that x >
eC. Set y; = max(y, C), and define

1
L = Z E

y1Sp<x

By Mertens’ estimate, we have
L = Log, x — Log, y; + O(1/ Logy,) > Log, x — Log, y; — 1/20, (2.6)

since y; > C and we may assume that C is large enough. By hypothesis, 1 < k < 10(log, x —
Log, ), thus Log, x —Log,y > 1/10. If y; =y > C, then we have L > %(Log2 x — Log, y). Fur-

thermore, if y; = C > y, then x > e”, whence L > Log, x — O(Log; x) > % Log, x provided that C
is large enough. In both cases,

L> 2(Log, x — Log, ¥), 2.7)

and it follows that k < 20L. In addition, we have

Lk 1 1

Rix 2Ry =15 =5 2
VX VX T kel k) pi--D
Y1<P1 P <X, DOt distinct £1 k

Lk K\ 1,40 1
ﬁ‘@# 2 =

Nsp<x

k 2 k
Pk )y, 1L
k! 22, -1) "2 K

the last inequality holding for large enough C, since y; > C. By the upper bound on ¢ and
inequality (2.7), we have

WV

\%

LK > (L + Log, C + 1)k
Together with (2.6), and since Log, y; < Log, ¥ + Log, C, we conclude that
LK >, (Log, x — Log, y).
Hence, the claimed lower bound on R, , follows by Stirling’s formula k! < k'/2(k /e)k. O

We record two particular corollaries of the above proposition of interest, which follow from a
routine Taylor expansion of the function Q(¢).

Corollary 2.3 (Special cases). Fix B > 1, let 1 <y < x with Log, x — Log, y > 2B2 and let k € N.
We have the two following cases:
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION 9 of 18

(i) If|k — (Log, x — Log, )| < By/Log, x — Log, y, then

1

y/Log, x —Log,y’

(i) If |k — 2(Log, x — Log, )| < By/Log, x — Log, y, then

P(w(npy, ) = k) =<

Logx 1

2¥Logy /Log,x—Log,y

P(a(ny, ) = k) <p

3 | MAIN REDUCTION

Let the notation and hypotheses be as in Theorem 3. We allow all implied constants to depend on
€. We write

r =1+ a)Log, x,
thus
e<a<gl—e. 3.1
We may assume x sufficiently large depending on . For any 1 < y < x, we have
w(ngy) = w(ng) + w(ng, ).
To take advantage of the splitting by y, we introduce a generalization
A (n) 1= max #{d|n : e* <d < et} (3.2)

of the Erdés-Hooley Delta function for any v > 0, and use the following simple application of the
pigeonhole principle.

Lemma3.1. Forany1<y < xandanyv > logn_,, we have

Proof. By (3.2), there exists u such that there are A(”)(n[y,x)) divisors b of iy, .y in (e*, e¥tv]. Multi-
plying one of these divisors b by any of the 7(n.,) divisors a of n_,, gives a divisor ab of n_, in the
range (e, e“+2Y]. These T(n<y)A(U)(n[y’x)) divisors are all distinct. Covering this range by at most
2v + 1 intervals of the form (e, e¥’ 1], we obtain the claim from the pigeonhole principle. []

Let

L
Y= {y >0 :|Log,y —alLog, x| <4/Log, x; lzggzzy € Z} (3.3)
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10 of 18 | FORD ET AL.

and foreachy € Y, let E, denote the event
logn., < 10(Log; x) Logy
and let F), denote the event
ATy, ) > (Log, x) /2, (3.4)

As we will see later, both events E,, and F,, will hold with very high probability. As A® is clearly
monotone in v, we have

A10(Log; x) Logy)(n[y,x)) > A(LOgy)(n[y,x)).
By Lemma 3.1 with v = 10(Log; x) Log y, if the events E, and F), both hold for some y € Y, then

(L0g2 x)n* —€/2 T(n<y)
Log; x Logy

A(ng,) >

Thus Theorem 3 will follow if we show that

[ﬂ{w(nq)—r}max(é <), HE, NF }>] : (3.5)

yey

Controlling the left-hand side is accomplished with the following three propositions. In their
statements, recall that -G denotes the negation of the event G.

Proposition 3.2. We have

T(n<y) 1
lﬂ {wn,)=r} 1;1€a)>7(( Tozy 1]{—|Ey}>] < Tom 0

Proof. We have

t(n. ) ( ny)
lﬂ {w(n.,) =r} max( Togy 1-E })] y;y[E lﬂ {w(n,,) = r} y 1]{—|E }]
E|t(n,,)I{-E,}
< y/Log, x ryngl)))( #

since || < (Log, x)Y/2. If E, fails, then nl/LOgy > exp(10 Log; x) = (Log, x)'°, and so, by
Markov’s inequality,

[E[T(n<y)1]{_'E }] (Log, x)™ E [T(n<y)nl/ Logy]
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION 11 of 18

forall y € Y. Splitting n_,, into the independent factors n,,, we get
p 2 pl /Logy 1 log p 1
Ehmqmqu=II< + =[J](1+=+0 +=)) 36
py \Pt+1 p+1 p<y p pLogy p
which, by Mertens’ theorems, equals O(Log y), and the proof is complete. O

Proposition 3.3. We have

E lﬂ{w(nq) = r}r&a})}( T}f:g;)] >1
Proposition 3.3 will be proved in Section 4.
Proposition 3.4. We have P (—lF y) < (Log, x)7 L.
Proposition 3.4 will be proved in Section 5.

Now we complete the proof of (3.5), assuming the three propositions above. Firstly, by
Proposition 3.4 and the independence of F,, and n_,,, we have

(n.y) Ly E[t( )H=F}
E|Hown,,) = r}ryr}eaj);( Logy 1{-F,}| < (Log, x) / r;lea;( T
E|t(n_,)|P(~F
= (Log, x)'/? max [r(n)|P (°Fy)
yeY Logy

1/2 max —[E [T(n<y)] )

< (Log, x)~
(Log, x) ey TLogy

Arguing as in the proof of Proposition 3.2, we have E [r(n <y)] <« Logy, and thus

(ny) 1
ElT = 1{~F L —.
{w(n,,) r}rynea% Togy {=F,} (Tog, )12

Combining this with Propositions 3.2 and 3.3, we deduce (3.5), and hence Theorem 3.

4 | PROOF OF PROPOSITION 3.3

Lety € Y, so that Log, y/log 2 is an integer. Consider the events

Log, y
E,, = {a)(n<x) =r, cu(n<y) = ﬁ + u}.

In the event E,, , we have 7(n_,) = 2% Log y. Also, consider the events

Gu:=JE. H.=JGw
u

yeY ">u
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Thus,

yey Logy yey &,

E| H{w(n,,) = r}max (n<y)] =E lmax 2. H{Ey’u}]

= Z ZMP(HM \Hu+1)

uez

= ) 24(P(H,) — P(H,4,))

uez

= ) 2*'p(H,)

uez

> ) 2“7'P(G,).

uez

In fact, }°, 2“7 'P(H,) < Y, 2“G,,, so we have lost at most a factor 1/2 in the final step. We will
restrict attention to the most important values of u, namely u € U, where

U = {u e€zZ: 'u— bi:‘T;locLogzﬂ < \/Logzx}.

This choice is informed by the calculations in [17, Proposition 4.1]. We then observe that

t(n.y)
lﬂ{w(nq) = r}mea;c Togy ]

> ) 2“7'P(G,). (4.1

uey

It remains to bound P(G,,) from below for u € V. This follows essentially by more general results
of Ford [8], but we may give a simple and self-contained argument in the special case we are inter-
ested in. To do so, we employ the second moment method. More precisely, we have the following
estimates:

Lemma 4.1. We have

2—u
P(E = U, 4.2
(Ey ) Tog, x uev,yey) (4.2)
and, forally,y’ € Yandu € U,
—Uu
P(E,,NE,,) < < ©Xp (—Q(1/1og2)| Log, y — Log, ¥'| ). (4.3)

2

Before we prove Lemma 4.1, let us see how to use it to bound P(G,,) from below.
For any given u € U’, Lemma 4.1 yields that

WE, .} 2
L;y g ] vLog, x
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION 13 of 18

and

2
o—u

E WE, }) <« —.

<y§y n y/Log, x

On the other hand, the Cauchy-Schwarz inequality implies that

2 2
E lz H{Ey,u}] <P(G,)-E <2 H{Ey,u}>

yey yey

It follows that

-u
y/Log, X

for any u € U'. Inserting this into (4.1) completes the proof of Proposition 3.2.

P(G,) >

Proof of Lemma 4.1. We begin with (4.2). Splitting w(n_,) = w(n<y) + cu(n[y’x)) and using the
independence of n_), and nj,, ,), we may factor

Log, y Log, y
P(E, ) = I]3’<co(n<y) = =27 4 u> . P(co(n[y’x)) =r— 27 _ u>.

log2 log 2

From the range of y and u, we have

Log,y +u = 2a Log, x +O(\/Log2X> =2Log,y + O( \ Log2y>

log2

and

e Log, y _u= (1_a)Log2x+O<\/@)

log2
= Log, x — Log, y + O<\/Log2x - Logzy).

We may thus invoke parts (i) and (ii) of Corollary 2.3 and conclude that

~

L —u
[P’<cu(n<y) - 08 + u> 2

log2 \/Log, x

and

Log,y 1
P(co(n[y,x)) =r— 27 u) =

log2 VIog, x

and (4.2) follows.
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14 of 18 | FORD ET AL.

Now we establish (4.3). Without loss of generality, we may assume that y’ > y. Splitting

C()(l’l<x) = cu(n<y) + co(n[y,y/)) + C()(l’l[y/’x))

and using the joint independence of n_,, nyy, ,ry, 1 we may factor

y'.x)

Log, y
P E E ’ = P = —
( yu NEy ) <cu(n<y) log 2 +“>

Log,y’ Log,y
% [P’<co(n[y,y/)) - log2  log2
Log, y’
X P(co(n[y/’x)) =r— logzZ - u>.

As before, we have

Log,y 2
P (o) = S 4u) =

and

Log, y’ 1
P(w(n[y/’x)) =r— log2 —u | =

while from Proposition 2.2 we also have

Log,y’ —Log,y
u»(w(n[y,y,)) = %) < exp (~Q(1/ log2)(Log, ¥’ — Log, y)).

and the claim (4.3) follows. O

5 | PROOF OF PROPOSITION 3.4

Fix € > 0; we allow all implied constants to depend on ¢. We will also need the parameters k € N,
sufficiently large in terms of €, and § > 0, sufficiently small in terms of € and k. We may assume
that x is sufficiently large depending on ¢, k, . We have

E[z(nyy,0)]

P >2L <
(cu(n[y,x)) 082 x) (Log x)log4

H p+ 2 1
(Log x)log4 p+ 1 (Log x)log4-1 ’

y<p<x

using Mertens’ theorem. By the definition of the event F), given in relation (3.4), it will thus suffice
to show that

P (8098 ) < (Log, )7/, w(ny, ) < 2Log, ¥ ) < (Log, )™, (5.1)
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It is now convenient to replace the random integer ny, .y with a more discretized model. We
introduce the scale

1
A= yZOLogZx

(note that this is large depending on ¢, k, §, since Log, y < Log, x by (3.1) and (3.3)) and let J be
the set of all integers a such that

y <A < 2% gx.
In particular we have
a>20Log, x + 2,
so that a is sufficiently large depending on ¢, k, 6.

Define the random subset A of J to consist of all the indices a € J for which one hasn, = p for
some prime p € [1972,1971). Observe that the events {a € A} are mutually independent, with

p
PlacA)=1- —_—
1a—2<’H<la—1 p + 1

1= 2230w )

a—

+ O<e'c\/@)

a—1

for large enough y, thanks to the Prime Number Theorem [16, Theorem 8.1] and the bound A02 >
y. Note that a < Logx <« e(LOgY)l/s. Hence, if x is large enough, we find that

P(a € A) > foralla €J.

Q|+

Recall Definition 1 of the subsum multiplicity m(A) of a finite set A of natural numbers. We
claim that if w(ny, ,)) < 2Log, x, then

AL () > m(A). (5.2)

Indeed, if 4 = m(A), then Definition 1 implies that we can find distinct subsets A, ... ,A# of A
such that

Ya=w= ) a

a€A; acA,
Also, for each a € A, we can find a prime p,|n,, ) such that

1972 < p, < A% (5.3)
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16 of 18 | FORD ET AL.

In particular, the cardinality of A (and hence of A, ... ,AM) is at most co(n[y’x)), and hence at most
2Log, x. Taking logarithms in (5.3), we see that

|log p, —alogd| < 2logAd

foralla € A. Thusforall 1 < j < j' < pwwe have from the triangle inequality, (1.3), and the bound
|A| < 2Log, x that

> logp,— Y, logp,| < 8(Log, x)log < logy

aEAJ- aEAj/
thanks to the choice of 1. We conclude that all the sums Zae A; log p,, j =1, ..., ulie in an inter-
val of the form (u,u + logy], hence all the products [],c A D, lie in an interval of the form
(e¥,e"+1o8Y]. As these products are all distinct factors of Ny, )» the claim (5.2) follows.
In view of (5.2), it now suffices to establish the bound

P(m(A) < (Log, x)" /%) « (Log, x)~.

The events a € A for a € J are independent with a probability of at least 1/a. One can then find
arandom subset A’ of A where the events a € A’ for a € J are independent with a probability of
exactly 1/a; for instance, one could randomly eliminate each a € A from A’ with an independent

probability of 1 — = (;e A Clearly m(A) > m(A’), so it will suffice to show that

p(m(A) < (Log, x)"*_g/2> < (Log, )7L, (5.4)

Now we use a ‘tensor power trick’ going back to the work of Maier and Tenenbaum [18] (see
also [10, Lemma 2.1]). Observe the supermultiplicativity inequality

m(A; U A,) > m(A;)m(A,) (5.5)

whenever A;, A, are disjoint finite sets of natural numbers. To exploit this, we introduce the
exponent 0 < ¢ < 1 by the formula

et = 1/k, (5.6)

where k was defined at the start of this section. By construction, the set J takes the form [a_,a,] N
Z,where

logy
a_= @ +0(1) < Log, x

and

log x
= — 1 L E/Z
a, log/l+o()>> og*/“x
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A LOWER BOUND ON THE MEAN VALUE OF THE ERDOS-HOOLEY DELTA FUNCTION 17 of 18

thanks to (3.3) and (3.1). In particular,
Log, a, —Log, a_ > Log; x — O(Log, x).
As a consequence of this and (5.6), we can find an integer ¢ satisfying

Log; x L
¢ = — O(Log, x) = (1. —€/4)

= 987 3% O(Log, x) (5.7)
log(1/¢)

08
logk

and disjoint sets J5, ..., J, inJ, where each J; is of the form J; = [D{, D;] n Z for some D; > Log, x.
From (5.5) and monotonicity, we then have

f
m(A") > [ mA’ nJy. (5.8)
i=1

From the definition of 7, in (1.4), we have ¢ < §; if k is large enough. From the definition of §;,
in Definition 1, we conclude (as D; is sufficiently large depending on k, §) that

P(mA'nI)>k)>1-6

foralli = 1,..., 7. Furthermore, the events m(A’ N J;) > k are independent, because the sets A’ N
J; are independent. By the Bennett inequality [1], the probability that there are fewer than (1 —
€/5)¢ values of i with m(A’ N J;) > k is at most

exp{ —f-(s/5—5)<log <1+ 8/55_5> —1>}.

We choose § small enough so that

e/5-6 2logk

so that by (5.7), the above probability is < (Log, x)~>/2. By (5.8), we conclude that
P(m(A") < k(l_é)f) < (Log, x)~3/2.
From another appeal to (5.7) we have
K19 5 (Log, x)"=~¢/2,
The claim (5.4) follows.
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