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Erdős introduced this function in the 1970s [4, 5] and studied certain aspects of its distribution in
joint work with Nicolas [6, 7]. However, it was not until the work of Hooley in 1979 that ∆ was
studied in more detail [15]. Specifically, Hooley proved that

∑
�⩽�

∆(�) ≪ �(Log �)
4
�
−1 (1.1)

for any � ⩾ 1. Here and in the sequel we use the notation

Log � ∶= max{1, log �} for � > 0,

and also define

Log2 � ∶= Log(Log �); Log3 � ∶= Log(Log2 �); Log4 � ∶= Log(Log3 �).

See also Section 2 for our asymptotic notation conventions.
Hooley’s estimate (1.1) has been improved by several authors [2, 11–14, 17], culminating in the

bounds

� Log2 � ≪
∑
�⩽�

∆(�) ≪ �(Log2 �)
11∕4, (1.2)

with the lower bound established by Hall and Tenenbaum in [11] (see also [14, Theorem 60]), and
the upper bound recently established in [17]. The main result of the present paper is an improve-
ment of the lower bound in (1.2). Our estimate is given in terms of the best known lower bounds
for the normal order of ∆, so we discuss these first.
In [2], La Bretèche and Tenenbaum proved that

∆(�) ⩽ (Log2 �)
�+�

for all fixed � > 0 and all but �(�) integers � ∈ [1, �] as � → ∞, where � ∶=
log 2

log 2+1∕ log 2−1
=

0.6102…

To state the best known lower bound for the normal order, we need some additional notation,
essentially from [10].

Definition 1. If� is a finite set of natural numbers, the subsummultiplicity�(�) of� is defined
to be the largest number� so that there are a distinct subsets �1, … , �� of � such that

∑
�∈�1

� =⋯ =
∑
�∈��

�. (1.3)

One can think of the subsum multiplicity as a simplified model for the Erdős–Hooley
Delta function.
Now take � to be a random set of natural numbers, in which each natural number � lies in �

with an independent probability of ℙ(� ∈ �) = 1∕�. If � is a natural number, we define �� to be
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the supremum of all constants � < 1 such that

lim
 →∞

ℙ(�(� ∩ [ �,  ]) ⩾ �) = 1.

It is shown in [10], by building on work in [18], that �� exists and is positive for all �. We then
define the quantity

�∗ ∶= lim inf
�→∞

log �

log(1∕��)
, (1.4)

thus �∗ is the largest exponent for which one has �� ⩾ �
−1∕�∗−�(1) as � → ∞.

The main results of [10] can then be summarized as follows:

Theorem 1 [10].

(i) We have �∗ ⩾ �, where � = 0.353327… is defined by the formula

� ∶=
log 2

log(2∕$)
, (1.5)

and $ is the unique number in (0, 1∕3) satisfying the equation 1 − $∕2 = lim%→∞ 2
%−2∕ log �%

with �1 = 2, �2 = 2 + 2
$ and �% = �

2
%−1

+ �
$
%−1

− �
2$
%−2

for % ∈ ℤ⩾3.

(ii) For any � > 0, one has the lower bound

∆(�) ⩾ (Log2 �)
�∗−� (1.6)

for all but �(�) integers � ∈ [1, �] as � → ∞.

As a consequence of these results, we see that

(Log2 �)
�−�(1) ⩽ (Log2 �)

�∗−�(1) ⩽ ∆(�) ⩽ (Log2 �)
�+�(1)

as � → ∞ outside of a set of zero natural density. In particular � ⩽ �∗ ⩽ �. It is conjectured in [10]
that �∗ = � (and in fact �� = �

−1∕�−�(1) as � → ∞).
The main purpose of this note is to obtain an analogue of the lower bound in (1.6) for the mean

value, thus improving the lower bound in (1.2).

Theorem 2. For any � > 0 and all � ⩾ 1, we have

∑
�⩽�

∆(�) ≫� �(Log2 �)
1+�∗−� ⩾ �(Log2 �)

1+�−�.

Very informally, the idea of proof of the theorem is as follows. Our task is to show that the
mean value of ∆(�) is at least (Log2 �)

1+�∗−�. In our arguments, it will be convenient to use a
more ‘logarithmic’ notion of mean in which � is square-free and the prime factors of � behave
completely independently; see Section 2 for details. It turns out that for each natural number ' in
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the range

(1 + �) Log2 � ⩽ ' ⩽ (2 − �) Log2 �, (1.7)

there is a significant contribution (of size≫� (Log2 �)
�∗−�), arising from (square-free) numbers �

whose number, *(�), of prime factors is precisely '; summing in ' will recover the final factor of
Log2 � claimed.
Suppose we write ' = (1 + -) Log2 � for some � ⩽ - ⩽ 1 − � and we define / such that

Log2 / = - Log2 � + 8(
√
Log2 �).

It turns out that the dominant contribution to themean from those numbers with*(�) = ' comes
from those � that factor as � = �′�′′, where �′ is composed of primes < /, �′′ is composed of
primes ⩾ /, *(�′) = 2- Log2 � + 8(

√
Log2 �) and *(�

′′) = (1 − -) Log2 � + 8(
√
Log2 �).

A pigeonholing argument (see Lemma 3.1) then gives a lower bound roughly of the form

∆(�) ≫ (Log2 �)
−�(1)max

/

:(�′)

log /
∆∗(�′′),

where∆∗(�) is themaximumnumber of divisors of� in an interval of the form (�
, /�
]. The two
factors :(�

′)

log /
and ∆∗(�′′) behave independently. The arguments from [10] will allow us to ensure

that ∆∗(�′′) ≫ (Log2 �)
�∗−�∕2 with high probability, while the constraints on �′ basically allow us

to assert that the :(�′)

log /
factor has bounded mean (after summing over all the possible values of

*(�</)). There is an unwanted loss of about
1√
Log2 �

(related to the Erdős–Kac theorem) coming

from the restriction to � having exactly ' prime factors, but this loss can be recovered by sum-
ming over the≍

√
Log2 � essentially distinct possible values of /, after showing some approximate

disjointness between events associated to different / (see Lemma 4.1).

Remarks.

(a) The above-described behavior that ∆ seems to exhibit is rather unusual. For most arithmetic
functions @, there is some constant $ > 0 such that the dominant contribution to the par-
tial sums

∑
�⩽� @(�) comes from integers � with about '0 ∶= $ Log2 � prime factors. If we let

A'(�) =
∑
�⩽�, *(�)=' @(�), then we often have Gaussian-like decay as ' moves away from '0,

meaning that A'(�) ≈ A'0(�)�
−�('−'0)

2∕Log2 � for some � > 0 (for example, when @ is the �th
divisor function). For some arithmetic functions, we have the even stronger exponential decay
A'(�) ≈ A'0�

−�|'−'0| for some �′ > 0 (for example, when @ is the indicator function of integers
with a divisor in a given dyadic interval [/, 2/]; see [9]). However, in the case of @ = ∆, the
sums A'(�) appear to remain of roughly the same size for all ' in the range (1.7); the lower
bounds we obtain in Theorem 3 for A'(�) are of the same order for all ' in the range (1.7).

(b) A fewmonths after the publication of an arXiv preprint of the present paper, La Bretèche and
Tenenbaum [3] proved the following result:

�(Log2 �)
3∕2 ≪

∑
�⩽�

∆(�) ≪ �(Log2 �)
5∕2 (� ⩾ 1).
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This improves Theorem 2 and the upper bound in (1.2) that was proven in [17]. To obtain this
improvement, La Bretèche and Tenenbaum refined the methods of [17] and of the present
paper.

2 NOTATION AND BASIC ESTIMATES

We use C ≪ D, D ≫ C, or C = 8(D) to denote a bound of the form |C| ⩽ ED for a constant E.
If we need this constant to depend on parameters, we indicate this by subscripts, for instance
C ≪� D denotes a bound of the form |C| ⩽ E�D where E� can depend on �. We also write C ≍ D
for C ≪ D ≪ C. All sums and products will be over natural numbers unless the variable is F, in
which case the sumwill be over primes.We use G{H} to denote the indicator of a statement H, thus
G{H} equals 1 when H is true and 0 otherwise. In addition, we write ¬H for the negation of H. We
use ℙ for probability and I for probabilistic expectation.
Given an integer �, we write :(�) ∶=

∑
�|� 1 for its divisor-function and *(�) ∶=

∑
F|� 1 for the

number of its distinct prime factors.
It will be convenient to workwith the following randommodel of square-free integers. For each

prime F, let �F be a random variable equal to 1 with probability F

F+1
, and F with probability 1

F+1
,

independently in F. Then for any � ⩾ 1, define the random natural number

�<� ∶=
∏
F<�

�F

and similarly for any 1 ⩽ / < � define the natural number

�[/,�) ∶=
∏
/⩽F<�

�F.

In particular we may factor �<� into independent factors �<� = �</�[/,�) for any 1 ⩽ / < �.
Observe that �<� takes values in the set <� denoting the set of square-free numbers, all of whose
prime factors F are such that F < �, with

ℙ(�<� = �) =
1

�

∏
F<�

(
1 +

1

F

)−1

for all � ∈ <�. In particular, from Mertens’ theorem we have

I[@(�<�)] ≍
1

Log �

∑
�∈�

@(�)

�
(2.1)

for any non-negative function @∶ ℕ→ ℝ+.
We further note that

I
[
@(�<�) log �<�

]
=

∑
F<�

I
[
@(�<�)G{F|�<�} log F

]

=
∑
F<�

I

[
@(F�<�) log F

F
G{F ∤ �<�}

]
.

(2.2)
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We can also generalize (2.1) to

I
[
@(�[/,�))

]
≍
Log /

Log �

∑
�∈[/,�)

@(�)

�
(2.3)

where [/,�) denotes the set of square-free numbers, all of whose prime factors lie in [/, �).
We have the following elementary inequality:

Proposition 2.1. For any � ⩾ 1, we have

∑
�⩽�

∆(�) ≫ �I
[
∆(�<�1∕10)

]
.

Proof. We may take � to be sufficiently large. Restricting attention to numbers � ⩽ � of the form
� = �F where� ⩽

√
�∕2 and

√
� < F ⩽ �∕�, we observe that ∆(�) ⩾ ∆(�), and thus

∑
�⩽�

∆(�) ⩾
∑

�⩽
√
�∕2

∆(�)
∑

√
�<F⩽�∕�

1.

Hence, the Prime Number Theorem [16, Theorem 8.1] implies that

∑
�⩽�

∆(�) ≫
�

log �

∑
�⩽

√
�∕2

∆(�)

�
.

Restricting further to those� in </ , / = �
1∕10, we conclude from (2.1) that

∑
�⩽�

∆(�) ≫ � I
[
∆(�</)G

{
�</ ⩽

√
�∕2

}]

= �
(
I
[
∆(�</)

]
− I

[
∆(�</)G

{
�</ >

√
�∕2

}])
.

(2.4)

Note from Markov’s inequality and (2.2) that

I
[
∆(�</)G

{
�</ >

√
�∕2

}]
⩽

1

log(
√
�∕2)

I
[
∆(�</) log �</

]

⩽
2

log � − 8(1)

∑
F</

I

[
∆(F�</) log F

F
G{F ∤ �</}

]
.

We have ∆(F�</) ⩽ 2∆(�</) whenever F ∤ �</ . Thus, ∆(F�</)G{F ∤ �</} ⩽ 2∆(�</). Using this
bound and Mertens’ theorem [16, Theorem 3.4(a)], we conclude that

I
[
∆(�</)G

{
�</ >

√
�∕2

}]
⩽
4
(
log(�1∕10) + 8(1)

)
log � − 8(1)

I
[
∆(�</)

]
⩽
1

2
I
[
∆(�</)

]

for large enough �. Combined with (2.4), this concludes the proof. □
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Thus, to prove Theorem 2, it will suffice (after replacing � with �1∕10) to establish the lower
bound

I
[
∆(�<�)

]
≫� (Log2 �)

1+�∗−� (2.5)

for all � > 0, and � sufficiently large in terms of �. In fact we will show the following stronger
estimate.

Theorem 3. Let � > 0 and � > 0, and let ' be an integer in the range

(1 + �) Log2 � ⩽ ' ⩽ (2 − �) Log2 �.

Then

I
[
∆(�<�)G{*(�<�) = '}

]
≫� (Log2 �)

�∗−�.

Clearly, Theorem 3 implies (2.5) on summing over '.
We first record some basic information (cf. [14, Theorems 8 and 9; 19]) about the distribution of

*(�<�) (or more generally *(�[/,�))), reminiscent of the Bennett inequality [1] but with a crucial
additional square root gain in the denominator; it can also be thought of as a ‘large deviations’
variant of the Erdős–Kac law.

Proposition 2.2. Let 1 ⩽ / ⩽ �, with � sufficiently large, and let � be a positive integer with

� = M ⋅ (Log2 � − Log2 /),

where M ⩽ 10. Then we have

ℙ
(
*(�[/,�)) = �

)
≍
exp

(
−(Log2 � − Log2 /)N(M)

)
√
�

,

where N(M) = M log M − M + 1.

Proof. By (2.3) we have

ℙ
(
*(�[/,�)) = �

)
≍
Log /

Log �
O/,�, where O/,� ∶=

∑
/⩽F1<⋯<F�<�

1

F1…F�
.

Note that

O/,� ⩽

(∑
/⩽F<� 1∕F

)�

�!
=
(Log2 � − Log2 / + 8(1∕ Log /))

�

�!
≪
(Log2 � − Log2 /)

�

�!

by Mertens’ estimate [16, Theorem 3.4(b)] and our assumption that M ⩽ 10. Using the Stirling
approximation �! ≍ �1∕2(�∕�)�, we obtain the claimed upper bound.
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Lastly, we prove a corresponding lower bound. Let E be sufficiently large and assume that � ⩾
�E . Set /1 = max(/, E), and define

Q ∶=
∑

/1⩽F<�

1

F
.

By Mertens’ estimate, we have

Q = Log2 � − Log2 /1 + 8(1∕Log /1) ⩾ Log2 � − Log2 /1 − 1∕20, (2.6)

since /1 ⩾ E and we may assume that E is large enough. By hypothesis, 1 ⩽ � ⩽ 10(log2 � −
Log2 /), thus Log2 � − Log2 / ⩾ 1∕10. If /1 = / ⩾ E, then we have Q ⩾

1

2
(Log2 � − Log2 /). Fur-

thermore, if /1 = E > /, then � ⩾ �
/ , whence Q ⩾ Log2 � − 8(Log3 �) ⩾

1

2
Log2 � provided that E

is large enough. In both cases,

Q ⩾
1

2
(Log2 � − Log2 /), (2.7)

and it follows that � ⩽ 20Q. In addition, we have

O/,� ⩾ O/1,� =
Q�

�!
−
1

�!

∑
/1⩽F1,…,F�<�, not distinct

1

F1…F�

⩾
Q�

�!
−

(
�

2

)
1

�!
Q�−2

∑
/1⩽F<�

1

F2

⩾
Q�

�!

(
1 −

�2

2Q2(/1 − 1)

)
⩾
1

2
⋅
Q�

�!
,

the last inequality holding for large enough E, since /1 ⩾ E. By the upper bound on M and
inequality (2.7), we have

Q� ≫E (Q + Log2 E + 1)
�.

Together with (2.6), and since Log2 /1 ⩽ Log2 / + Log2 E, we conclude that

Q� ≫E (Log2 � − Log2 /)
�.

Hence, the claimed lower bound on O/,� follows by Stirling’s formula �! ≍ �
1∕2(�∕�)�. □

We record two particular corollaries of the above proposition of interest, which follow from a
routine Taylor expansion of the function N(M).

Corollary 2.3 (Special cases). Fix R ⩾ 1, let 1 ⩽ / ⩽ � with Log2 � − Log2 / ⩾ 2R
2, and let � ∈ ℕ.

We have the two following cases:
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(i) If ||� − (Log2 � − Log2 /)|| ⩽ R
√
Log2 � − Log2 /, then

S(*(�[/,�)) = �) ≍R
1√

Log2 � − Log2 /
.

(ii) If ||� − 2(Log2 � − Log2 /)|| ⩽ R
√
Log2 � − Log2 /, then

S(*(�[/,�)) = �) ≍R
Log �

2� Log /
⋅

1√
Log2 � − Log2 /

.

3 MAIN REDUCTION

Let the notation and hypotheses be as in Theorem 3. We allow all implied constants to depend on
�. We write

' = (1 + -) Log2 �,

thus

� ⩽ - ⩽ 1 − �. (3.1)

We may assume � sufficiently large depending on �. For any 1 ⩽ / < �, we have

*(�<�) = *(�</) + *(�[/,�)).

To take advantage of the splitting by /, we introduce a generalization

∆(T)(�) ∶= max

∈ℝ

#{�|� ∶ �
 < � ⩽ �
+T} (3.2)

of the Erdős–Hooley Delta function for any T > 0, and use the following simple application of the
pigeonhole principle.

Lemma 3.1. For any 1 ⩽ / < � and any T ⩾ log �</ , we have

∆(�<�) ⩾
:(�</)

2T + 1
⋅ ∆(T)(�[/,�)).

Proof. By (3.2), there exists 
 such that there are∆(T)(�[/,�)) divisors U of �[/,�) in (�

, �
+T]. Multi-

plying one of these divisors U by any of the :(�</) divisors � of �</ gives a divisor �U of �<� in the

range (�
, �
+2T]. These :(�</)∆
(T)(�[/,�)) divisors are all distinct. Covering this range by at most

2T + 1 intervals of the form (�

′
, �


′+1], we obtain the claim from the pigeonhole principle. □

Let

 ∶=

{
/ > 0 ∶ |Log2 / − - Log2 �| ⩽

√
Log2 � ;

Log2 /

log 2
∈ ℤ

}
(3.3)
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and for each / ∈  , let H/ denote the event

log �</ ⩽ 10(Log3 �) Log /

and let V/ denote the event

∆(Log /)(�[/,�)) ⩾ (Log2 �)
�∗−�∕2. (3.4)

As we will see later, both events H/ and V/ will hold with very high probability. As ∆
(T) is clearly

monotone in T, we have

∆(10(Log3 �) Log /)(�[/,�)) ⩾ ∆
(Log /)(�[/,�)).

By Lemma 3.1 with T = 10(Log3 �) Log /, if the events H/ and V/ both hold for some / ∈  , then

∆(�<�) ≫
(Log2 �)

�∗−�∕2

Log3 �
⋅
:(�</)

Log /
.

Thus Theorem 3 will follow if we show that

I

[
G
{
*(�<�) = '

}
max
/∈

(
:(�</)

Log /
G{H/ ∩ V/}

)]
≫ 1. (3.5)

Controlling the left-hand side is accomplished with the following three propositions. In their
statements, recall that ¬W denotes the negation of the event W.

Proposition 3.2. We have

I

[
G
{
*(�<�) = '

}
max
/∈

(
:(�</)

Log /
G{¬H/}

)]
≪

1

(Log2 �)
9
.

Proof. We have

I

[
G
{
*(�<�) = '

}
max
/∈

(
:(�</)

Log /
G{¬H/}

)]
⩽

∑
/∈

I

[
G
{
*(�<�) = '

}:(�</)
Log /

G{¬H/}

]

≪
√
Log2 � max

/∈

I
[
:(�</)G{¬H/}

]
Log /

,

since ||≪ (Log2 �)
1∕2. If H/ fails, then �

1∕ Log /
</ ⩾ exp(10 Log3 �) = (Log2 �)

10, and so, by
Markov’s inequality,

I
[
:(�</)G{¬H/}

]
⩽ (Log2 �)

−10 I
[
:(�</)�

1∕ Log /
</

]
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for all / ∈  . Splitting �</ into the independent factors �F, we get

I
[
:(�</)�

1∕ Log /
</

]
=

∏
F</

(
F

F + 1
+
2F1∕ Log /

F + 1

)
=

∏
F</

(
1 +

1

F
+ 8

(
log F

F Log /
+
1

F2

))
, (3.6)

which, by Mertens’ theorems, equals 8(Log /), and the proof is complete. □

Proposition 3.3. We have

I

[
G{*(�<�) = '}max

/∈

:(�</)

Log /

]
≫ 1.

Proposition 3.3 will be proved in Section 4.

Proposition 3.4. We have ℙ
(
¬V/

)
≪ (Log2 �)

−1.

Proposition 3.4 will be proved in Section 5.
Now we complete the proof of (3.5), assuming the three propositions above. Firstly, by

Proposition 3.4 and the independence of V/ and �</ , we have

I

[
G{*(�<�) = '}max

/∈

:(�</)

Log /
G{¬V/}

]
≪ (Log2 �)

1∕2max
/∈

I
[
:(�</)G{¬V/}

]
Log /

= (Log2 �)
1∕2max

/∈

I
[
:(�</)

]
ℙ
(
¬V/

)
Log /

≪ (Log2 �)
−1∕2max

/∈

I
[
:(�</)

]
Log /

.

Arguing as in the proof of Proposition 3.2, we have I
[
:(�</)

]
≪ Log /, and thus

I

[
G{*(�<�) = '}max

/∈

:(�</)

Log /
G{¬V/}

]
≪

1

(Log2 �)
1∕2
.

Combining this with Propositions 3.2 and 3.3, we deduce (3.5), and hence Theorem 3.

4 PROOF OF PROPOSITION 3.3

Let / ∈  , so that Log2 /∕ log 2 is an integer. Consider the events

H/,
 ∶=

{
*(�<�) = ', *(�</) =

Log2 /

log 2
+ 


}
.

In the event H/,
 we have :(�</) = 2

 Log /. Also, consider the events

W
 ∶=
⋃
/∈

H/,
, Y
 =
⋃

′⩾


W
.
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Thus,

I

[
G{*(�<�) = '}max

/∈

:(�</)

Log /

]
= I

[
max
/∈

∑

∈ℤ

2
 ⋅ G{H/,
}

]

=
∑

∈ℤ

2
ℙ
(
Y
 ⧵ Y
+1

)

=
∑

∈ℤ

2

(
ℙ(Y
) − ℙ(Y
+1)

)

=
∑

∈ℤ

2
−1ℙ(Y
)

⩾
∑

∈ℤ

2
−1ℙ(W
).

In fact,
∑

 2


−1ℙ(Y
) ⩽
∑

 2


W
, so we have lost at most a factor 1∕2 in the final step. We will
restrict attention to the most important values of 
, namely 
 ∈  , where

 ∶=

{

 ∈ ℤ ∶

|||
 −
log 4 − 1

log 2
- Log2 �

||| ⩽
√
Log2 �

}
.

This choice is informed by the calculations in [17, Proposition 4.1]. We then observe that

I

[
G{*(�<�) = '}max

/∈

:(�</)

Log /

]
⩾

∑

∈

2
−1ℙ(W
). (4.1)

It remains to bound ℙ(W
) from below for 
 ∈  . This follows essentially by more general results
of Ford [8], but wemay give a simple and self-contained argument in the special case we are inter-
ested in. To do so, we employ the second moment method. More precisely, we have the following
estimates:

Lemma 4.1. We have

ℙ(H/,
) ≍
2−


Log2 �
(
 ∈  , / ∈ ) (4.2)

and, for all /, /′ ∈  and 
 ∈  ,

ℙ
(
H/,
 ∩ H/′,


)
≪

2−


Log2 �
exp

(
−N(1∕ log 2)||Log2 / − Log2 /′||

)
. (4.3)

Before we prove Lemma 4.1, let us see how to use it to bound ℙ(W
) from below.
For any given 
 ∈  , Lemma 4.1 yields that

I

[∑
/∈

G{H/,
}

]
≍

2−
√
Log2 �
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and

I

⎡
⎢⎢⎣

(∑
/∈

G{H/,
}

)2⎤
⎥⎥⎦
≪

2−
√
Log2 �

.

On the other hand, the Cauchy–Schwarz inequality implies that

I

[∑
/∈

G{H/,
}

]2
⩽ ℙ(W
) ⋅ I

⎡⎢⎢⎣

(∑
/∈

G{H/,
}

)2⎤⎥⎥⎦
It follows that

ℙ(W
) ≫
2−
√
Log2 �

.

for any 
 ∈  . Inserting this into (4.1) completes the proof of Proposition 3.2.

Proof of Lemma 4.1. We begin with (4.2). Splitting *(�<�) = *(�</) + *(�[/,�)) and using the
independence of �</ and �[/,�), we may factor

ℙ(H/,
) = ℙ

(
*(�</) =

Log2 /

log 2
+ 


)
⋅ ℙ

(
*(�[/,�)) = ' −

Log2 /

log 2
− 


)
.

From the range of / and 
, we have

Log2 /

log 2
+ 
 = 2- Log2 � + 8

(√
Log2 �

)
= 2Log2 / + 8

(√
Log2 /

)

and

' −
Log2 /

log 2
− 
 = (1 − -) Log2 � + 8

(√
Log2 �

)

= Log2 � − Log2 / + 8
(√

Log2 � − Log2 /
)
.

We may thus invoke parts (i) and (ii) of Corollary 2.3 and conclude that

ℙ

(
*(�</) =

Log2 /

log 2
+ 


)
≍

2−
√
Log2 �

and

ℙ

(
*(�[/,�)) = ' −

Log2 /

log 2
− 


)
≍

1√
Log2 �

,

and (4.2) follows.
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Now we establish (4.3). Without loss of generality, we may assume that /′ > /. Splitting

*(�<�) = *(�</) + *(�[/,/′)) + *(�[/′,�))

and using the joint independence of �</ , �[/,/′), �[/′,�), we may factor

ℙ
(
H/,
 ∩ H/′,


)
= ℙ

(
*(�</) =

Log2 /

log 2
+ 


)

× ℙ

(
*(�[/,/′)) =

Log2 /
′

log 2
−
Log2 /

log 2

)

× ℙ

(
*(�[/′,�)) = ' −

Log2 /
′

log 2
− 


)
.

As before, we have

ℙ

(
*(�</) =

Log2 /

log 2
+ 


)
≍

2−
√
Log2 �

and

ℙ

(
*(�[/′,�)) = ' −

Log2 /
′

log 2
− 


)
≍

1√
Log2 �

while from Proposition 2.2 we also have

ℙ

(
*(�[/,/′)) =

Log2 /
′ − Log2 /

log 2

)
≪ exp (−N(1∕ log 2)(Log2 /

′ − Log2 /)),

and the claim (4.3) follows. □

5 PROOF OF PROPOSITION 3.4

Fix � > 0; we allow all implied constants to depend on �. We will also need the parameters � ∈ ℕ,
sufficiently large in terms of �, and \ > 0, sufficiently small in terms of � and �. We may assume
that � is sufficiently large depending on �, �, \. We have

ℙ
(
*(�[/,�)) ⩾ 2 Log2 �

)
⩽
I
[
:(�[/,�))

]

(Log �)log 4

=
1

(Log �)log 4

∏
/⩽F<�

F + 2

F + 1
≪

1

(Log �)log 4−1
,

usingMertens’ theorem. By the definition of the eventV/ given in relation (3.4), it will thus suffice
to show that

ℙ
(
∆(Log /)(�[/,�)) < (Log2 �)

�∗−�∕2, *(�[/,�)) < 2 Log2 �
)
≪ (Log2 �)

−1. (5.1)
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It is now convenient to replace the random integer �[/,�) with a more discretized model. We
introduce the scale

^ ∶= /
1

20 Log2 �

(note that this is large depending on �, �, \, since Log2 / ≍ Log2 � by (3.1) and (3.3)) and let _ be
the set of all integers � such that

/ ⩽ ^�−2 < ^�−1 ⩽ �.

In particular we have

� ⩾ 20 Log2 � + 2,

so that � is sufficiently large depending on �, �, \.
Define the random subset� of _ to consist of all the indices � ∈ _ for which one has �F = F for

some prime F ∈ [^�−2, ^�−1). Observe that the events {� ∈ �} are mutually independent, with

ℙ(� ∈ �) = 1 −
∏

^�−2⩽F<^�−1

F

F + 1

= 1 −
� − 2

� − 1

(
1 + 8

(
�−�

√
log /

))

=
1

� − 1
+ 8

(
�−�

√
log /

)

for large enough /, thanks to the PrimeNumber Theorem [16, Theorem 8.1] and the bound ^�−2 ⩾
/. Note that � ⩽ Log � ≪ �(Log /)

1∕3
. Hence, if � is large enough, we find that

ℙ(� ∈ �) ⩾
1

�
for all � ∈ _.

Recall Definition 1 of the subsum multiplicity �(�) of a finite set � of natural numbers. We
claim that if *(�[/,�)) < 2 Log2 �, then

∆(Log /)(�[/,�)) ⩾ �(�). (5.2)

Indeed, if ` = �(�), then Definition 1 implies that we can find distinct subsets �1, … , �` of �
such that

∑
�∈�1

� = ⋯ =
∑
�∈�`

�.

Also, for each � ∈ �, we can find a prime F�|�[/,�) such that

^�−2 ⩽ F� < ^
�−1. (5.3)
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In particular, the cardinality of� (and hence of�1, … , �`) is at most *(�[/,�)), and hence at most
2 Log2 �. Taking logarithms in (5.3), we see that

| log F� − � log ^| ⩽ 2 log ^

for all � ∈ �. Thus for all 1 ⩽ % < %′ ⩽ `we have from the triangle inequality, (1.3), and the bound
|�| ⩽ 2 Log2 � that

|||||||

∑
�∈�%

log F� −
∑
�∈�%′

log F�

|||||||
⩽ 8(Log2 �) log ^ < log /

thanks to the choice of ^. We conclude that all the sums
∑
�∈�%

log F�, % = 1,… , ` lie in an inter-

val of the form (
, 
 + log /], hence all the products
∏
�∈�%

F� lie in an interval of the form

(�
, �
+log /]. As these products are all distinct factors of �[/,�), the claim (5.2) follows.
In view of (5.2), it now suffices to establish the bound

ℙ(�(�) < (Log2 �)
�∗−�∕2) ≪ (Log2 �)

−1.

The events � ∈ � for � ∈ _ are independent with a probability of at least 1∕�. One can then find
a random subset �′ of � where the events � ∈ �′ for � ∈ _ are independent with a probability of
exactly 1∕�; for instance, one could randomly eliminate each � ∈ � from�′ with an independent
probability of 1 − 1

�ℙ(�∈�)
. Clearly�(�) ⩾ �(�′), so it will suffice to show that

ℙ
(
�(�′) < (Log2 �)

�∗−�∕2
)
≪ (Log2 �)

−1. (5.4)

Now we use a ‘tensor power trick’ going back to the work of Maier and Tenenbaum [18] (see
also [10, Lemma 2.1]). Observe the supermultiplicativity inequality

�(�1 ∪ �2) ⩾ �(�1)�(�2) (5.5)

whenever �1, �2 are disjoint finite sets of natural numbers. To exploit this, we introduce the
exponent 0 < � < 1 by the formula

��∗−�∕4 = 1∕�, (5.6)

where �was defined at the start of this section. By construction, the set _ takes the form [�−, �+] ∩

ℤ, where

�− =
log /

log ^
+ 8(1) ≍ Log2 �

and

�+ =
log �

log ^
+ 8(1) ≫ Log�∕2 �
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thanks to (3.3) and (3.1). In particular,

Log2 �+ − Log2 �− ⩾ Log3 � − 8(Log4 �).

As a consequence of this and (5.6), we can find an integer � satisfying

� =
Log3 �

log(1∕�)
− 8(Log4 �) = (�∗ − �∕4)

Log3 �

log �
− 8(Log4 �) (5.7)

and disjoint sets _1, … , _� in _, where each _d is of the form _d = [ 
�
d
,  d] ∩ ℤ for some d ≫ Log2 �.

From (5.5) and monotonicity, we then have

�(�′) ⩾

�∏
d=1

�(�′ ∩ _d). (5.8)

From the definition of �∗ in (1.4), we have � < �� if � is large enough. From the definition of ��
in Definition 1, we conclude (as  d is sufficiently large depending on �, \) that

ℙ
(
�(�′ ∩ _d) ⩾ �

)
⩾ 1 − \

for all d = 1, … ,�. Furthermore, the events�(�′ ∩ _d) ⩾ � are independent, because the sets�
′ ∩

_d are independent. By the Bennett inequality [1], the probability that there are fewer than (1 −
�∕5)� values of d with�(�′ ∩ _d) ⩾ � is at most

exp

{
− � ⋅ (�∕5 − \)

(
log

(
1 +

�∕5 − \

\

)
− 1

)}
.

We choose \ small enough so that

(�∕5 − \)

(
log

(
1 +

�∕5 − \

\

)
− 1

)
⩾

2 log �

�∗ − �∕4
,

so that by (5.7), the above probability is≪ (Log2 �)
−3∕2. By (5.8), we conclude that

ℙ
(
�(�′) < �(1−

�
5
)�)≪ (Log2 �)

−3∕2.

From another appeal to (5.7) we have

�(1−
�
5
)�
⩾ (Log2 �)

�∗−�∕2.

The claim (5.4) follows.
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