
2110 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

A Graph Machine Learning Framework to Compute
Zero Forcing Sets in Graphs

Obaid Ullah Ahmad , Mudassir Shabbir , Waseem Abbas , Member, IEEE,
and Xenofon Koutsoukos , Fellow, IEEE

Abstract—This article studies the problem of computing zero-
forcing sets (ZFS) in graphs and provides a machine-learning
solution. Zero-forcing is a vertex coloring process to color the
entire vertex set from a small subset of initially colored vertices
constituting a ZFS. Such sets have several applications in network
science and networked control systems. However, computing a
minimum ZFS is an NP-hard problem, and popular heuristics
encounter scalability issues. We investigate the greedy heuristic for
this problem and propose a combination of the random selection
and greedy algorithm called the random-greedy algorithm, which
offers an efficient solution to the ZFS problem. Moreover, we en-
hance this approach by incorporating a data-driven solution based
on graph convolutional networks (GCNs), leveraging a random
selection process. Our machine-learning architecture, designed to
imitate the greedy algorithm, achieves significant speed improve-
ments, surpassing the computational efficiency of the greedy al-
gorithm by several orders of magnitude. We perform thorough
numerical evaluations to demonstrate that the proposed approach
is considerably efficient, scalable to graphs about ten times larger
than those used in training, and generalizable to several different
families of synthetic and real-world graphs with comparable and
sometimes better results in terms of the size of ZFS.We also curate
a comprehensive database comprising synthetic and real-world
graph datasets, including approximate and optimal ZFS solutions.
This database serves as a benchmark for trainingmachine-learning
models and provides valuable resources for further research and
evaluation in this problem domain. Our findings showcase the ef-
fectiveness of the proposedmachine-learning solution and advance
the state-of-the-art in solving the ZFS problem.

Index Terms—Zero-forcing Set, graph convolutional network,
network controllability, leader selection problem.

I. INTRODUCTION

DYNAMIC coloring in graphs is a process of coloring
vertices iteratively according to some pre-defined rules

and conditions. Based on the coloring rules, several variants of

Manuscript received 15 June 2023; revised 27 October 2023; accepted 22
November 2023. Date of publication 4 December 2023; date of current version
23 February 2024. This work was supported by the National Science Foundation
under Grants 2325416 and 2325417. Recommended for acceptance by Prof. X.
Li. (Corresponding author: Obaid Ullah Ahmad.)

Obaid Ullah Ahmad is with the Electrical Engineering Department, The
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail: Obaidul-
lah.Ahmad@utdallas.edu).

Waseem Abbas is with the Systems Engineering Department, The
University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
waseem.abbas@utdallas.edu).

Mudassir Shabbir and Xenofon Koutsoukos are with the Computer Science
Department, Vanderbilt University, Nashville, TN 37235 USA (e-mail: mudas-
sir.shabbir@vanderbilt.edu; xenofon.koutsoukos@vanderbilt.edu).

Digital Object Identifier 10.1109/TNSE.2023.3337750

such colorings have been considered with many applications
in network science and engineering, such as air traffic flow
management [1], nucleic acid sequence design in biochemical
networks [2], channel assignment in wireless networks [3], and
community detection in social networks [4]. In addition, graph
coloring also serves as an effective tool in solving other signifi-
cant graph theory problems, for instance, graph partitioning [5]
and clique computation [6].
Zero forcing is a dynamic coloring of vertices, which are

initially colored either black or white. A black vertex can change
the color of its white neighbor to black under some conditions
(i.e., the black vertex has exactly one white neighbor). The goal
is to select the minimum number of vertices in a graph, which,
if colored black initially, will render all vertices black at the end
of the coloring process. Such a subset of initial black vertices
is called a zero forcing set (ZFS) in a graph (as explained in
Section II-A). Zero forcing has applications in modeling various
physical phenomena, including logic circuits analysis, disease
spread analysis, and information spread in social networks [7],
[8], [9], [10]. In particular, ZFS is an important notion in studying
network controllability, which is a central phenomenon in the
control of networked systems. Network controllability is ma-
nipulating a network of agents as desired by injecting external
control inputs through a subset of agents called leaders. The
crucial problem is determining the minimum leader agents to
make the network completely controllable. It turns out that ZFS
in a network characterizes a leader set for the network’s complete
controllability [10], [11] (as discussed in Section II-B).

Unfortunately, finding a minimum ZFS for a given graph is a
combinatorial optimization problem shown to be NP-Hard [12].
The algorithms to compute the optimal solutions take exponen-
tial time and are not scalable to huge networks. Algorithms
computing approximate solutions, such as greedy, generally
provide reasonable results; however, they also incur scalability
problems as the network sizes grow. Additionally, degenerate
cases exist for which the greedy solution can be arbitrarily
bad [13]. We discuss the exact and approximate solutions in
Section III.
This work aims to find a computationally fast and accurate

solution for the ZFS problem using random selection, machine
learning (ML) and data-driven approaches. Recently, ML-based
solutions have found applications in solving computationally
hard problems. Gama et al. propose a GNN-based distributed
solution to solve the flocking and the multi-agent path plan-
ning problems [14]. They propose a novel framework using

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8303-1114
https://orcid.org/0000-0002-6961-0961
https://orcid.org/0000-0002-9013-1463
https://orcid.org/0000-0002-0923-6293
mailto:Obaidullah.Ahmad@utdallas.edu
mailto:Obaidullah.Ahmad@utdallas.edu
mailto:waseem.abbas@utdallas.edu
mailto:mudassir.shabbir@vanderbilt.edu
mailto:mudassir.shabbir@vanderbilt.edu
mailto:xenofon.koutsoukos@vanderbilt.edu

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2111

graph signal processing (GSP) to learn the controllers for these
problems. Additionally, there has been an increasing inter-
est in utilizing these data-driven, and graph machine learning
(GML) approaches to solve hard combinatorial optimization
problems [15], [16]. Cappart et al. provide a comprehensive
review of recent works involving the use of machine learning to
solve combinatorial optimization problems [16]. By exploiting
the known instances’ solution patterns and relating them to the
underlying network structure, we can train ML models that
provide approximately optimal solutions to large networks in
a fraction of the time than the best-known heuristic algorithms.
Further, when combinedwith heuristic components, the learning
models could compute solutions with much better approxi-
mations. Nevertheless, designing efficient and stable machine
learning architectures for combinatorial problems has inherent
challenges. Some significant challenges include the availability
of datasets for learning, designing appropriateML architectures,
and scalability and transferability [16], [17], [18] (as discussed
in detail in Section III-C).
Our approach relies on combining data-driven and algorith-

mic insights to find near-optimal ZFS. We study the structural
aspects of the problem to design a graph convolutional network
(GCN). We also generate a huge database using synthetic and
real-world graphdatasets to train ourGCNmodel.As a result,we
achieve comparable results to the greedy algorithm in a fraction
of the time for huge networks. Our main contributions are:
� We propose a GCN-based architecture using the insights
from the greedy algorithm. The key aspect is to design a
GCN capable of learning to imitate the steps of the greedy
algorithm much more efficiently. By employing this do-
main knowledge in theGCNdesigning process, we achieve
a scalable, generalizable, and time-efficient solution, as
explained in Section VI-D. We analyze the proposed GNN
in detail and discuss various model parameters to obtain
superior solutions in terms of time complexity and ZFS
size.

� We study the greedy algorithm for the ZFS problem in de-
tail and uncover some valuable insights into its underlying
structure. In particular, we develop a hypothesis pertaining
to the random selection of ZFS in the initial iterations of the
greedy algorithm and empirically validate it across several
distinct datasets. To the best of our knowledge, existing
research has not explored the integration of random and
greedy vertex selection strategies as a means of designing
effective heuristics for combinatorial optimization prob-
lems, such as ZFS.

� We generate a huge database for the ZFS problem. We
compute optimal solutions for synthetic graphs and greedy
solutions for three synthetic and four real-world graph
datasets.

� Using the dataset with the optimal solutions, we show that
for the ZFS problem, the optimal data is not vital for the
training of our proposed architecture to achieve satisfactory
results. Instead, training can be done using approximate
solutions. See Section VII for further details.

� We thoroughly evaluate the proposed solution on an exten-
sive collection of graphs and show that our model is highly

scalable. Furthermore, we train the GCN on smaller graphs
and evaluate it on graphs ten times the sizes of graphs
in the training set and observe a remarkable difference in
computation time from the greedy algorithm.

ZFS computation is a hard problem, as explained in Sec-
tion III. There are ways to find an approximate solution that are
generally practicable but can have unrealistic time complexity
for huge graphs. ML methods afford the great potential to
provide time-efficient solutions to challenging combinatorial
optimization problems. However, in literature, these solutions
are not trivial. For instance, Joshi et al. show that for the
Travelling salesmanproblem (TSP), the trainedmodel’s learning
is usually limited to a certain scale level, and the model’s perfor-
mance drops drastically when evaluated on larger networks [19].
Researchers are trying to generalize machine learning solu-
tions for the more extensive networks for the TSP [20], [21],
[22]. Bello et al. introduce a neural network-based framework
for solving combinatorial optimization, with a focus on the
traveling salesman problem (TSP). It trains a recurrent neural
network to predict city permutations, optimizing parameters
using reinforcement learning and comparing training methods
using negative tour length rewards [20]. Additionally, collecting
optimal data for training is also a massive problem for hard
combinatorial optimization problems [23]. We have devised a
way to use machine learning without needing an optimal labeled
dataset.
The article is organized as follows: Section II introduces the

notations and definitions; Section III discusses known ways to
computeZFS and the potential and challenges ofML; Section IV
describes the datasets; Section V discusses the structural aspect
of the problem. In the last three sections, we propose a GCN-
based architecture for the ZFS problem and evaluate several
of its aspects including generalizability and scalability. Finally,
Section IX concludes the article.

II. PRELIMINARIES

An undirected graph G = (V,E) models a multiagent net-
work. Vertex set V and edge set E ⊂ V × V represent agents
and interactions between them, respectively. The edge between
vertices u and v is denoted by an unordered pair (u, v). The
neighborhood of u is the set Nu = {v ∈ V : (u, v) ∈ E} and
the degree of u is deg(u) = |Nu|. The distance between vertices
u and v, denoted byd(u, v), is the number of edges in the shortest
path between them. Next, we define the zero forcing process and
the respective terms and then its applications.

A. Zero Forcing Process

Definition (Zero forcing (ZF) Process): Consider a graph
G = (V,E), such that each v ∈ V is colored either black or
white initially. The ZF process is to iteratively change the colors
of vertices using the following rule until no further changes are
possible.
Color change rule: If v ∈ V is colored black and has exactly

one white neighbor u, change color of u to black.
We say that v infected u if the color of white vertex u is

changed to black by any black vertex v.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2112 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

Fig. 1. V ′ = {v6, v7, v8} is the input set. After the ZF process,D(V ′) = V ,
as indicated by the black vertices. Hence, V ′ is a ZFS.

Definition (Derived Set): Consider a graph G = (V,E) with
V ′ ⊆ V be the set of initial black vertices. Then, the set of black
vertices obtained at the end of the ZF process is the derived
set, denoted byD(G,V ′), or simplyD(V ′) when the context is
clear. The cardinality of a derived set for an input set V ′, i.e.,
|D(V ′)|, is the span of V ′.
The set of initial black vertices V ′ is also referred to as the

input set. For a given input set V ′, the derived set D(V ′) is
unique [24]. Now, we define the zero forcing set.
Definition (ZeroForcingSet (ZFS)): For a graphG = (V,E),

V ′ ⊆ V is a ZFS if and only ifD(G,V ′) = V . We denote a ZFS
of G by Z(G) and its size by ζ(G). The minimum zero forcing
set, denoted as Z∗(G), is the ZFS of the minimum size.
Fig. 1 illustrates zero forcing and derived sets.

B. Applications of ZFS to Network Control

The zero forcing problem has many real-world applications.
We are going to particularly talk about an application of ZFS in
network controllability.We consider a networkG = (V,E)with
|V | agents, denoted by V = {v1, v2, . . . , v|V |}, of which m are
leaders, which are represented by VL = {�1, �2, . . . , �m} ⊆ V .
We consider the following linear time-invariant system on G.

ẋ(t) = Mx(t) +Bu(t). (1)

Here, x(t) ∈ R|V | is the state vector and u(t) ∈ Rm is the
external input injected into the system through m leaders.
M ∈ M(G) is the system matrix, where M(G) is a family of
symmetric matrices associated with G defined as

M(G) = {M ∈ R|V |×|V | : M = M�,

and for i �= j,Mij �= 0 ⇔ (i, j) ∈ E(G)}.

The matrix B ∈ R|V |×m in (1) is the input matrix, such that
[B]ij = 1, if vi = �j ; and 0 otherwise. We note that the input
matrixB is defined by the selection of leader agents. Moreover,
M(G) contains a broad class of system matrices defined on
graphs, including the adjacency, Laplacian, and signless Lapla-
cian matrices.
The system (1) is controllable if there exists an input u(t)

that can drive the system from an arbitrary initial state x(t0)
to any desired state x(tf) in a finite amount of time. If the
system is controllable for given system and input matrices,
we say that (M,B) is a controllable pair. Moreover, (M,B)
is a controllable pair if and only if the controllability matrix
C(M,B) ∈ R|V |×|V |m is full rank, i.e., rank(C(M,B)) = |V |.

The controllability matrix is defined as

C(M,B) =
[
B MB M2B · · · M |V |−1B

]
.

Definition (StrongStructuralControllability (SSC)): Agraph
G = (V,E) with a given set of leaders VL ⊆ V (and the corre-
sponding B matrix) is strong structurally controllable if and
only if (M,B) is a controllable pair for all M ∈ M(G).

We are interested in finding a minimum-sized leader set VL

that renders the network strong structurally controllable and re-
fer to it as theminimum leader selection problem (LSP). TheLSP
is computationally challenging and known to be NP-hard [12],
[25], [26], [27]. The LSP is equivalent to the combinatorial
optimization problem, called theminimum zero forcing set (ZFS)
problem, of finding the minimum ZFS Z∗(G) of a given graph
G. In [10], authors show that a leader set VL renders the network
strong structurally controllable if and only if VL is a zero forcing
set of the network graph G. Thus a minimum ZFS of G is also
a solution of the LSP.
The ZFS problem is directly related to many other graph

theoretic problems including the forts in graphs, the art gallery,
and k-power propagation in hyper-graphs problems, etc. With
respect to zero forcing, a fort is the set of vertices that do not
get forced by some initial set of colored vertices, and a zero
forcing set is exactly a set of vertices hitting every fort [28]. The
number of distinct paths, the number of vertices in the paths,
and the allowable multiplicities of a matrix for the graph are also
shown to have a relation with the partial zero-forcing sets [29].
Similarly, there are a lot of other problems that can be indirectly
solved using the zero-forcing set problem [27], [30], [31], [32].

III. RELATED WORK

The computation of the minimum ZFS Z∗(G) is an NP-Hard
problem [12]. Therefore, many researchers have looked into the
computation of the approximate solution for this problem. In
this Section, we mention some of the approaches for the exact
computation of the miminum sized ZFS. We also discuss a few
state-of-the-art algorithms to find approximate solutions, their
shortcomings, and how machine learning can be utilized for
the combinatorial optimization problems such as ZFS problem,
along with its major challenges.

A. Exact ZFS Computation

In general, the computation of ζ(G) is an NP-hard prob-
lem [12]. Consequently, finding an optimalZ(G) in polynomial
time, in general, is out of reach. A widely used algorithm for
the exact computation of ζ(G) and a minimum Z(G) is a com-
binatorial algorithm called the wavefront algorithm [8], [33].
However, the algorithm has an exponential time complexity,
and in the worst case, it is the same as enumerating all possible
subsets of vertices [8]. Some improvements based on the in-
teger programming formulation, branch-and-bound techniques,
Boolean satisfiability models, bilevel mixed-integer linear pro-
gram formulation have been proposed to solve the minimum
ZFS problem [8], [34], [35]. However, the performance of such
algorithms depends on several factors, including the existence of
specific subgraphs and the graph density. Though these methods

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2113

offer improvements, their time complexity remains exponential
in general. Hence, many researchers have proposed approximate
algorithms to find the Z(G) in polynomial time. In the follow-
ing subsection, we discuss a few approaches to compute the
approximate solutions for the minimum ZFS problem.

B. Approximate ZFS Computation

Various heuristics have been proposed to compute Z(G) in
large graphs in feasible times. The most notable is the greedy
heuristic that typically computes a small-sized Z(G). The main
idea is to iteratively construct a Z(G) by adding a vertex to a
Z(G) solution that maximizes the size of the derived set in that
iteration. Once a solution is obtained by this iterative process,
redundant vertices are removed to obtain a minimal Z(G). The
greedy heuristic generally performs well. Moreover, though the
greedy heuristic is faster than optimal algorithms and it can be
verified in linear time whether a given set is a Z(G) [36], it still
takes significant time to compute a solution for huge graphs as
we demonstrate in our numerical evaluations (Section VI-D).
Utilizing the idea of potential games, [13] presents another
heuristic based on the log-linear learning (LLL) that returns
comparable solutions (in terms of ζ(G)) to the greedy algorithm.
However, the quality of the solution is a function of the number
of iterations. Numerical evaluations show a fast convergence;
however, the evaluation is confined to graphs of small sizes (50
vertices). Some other heuristics are also discussed in [8], [34].
As mentioned above, the best-known heuristic to find the ap-

proximate solution for the ZFS problem is the greedy algorithm.
However, it is not scalable to large graphs and has a huge time
complexity for large graphs. For instance, in one of our numeri-
cal evaluations, it takes the greedy algorithm about 156 minutes
to find Z(G) of a graph with 990 vertices. Similarly, [13], [34]
shows that there exist graphs for which the greedy solution can
be arbitrarily bad; that is, the difference between the optimal
and greedy solutions can be arbitrarily large. This limits the
applicability of the greedy algorithm for real-world network
problems.

C. Graph Machine Learning – Proposed Approach for ZFS
Computation

Graph datasets present several new challenges for traditional
machine learning like input size variations, non-regular neigh-
borhood structure, and vertex permutations. There are two main
approaches for graph-structured data. Graph embeddings trans-
form the input graphs to a fixed-sized low-dimensional interme-
diate representation that is then used in a classifier. In contrast,
Graph Neural Networks (GNNs) are trained in an end-to-end
manner, and graph structural information is used to construct
the layout of the Neural Network.
GNNs generalize deep neural networks (DNNs) for graph-

structured data. The main objective is to achieve vector repre-
sentations of vertices/graphs in the low-dimensional space that
encodes structural relationships in graphs in the corresponding
vector representations. A GNN is then trained in an end-to-end
manner against some appropriately designed loss function using

stochastic optimization methods to adapt to the given data sam-
ples while optimizing the learning model parameters. GNNs
exploit the patterns and invariances in the given data distri-
bution, which help solve many problems on graph-structured
data like toxicity prediction in chemical compounds, community
detection in social networks [37], etc. GNNs have also been
applied to challenging combinatorial optimization problems on
graphs with some success. Satisfiability, Travelling Salesman,
Knapsack,MinimumVertex Cover, andMaximumCut are a few
of the problems that have been solved using GNNs [21], [22],
[38]. This is an exciting avenue for complicated combinatorial
problems that would otherwise either take an exceptional time
even for an approximate solution or could not be computed with
limited computational resources. Thiswork shows aGNN-based
approach can be used to compute Z(G) with reliable accuracy
and efficiency. The sizes ofZ(G) returned by our GNN solution
are comparable to or smaller than the existing techniques while
taking only a fraction of runtime as we thoroughly compare and
evaluate in the later sections. However, we note that in general,
several challenges need to be addressed to design an efficient
GNN solver for a hard combinatorial optimization problem like
the minimum Z(G).
1) Limited Datasets for Training: Constructing a required

size dataset suitable for training a machine learning model is
usually themost critical and challenging step in designing a data-
driven solution for a combinatorial optimization problem. This
is also true for the minimum ZFS problem for which there is no
known labeled dataset available for learning. Generating a large
enough data set with optimal solutions for hard combinatorial
problems, such as computing a minimum Z(G), requires due
diligence along with sufficient computational resources [16].
We generate a huge new labeled database consisting of several
synthetic and real-world graph datasets (Section IV).
2) Scaling and Generlizability: A related issue of scaling

also plagues many proposed solutions. Even when there are
some datasets available for some graph problems, the instances
in these datasets are of very small sizes. Consequently, the
machine learning models that are trained on these instances can
only reliably be tested on similar-size problems. An important
problem that some of the previous works have tried to address is
generalizability, i.e., training amodel on small instances that per-
form well on large instances. Such works report limited success
so far [17]. Alongwith being scalable and generalizable to larger
sizes of problems, the learned models should also extrapolate
and transfer well to different families of graphs. Designing a
machine learning solution that performswell outside the support
of the training distribution is a crucial research challenge [18].
In this article, we present an approach to find the minimum
Z(G) that is a combination of both data-driven and heuristic
methods (Section VI). We perform several experiments where
we are able to illustrate that our approach is capable of both
scaling and generalizing since we exploit the intricate details of
the greedy algorithm in the design of our method. As the major
part of the solution comes from the machine learning model, our
architecture is alsomuch faster and computationally inexpensive
than the greedy heuristic without compromising on the quality
of the solution.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2114 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

3) GNNArchitectures: GNN architectures for combinatorial
optimization problems are designed to maximally exploit the
structural characteristics of the problem during the learning
phase. Thus, to learn the problem structure and solution patterns
from the data, the architecture is adjusted for the particular
problem to accommodate its unique characteristics, for instance,
vertex penalties and related constraints [15]. This also requires
devising proper loss functions for the GNN. Unfortunately,
these adjustments are not straightforward and are not typically
translated fromoneproblem to another.As a result, designing the
most appropriate GNN architecture with a suitable loss function
for the combinatorial problem is a tricky affair. Li et al. proposed
a novel approach to solve combinatorial optimization problems
that leverage both deep learning and classic heuristics [39].
However, a very recent work of Böther et al. shows that for
problems like MIS which involve guided tree searches, the
GNNs do not necessarily learn meaningful representations and
propose to use reinforcement learning inspired by the classical
solvers for combinatorial optimization problems [17]. Hence,
we look deeper into the greedy heuristics to solve the ZFS to
provide a scalable GNN-based solution. Our machine learning
model, inspired by the greedy solution, solves this optimization
problem in a greedy fashion. We introduce a novel loss function
for the task and refine the intermediate solution obtained from
GNN model using a heuristic algorithm (Section VI).
In this work, we provide a GNN-based solution to solve the

ZFS problem that is capable of effectively handling all these
challenges and can provide comparable results as those of the
greedy algorithm.We use Graph Convolutional Network (GCN)
to imitate the steps of the greedy algorithm and iteratively
complete the Z(G) much faster than the greedy algorithm.
The empirical results show that approximate solutions can be
used to train our proposed network and the optimal solutions
are not required for training for this problem. Additionally, the
model trained on approximate (greedy solutions) performs better
than the greedy algorithm itself in many cases. This provides
empirical evidence that our proposed architecture can be used
to generate a new database for the ZFS problem.
Next, we present some insights about the greedy algorithm

for the ZFS problem and our proposed data-driven architecture
to find the approximate Z(G). First, we present details of a
huge database prepared as a part of this work. Then, we present
interesting observations about the greedy algorithm. Then, we
introduce a new GCN-based architecture motivated by the ob-
servations from the greedy algorithm to find theZ(G) for a given
graph. Lastly, we demonstrate the capabilities of the proposed
architecture in terms of scalability and generalizability.

IV. DATASETS

We employ a data-driven model in our proposed approach
that requires sufficient labelled data for training. As mentioned
in the previous section, the zero-forcing set problem is a part of
the combinatorial optimization problems class that are NP-Hard
and considerable computational resources are required to find
its solution. The algorithms that provide the optimal Z(G) for
a given graph G take exponential time and their applicability

TABLE I
DATASETS DETAILS

is limited to graphs of small sizes. The greedy heuristics on
the other hand, take polynomial amount of time and perform
fairlywell on large randomgraphs. The learning-based solutions
work comparatively very fast and are proclaimed to perform
well on combinatorial optimization problems since they may
discover useful patterns in the data that are usually hard to
specify by hand [21], [39]. To use these learning-based algo-
rithms, a decent-sized labeled dataset with optimal Z(G) is
required. Unfortunately, there is no dataset for the minimum
ZFS problem. In this work, besides proposing a learning-based
solution, we also create a huge database that can be used for any
learning-based algorithm to find minimal Z(G). This database
will be publicly available for the research community 1.
In our database, we include synthetic as well as real-world

graph datasets. The computation of optimal Z(G) is infeasible
on datasets with huge graphs. As the greedy algorithm finds
solutions that are fairly close to the optimal values, we compute
greedy solutions Zgr(G) of sizes denoted by ζgr(G) for all
the graphs. The total time to find the greedy solutions for all
the datasets is about a couple of months on a machine having
Xeon(R) Gold 6238R CPU @ 2.20 GHz CPU and A40 PCIe
GPU. We use the same machine for all our experiments. In ad-
dition to the greedy solutions, we also generate optimal solutions
for a small subset of synthetic graphs for a thorough study of
our proposed architecture presented in Section VII. Following
are the details of the graph datasets used in our experiments.

A. Synthetic Datasets

We generate three new labelled datasets of synthetic graphs.
The total time to find the greedy solutions for these graph
datasets is approximately more than a month. The details of the
parameters to generate these datasets are presented below and
the general statistics including the average ζgr(G) arementioned
in Table I.

-Large ER graphs:Wegenerate a dataset of 1500 randomErdős-
Rényi (ER) undirected graphs using the networkx python
library with the number of vertices ranging between 500 and
1000. The density parameter p of ER graphs is varied between
0.013 to 0.125. The average number of vertices in a graph is
745, and the average number of edges is 14748.

-Small ER graphs: We synthesize 979 ER graphs of sizes be-
tween 30 and 70 where the average graph size is 65. The
graphs in this dataset are relatively more dense with p varying

1https://tinyurl.com/ZFS-datasets

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

https://tinyurl.com/ZFS-datasets

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2115

from 0.2 to 0.7. Only for these small graphs, we also compute
optimal solutions using the wavefront algorithm [8]. In fact,
the graphs in this dataset are selected from a pool so that,
the greedy algorithm performs badly on them compared to
the optimal solution. The average difference in the size of the
optimal solutions ζop(G) and greedy solutions ζgr(G) is 6.1
vertices.

-scale-free graphs: This dataset contains 500 sparse undirected
scale-free graphs synthesized using the same python module.
The average degree of graphs in this dataset is 2.72 with the
number of vertices ranging from 50 to 1000.

B. Real-World Datasets

We also include four standard real-world graph datasets in our
database.

-IMDB-BINARY & IMDB-MULTI are both movie collaboration
datasets where the nodes are the actors/actresses and an edge
is formed if the actors appear in the same movie [40].

-REDDIT-BINARY is a social networks dataset consisting of
graphs that represent the online Reddit discussions [41]. A
node is a user and an edge represents a reply to the comments.

-COLLAB is a scientific collaboration dataset in which graphs
have researchers as nodes and their collaborations as
edges [42].

Among these real-world datasets, REDDIT-BINARY is the
only one that contains graphs with more than 500 nodes. For this
dataset, we only take the graphs that have less than 1200 nodes
since it becomes computationally very expensive to find the
greedy solutions for larger graphs. The total time for computing
greedy solutions forREDDIT-BINARY is approximately 6 days.
The graphs in the other datasets are prepared within a day.
Further statistics about these datasets are provided in Table I.
These datasets are vital for the numerical analysis of the

ZFS problem. In the next section, we provide some intriguing
observations about the greedy algorithm using this database.

V. INSIGHTS INTO GREEDY HEURISTICS FOR ZFS
COMPUTATION

One of the approaches to compute approximate Z(G) is
the greedy approach in which we iteratively construct a Z(G)
by adding a vertex to Z(G) that maximizes the span of the
intermediate solution as mentioned in Algorithm 1. However,
the selection of a vertex will be arbitrarily random if two or
more vertices have the same span. In the initial few iterations,
we observe that the greedy algorithm is likely to have multiple
potential vertices to add to the intermediate solution if the degree
of all the vertices is large enough. During these iterations,
the construction of the intermediate Z(G) solution by greedy
algorithm might be as effective as the random selection. Based
on this observation, we propose the following conjecture.
Conjecture 1: If half of the vertices of Zgr(G) are picked

randomly and the rest of the approximate solution is completed
by the greedy solution, then it is fairly the same as obtaining a
solution completely by the greedy algorithm.

Algorithm 1: Greedy Algorithm for ZFS.

Input: G = (V,E)
Output: Zero forcing set Z
1: Initialize: Z ← {}
2: while D(Z) �= V do
3: v∗ ← argmax

vi∈V \Z
|D(Z ∪ {vi})|

4: Z ← Z ∪ {v∗}
5: end while
6: for all vi ∈ Z do // removing redundancies
7: if D(Z \ {vi}) = V then
8: Z ← Z\ {vi}
9: end if
10: end for

Wedefine this process of the combination of random selection
along with greedy heuristics as a Random-Greedy algorithm.
We empirically validate Conjecture 1 utilizing the database
presented in Section IV. We perform experiments on all four
real-world, largeER, and scale-free graphdatasets.Only a subset
of large ER graphs dataset (300 graphs) is selected due to the
computation overhead for these large graphs. The details of the
experimental setup and the results arementioned in the following
subsections.

A. Experimental Setup

For all these synthetic and real-world datasets, we compute a
greedy solution represented as Zgr(G) for a graph G = (V,E)
and the size of this set is represented as ζgr(G). The greedy al-
gorithm has two dominant parts; first to greedily populateZ(G)
until it is a complete solution, and then a greedy redundancy
check to remove any extra nodes. The redundancy check is a
separate part, and it is applied in all our experiments where the
greedy algorithm is used to complete the solution.
To corroborate our conjecture, we introduce a random se-

lection in the greedy algorithm. We provide an intermediate
solution computed by randomly selecting a vertex set which is
a fraction of ζgr(G) and then pass this partially formed solution
to the greedy algorithm to obtain a Z(G) primarily based on
random selection. We represent the solution obtained by the
random-greedy algorithm as Zrdm(G) and its size as ζrdm(G).
For comparison, we already have the greedy solution and the
ζgr(G) for each graph, we only fix the randomness fraction ratio
τ to obtain the intermediate solution.
The performance of this approach is described by using the

percentage deviation between the size of theZ(G) by the greedy
solution ζgr(G), and the size of the Z(G) returned by this
partial random selection ζrdm(G). We report the average of the
deviation over all the graph instances in the test sets of different
datasets. Formally,

Dev(ζrdm) =
1

|K|

|K|∑

i=0

ζrdm(Gi)− ζgr(Gi)

ζgr(Gi)
× 100,

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2116 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

Fig. 2. Results for synthetic and real-world datasets when a certain percentage
of vertices is selected randomly and the greedy algorithm is used to complete
the Z(G).

where K is the test set of a dataset. We vary the fraction ratio τ
for the random selection and observe the average deviation for
each of the datasets.

B. Results and Discussion

The results obtained from this experiment align with Con-
jecture 1. In this experiment, we begin by randomly selecting a
subset of vertices from a given graph G as part of the Zrdm(G)
solution. The size of this subset is determined by multiplying a
user-defined parameter, τ , by the size of the ZFS obtained from
the greedy algorithm, denoted as ζgr(G). Subsequently, we feed
this partial random solution to the greedy algorithm to acquire a
complete solution. Finally, a redundancy check is performed to
eliminate any redundant vertices from the solution Zrdm(G).

To evaluate the impact of the random selection, we vary
the percentage of the random selection and plot the average
deviationDev(ζrdm) from the sizes of the ZFS obtained by the
greedy algorithm. Fig. 2 shows the deviation of ζrdm from ζgr
for all the datasets under consideration. Notably, we observe that
on average, the size ofZrdm(G) remains reasonably close to the
size of Zgr(G), even when a considerable portion of Z(G) is
selected randomly. For instance, even if we pick 0.95× ζgr(G)
vertices randomly and then complete the rest of the solution
using the greedy algorithm, then the solution Zrdm(G) merely
has 1%more vertices on average than the purely greedy solution
Zgr(G). This finding substantiates Conjecture 1. The increasing
trend for the Large ER graphs dataset in Fig. 2 is because the
graphs in the dataset are relatively sparser, and a slight difference
in the size of Z(G) results in a larger deviation from the greedy
algorithm. Fig. 3 compares the sizes of Z(G) for graphs in
the REDDIT BINARY dataset with τ = 0.7. It can be clearly
observed that the results from the random selection are usually
as small in size as the results of the greedy algorithm.
As explained above, the main reason behind this conjecture

is that for the first several iterations, the greedy algorithm picks
the vertices randomly but the later iterations are important in
choosing the vertices that usually increase the size of the derived
set significantly. Consider the example in Fig. 4. The optimal
Z(G) size for this graph is three. If we pick two vertices
randomly and the third using the greedy approach, we can still
end up with Z(G) of size three. This is primarily because, for

Fig. 3. Sizes of the Z(G) computed by the greedy and the random selection
for the graphs in the REDDIT BINARY dataset with τ = 0.7.

Fig. 4. Two instances of ZFS solution. The initial two vertices (v4 and v7
in ZFS 1, and v3 and v5 in ZFS 2) are selected randomly, whereas, the third
vertex in each solution (v8 in ZFS 1 and v1 in ZFS 2) is selected by the greedy
algorithm maximizing the span.

the first iteration, the derived set has only one vertex (itself),
no matter which vertex is selected. Assume vertex v7 is selected
randomly (greedy can select this vertex aswell). Now,whichever
vertex is picked next can increase the size of the derived set
by at most two. If v4 is picked next by a random process,
then the last vertex picked by the greedy algorithm will be
v8, which will complete the Z(G). Similarly, if v5 and v3
are the first two randomly selected vertices, v1 will be picked
by the greedy algorithm to maximally increase and complete
the Z(G). This example illustrates that not only can the first
iterations of the greedy algorithm be random, but there can also
be multiple optimal solutions ofZ(G) for a given graph. Hence,
a random process can arguably replace the greedy process for
initial iterations. However, the random selection can result in
a sub-optimal solution slightly larger than the original solution.
The redundancy check, in those cases, removes the extra vertices
from the solution and brings it closer to the optimalZ(G) in size.
To further illustrate this point, we plot the size of the derived

set after each iteration of the greedy algorithm for a fewgraphs in
Fig. 5. These graphs are selected so that the difference between
the size of the graph and ζgr(G) is significant. We plot the size
of the derived set after the addition of each vertex by the greedy
algorithm. It can be easily observed that there comes a point
where by the addition of a very small subset of nodes, the span
of the solution sees a drastic jump. For instance, for the graph
from REDDIT-BINNARY dataset, we see that for the addition

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2117

Fig. 5. Plots for size of derived set against each greedy algorithm iteration.

of the last 20 vertices, the size of the derived set grows by about
120 vertices. Similar behavior is observed from graphs of other
datasets. This behavior explains the fact that only a fraction of
iterations of the greedy heuristics, especially the later ones, are
important.
In a nutshell, even if 95% of Z(G) is populated by the

random vertex selection and the rest is completed by the greedy
algorithm, it can be seen that for all kinds of synthetic and real-
world graphs, the average deviation is no more than 3%. Hence,
random selection along with greedy heuristics can reduce the
Z(G) computation time by manifolds without a significant loss
in performance. In the next section,we replace the greedyheuris-
tics with a faster learning-based algorithm to further reduce the
computation time.

VI. GRAPH CONVOLUTIONAL NETWORK (GCN)
ARCHITECTURE FOR ZFS

Previously, we have shown that a sophisticated algorithm is
required only for the last few iterations of theZ(G) computation.
In this section, we design a GraphNeural Network (GNN) based
architecture to replace the greedy algorithm that can significantly
reduce the time complexity from the greedy algorithm and
can still generate a small-sized Z(G). The proposed GNN is
based on Graph Convolutional Network (GCN) [43] that uses
a message-passing network where the information is communi-
cated along the neighboring vertices within the graph. It works
by iteratively aggregating information fromneighboring vertices
to update node representations, allowing the network to learn
meaningful features from graph-structured data. It leverages the
graph’s connectivity patterns to improve its understanding of the
relationships between vertices.

VI. Overview of the approach

Given a network G, our goal is to find a binary labelling for
each vertex in G such that a label 1 represents that the vertex is
included in aZ(G),while label0means the converse.Amachine

learning approach to this problem involves training a model to
generate this discrete labeling: a model f(G) that takes an input
graphG and outputs binary labeling of vertices. Generally, these
models generate a probability map P : V → [0, 1] indicating
how likely each vertex is to be included in a Z(G). However, a
straightforward application of this approach in which a vertex
is included in a solution set based on the probability assignment
does not always render a correct solution to the combinatorial
optimization problem [39]. Having outputs that are not necessar-
ily valid solutions is a general issue in data-driven approaches
for combinatorial optimization problems, mainly because the
training is performed to search the parameter space without any
hard constraints. To deal with this issue, we train a separate
regression-based model that predicts the size ζop(G) of an
optimal solution using basic network properties. We obtain an
intermediate solution Ŝx(G) by selecting x = Trand × ζ̂(G)

vertices randomly from the vertex set V , where ζ̂(G) ∈ Z is
the predicted value of ζop(G) obtained by the regression model,
and Trand is a hyper-parameter for the percentage of the solution
selected by the random process. For simplicity, we drop the
argument of Ŝx(G). We then pass the input graph G and this
intermediate solution Ŝx as part of vertex features to the GCN
toget the output probabilities for each vertex. These probabilities
are sorted and the vertex with the maximum probability, which
is already not a part of the intermediate solution, is added in Ŝx

to form Ŝx+1. We find the derived set D(G, Ŝx+1) and check
if Ŝx+1 is a zero forcing set. If it is not a Z(G), this partial
solution is passed iteratively through GCN and a vertex is added
to it in each iteration based on the GCNoutput probabilities until
it becomes a Z(G) denoted by Ŝ. Fig. 6 illustrates this scheme.
The GCN will iteratively add a vertex in each iteration to the
partial solution until it becomes a ZFS. This is represented by
the diamond-shaped block (named ZFS check) in Fig. 6. In the
end, a redundancy check is applied to remove the extra vertices
from the solution that might have been added as a result of the
initial random selection or by the GCN, and we obtain a final
solution Zgcn(G) of size ζgcn(G). Hence, the solution obtained
from the proposed approach is essentially a ZFS.
In the following subsections, we briefly explain themain parts

of the proposed architecture.

A. Regression Model

The regression model is a simple Random Forest model
from the python module sklearn. The random forest is a meta
estimator that fits a number of classifying decision trees on
several samples of the dataset and uses averaging to improve the
predictive accuracy and control over-fitting [44]. The number
of estimating trees used in our experiments are 500 and the ob-
jective function for training the regression model is the squared
error. The graph features used for training are the number of
vertices in the graph G, number of edges, and the maximum
five and the minimum six vertex degrees. This trained model
predicts ζ̂(G), the size of ζ(G). This model is computationally
inexpensive but provides a good prediction with a very low error
as mentioned in Section VI-D.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2118 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

Fig. 6. Algorithm overview. First, a regression model trained on ζ(G) provides an estimate ζ̂(G) of ζ(G). An intermediate solution Ŝx is formed by randomly
selecting Trand × Ŝ. This intermediate solution is then completed iteratively using a multi-layered graph convolutional network f(G; θ) that provides a set of
probabilities for each vertex in input graph G until a ZFS Ŝ is formed. Lastly, a redundancy check is performed that removes any redundant vertices.

B. Random Selection

As explained above, for the initial iterations, random selection
can be as effective as greedy selection. Thus, we randomly
populate the intermediate solution by a fraction of vertices. This
fraction is computed using the ζ̂(G) and the threshold Trand. For
our experiments, we set Trand = 0.5. The output of this Random
Selection process is a set of vertices Ŝx generated by randomly
selecting x = 0.5× ζ̂(G) number of vertices.

C. GCN

In our combinatorial optimization problem, the goal of the
desired machine learning model is to learn a function f(G;θ) :
G → {0, 1}∗, where G is the set of all unlabeled graphs and
{0, 1}∗ is the space of all 0,1-vectors of arbitrary length depend-
ing on the size of graphs in G. Being a data-driven approach, we
use labeled data to train this supervisedmachine learningmodel.
We assume that our data is in the form of pairs (Gi, Si), where
Gi is an undirected graph with Ni vertices and Si ∈ {0, 1}Ni

is a binary representation of an optimal zero forcing set of Gi.
As per standards, we let our approximation function f̂(Gi,θ),
a machine learning network, take values from [0, 1]∗ instead
of {0, 1}∗ to facilitate a differentiable loss function. The net-
work f̂(Gi;θ) is parameterized by a learnable parameter θ,
and is trained to predict Si for a given Gi. The parameters
(weights) of the network are updated by gradient descent while
optimizing a loss function L(Si, f̂(Gi;θ)) discussed in detail
in Section VI-C1. The network f̂(Gi;θ) is trained to imitate
an iteration of the greedy algorithm. For training, we randomly
remove a vertex from the ground truth (Zgr(G) in our case),
and train the network to learn to predict that missing vertex.
We initialize the first layer by the one-hot encoding of each
vertex degree. We also concatenate to these vertex features a
binary value indicating whether or not a vertex is a part of the
intermediate solution Ŝx. The features of a vertex v for each
subsequent layer are denoted by Hk+1

v , where the superscript
(k + 1) represents the layer index, and the subscript denotes the
vertex. Hk+1

v is computed from layer-wise convolutions with
previous layers by first aggregating the features of neighbors
of v (including v itself). This so-called message-passing step
precedes the convolution with the weight matrices θk as ex-
plained in the (2). We get the updated feature vector by adding

a bias parameter and applying a non-linearity to the resultant.
Instead of using the adjacency matrix A of the input graph to
aggregate neighborhood features, we use symmetric normalized
matrix Γ− 1

2AΓ− 1
2 where Γ represents the diagonal matrix of the

respective vertex degrees. Formally,

Hk+1 = σ(Hkθk
b + Γ− 1

2AΓ
− 1

2Hkθk
w), (2)

where σ is any nonlinear activation function and θk
b ∈ RCk×1

and θk
w ∈ RCk×Ck+1

are the trainable weights used for the
convolutions. The Ck denotes the number of features per vertex
at the kth layer.
The standard loss function used in GCN penalizes the wrong

prediction of labeling of each vertex and aggregates the total
loss over all the vertices. However, this may not be an ideal
loss to minimize for the combinatorial optimization problem
considered in this work. Therefore, we design a custom loss
function suitable for learning effectively.
1) The Loss Function: A differentiable loss function is used

in supervised learning to estimate the “distance” between the
predicted label and ground truth and find the appropriate direc-
tion to update the neural network’s weights using optimization
methods like gradient descent. The loss functionminimized dur-
ing the training phase is conventionally the binary cross-entropy
loss. For a training example Gi, Si, the binary cross-entropy is
defined as

LCE(Si, f̂(Gi;θ)) =

N∑

j=1

(Sij log(f̂j(Gi;θ))

+ (1− Sij) log(1− f̂j(Gi;θ))),

where Sij is the jth element of Si and f̂j(Gi;θ) is the jth
element of f̂(Gi;θ) (representing the jth vertex). This standard
loss penalizes the wrong prediction of labeling of each vertex
and aggregates the total loss over all the vertices. In addition to
this loss, we add another term that further penalizes the vertices
that are already a part of the intermediate solution. This term
forces the model to learn to imitate the iterative steps of the
greedy algorithm. We update our loss function as follows:

L(Si, f(Gi;θ)) = αLCE(Si, f(Gi;θ))

+ (1− α)Lsel(Ŝ
x
i , f(Gi;θ)),

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2119

where Lsel(Ŝ
x
i , f(Gi;θ)) is the summation of the probabilities

corresponding to thex vertices included in Ŝx
i (G). This function

contains a hyper-parameter α that signifies the relative impor-
tance of penalizing the already selected vertices and can be used
to tune the network. We set it to 0.5.

D. Evaluation of the Proposed Approach

To evaluate our proposed GCN based approach, we run ex-
periments on all the available datasets mentioned in Section IV.
We combine all the synthetic, and the real-world graph datasets
and randomly split them into 90-10% train-test sets. Both the
regression and the GCN models are trained on this 90% train
set. The regression is trained to predict ζ̂(G) whereas the GCN
will predict the vertex that will be added to the partial solution
Ŝx by the greedy algotithm in xth iteration.

The hyper-parameters of both the regression andGCNmodels
are same throughout all the following sets of experiments. The
Random Forest regression model has 500 estimators with a
squared error loss function. This regression model is trained
only once and is used for all the rest of the experiments of this
article. Its mean absolute error and mean squared error for the
test set are 3.42 and 6.87 respectively. On the other hand, the
GCN model is trained separately for all the different sets of
experiments. However, its hyper-parameters are kept the same.
The main architecture of GCN is adapted from Li et al. [39].
There are 20 hidden layers, 500 vertex features for the first layer
and 64 for all the consequent layers. For the first layer, we use
one-hot encoded degree of each vertex where a maximum of
499◦ is feasible for training and testing. We also concatenate a
binary indicator to inform the model whether or not a vertex is a
part of Ŝx. Eachmodel is trained for 300 epochs with the custom
loss function defined in Section VI-C1.
We evaluate our architecture on two main metrics: accuracy,

and time complexity.
The accuracy is defined as the percentage deviation between

the size of the Z(G) by the greedy solution ζgr(G), and the size
of theZ(G) returned byGCN ζgcn(G). We report the average of
deviation over all the graph instances in the test sets of different
datasets. Formally, the average deviation of GCN solutions from
greedy solutions is

Dev(ζgcn) =
1

|K|

|K|∑

i=0

ζgcn(Gi)− ζgr(Gi)

ζgr(Gi)
× 100,

where K is the set of graphs in the test set. Fig. 7 compares
ζgr(G), and ζgcn(G) for the graphs test dataset and the respective
time to compute them.We have sorted the results on the basis of
the size of the greedy solutions and the time taken by the greedy
algorithm to compute the solution.
Despite having sparse as well as dense graphs in the test set

with an average ζgr(G) to be 105.78, the average deviation
Dev(ζgcn) on this test set is 0.73%. This essentially means
that the Z(G) found by the proposed architecture ZGCN (G)
on average has 0.76% more vertices than Zgr(G). However,
for a single graph with 690 vertices, the GCN was able to find

Fig. 7. Plot (a) shows the sizes of the ZFS computed by the greedy as well
as the GCN-based solution for the graphs in the test set. Plot (b) shows the
respective time taken to compute the solutions.

a Z(G) containing 11 vertices (4.14% deviation) less than the
greedy solution. On the other hand, there is a graph with 880
vertices for which the greedy solution had 28 vertices (5.9%
deviation) less in its solution compared to theGCN solution. The
total time taken by the greedy algorithm to find a solution for all
the graphs in this test set is about 99 hrs whereas the proposed
solution found all the solutions in approximately 8.2 hrs where
most of the time is spent for redundancy check.
Evidently, the proposed architecture can find the Z(G) 12

times faster than the greedy algorithm while being on average,
only 1% larger in size. In the next section, we evaluate the learn-
ing capabilities of our architecture from sub-optimal solutions.

VII. GENERALIZABILITY OVER SUB-OPTIMAL SOLUTIONS

Being a data driven approach, the proposed GCN based ar-
chitecture requires optimal solutions for training. Unfortunately,
these are usually computationally hard to compute with large
enough graph instances needed for efficient learning. Thus,
forming an optimal dataset is nearly impossible for NP-hard
combinatorial problems. It is only natural to look for approx-
imate solutions which are not very far from the optimal so-
lutions and can be found in polynomial time. As verified by
the numerical evaluations, our proposed architecture is capable
of performing just as good whether it is trained on optimal or
sub-optimal data. To validate this hypothesis, we use the small
ER graphs dataset (explained in Section IV-A) for GCN training
and testing since it is the only dataset for which the optimal
solutions are available.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2120 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

Fig. 8. Comparison of sub-optimal and optimal dataset training.

As far as the experimental setup is concerned to validate our
hypothesis, only the training and testing sets are changed; the
rest is the same as in Section VI-D. We randomly split the
small ER graph dataset into 70− 30% train-test sets so that
we have enough data to evaluate. Since we randomly remove
a vertex from the greedy/optimal solution for training, we have
enough samples for the training. We first train a GCN model
on the optimal Z(G) and use it to find the Z(G) by our pro-
posed approach. We call the output set Zgcn_op(G) with size
ζgcn_op(G). Similarly, we train another GCN model using the
greedy solutions as the ground truth. Since this model is trained
on sub-optimal data, the Z(G) obtained from our architecture
is expected to be a little different from the one where the GCN
is trained on the optimal data. The output from this GCN model
is referred to as Zgcn_gr(G) with size ζgcn_gr(G). We plot the
size of greedy solutions ζgr(G), optimal solutions ζop(G), the
greedy-gcn solutions ζgcn_gr(G), and the optimal-gcn solutions
ζgcn_op(G) in Fig. 8.

It can be observed from Fig. 8 that solutions from both the
GCNs are fairly close to each other. In fact, the average deviation
for both the models has a difference of 0.67%, and both perform
better than the greedy algorithm. The model trained on the
greedy solutions has the average deviation Zgcn_gr(G) to be
−5.13% from the greedy solutions whereas the model trained
on the optimal solutions has the average deviation Zgcn_op(G)
to be −5.8%. This shows that both the GCN architectures will
give a solution that will have, on average, 2 vertices less than the
greedy solution. However, the difference between the two GCN
solutions is negligible.
This experimental setup validates that our proposed approach

can learn equally well from the greedy as well as the optimal
solutions. Not only this, we are also able to show that GNNs can
perform better than the greedy algorithms even when trained on
the solutions from greedy heuristics. Hence, using our proposed
approach, optimal data is not necessary for the ZFS problem and
the approximate solutions can be used for training. This result
paves a way for other combinatorial problems to be solved using
GNNs without preparing an optimal dataset for training. In the
next section, we validate the scalability of our approach and
compare our results for huge graphs with the greedy algorithm.

Fig. 9. Plot (a) shows the sizes of the Z(G) computed by the greedy as well
as the GCN-based solutions for the graphs in the test set of larger graphs. Plot
(b) shows the respective time taken to compute the solutions.

VIII. SCALABILITY OVER LARGE GRAPHS

As scalability can be a huge challenge for data-driven ap-
proaches to the hard combinatorial problems, we also perform
extensive time-complexity analysis on large graphs. It is im-
portant to show that a method that is much faster than the
state-of-the-art methods, does not compromise on results as the
size of the input increases. Hence, we train our GCN model on
the small graphs and then test them on larger graphs (almost 10
times the size of training graphs) and observe the performance.
In this experiment setup, we combine all the available datasets

and sort the graphs by their size. We split this sorted mixture
such that the smallest 70% of the graphs are in the train set
and the largest 15% are in the test set. The graph sizes in the
training set range from 6− 110. It takes the greedy algorithm
less than 10 secs to find the solution for a graph in this size
range. The graphs in the test set range from 500− 1194 in size.
Using the same rest of the experimental setup as in SectionVI-D,
we evaluate the proposed approach on the accuracy and time
complexity metrics. The sizes of ZFS ζgr(G), and ζgcn(G), and
the time taken for ZFS computation of each large graph in the
test set are plotted in Fig. 9.
Interestingly, our proposed approach turns out to give a so-

lution that is nearly as same in size as the greedy solution on
these large graphs while taking only a fraction of time. The
average deviation for these large test graphs is 0.745% with a
maximum of 3.4% (19 vertices less than the greedy solution)
and a minimum of −9.2% (29 vertices more than the greedy

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2121

Fig. 10. Comparison between random-greedy and the proposed GCN-based
solution. Plot (a) shows the deviation from the greedy solution with varying
randomness threshold τ , and plot (b) presents the respective time taken to
compute the solution on the whole dataset.

solution) deviation. The average size of the greedy solution is
449.3 vertices in the test set. This indicates that on average, there
are about 3.5 more vertices in the Z(G) obtained by the GCN
than in the greedy solution. However, the GCN takes a total time
of about 2.5 days (primarily the time for the redundancy check)
while the greedy algorithm takes about 48 days to compute the
Z(G) for the 1832 graphs in the test set. This essentially means
that the GCN architecture is less than 1% away from the solution
while being about 19 times faster on large graphs.
We expect the time difference between GCN and greedy

algorithm to grow exponentially for larger graphs. However, val-
idating this hypothesis for significantly larger graphs becomes
impractical, primarily due to the fact that the greedy algorithm’s
computational demands become prohibitively high on graphs
with more than 2500 vertices. As shown above, GCN algorithm
is computationally much faster than the greedy algorithm on
large graphs while preserving the solution quality. Even though
random selection and greedy heuristics can reduce time, GCN is
still significantly faster than the greedy algorithm, especially for
larger graphs. To substantiate this,we conduct an empirical study
focusing on computational efficiency and solution quality. Our
experimentation involved varying the randomness threshold τ of
the initially selected vertices from 35% to 75%. To get a range of
sizes of the graphs, we select the REDDIT-BINARY graphs and
a part of the Large ER graphs dataset to obtain graphs with the
number of vertices ranging between 6− 1194. We compare the
quality of the solution using Dev(ζrdm) and Dev(ζgcn). Fig. 10
compares the random-greedy with the proposed GCN-based
approach.
We observe that the random-greedy algorithm consumes sig-

nificantly more time than our GCN-based approach, even when
allowing for up to 75% random selection. This underscores the
computational advantages of our method, especially for larger
graphs. Fig. 10(a) demonstrates that increasing the randomness
threshold τ slightly deteriorates the solution quality for both
approaches. This trade-off is expected, but our approach con-
sistently maintains a competitive solution quality. Additionally,
the time taken by the random selection and the greedy heuristics
decreases with the increase of threshold τ as it takes fewer
iterations of the greedy algorithm to complete the solution.
Conversely, our GCN-based approach incurs a slight increase in

time as τ rises due to the overhead cost of redundancy checks,
which are performed in a greedy fashion. In sum, our empirical
findings collectively support the argument that even in cases
where random selection and greedy heuristics are employed,
the random-greedy approach lags significantly behind the com-
putational efficiency of our GCN-based method, particularly as
graph size increases.

IX. CONCLUSION

Minimum ZFS is a hard combinatorial optimization problem
with several applications across various domains. We presented
a novel graph convolutional network to compute a small-sized
ZFS. The proposed solution utilizes data-driven and algorithmic
insights to compute ZFS in large graphs effectively. Through
extensive experiments, we showed that the proposed approach
is computationally efficient, scalable to much larger graphs,
generalizable to different graph families, and able to learn from
sub-optimal datasets. Thus, our approach is not inhibited by
the requirement to have optimal datasets consisting of large
enough instances to train the graph learning models for com-
binatorial optimization problems. We also contributed towards
the future data-driven algorithms for the minimumZFS problem
through several synthetic and real-world benchmark datasets
using greedy solutions as the ground truth. In addition, a small
graphs dataset containing hard instances is also annotated with
optimal solutions. In the future, we aim to extend our approach
to solving other combinatorial optimization problems, including
minimum dominating sets in graphs.

REFERENCES

[1] N.Barnier and P.Brisset, “Graph coloring for air traffic flowmanagement,”
Ann. Operations Res., vol. 130, no. 1, pp. 163–178, 2004.

[2] Y. Peng, B. Choi, B. He, S. Zhou, R. Xu, and X. Yu, “VColor: A practical
vertex-cut based approach for coloring large graphs,” in Proc. IEEE 32nd
Int. Conf. Data Eng., 2016, pp. 97–108.

[3] B.BalasundaramandS.Butenko, “Graph domination, coloring and cliques
in telecommunications,” inHandbook of Optimization in Telecommunica-
tions. Berlin, Germany: Springer, 2006, pp. 865–890.

[4] F. Moradi, T. Olovsson, and P. Tsigas, “A local seed selection algorithm
for overlapping community detection,” in Proc. IEEE/ACM Int. Conf. Adv.
Social Netw. Anal. Mining, 2014, pp. 1–8.

[5] N. Armenatzoglou, H. Pham, V. Ntranos, D. Papadias, and C. Shahabi,
“Real-time multi-criteria social graph partitioning: A game theoretic ap-
proach,” inProc. ACMSIGMODInt. Conf.Manage.Data, 2015, pp. 1617–
1628.

[6] P. R. Östergård, “A fast algorithm for the maximum clique problem,”
Discrete Appl. Math., vol. 120, no. 1–3, pp. 197–207, 2002.

[7] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, and M. Young,
“Zero forcing, linear and quantum controllability for systems evolving on
networks,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2349–2354,
Sep. 2013.

[8] B. Brimkov, C. C. Fast, and I. V. Hicks, “Computational approaches for
zero forcing and related problems,” Eur. J. Oper. Res., vol. 273, no. 3,
pp. 889–903, 2019.

[9] P. A. Dreyer Jr. and F. S. Roberts, “Irreversible k-threshold processes:
Graph-theoretical threshold models of the spread of disease and of opin-
ion,” Discrete Appl. Math., vol. 157, no. 7, pp. 1615–1627, 2009.

[10] N. Monshizadeh, S. Zhang, and M. K. Camlibel, “Zero forcing sets and
controllability of dynamical systems defined on graphs,” IEEE Trans.
Autom. Control, vol. 59, no. 9, pp. 2562–2567, Sep. 2014.

[11] S. S. Mousavi, M. Haeri, and M. Mesbahi, “On the structural and strong
structural controllability of undirected networks,” IEEE Trans. Autom.
Control, vol. 63, no. 7, pp. 2234–2241, Jul. 2018.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

2122 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

[12] A. Aazami, “Hardness results and approximation algorithms for some
problems on graphs,” Ph.D. dissertation,University ofWaterloo,Waterloo,
ON, Canada, 2008.

[13] W. Abbas, M. Shabbir, Y. Yazıcıoğlu, and X. Koutsoukos,
“Leader selection for strong structural controllability in networks
using zero forcing sets,” in Proc. Amer. Control Conf., 2022,
pp. 1444–1449.

[14] F. Gama, E. Tolstaya, and A. Ribeiro, “Graph neural networks for de-
centralized controllers,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process,, 2021, pp. 5260–5264.

[15] M. Boffa, Z. B. Houidi, J. Krolikowski, and D. Rossi, “Neural combinato-
rial optimization beyond the TSP: Existing architectures under-represent
graph structure,” in Proc. AAAI Workshop Graphs More Complex Struc-
tures Learn. Reasoning, 2022.

[16] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and
P. Veličković, “Combinatorial optimization and reasoning with graph
neural networks,” J. Mach. Learn. Res., vol. 24, no. 130, pp. 1–61,
2023.

[17] M. Böther, O. Kißig, M. Taraz, S. Cohen, K. Seidel, and
T. Friedrich, “What’s wrong with deep learning in tree search for
combinatorial optimization,” in Proc. Int. Conf. Learn. Representations,
2022, pp. 1–25.

[18] K. Xu, M. Zhang, J. Li, S. S. Du, K. Kawarabayashi, and S. Jegelka, “How
neural networks extrapolate: From feedforward to graph neural networks,”
in Proc. Int. Conf. Learn. Representations, 2020, pp. 1–52.

[19] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convo-
lutional network technique for the travelling salesman problem,” 2019,
arXiv:1906.01227.

[20] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combina-
torial optimizationwith reinforcement learning,” 2016, arXiv:1611.09940.

[21] Q. Cappart, D. Chételat, E. B.Khalil, A. Lodi, C.Morris, and P.Velickovic,
“Combinatorial optimization and reasoning with graph neural networks,”
J. Mach. Learn. Res., vol. 24, no. 130, pp. 1–61, 2023.

[22] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–25.

[23] Q.Wang andC. Tang, “Deep reinforcement learning for transportation net-
work combinatorial optimization: A survey,”Knowl.-Based Syst., vol. 233,
2021, Art. no. 107526.

[24] AIM Minimum Rank Special Graphs Work Group, “Zero forcing sets
and the minimum rank of graphs,” Linear Algebra Appl., vol. 428, no. 7,
pp. 1628–1648, 2008.

[25] M. Trefois and J.-C. Delvenne, “Zero forcing number, constrained match-
ings and strong structural controllability,” Linear Algebra Appl., vol. 484,
pp. 199–218, 2015.

[26] A. Chapman and M. Mesbahi, “On strong structural controllability of
networked systems: A constrained matching approach,” in Proc. Amer.
Control Conf., 2013, pp. 6126–6131.

[27] S. Fallat, K. Meagher, and B. Yang, “On the complexity of the posi-
tive semidefinite zero forcing number,” Linear Algebra Appl., vol. 491,
pp. 101–122, 2016.

[28] I. V. Hicks et al., “Computational and theoretical challenges for com-
puting the minimum rank of a graph,” INFORMS J. Comput., vol. 34,
pp. 2868–2872, 2022.

[29] D. Ferrero et al., “Rigid linkages and partial zero forcing,” Elec. J.
Combinatorics, pp. P2–43, 2019.

[30] F. H. Kenter and J. C.-H. Lin, “On the error of a priori sampling:
Zero forcing sets and propagation time,” Linear Algebra Appl., vol. 576,
pp. 124–141, 2019.

[31] J. C.-H. Lin, P. Oblak, and H. Šmigoc, “The strong spectral property for
graphs,” Linear Algebra Appl., vol. 598, pp. 68–91, 2020.

[32] D. Burgarth and V. Giovannetti, “Full control by locally induced relax-
ation,” Phys. Rev. Lett., vol. 99, no. 10, 2007, Art. no. 100501.

[33] S. Butler et al., “Minimum rank library. Sage programs for calculating
bounds on the minimum rank of a graph, and for computing zero forcing
parameters,” 2014, Accessed: Mar. 24, 2022. [Online]. Available: https:
//github.com/jasongrout/minimum_rank

[34] B. Brimkov, D. Mikesell, and I. V. Hicks, “Improved computational
approaches and heuristics for zero forcing,” INFORMS J. Comput., vol. 33,
pp. 1259–1684, 2021.

[35] A. Agra, J. O. Cerdeira, and C. Requejo, “A computational comparison of
compact MILP formulations for the zero forcing number,” Discrete Appl.
Math., vol. 269, pp. 169–183, 2019.

[36] A. Weber, G. Reissig, and F. Svaricek, “A linear time algorithm to verify
strong structural controllability,” in Proc. IEEE 53rd Conf. Decis. Control,
2014, pp. 5574–5580.

[37] Y. Jiang, Y. Rong, H. Cheng, X. Huang, K. Zhao, and J. Huang, “Query
driven-graph neural networks for community search: From non-attributed,
attributed, to interactive attributed,” Proc. VLDB Endowment, vol. 15,
no. 6, pp. 1243–1255, 2022.

[38] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. 28th
Int. Conf. Neural Inf. Process. Syst., vol. 2, 2015, pp. 2692–2700.

[39] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. 32nd Int. Conf.
Neural Inf. Process. Syst., 2018, pp. 537–546.

[40] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp. 1365–1374.

[41] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” inProc. 31st Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 1025–1035.

[42] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M.Neumann, “TUDataset:A collection of benchmark datasets for learning
with graphs,” 2020, arXiv:2007.08663.

[43] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2016.

[44] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

Obaid Ullah Ahmad received the B.S. degree in
electrical engineering from the University of Engi-
neering and Technology, Lahore, Pakistan, in 2019,
and the M.S. degree in computer science from In-
formation Technology University, Lahore, in 2021.
He is currently working toward the Ph.D. degree in
electrical engineering from the University of Texas
at Dallas, Richardson, TX, USA. He is currently a
Research Assistant with the University of Texas at
Dallas’ Control, Intelligence, Resilience in Networks
and Systems Lab, Richardson. His current research

interests include control-based approaches, for graphmachine learning, network
optimization, and multi-robot systems.

Mudassir Shabbir received the Ph.D. degree from
the Division of Computer Science, Rutgers Univer-
sity, New Brunswick, NJ, USA, in 2014. He is cur-
rently an Associate Professor with the Department
of Computer Science, Information Technology Uni-
versity, Lahore, Pakistan, and a Research Assistant
Professor with Vanderbilt University, Nashville, TN,
USA. He was with the Lahore University of Man-
agement Sciences, Pakistan; Los Alamos National
Labs, NM, Bloomberg L.P. New York, NY, USA;
and with Rutgers University. He was Rutgers Honors

Fellow for 2011 to 2012. His main research interests include algorithmic and
discrete geometry, and has developed new methods for the characterization and
computation of succinct representations of large data sets with applications in
non-parametric statistical analysis. He also works on graph machine learning
and resilient network systems.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

https://github.com/jasongrout/minimum_rank
https://github.com/jasongrout/minimum_rank

AHMAD et al.: GRAPH MACHINE LEARNING FRAMEWORK TO COMPUTE ZERO FORCING SETS IN GRAPHS 2123

Waseem Abbas (Member, IEEE) received the M.Sc.
and Ph.D. degrees in electrical and computer engi-
neering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2010 and 2013, respectively.
He is currently an Assistant Professor with the Sys-
tem Engineering Department, University of Texas at
Dallas, Richardson, TX, USA. He was a Research
Assistant Professor with the Vanderbilt University,
Nashville, TN,USA.Hewas aFulbright Scholar from
2009 to 2013. His research interests include control
of networked systems, resilience and robustness in

networks, distributed optimization, and graph-theoretic methods in complex
networks.

Xenofon Koutsoukos (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from the Uni-
versity of Notre Dame, Notre Dame, IN, USA, in
2000. He is currently the Thomas R. Walters Pro-
fessor and Chair of the Department of Computer Sci-
ence, School of Engineering, Vanderbilt University,
Nashville, TN, USA. He is also a Senior Research
Scientist with the Institute for Software Integrated
Systems (ISIS) and holds a secondary appointment
with the Department of Electrical and Computer En-
gineering. He was a Member of Research Staff with

the Xerox Palo Alto Research Center (PARC) during 2000–2002. He has
coauthored more than 350 journal and conference papers, and he is co-inventor
of four U.S. patents. His research interests include cyber-physical systems with
emphasis on learning-enabled systems, security and resilience, diagnosis and
fault tolerance, distributed algorithms, formal methods, and adaptive resource
management.Dr.Koutsoukoswas the recipient of theNSFCareerAward in 2004,
Excellence in Teaching Award in 2009 from the Vanderbilt University School
of Engineering, and the 2011 NASA Aeronautics Research Mission Directorate
(ARMD) Associate Administrator (AA) Award in Technology and Innovation.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 09,2024 at 17:29:44 UTC from IEEE Xplore. Restrictions apply.

