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A B S T R A C T

We provide new dynamic event-triggered controls for continuous-time linear systems that
contain additive uncertainties. We prove input-to-state stability properties that imply uniform
global exponential stability when the additive uncertainties are zero. Significant novel features
include (a) new dynamic extensions and new trigger rules that provide a new positive systems
analog of significant prior dynamic event-triggered work of A. Girard and (b) our application to
a BlueROV2 underwater vehicle model, where we provide significantly larger lower bounds on
the inter-execution times, and usefully fewer trigger times, compared with standard dynamic
event-triggered approaches that used the usual Euclidean norm, and as compared with static
event-triggered controls that instead used positive systems approaches.

1. Introduction

Event-triggered control is an alternative to more well-known standard control methods, where instead of changing control values
t times that are independent of the state, the times when the event-triggered control values change depend on the state or output.
his calls for finding (a) the control, whose values only change at event triggering times and (b) a trigger rule, to choose event
riggering times; see [1,2]. This can help reduce the use of scarce communication resources, by only changing control values when
he system requires attention. This led to a large theoretic literature on event-triggered control and widespread use of event-triggered
ontrols, especially in communication networks [3–19].
This paper continues our development (begun in [20–24]) of event-triggered control methods that can help overcome important

hallenges in feedback control, such as reducing the number of instants when controls change values on given time intervals as
ompared with standard controls, ensuring robustness to model uncertainty, and eliminating the need to continuously measure state
r output values. While our preceding works were confined to static event triggers, here we consider higher dimensional dynamic
vent triggers, which interconnect the given system with an additional dynamical system, leading to very different triggering criteria.
ur work is strongly motivated by notable theoretical results (such as [25,26]) and applications (such as [27]) that demonstrated
otential advantages of dynamic event triggers over static ones, e.g., in terms of increasing the lower bound on the inter-execution
imes (which are the lengths of time between consecutive event triggering times) or improving the performance of communication
etworks.
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In [20–24], key ingredients in our analysis of the static triggering case were interval observers (which are also called framers), a
ositive systems approach, and replacing the usual Euclidean norm (or the corresponding induced matrix operator norm) by matrices
f absolute values. These works illustrated the main advantages of using matrices or vectors of absolute values instead of the usual
uclidean norm, which were (a) a significant reduction in the number of trigger times on given time intervals that is made possible
y using the entrywise absolute values and (b) the fact that this replacement did not degrade other performance metrics in terms of
vershoots, transient behavior, and undershoots, when applied to the BlueROV2 vehicle, which is commonly used and plays a vital
ole in ecological robotics to study corals. Although we do not require our given systems to satisfy positivity conditions, our interval
bservers produce positive dynamics for (𝑥,−𝑥) and (𝑥− 𝑥, 𝑥− 𝑥), where 𝑥 and 𝑥 are the upper and lower bounding functions in the
interval observer for the closed loop system state 𝑥, respectively, so they satisfy the framing condition 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡) for all 𝑡 ≥ 0.
Interval observers appeared, e.g., in [28], leading to solutions of stabilization problems. However, we believe that the work in this
paper is the first to apply this approach in the context of dynamic event-triggered control, using our new dynamical extensions that
define the feedback control values and new triggering rules that we present below which have not appeared before. Hence, this
paper provides an approach that is not overlapping with any previous dynamic event-triggered works, e.g., [29,30].

In Section 2, we present our dynamic event-triggered results using sampled state values, and Section 3 provides an analog
with outputs. Another significantly novel ingredient is a variant of the continuous–discrete observer from [31]. While [31] did not
cover event-triggering, our method for finding a positive lower bound on the inter-execution times (and so ruling out the Zeno
phenomenon, which would have allowed an infeasible infinite number of trigger times on some interval of finite length), combined
with our mild upper bound on these lengths, allow us to satisfy the uniform observability requirement from [31]. In Section 4, we
discuss criteria for comparing the performances of event-triggered controls. In Section 5, we apply our new approaches to a model
of the BlueROV2 vehicle. Significantly novel features are then (a) our new dynamic extensions and new trigger rules that provide
a positive systems analog of significant dynamic event-triggered control work of A. Girard and (b) our application to a BlueROV2
underwater vehicle model, where our method provides significantly larger lower bounds on the inter-execution times, and fewer
trigger times on given intervals, compared with standard dynamic event-triggered approaches that used the usual Euclidean norm,
and compared with prior static event-triggered controls such as [20] that instead used positive systems approaches (using two
criteria from Section 4), without significant degradation of settling times, overshoots, or undershoots. Unlike [26], we only consider
linear systems, and do not include delays, but we establish input-to-state stability (ISS) under additive disturbances; see [32,33] for
the standard definitions for ISS.

We use this other notation. The dimensions of our Euclidean spaces are arbitrary, unless we indicate otherwise. For any function
𝑓 defined on an interval , 𝑓 (𝑡−) is its left limit at points 𝑡 in the closure of . Set Z0 = {0, 1, 2,…} and N = Z0 ⧵ {0}. For a matrix
𝐺 = [𝑔𝑖𝑗 ] ∈ R𝑟×𝑠, set |𝐺| = [|𝑔𝑖𝑗 |], so the entries of |𝐺| are absolute values of the corresponding entries 𝑔𝑖𝑗 of 𝐺. By 𝐺+, we denote
the matrix whose entry in row 𝑖 and column 𝑗 is max{0, 𝑔𝑖𝑗} for all 𝑖 and 𝑗, and 𝐺− = 𝐺+−𝐺. Then |𝐺| = 𝐺++𝐺−. A square matrix is
called Schur stable provided its spectral radius is in [0, 1), ‖ ⋅‖ denotes the usual Euclidean norm and corresponding operator matrix
norm, ‖𝑓‖ is the supremum of functions 𝑓 in this norm over a subset  of their domains, 𝐼 is the identity matrix, and 0 is the
zero matrix. When 𝑓 = [𝑓𝑖𝑗 ] is matrix valued, we set sup𝓁∈ |𝑓 (𝓁)| = [ℎ𝑖𝑗 ] (which we also denote by |𝑓 |) where ℎ𝑖𝑗 = sup𝓁∈ |𝑓𝑖𝑗 (𝓁)|
for all 𝑖 and 𝑗 when these suprema are finite. For matrices 𝐷 = [𝑑𝑖𝑗 ] and 𝐸 = [𝑒𝑖𝑗 ] of the same size, we write 𝐷 < 𝐸 (resp., 𝐷 ≤ 𝐸)
provided 𝑑𝑖𝑗 < 𝑒𝑖𝑗 (resp., 𝑑𝑖𝑗 ≤ 𝑒𝑖𝑗) for all 𝑖 and 𝑗. We adopt similar notation for vectors. A matrix 𝑆 is called positive provided
0 < 𝑆. For 𝑀 ∈ R𝑛×𝑛, 𝐷𝑀 is the diagonal matrix whose main diagonal entries agree with those of 𝑀 , 𝑅𝑀 = 𝐷𝑀 + (𝑀 −𝐷𝑀 )+ and
𝑁𝑀 = (𝑀 − 𝐷𝑀 )+ − (𝑀 − 𝐷𝑀 ), so 𝑀 = 𝑅𝑀 − 𝑁𝑀 . Also, 𝑀1 ⪯ 𝑀2 for square matrices 𝑀1 and 𝑀2 of the same size means that
𝑀2−𝑀1 is nonnegative definite. Hence, we use ⪯ instead of ≤, to denote the nonnegative definiteness condition, to avoid confusion
with the entrywise inequalities ≤ of entries of matrices. We also let 𝟏𝑛 ∈ R𝑛 denote the vector whose entries are all 1’s. Finally, we
say that a real square matrix is Metzler (resp., Hurwitz) provided all of its off-diagonal elements are nonnegative (resp., all of its
eigenvalues have negative real parts).

2. State feedback result

2.1. Studied system

We consider the system

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝛿(𝑡) (1)

where 𝑥 is valued in R𝑛, the control 𝑢 is valued in R𝑝 and will be specified below, 𝐴 and 𝐵 are known real matrices, and
𝛿 ∶ [0,+∞) → R𝑛 is piecewise continuous [32] but unknown (but see Section 3 for analogs for systems with outputs). We introduce
two assumptions, the first of which is a positive systems analog of controllability (as noted in [20]) and uses the 𝑅𝑀 and𝑁𝑀 notation
as reviewed in Section 1 above in the special case where the 𝑀 from Section 1 is 𝑀 = 𝐻 , and the second of which is generally
satisfied because bounds on uncertainties are usually known. See also Remark 3.1 below, for motivation for our assumptions.

Assumption 1. There is a matrix 𝐾 ∈ R𝑝×𝑛 such that with the choice 𝐻 = 𝐴 + 𝐵𝐾, the matrix 𝑅𝐻 +𝑁𝐻 is Hurwitz.

Assumption 2. There is a known continuous function 𝛥 ∶ [0,+∞) → [0,+∞)𝑛 such that

|𝛿(𝑡)| ≤ 𝛥(𝑡) (2)

for all 𝑡 ≥ 0.
2
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Assumption 1 ensures that there are a vector 𝑉 > 0 in R𝑛 and a constant 𝑐 > 0 such that

𝑉 ⊤(𝑅𝐻 +𝑁𝐻 ) ≤ −𝑐𝑉 ⊤, (3)

ince 𝑅𝐻 +𝑁𝐻 is Metzler and Hurwitz; see [34, Theorem 2.11, p. 38]. We fix 𝑉 , 𝐾, and 𝑐 satisfying the preceding requirements in
hat follows. Let 𝛤 > 0 be a matrix in R𝑛×𝑛 such that there is a constant 𝑟 > 0 such that

− 𝑐𝑉 ⊤ + 𝑉 ⊤
|𝐵𝐾|𝛤 ≤ −𝑟𝑉 ⊤, (4)

which will hold when all entries of 𝛤 are small enough positive values. We will also use the function

𝛺(𝑠) = 𝑒𝐴𝑠 + ∫

𝑠

0
𝑒𝑚𝐴d𝑚𝐵𝐾. (5)

Since 𝛤 > 0 and 𝛺(0) = 𝐼 , there is a constant 𝜈 > 0 such that 𝛺(𝑡) is nonsingular for each 𝑡 ∈ [0, 𝜈] and such that

|𝛺−1(𝑠) − 𝐼| ≤ 𝛤 for all 𝑠 ∈ [0, 𝜈]. (6)

e fix 𝑐, 𝑟, 𝐴, 𝐵, 𝑉 , 𝛥, 𝛤 , 𝐾, and 𝜈 satisfying the preceding requirements in the sequel.

.2. Triggered control

We turn next to our dynamic event-triggered control, in the special case where sampled state measurements from the system are
vailable. It is composed of (a) the closed loop system, which uses the control gain 𝐾 that we introduced in Assumption 1 above, (b)
a dynamic extension that is computed using the sampled state measurements, and (c) a trigger rule that uses our bounding function
𝛥 from Assumption 2 and so does not require knowing values 𝛿(𝑡) of the uncertainty 𝛿 in (1). This leads to an asymptotic stability
proof, which uses the interval observer ideas that we introduced above in the introduction.

To provide the required formulas for our event-triggered control in this case, we first fix a diagonal matrix 𝐷 ∈ R𝑛×𝑛 whose main
diagonal entries are all positive, which is a tuning matrix, any positive vector 𝑧0 ∈ R𝑛, and any constant 𝑇 > 𝜈. Consider

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝑥(𝜎(𝑡)) + 𝛿(𝑡) for all 𝑡 ≥ 0

𝑤̇(𝑡) = 𝐴𝑤(𝑡) + 𝐵𝐾𝑥(𝑡𝑖) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and 𝑤(𝑡𝑖) = 𝑥(𝑡𝑖) for all 𝑖 ∈ Z0

𝑧̇(𝑡) = (𝑅𝐻 +𝑁𝐻 )𝑧(𝑡) − |𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) + 𝜆(𝛥𝑡) for all 𝑡 ≥ 0, and 𝑧(0) = 𝑧0
𝑒(𝑡) = 𝑥(𝑡𝑖) −𝑤(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and 𝑖 ∈ Z0

𝑡𝑖+1 = sup
{

𝑡 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇 ] ∶ 𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) +𝐷𝜆(𝛥𝑡) > 0
}

(7)

here 𝑡0 = 0, 𝜎(𝑡) = max{𝑡𝑖 ∶ 𝑖 ≥ 0 and 𝑡𝑖 ≤ 𝑡} is the largest trigger time 𝑡𝑖 in [0, 𝑡] for each 𝑡 ≥ 0, and

𝜆(𝛥𝑡) = |𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)||
|

+ 𝐼 + 2𝛤
]

∫

𝑡

(𝑡−𝜈)+

|

|

|

𝑒𝐴(𝑡−𝓁)||
|

𝛥(𝓁)d𝓁. (8)

he main role of 𝜆 (and its analogs in our other trigger rules below) is to collect the effects of the uncertainty bounds 𝛥 in the
trigger rules and in the dynamic extensions without requiring knowledge of 𝛿. This triggered control mechanism (7) is reminiscent
of those of [26], except we adopt a positive systems approach, and we also introduce the 𝑤 dynamics to eliminate the need for the
triggering rule to continuously measure 𝑥(𝑡). The implementation of (7) is as follows. The method in (7) calls for using the control
𝑢(𝑡) = 𝐾𝑥(𝜎(𝑡)), whose values are found in the following recursive way. We solve the initial value problems given by the 𝑥, 𝑤, and
𝑧 systems in (7) with the initial time 0 and initial states 𝑥(0), 𝑧(0) = 𝑧0, and 𝑤(0) = 𝑥(0) respectively, while monitoring the strict
inequality in the sup in (7) with 𝑖 = 0. If the strict inequality in the sup is satisfied for all 𝑡 ∈ [0, 𝑇 ], then we set 𝑡1 = 𝑇 . Otherwise,
this supremum is in [0, 𝑇 ), and is chosen as our first positive trigger time 𝑡1. Then we repeat this process with 𝑡0 = 0 replaced by
𝑡1, by solving the initial value problems for the 𝑥, 𝑤, and 𝑧 systems in (7) with 𝑖 = 1 and the initial time 𝑡1 and the initial state
𝑧(𝑡1) obtained by having solved the 𝑧 system in (7) on [0, 𝑡1], and with 𝑥(𝑡1) = 𝑤(𝑡1) = 𝑥(𝑡−1 ). This repeats for all 𝑖 ∈ Z0, and gives
a continuous solution 𝑥(𝑡) for all 𝑡 ≥ 0 and the trigger time sequence {𝑡𝑖}, because as shown in the second part of the proof of our
first theorem, the Zeno phenomenon does not occur. While not explicitly in (7) or in the statement of our first theorem, the positive
systems approach is used in the proof, to give the framing property 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡) using the positive dynamics for (𝑥,−𝑥) and for
(𝑥 − 𝑥, 𝑥 − 𝑥), where 𝑥 and 𝑥 comprise the upper and lower bounds in the interval observer, respectively. We prove:

Theorem 1. Let Assumptions 1–2 hold. Then we can find positive constants 𝑐1 and 𝑐2 such that for all solutions 𝑥 ∶ [0,+∞) → R𝑛 of (1)
with the preceding event-triggered control given by (7) and 𝑢(𝑡) = 𝐾𝑥(𝜎(𝑡)), we have ‖𝑥(𝑡)‖ ≤ 𝑐1𝑒−𝑟𝑡‖(𝑥(0), 𝑧0)‖ + 𝑐2‖𝛥‖[0,𝑡] for all 𝑡 ≥ 0.
Also, 𝑡𝑖+1 − 𝑡𝑖 ∈ [𝜈, 𝑇 ] for all 𝑖 ∈ Z0.

In the special case where there is no uncertainty 𝛿 in the system, the preceding theorem ensures global exponential convergence
3

of 𝑥(𝑡) to the origin, because in that case we can choose 𝛥 to be the zero function.
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2.3. Proof of Theorem 1

The proof has four parts. First, we prove that the solution of the 𝑧 system in (7) with 𝑧(0) = 𝑧0 satisfies 𝑧(𝑡) > 0 for all 𝑡 ≥ 0.
hen, we prove that the Zeno phenomenon does not occur, by showing that 𝑡𝑖+1 − 𝑡𝑖 ≥ 𝜈 for all 𝑖 ∈ Z0. In the third part, we build
ur interval observer, to prove the bound on ‖𝑥(𝑡)‖ from the theorem in the fourth part.
First Part: Positivity of 𝑧. We prove that 𝑧(𝑡) > 0 for all 𝑡 ≥ 0. First, we prove that 𝑧(𝑡) > 0 for all 𝑡 ∈ [0, 𝑡1). We proceed by

ontradiction. Suppose that there were a 𝑡𝑐 ∈ [0, 𝑡1) such that 𝑧(𝑡) > 0 for all 𝑡 ∈ [0, 𝑡𝑐) and such that there is a 𝑗 ∈ {1,… , 𝑛} such that
𝑗 (𝑡𝑐) = 0. Since the last inequality in (7) with 𝑖 = 0 gives 𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)|− 𝛤 |𝑤(𝑡)|) +𝐷𝜆(𝛥𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑡1), the 𝑧 dynamics
n (7) gives

𝑧̇(𝑡) ≥ (𝑅𝐻 +𝑁𝐻 )𝑧(𝑡) −𝐷−1𝑧(𝑡) ≥ (𝐷𝐻 −𝐷−1)𝑧(𝑡) (9)

or all 𝑡 ∈ [0, 𝑡𝑐 ], since the off-diagonal entries of 𝑅𝐻 +𝑁𝐻 are nonnegative and 𝑧(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑡𝑐 ]. Applying an integrating
actor to 𝑧̇(𝑡) ≥ (𝐷𝐻 − 𝐷−1)𝑧(𝑡) then gives 𝑧(𝑡) ≥ 𝑒(𝐷𝐻−𝐷−1)𝑡𝑧(0) for all 𝑡 ∈ [0, 𝑡𝑐]. Since 𝑧(0) > 0, and since 𝐷𝐻 + 𝐷−1 is diagonal, it
ollows that 𝑧(𝑡) > 0 for all 𝑡 ∈ [0, 𝑡𝑐 ], contradicting the definition of 𝑡𝑐 . Hence, by induction, 𝑧(𝑡) > 0 for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and all 𝑖.
Second Part: Ruling out Zeno’s phenomenon. To prove that Zeno’s phenomenon does not occur, first fix an 𝑖 ∈ Z0. By applying the
ethod of variation of parameters to the 𝑥 dynamics in (7), we get

𝑥(𝑡) = 𝛺(𝑡 − 𝑡𝑖)𝑥(𝑡𝑖) + ∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚 for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), (10)

here 𝛺 is the function defined in (5). Hence, our choice 𝑒(𝑡) = 𝑥(𝑡𝑖) −𝑤(𝑡) from (7) gives

[𝛺(𝑡 − 𝑡𝑖)−1 − 𝐼]𝑥(𝑡) = 𝑒(𝑡) +𝛺(𝑡 − 𝑡𝑖)−1 ∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚 +𝑤(𝑡) − 𝑥(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) (11)

f 𝑡𝑖+1− 𝑡𝑖 ≤ 𝜈, by left multiplying (10) through by 𝛺(𝑡− 𝑡𝑖)−1, then subtracting 𝑥(𝑡) from both sides of the result, and then subtracting
nd adding 𝑤(𝑡) on the right side of the result. It follows that

|𝑒(𝑡)| ≤
|

|

|

|

|

[

𝛺(𝑡 − 𝑡𝑖)−1 − 𝐼
]

𝑥(𝑡) −𝛺(𝑡 − 𝑡𝑖)−1 ∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚

|

|

|

|

|

+ |𝑤(𝑡) − 𝑥(𝑡)| for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) (12)

f 𝑡𝑖+1 − 𝑡𝑖 ≤ 𝜈, so the relation −𝛤 |𝑤(𝑡)| ≤ −𝛤 |𝑥(𝑡)| + 𝛤 |𝑤(𝑡) − 𝑥(𝑡)| gives

|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)| ≤ [|𝛺(𝑡 − 𝑡𝑖)−1 − 𝐼| − 𝛤 ]|𝑥(𝑡)|

+ |

|

|

𝛺(𝑡 − 𝑡𝑖)−1 ∫
𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚||

|

+ (𝐼 + 𝛤 )|𝑤(𝑡) − 𝑥(𝑡)| for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1)
(13)

if 𝑡𝑖+1− 𝑡𝑖 ≤ 𝜈. Also, (7) gives 𝑥̇(𝑡)− 𝑤̇(𝑡) = 𝐴(𝑥(𝑡)−𝑤(𝑡))+𝛿(𝑡), so we can apply the method of variation of parameters to the dynamics
for 𝑥 −𝑤 on the interval [𝑡𝑖, 𝑡] to obtain

𝑥(𝑡) −𝑤(𝑡) = ∫ 𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁 (14)

for all 𝑖 ∈ Z0 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), because 𝑥(𝑡𝑖) = 𝑤(𝑡𝑖). We next proceed by contradiction. Suppose that 𝑡𝑖+1 − 𝑡𝑖 < 𝜈. Then (6) ensures
that |𝛺−1(𝑡 − 𝑡𝑖) − 𝐼| ≤ 𝛤 for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1). Consequently, (13)–(14) give

|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)| ≤ |

|

|

𝛺(𝑡 − 𝑡𝑖)−1 ∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚||

|

+ (𝐼 + 𝛤 )
|

|

|

|

|

∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁

|

|

|

|

|

for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), (15)

by using (14) to upper bound the last right side term of (13). Since |𝐵𝐾| ≥ 0, it follows that

−|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) ≥ −|𝐵𝐾|

|

|

|

𝛺(𝑡 − 𝑡𝑖)−1(𝑡)
|

|

|

− |𝐵𝐾|(𝐼 + 𝛤 ) |(𝑡)| for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), (16)

where (𝑡) is the integral in (14). Consequently, our formula for the 𝑧 dynamics in (7) gives

𝑧̇(𝑡) ≥ (𝑅𝐻 +𝑁𝐻 )𝑧(𝑡) − |𝐵𝐾|

|

|

|

𝛺(𝑡 − 𝑡𝑖)−1(𝑡)
|

|

|

− |𝐵𝐾|(𝐼 + 𝛤 ) |(𝑡)| + 𝜆(𝛥𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1). (17)

On the other hand, since 𝑡𝑖+1 − 𝑡𝑖 < 𝜈, it follows from (2) and the definition of 𝜆(𝛥𝑡) in (8) that

− |𝐵𝐾|

|

|

|

𝛺(𝑡 − 𝑡𝑖)−1(𝑡)
|

|

|

− |𝐵𝐾|(𝐼 + 2𝛤 ) |(𝑡)| + 𝜆(𝛥𝑡) ≥ 0 (18)

for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), so (17) gives 𝑧̇(𝑡) ≥ (𝑅𝐻+𝑁𝐻 )𝑧(𝑡) ≥ 𝐷𝐻𝑧(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), by again using the nonnegativity of the off-diagonal
elements of 𝑅𝐻 +𝑁𝐻 and the fact that 𝑧(𝑡) ≥ 0 for all 𝑡 ≥ 0. Therefore, we can again apply an integrating factor (to the differential
inequality (17) for 𝑧(𝑡)) to obtain

𝑧(𝑡) ≥ 𝑒𝐷𝐻 (𝑡−𝑡𝑖)𝑧(𝑡𝑖) ≥ 𝑑𝑧(𝑡𝑖) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), (19)

here 𝑑 = min{𝑒−|𝑑𝑖|𝜈 ∶ 1 ≤ 𝑖 ≤ 𝑛} where 𝑑𝑖 is the 𝑖th main diagonal entry of 𝐷𝐻 . Since 𝐷 ≥ 0, (16) and (19) then give

𝑧(𝑡)−𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|)+𝐷|𝐵𝐾|

(

|

|

|

𝛺(𝑡 − 𝑡𝑖)−1(𝑡)
|

|

|

+ (𝐼+𝛤 ) |(𝑡)|
)

≥ 𝑑𝑧(𝑡𝑖) (20)

for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1). By left multiplying (18) through by 𝐷, we obtain
−1 |
4

𝐷𝜆(𝛥𝑡) −𝐷|𝐵𝐾|𝛤 |(𝑡)| ≥ 𝐷|𝐵𝐾||𝛺(𝑡 − 𝑡𝑖) (𝑡)|
|

+𝐷|𝐵𝐾|(𝐼 + 𝛤 )|(𝑡). (21)
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By using (21) to upper bound the last two left side terms in (20), we obtain

𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) +𝐷𝜆(𝛥𝑡) −𝐷|𝐵𝐾|𝛤 |(𝑡)|

≥ 𝑧(𝑡)−𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|)+𝐷|𝐵𝐾|

(

|

|

|

𝛺(𝑡 − 𝑡𝑖)−1(𝑡)
|

|

|

+ (𝐼+𝛤 ) |(𝑡)|
)

≥ 𝑑𝑧(𝑡𝑖).
(22)

Therefore, since 𝑧(𝑡) > 0 for all 𝑡 ≥ 0 and 𝑒(𝑡𝑖+1) = 0, we get

𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡−)|) +𝐷𝜆(𝛥𝑡) −𝐷|𝐵𝐾|𝛤 |(𝑡)| > 0 for all 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1], (23)

where the left limit 𝑡− is only needed for (23) to hold at 𝑡𝑖+1. On the other hand, since (7) gives 𝑤(𝑡𝑖+1) = 𝑥(𝑡𝑖+1), (14)
gives 𝐷|𝐵𝐾|𝛤 |𝑤(𝑡−𝑖+1)| − 𝐷|𝐵𝐾|𝛤 |𝑤(𝑡𝑖+1)| ≤ 𝐷|𝐵𝐾|𝛤 |𝑤(𝑡𝑖+1) −𝑤(𝑡−𝑖+1)| = 𝐷|𝐵𝐾|𝛤 |𝑥(𝑡𝑖+1) −𝑤(𝑡−𝑖+1)| ≤ 𝐷|𝐵𝐾|𝛤 |(𝑡𝑖+1)|, hence
𝐷|𝐵𝐾|𝛤 |𝑤(𝑡−𝑖+1)| −𝐷|𝐵𝐾|𝛤 |(𝑡𝑖+1)| ≤ 𝐷|𝐵𝐾|𝛤 |𝑤(𝑡𝑖+1)|, so (23) gives

𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) +𝐷𝜆(𝛥𝑡) > 0 (24)

for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]. Since 𝑧(𝑡), |𝑒(𝑡)|, |𝑤(𝑡)| and 𝜆(𝛥𝑡) are right continuous, this provides a constant 𝜖0 > 0 such that (24) holds for all
𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1 + 𝜖0]. This yields a contradiction with the definition of 𝑡𝑖+1 in (7).

Third Part: Interval observer. We use the interval observer
{

𝑥̇(𝑡) = 𝑅𝐻𝑥(𝑡) −𝑁𝐻𝑥(𝑡) + (𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))+ + 𝛿(𝑡)+

𝑥̇(𝑡) = 𝑅𝐻𝑥(𝑡) −𝑁𝐻𝑥(𝑡) − (𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))− − 𝛿(𝑡)−
(25)

and the facts that the 𝑥 dynamics can be written as

𝑥̇(𝑡) = (𝑅𝐻 −𝑁𝐻 )𝑥(𝑡) + (𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))+ − (𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))− + 𝛿(𝑡)+ − 𝛿(𝑡)− (26)

for all 𝑡 ≥ 0, and that the 2𝑛 × 2𝑛 matrix  defined by

 =
[

𝑅𝐻 𝑁𝐻
𝑁𝐻 𝑅𝐻

]

(27)

is Metzler, which will be a positive systems approach. To this end, we can combine (25)–(26) to check that the dynamics for the
variables 𝑋𝑎 = [𝑥 − 𝑥, 𝑥 − 𝑥]⊤ and 𝑋𝑏 = [𝑥,−𝑥]⊤ have the state space R2𝑛 and are defined by

𝑋̇𝑎(𝑡) = 𝑋𝑎(𝑡) +𝑎(𝑡) and 𝑋̇𝑏(𝑡) = 𝑋𝑏(𝑡) +𝑏(𝑡) (28)

with the choices

𝑎(𝑡) =

[

(𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))− + 𝛿(𝑡)−

(𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))+ + 𝛿(𝑡)+

]

and𝑏(𝑡) =

[

(𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))+ + 𝛿(𝑡)+

(𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡)))− + 𝛿(𝑡)−

]

(29)

for all 𝑡 ≥ 0. Since  is Metzler, and since 𝑎 and 𝑏 in (29) are nonnegative matrix valued functions, it follows from properties
of cooperative (or positive) systems (e.g., from [31, Lemma 1]) that the dynamics for 𝑋𝑎 and 𝑋𝑏 in (28) are cooperative, i.e., (i) if
𝑋𝑎(0) ≥ 0, then 𝑋𝑎(𝑡) ≥ 0 for all 𝑡 ≥ 0 and (ii) if 𝑋𝑏(0) ≥ 0, then 𝑋𝑏(𝑡) ≥ 0 for all 𝑡 ≥ 0. By separately considering the components of
𝑋𝑎 and 𝑋𝑏, it follows that if

𝑥(0) ≥ 0, 𝑥(0) ≤ 0, and 𝑥(0) ≤ 𝑥(0) ≤ 𝑥(0), (30)

hen we have

𝑥(𝑡) ≥ 0, 𝑥(𝑡) ≤ 0 and 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡) (31)

for all 𝑡 ≥ 0, e.g., by [31, Lemma 1]. We deduce that 𝑥(𝑡) − 𝑥(𝑡) ≤ 𝑥(𝑡) ≤ 𝑥(𝑡) − 𝑥(𝑡) and so also

|𝑥(𝑡)| ≤ 𝑥(𝑡) − 𝑥(𝑡) (32)

for all 𝑡 ≥ 0 if (30) hold.
Fourth Part: Stability analysis. We let (30) hold, and we use the linear Lyapunov function

𝑈 (𝑥, 𝑥, 𝑧) = 𝑉 ⊤(𝑥 − 𝑥 + 𝑧), (33)

where 𝑉 ∈ R𝑛 is the positive vector chosen in Section 2.1. Then, using the fact that (25) gives

𝑥̇(𝑡) − 𝑥̇(𝑡) = (𝑅 +𝑁 )(𝑥(𝑡) − 𝑥(𝑡)) + |𝐵𝐾(𝑥(𝑡 ) − 𝑥(𝑡))| + |𝛿(𝑡)| (34)
5

𝐻 𝐻 𝑖
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for all 𝑡 ≥ 0 and the nonnegative valuedness of 𝑥 − 𝑥 (which follows from (31)) and of 𝑧 (which follows from the first part of the
proof), we conclude from (3) that the time derivative of 𝑈 along the trajectories of (25) and (7) satisfies

𝑈̇ (𝑡) ≤ −𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡)) + 𝑉 ⊤
|𝐵𝐾(𝑥(𝑡𝑖) − 𝑥(𝑡))| − 𝑐𝑉 ⊤𝑧(𝑡) − 𝑉 ⊤

|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|)

+𝑉 ⊤
|𝛿(𝑡)| + 𝑉 ⊤𝜆(𝛥𝑡)

≤ −𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝐵𝐾|𝛤 |𝑥(𝑡)| + 𝑉 ⊤

|𝛿(𝑡)|

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝛥𝑡)

≤ −𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝐵𝐾|𝛤 (𝑥(𝑡) − 𝑥(𝑡)) + 𝑉 ⊤

|𝛿(𝑡)|

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝛥𝑡)

(35)

for all 𝑡 ≥ 0, where the second inequality in (35) used the formula for 𝑥(𝑡) −𝑤(𝑡) in (14) and the bounds

𝑉 ⊤
|𝐵𝐾(𝑥(𝑡𝑖) − 𝑥(𝑡))| − 𝑉 ⊤

|𝐵𝐾||𝑒(𝑡)| ≤ 𝑉 ⊤
|𝐵𝐾||𝑥(𝑡) −𝑤(𝑡)| and

𝑉 ⊤
|𝐵𝐾|𝛤 |𝑤(𝑡)| ≤ 𝑉 ⊤

|𝐵𝐾|𝛤 |𝑥(𝑡)| + 𝑉 ⊤
|𝐵𝐾|𝛤 |𝑥(𝑡) −𝑤(𝑡)|

(36)

which follow from the triangle inequality and our choice of 𝑒 in (7), and where the last inequality in (35) followed from the bound
|𝑥(𝑡)| ≤ 𝑥(𝑡) − 𝑥(𝑡) from (32). Hence,

𝑈̇ (𝑡) ≤ −𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝐵𝐾|𝛤 (𝑥(𝑡) − 𝑥(𝑡)) + 𝑉 ⊤𝛥(𝑡)

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝛥𝑡),
(37)

by Assumption 2. Since the first part of the proof gave 𝑧(𝑡) > 0 for all 𝑡 ≥ 0, we deduce that

𝑈̇ (𝑡) ≤ −𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝐵𝐾|𝛤 (𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤𝛥(𝑡)

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝛥𝑡)

= (−𝑐𝑉 ⊤ + 𝑉 ⊤
|𝐵𝐾|𝛤 )(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡))

+𝑉 ⊤𝛥(𝑡) + 𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝛥𝑡)

(38)

for all 𝑡 ≥ 0. From (4) and the fact that 𝑥 − 𝑥 and 𝑧 are nonnegative valued, we deduce that

𝑈̇ (𝑡) ≤ −𝑟𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) + 𝑉 ⊤𝛥(𝑡) + 𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 )

|

|

|

|

|

∫

𝑡

𝜎(𝑡)
𝑒𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁

|

|

|

|

|

+ 𝑉 ⊤𝜆(𝛥𝑡) (39)

for all 𝑡 ≥ 0. Since Zeno’s phenomenon does not occur, we deduce from (39) and Assumption 2 that

𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) ≤ 𝑒−𝑟𝑡𝑈 (𝑥(0), 𝑥(0), 𝑧(0)) + ∫ 𝑡
0 𝑒𝑟(𝑚−𝑡)[𝑉 ⊤𝛥(𝑚) + 𝑉 ⊤𝜆(𝛥𝑚)]d𝑚

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ∫ 𝑡

0 𝑒𝑟(𝑚−𝑡) ∫ 𝑚
(𝑚−𝑇 )+

|

|

|

𝑒𝐴(𝑚−𝓁)||
|

𝛥(𝓁)d𝓁d𝑚

≤ 𝑒−𝑟𝑡𝑈 (𝑥(0), 𝑥(0), 𝑧(0)) + ∫ 𝑡
0 𝑒𝑟(𝑚−𝑡)𝑉 ⊤𝛥(𝑚)d𝑚

+ ∫

𝑡

0
𝑒𝑟(𝑚−𝑡)𝑉 ⊤

|𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)||
|

+ 𝐼 + 2𝛤
]

∫

𝑚

(𝑚−𝜈)+

|

|

|

𝑒𝐴(𝑚−𝓁)||
|

𝛥(𝓁)d𝓁d𝑚

+𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 ) ∫ 𝑡

0 𝑒𝑟(𝑚−𝑡) ∫ 𝑚
(𝑚−𝑇 )+

|

|

|

𝑒𝐴(𝑚−𝓁)||
|

𝛥(𝓁)d𝓁d𝑚

(40)

for all 𝑡 ≥ 0, by applying the integrating factor 𝑒𝑟𝑡 and the method of variation of parameters to the differential inequality in (39)
and using the fact that our trigger rule from (7) implies that 𝑡𝑖+1 − 𝑡𝑖 ≤ 𝑇 for all 𝑖. This provides a constant 𝑘 > 0 such that

𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) ≤ 𝑒−𝑟𝑡𝑈 (𝑥(0), 𝑥(0), 𝑧(0)) + 𝑘 sup
𝑚∈[0,𝑡]

|𝛥(𝑚)|. (41)

Hence, the dynamics for (𝑥(𝑡) − 𝑥(𝑡), 𝑧(𝑡)) satisfy an exponential ISS inequality. Since we may assume that 𝑥(0) ≤ 2|𝑥(0)| and
(0) ≥ −2|𝑥(0)| and so also 0 ≤ 𝑥(0) − 𝑥(0) ≤ 4|𝑥(0)|, and since 𝑧(𝑡) ≥ 0 for all 𝑡 ≥ 0, (32) allows us to conclude from the structure
(33) of 𝑈 .

3. Systems with outputs

3.1. Statement of result

We next generalize Theorem 1 from the previous section to cover more general systems of the form

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝛿(𝑡) , 𝑦(𝑡) = 𝐶𝑥(𝑡), (42)

for known matrices 𝐶 ∈ R𝑞×𝑛 where 𝛿 satisfies the requirements from Section 2.1, by adding this analog of [31, Assumption 4] whose
conditions can be easily checked, e.g., using methods of [31, Section 4.2], where we fix a value 𝑇 > 𝜈 as before (but see Remark 3.1
elow for motivation for this assumption, and Appendix A.2 below for ways to check this assumption, and for an alternative version
sing linear Lyapunov functions, and see Appendix A.3 for other generalizations where the output 𝑦(𝑡) also contains uncertainties):
6
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Assumption 3. There are a constant 𝜅0 ∈ (0, 1), a positive definite matrix 𝑄 ∈ R𝑛×𝑛, and a matrix 𝐿 ∈ R𝑛×𝑞 such that

𝑒𝐴
⊤𝓁(𝐼 − 𝐿𝐶)⊤𝑄(𝐼 − 𝐿𝐶)𝑒𝐴𝓁 ⪯ 𝜅0𝑄 (43)

holds for all 𝓁 ∈ [𝜈, 𝑇 ].

We interconnect the system and triggering rule from Theorem 1 with a continuous–discrete observer. Letting Assumptions 1–3
hold and using the notation from above, fix a diagonal matrix 𝐷 ∈ R𝑛×𝑛 whose main diagonal entries are all positive, and a positive
vector 𝑧0 ∈ R𝑛. We now consider

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝑤(𝜎(𝑡)) + 𝛿(𝑡) for all 𝑡 ≥ 0

𝑤̇(𝑡) = 𝐴𝑤(𝑡) + 𝐵𝐾𝑤(𝑡𝑖) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and 𝑖 ∈ Z0

𝑤(𝑡𝑖) = 𝑤(𝑡−𝑖 ) + 𝐿(𝑦(𝑡𝑖) − 𝐶𝑤(𝑡−𝑖 )) for all 𝑖 ∈ N
𝑧̇(𝑡) = (𝑅𝐻 +𝑁𝐻 )𝑧(𝑡) − |𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) + 𝜆(𝑡) for all 𝑡 ≥ 0, and 𝑧(0) = 𝑧0
𝑒(𝑡) = 𝑤(𝑡𝑖) −𝑤(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and 𝑖 ∈ Z0

𝑡𝑖+1 = sup
{

𝑡 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇 ] ∶ 𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|) +𝐷𝜆(𝑡) > 0
}

(44)

where 𝑡0 = 0 and 𝑤(0) is an initial estimate of 𝑥(0), and where 𝜆(𝛥𝑡) from Theorem 1 has been replaced by

𝜆(𝑡) = |𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)| + 𝐼 + 2𝛤
]

∫ 𝑡
(𝑡−𝜈)+

|

|

|

𝑒𝐴(𝑡−𝓁)||
|

𝛥(𝓁)d𝓁 + max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛𝜅
𝜎(𝑡)∕(2𝑇 )
∗

√

𝜆max
𝜆min

𝑏0

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛
√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝜎(𝑡)],

(45)

here 𝟏𝑛 ∈ R𝑛 is a vector whose entries are all 1’s, the constant 𝜅∗∗ and 𝐽 ∶ [0, 𝜈] → R𝑛×𝑛 are defined by

𝜅∗∗ = ‖𝑄‖ +
‖𝑄‖

2

𝜖0𝜆min
and 𝐽 (𝑠) = |𝐵𝐾|

(

|

|

|

|

𝛺−1(𝑠)∫

𝑠

0
𝑒𝐴𝑚d𝑚𝐵𝐾 − 𝐼

|

|

|

|

+ (𝐼 + 2𝛤 ) ||
|

𝑒𝐴𝑠||
|

)

, (46)

max > 0 and 𝜆min > 0 are the largest and smallest eigenvalues of 𝑄 respectively, 𝑏0 ≥ 0 is chosen such that ‖𝑤(0) − 𝑥(0)‖ ≤ 𝑏0,
∗ = (1 + 𝜖0)𝜅0 where 𝜖0 ∈ (0, 1) is chosen small enough such that 𝜅∗ ∈ (0, 1), and 𝜎(𝑡) = max{𝑡𝑖 ∶ 𝑖 ≥ 0 and 𝑡𝑖 ≤ 𝑡} is the largest 𝑡𝑖 in
0, 𝑡] for each 𝑡 ≥ 0 as before (but see Appendices A.1–A.2 below for alternative 𝜆 formulas, including one satisfying lim𝑡→+∞ 𝜆(𝑡) = 0
f lim𝑡→+∞ 𝛥(𝑡) = 0).
The motivation for, and implementation of, (44) are as follows. The purpose of the 𝑤 dynamics in (44) is to estimate the

nmeasured state values 𝑥(𝑡) using only the sampled values 𝑦(𝑡𝑖). The 𝑤 dynamics is continuous–discrete, because it is a continuous
ime dynamics on the intervals [𝑡𝑖, 𝑡𝑖+1) between trigger times 𝑡𝑖 but changes value in a discrete way at the 𝑡𝑖’s, using the third
quation in (44). Such dynamics are called reset systems in the robotics literature, or jump dynamics, because their states are reset
t discrete times 𝑡𝑖.
The 𝑤(𝑡) values are found in the following recursive way. We start with an initial estimate 𝑤(0) of the initial state 𝑥(0) of (42).

ften, this initial estimate is chosen to be the zero vector, but we allow nonzero 𝑤(0)’s for generality, and because in engineering
pplications, one generally has some information about the initial state, which can lead to a smaller upper bound 𝑏0 for the initial
bservation error than ‖𝑥(0)‖, by picking 𝑤(0) closer to 𝑥(0) than the zero vector. Then, starting from 𝑤(0), we solve the initial value
roblem consisting of the second equation in (44) with the choice 𝑖 = 0 and the initial value 𝑤(0), to solve for the 𝑤(𝑡) values on
he half open interval [0, 𝑡1), where the first positive triggering time 𝑡1 is computed using the last equation in (44) with the choice
= 0, where 𝑡1 is computed in a way that is analogous to the way that 𝑡1 was computed in Theorem 1. Then, we store the left limit
alue 𝑤(𝑡−1 ) for 𝑤 at time 𝑡1, which we insert into the special case of the third equation of (44) where 𝑖 = 1, which provides the
alue of 𝑤(𝑡1) using the available values 𝑤(𝑡−1 ) and 𝑦(𝑡1). The left limit 𝑤(𝑡−1 ) exists because of the linear growth of the differential
quation part of the 𝑤 dynamics in the second equation of (44). Then we solve the initial value problem consisting of the second
quation of (44) in the special case where 𝑖 = 1 and the initial state 𝑤(𝑡1), to solve for 𝑤(𝑡) on the interval [𝑡1, 𝑡2) and to compute
he left limit 𝑤(𝑡−2 ) of 𝑤 at 𝑡2, where 𝑡2 is found from the last equation of (44) in the special case where 𝑖 = 1. Then, we can use the
hird equation of (44) with 𝑖 = 2 to define the value of 𝑤(𝑡2), using 𝑤(𝑡−2 ) and 𝑦(𝑡2). Then we can argue recursively to get 𝑤(𝑡) and a
ontinuous solution 𝑥(𝑡) for all 𝑡 ≥ 0 and all triggering times 𝑡𝑖, because as we will show in the proof of the next theorem, the Zeno
henomenon does not occur.
Moreover, 𝑤(𝑡−𝑖 ) = 𝑞𝑖(𝑡𝑖) for all 𝑖 ∈ N, where 𝑞𝑖 is the solution of the initial value problem

𝑞̇𝑖(𝑡) = 𝐴𝑞𝑖(𝑡) + 𝐵𝐾𝑤(𝑡𝑖−1), 𝑞𝑖(𝑡𝑖−1) = 𝑤(𝑡𝑖−1) (47)

or all 𝑖 ∈ N, so the left limits 𝑤(𝑡−𝑖 ) can be found by solving the initial value problems (47). Also, note that the control 𝑢(𝑡) = 𝐾𝑤(𝜎(𝑡))
n the 𝑥 dynamics (44) is not the same as the control 𝑢(𝑡) = 𝐾𝑥(𝜎(𝑡)) from (7) in Theorem 1 even if 𝛿 is the zero function, because
f the jumps in 𝑤 as stipulated in the third equality in (44). Finally, the integral and maximized 𝐽 values in (45) that were not in
8) can be calculated prior to implementing (44) (using the known values of 𝜈 and 𝑇 ), and so do not add any computational burden
or the implementation. In terms of the notation above, our result for systems with outputs is:

heorem 2. Let Assumptions 1–3 hold. Set

𝑟0 = min
{

𝑟 ,−
ln(𝜅∗)

}

. (48)
7
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Then we can find positive constants 𝑐1 and 𝑐2 so that for all solutions 𝑥 ∶ [0,+∞) → R𝑛 of (42) with the choices (44) and 𝑢(𝑡) = 𝐾𝑤(𝜎(𝑡)),
we have

‖𝑥(𝑡)‖ ≤ 𝑐1𝑒
−𝑟0𝑡

‖(𝑥(0), 𝑧0, 𝑏0)‖ + 𝑐2‖𝛥‖[0,𝑡] (49)

for all 𝑡 ≥ 0. Also, 𝑡𝑖+1 − 𝑡𝑖 ∈ [𝜈, 𝑇 ] for all 𝑖 ∈ Z0.

As in the case for systems without outputs from Theorem 1, the special case where there is no uncertainty 𝛿 ensures exponential
convergence of ‖𝑥(𝑡)‖ to the origin as 𝑡 → +∞, by taking 𝛥 to be the zero function.

Remark 3.1. Assumptions 1–2 are not at all restrictive, because (i) as noted, e.g., in [21], Assumption 1 can be satisfied after a
change of coordinates when the pair (𝐴,𝐵) is controllable, and because controllability of a pair is generic, in the sense that almost
all pairs are controllable because (as noted, e.g., in [35, p. 97]) the set of all uncontrollable pairs constitute a set of Lebesgue
measure zero when the pairs are viewed as points in Euclidean space of dimension 𝑛2 + 𝑛𝑝 and because (ii) bounds on uncertainties
as we have them in Assumption 2 are normally known in practice. The change of coordinates to transform a controllable pair into
a new pair that satisfies Assumption 1 is a similarity transformation of pairs, as defined, e.g., in [35]. On the other hand, our
Assumption 3 is less standard, and contrasts with significant works like [25] that were designed for linear systems with outputs
under more standard conditions, e.g., controllability and detectability. Moreover, whereas [25] calls for using state measurements
in the dynamic event-triggered dynamics (e.g., the dynamics of 𝜂 in [25, Equation 7]), our dynamic event-triggering approach from
44) uses a dynamic that can be computed from sampled output values. In this sense, our method may offer the significant advantage
f requiring less information from the system, and Assumption 3 is the price to pay to achieve this potential advantage. See our
numerical simulations in Section 5 below where all of our assumptions are easily checked, and where in addition we illustrate how
our method can beneficially increase the lower bound on the inter-execution times 𝑡𝑖+1 − 𝑡𝑖, in order to ensure a priori that trigger
imes do not occur too frequently.

.2. Proof of Theorem 2

We explain the changes in the proof of Theorem 1 that are needed to prove Theorem 2. The proof has the same structure as
he proof of Theorem 1, the first part of the proof is the same except with (45) replacing (8), and we change the second part as
ollows. In (10)–(11), we replace 𝛿(𝑚) in the integral by 𝛿(𝑚) +𝐵𝐾𝑥̃(𝑡𝑖) and subtract 𝑥̃(𝑡𝑖) from the right side (11), where 𝑥̃ = 𝑤− 𝑥,
ecause our new formula for 𝑒 in (44) gives 𝑒(𝑡) = 𝑥(𝑡𝑖) − 𝑤(𝑡) + 𝑥̃(𝑡𝑖) (instead of the formula 𝑒(𝑡) = 𝑥(𝑡𝑖) − 𝑤(𝑡) that we used in (7))
nd 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝑥(𝑡𝑖) + 𝐵𝐾𝑥̃(𝑡𝑖) + 𝛿(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1) and 𝑖 ∈ Z0. Collecting terms, we then add

|

|

|

|

|

𝛺−1(𝑡 − 𝑡𝑖)∫

𝑡

𝑡𝑖
𝑒𝐴(𝑡−𝑚)d𝑚𝐵𝐾 − 𝐼

|

|

|

|

|

|𝑥̃(𝑡𝑖)| (50)

o the right sides of (12)–(13). Since 𝑤(𝑡𝑖) is no longer guaranteed to equal 𝑥(𝑡𝑖), we must change (14) to

𝑥(𝑡) −𝑤(𝑡) = ∫ 𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁 − 𝑒𝐴(𝑡−𝑡𝑖)𝑥̃(𝑡𝑖) (51)

or all 𝑖 ∈ Z0 and 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1), because 𝑥(𝑡𝑖) −𝑤(𝑡𝑖) = −𝑥̃(𝑡𝑖).
To get 𝑡𝑖+1−𝑡𝑖 ∈ [𝜈, 𝑇 ] for all 𝑖 ∈ Z0 to rule out Zeno’s phenomenon, we argue by contradiction. Suppose, for the sake of obtaining
contradiction, that there were an 𝑖 ∈ Z0 such that 𝑡𝑖+1 − 𝑡𝑖 < 𝜈. Choose the minimal 𝑖 ∈ Z0 such that 𝑡𝑖+1 − 𝑡𝑖 < 𝜈. Arguing as in the
econd part of the proof of Theorem 1 gives

|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)| ≤ |

|

|

𝛺(𝑡 − 𝑡𝑖)−1 ∫
𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝑚)𝛿(𝑚)d𝑚||

|

+ (𝐼 + 𝛤 ) ||
|

∫ 𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁 − 𝑒𝐴(𝑡−𝑡𝑖)𝑥̃(𝑡𝑖)

|

|

|

+ |

|

|

𝛺−1(𝑡 − 𝑡𝑖) ∫
𝑡
𝑡𝑖
𝑒𝐴(𝑡−𝑚)d𝑚𝐵𝐾 − 𝐼||

|

|𝑥̃(𝑡𝑖)| for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1),
(52)

nstead of (15). If 𝑖 = 0, then

‖𝑥̃(𝑡𝑖)‖ = ‖𝑥(𝑡𝑖) −𝑤(𝑡𝑖)‖ ≤ 𝑏0 ≤ 𝜅𝜎(𝑡𝑖)∕2
∗

√

𝜆max
𝜆min

𝑏0, (53)

so we can assume in what follows that 𝑖 ≥ 1. Also, our choices of 𝑥̃ = 𝑤 − 𝑥 and (44), the continuity of 𝑥(𝑡), and the fact that
̇̃𝑥(𝑡) = 𝐴𝑥̃(𝑡) − 𝛿(𝑡) holds on (𝑡𝑗 , 𝑡𝑗+1) and 𝑗 ≥ 0 give

𝑥̃(𝑡𝑗 ) = (𝐼 − 𝐿𝐶)𝑥̃(𝑡−𝑗 ) = (𝐼 − 𝐿𝐶)𝑒(𝑡𝑗−𝑡𝑗−1)𝐴
(

𝑥̃(𝑡𝑗−1) − ∫

𝑡𝑗

𝑡𝑗−1
𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

)

(54)

for all 𝑗 ∈ {1,… , 𝑖} (by subtracting 𝑥(𝑡𝑗 ) = 𝑥(𝑡−𝑗 ) from both sides of the third equation of (44) and then applying the method of
variation of parameters to the 𝑥̃ dynamics on [𝑡𝑗−1, 𝑡𝑗 )) and so also

‖𝑥̃(𝑡𝑗 )‖ ≤ 𝜅𝑗∕2
∗

√

𝜆max
‖𝑥̃(0)‖ +

√

𝜅∗𝜅∗∗ 0
‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ] (55)
8
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for all 𝑗 ∈ {0,… , 𝑖}. The inequality (55) follows by using Assumption 3 with 𝓁 = 𝑡𝑗 − 𝑡𝑗−1 ∈ [𝜈, 𝑇 ] and the function 𝑊 (𝑥) = 𝑥⊤𝑄𝑥 to
get

𝜆min‖𝑥̃(𝑡𝑗 )‖2 ≤ 𝑊 (𝑥̃(𝑡𝑗 )) ≤ 𝜅0𝑊 (𝑥̃(𝑡𝑗−1)) − 2𝜅0𝑥̃(𝑡𝑗−1)⊤𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

+ 𝜅0
[

∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁
]⊤

𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

≤ 𝜅∗𝑊 (𝑥̃(𝑡𝑗−1)) + 𝜅0𝜅∗∗
(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

≤ … ≤ 𝜅𝑗
∗𝑊 (𝑥̃(0)) + 𝜅∗𝜅∗∗

1−𝜅∗

(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

≤ 𝜅𝑗
∗𝜆max‖𝑥̃(0)‖2 +

𝜅∗𝜅∗∗
1−𝜅∗

(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2
,

(56)

where 𝜅∗ ∈ (0, 1) and 𝜅∗∗ are as defined in Section 3.1 above and the first inequality in (56) used (43) with the choice 𝓁 = 𝑡𝑗 − 𝑡𝑗−1 ∈
𝜈, 𝑇 ] and (54), and the second inequality in (56) used Young’s inequality to get

−2𝜅0𝑥̃(𝑡𝑗−1)⊤𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁 ≤ 2𝜅0‖𝑥̃(𝑡𝑗−1)‖
‖

‖

‖

𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁‖‖
‖

≤ 𝜅0𝜖0𝜆min‖𝑥̃(𝑡𝑗−1)‖2 +
𝜅0

𝜖0𝜆min
‖𝑄‖

2
(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

≤ 𝜅0𝜖0𝑊 (𝑥̃(𝑡𝑗−1)) +
𝜅0

𝜖0𝜆min
‖𝑄‖

2
(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2
,

(57)

and the last two inequalities in (56) used the geometric sum formula and the fact that 𝜅∗ = (1 + 𝜖0)𝜅0 ∈ (0, 1) and the bound
𝑊 (𝑥̃(0)) ≤ 𝜆max‖𝑥̃(0)‖2, so (55) follows by dividing (56) through by 𝜆min and then using the subadditivity of the square root.

By our choice of 𝐽 in (46), and because of the terms in (52) that were not present in (15), we must then subtract 𝐽 ♭(𝑡− 𝑡𝑖)|𝑥̃(𝑡𝑖)|
from the right sides of (16)–(17) and from the left side of (18), where 𝐽 ♭(𝑠) = 𝐽 (𝑠) − |𝐵𝐾|𝛤 |𝑒𝐴𝑠|. The fact that (18) continues to
hold with 𝐽 ♭(𝑡− 𝑡𝑖)|𝑥̃(𝑡𝑖)| subtracted from its left side follows from our formula (45) for 𝜆(𝑡), (55), the fact that |𝑥̃(𝑡𝑖)| ≤ 𝟏𝑛‖𝑥̃(𝑡𝑖)‖ for
all 𝑖 ∈ Z0, and the fact that if 𝑡 and 𝑗 are such that 𝜎(𝑡) = 𝑡𝑗 , then we have 𝑇 𝑗 ≥ 𝜎(𝑡), which gives

𝜅𝑗∕2
∗ ≤ 𝜅𝜎(𝑡)∕(2𝑇 )

∗ (58)

since 𝜅∗ ∈ (0, 1). The rest of the second part is the same as that part of the proof of Theorem 1, except using (51) instead of (14),
nd with 𝐷𝐽 ♭(𝑡− 𝑡𝑖)|𝑥̃(𝑡𝑖)| added on the left side of (20), where the 2 was required in the formula for 𝐽 in (46) because of the term
n (51) that was not in (14). Hence, 𝑡𝑖+1 − 𝑡𝑖 ∈ [𝜈, 𝑇 ] for all 𝑖.
The third part is the same as that part of the proof of Theorem 1, except we change (25) to

{

𝑥̇(𝑡) = 𝑅𝐻𝑥(𝑡) −𝑁𝐻𝑥(𝑡) + (𝐵𝐾(𝑤(𝜎(𝑡)) − 𝑥(𝑡)))+ + 𝛿(𝑡)+

𝑥̇(𝑡) = 𝑅𝐻𝑥(𝑡) −𝑁𝐻𝑥(𝑡) − (𝐵𝐾(𝑤(𝜎(𝑡)) − 𝑥(𝑡)))− − 𝛿(𝑡)−
(59)

and use the fact that 𝑥̇(𝑡) = (𝑅𝐻 −𝑁𝐻 )𝑥(𝑡)+𝐵𝐾(𝑤(𝜎(𝑡))−𝑥(𝑡))+𝛿(𝑡) for all 𝑡 ≥ 0. This lets us again conclude that (31)–(32) hold when
30) holds. The fourth part again uses 𝑈 from (33), and the fact that 𝑥̇(𝑡) − 𝑥̇(𝑡) = (𝑅𝐻 +𝑁𝐻 )(𝑥(𝑡) − 𝑥(𝑡)) + |𝐵𝐾(𝑤(𝜎(𝑡)) − 𝑥(𝑡))|+ |𝛿(𝑡)|
or all 𝑡 ≥ 0 to conclude that the time derivative of 𝑈 along the solutions of the closed loop system from the statement of Theorem 2
satisfies

𝑈̇ (𝑡) ≤−𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡)) + 𝑉 ⊤
|𝐵𝐾(𝑤(𝜎(𝑡)) − 𝑥(𝑡))| − 𝑐𝑉 ⊤𝑧(𝑡) − 𝑉 ⊤

|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑤(𝑡)|)

+𝑉 ⊤
|𝛿(𝑡)| + 𝑉 ⊤𝜆(𝑡)

≤−𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝐵𝐾|𝛤 |𝑥(𝑡)| + 𝑉 ⊤

|𝛿(𝑡)|

+𝑉 ⊤
|𝐵𝐾|(𝛤 + 𝐼) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝑡) + 𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 )|𝑒𝐴(𝑡−𝜎(𝑡))||𝑥̃(𝜎(𝑡))|

(60)

and therefore also
𝑈̇ (𝑡) ≤−𝑐𝑉 ⊤(𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤

|𝐵𝐾|𝛤 (𝑥(𝑡) − 𝑥(𝑡) + 𝑧(𝑡)) + 𝑉 ⊤
|𝛿(𝑡)|

+𝑉 ⊤
|𝐵𝐾|(𝛤 + 𝐼) ||

|

∫ 𝑡
𝜎(𝑡) 𝑒

𝐴(𝑡−𝓁)𝛿(𝓁)d𝓁||
|

+ 𝑉 ⊤𝜆(𝑡) + 𝑉 ⊤
|𝐵𝐾|(𝐼 + 𝛤 )|𝑒𝐴(𝑡−𝜎(𝑡))||𝑥̃(𝜎(𝑡))|

(61)

for all 𝑡 ≥ 0 (instead of (35)), where the second inequality in (60) follows from the bound 𝑉 ⊤
|𝐵𝐾(𝑤(𝜎(𝑡)) − 𝑥(𝑡))| − 𝑉 ⊤

|𝐵𝐾||𝑒(𝑡)| =
𝑉 ⊤

|𝐵𝐾||𝑤(𝜎(𝑡)) − 𝑥(𝑡)| − 𝑉 ⊤
|𝐵𝐾||𝑤(𝜎(𝑡)) −𝑤(𝑡)| ≤ 𝑉 ⊤

|𝐵𝐾||𝑥(𝑡) −𝑤(𝑡)|, (51), and the bound 𝑉 ⊤
|𝐵𝐾|𝛤 |𝑤(𝑡)| ≤ 𝑉 ⊤

|𝐵𝐾|𝛤 |𝑥(𝑡)| +
𝑉 ⊤

|𝐵𝐾|𝛤 |𝑥(𝑡) −𝑤(𝑡)|, and where (61) followed from (32) and the nonnegative valuedness of 𝑧(𝑡).
Then we obtain (37)–(39) except with 𝑉 ♯

|𝑥̃(𝜎(𝑡))| added to the right sides of the three inequalities and with 𝜆(𝑡) instead of 𝜆(𝛥𝑡),
where 𝑉 ♯ = 𝑉 ⊤

|𝐵𝐾|(𝐼 + 𝛤 ) sup𝓁∈[0,𝑇 ] |𝑒𝐴𝓁|. We can therefore use the nonnegative valuedness of 𝑥 − 𝑥 + 𝑧, our condition on 𝑟 from
(4), and our definition (45) of 𝜆(𝑡) to find a constant 𝑏∗ > 0 such that

𝑈̇ (𝑡) ≤ −𝑟𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) + 𝑏∗
(

‖𝛥‖[0,𝑡] + ‖𝑥̃(𝜎(𝑡))‖ + 𝜅𝜎(𝑡)∕(2𝑇 )
∗ 𝑏0

)

(62)

for all 𝑡 ≥ 0. Also, since we showed that 𝑡𝑖+1 − 𝑡𝑖 ∈ [𝜈, 𝑇 ] for all 𝑖 ∈ Z0 in the second part of the proof, the argument that produced
55) also gives

‖𝑥̃(𝜎(𝑡))‖ ≤ 𝜅𝜎(𝑡)∕(2𝑇 )
∗

√

𝜆max 𝑏0 +
√

𝜅∗𝜅∗∗ 0
‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡] (63)
9

𝜆min 𝜆min(1 − 𝜅∗) ∫−𝑇
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for all 𝑡 ≥ 0. By using (63) to upper bound ‖𝑥̃(𝜎(𝑡))‖ in (62) and then collecting terms, we get

𝑈̇ (𝑡) ≤ −𝑟𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡))+𝑏∗𝑏𝛼‖𝛥‖[0,𝑡]+𝑏∗𝑏𝛽𝜅
𝑡∕(2𝑇 )
∗ 𝑏0

≤ −𝑟𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡))+𝑏♯
(

‖𝛥‖[0,𝑡]+𝑏0𝜅
𝑡∕(2𝑇 )
∗

) (64)

or all 𝑡 ≥ 0, where 𝑏♯ = 𝑏∗ max{𝑏𝛼 , 𝑏𝛽}, where

𝑏𝛼 = 1 +
√

𝜅∗𝜅∗∗
𝜆min(1 − 𝜅∗) ∫

0

−𝑇
‖𝑒𝐴𝓁‖d𝓁 and 𝑏𝛽 = 𝜅−1∕2

∗

(

1+

√

𝜆max
𝜆min

)

, (65)

using the bound 𝜎(𝑡) ≥ 𝑡 − 𝑇 to get

𝜅𝜎(𝑡)∕(2𝑇 )
∗ ≤ 𝜅𝑡∕(2𝑇 )𝜅−1∕2

∗ (66)

(because 𝜅∗ ∈ (0, 1)), to get the 𝑏𝛽 formula.
By applying an integrating factor to apply the method of variation of parameters to (64) on the interval [𝑡∕2, 𝑡] and then on the

interval [0, 𝑡∕2], we obtain

𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) ≤ 𝑒−𝑟𝑡∕2𝑈 (𝑥(𝑡∕2), 𝑥(𝑡∕2), 𝑧(𝑡∕2)) + 𝑏♯

𝑟

(

‖𝛥‖[0,𝑡] + 𝑏0𝑒ln(𝜅∗)𝑡∕(4𝑇 )
)

and

𝑈 (𝑥(𝑡∕2), 𝑥(𝑡∕2), 𝑧(𝑡∕2)) ≤ 𝑒−𝑟𝑡∕2𝑈 (𝑥(0), 𝑥(0), 𝑧(0)) + 𝑏♯

𝑟

(

‖𝛥‖[0,𝑡∕2] + 𝑏0
)

(67)

or all 𝑡 ≥ 0. By using the second inequality in (67) to upper bound the 𝑈 (𝑥(𝑡∕2), 𝑥(𝑡∕2), 𝑧(𝑡∕2)) in the first inequality in (67) and
hen collecting terms, we get

𝑈 (𝑥(𝑡), 𝑥(𝑡), 𝑧(𝑡)) ≤
(

1 + 2𝑏♯
𝑟

)

𝑒−𝑟0𝑡‖‖
‖

(

𝑈 (𝑥(0), 𝑥(0), 𝑧(0)), 𝑏0
)

‖

‖

‖

+ 2𝑏♯
𝑟 ‖𝛥‖[0,𝑡] (68)

or all 𝑡 ≥ 0, where 𝑟0 = min{𝑟∕2,− ln(𝜅∗)∕(4𝑇 )}. Then the final ISS estimate follows by assuming that 𝑥(0) ≤ 2|𝑥(0)| and
(0) ≥ −2|𝑥(0)|, to use our condition (32) to conclude as before.

4. Comparison of trigger rules

When saying that one event-triggered control method outperforms another method, it is important to first decide which criteria to
use to compare the performance of different triggering rules. As noted in [26], three criteria one can use to compare the performances
of two event-triggered mechanisms are (i) determining which trigger rule produces a larger next trigger time 𝑡𝑖+1, when both trigger
rules are used to control the same system starting from the same given time 𝑡𝑖 and with the same initial state 𝑥(𝑡𝑖) used for both
triggers at time 𝑡𝑖, i.e., which trigger rule triggers sooner, since then the one that triggers later may be advantageous, (ii) determining
which trigger provides a larger lower bound on the inter-execution times, i.e., a larger lower bound on the infimum for the amounts
of time 𝑡𝑖+1 − 𝑡𝑖 between its trigger times, and (iii) other performance indices such as mean values or coefficient of variation of
the inter-execution times. The first criterion is motivated by the fact that in applications where one wants to avoid unnecessarily
frequent changes in control values, one may prefer the trigger rule that triggers later. The other criteria are motivated by the
desire to keep the inter-execution times 𝑡𝑖+1 − 𝑡𝑖 from becoming too small. In this section, we explain why our approach based on
matrices of absolute values from our theorems above may offer advantages using the first criterion, compared with previous static
event-triggering rules, and we review the necessary formulas for the lower bounds on the inter-execution times from [26]. In the
next section, we illustrate how our new methods can be advantageous using other criteria and formulas from [26] that we review
in this section.

As was the case in [26], our dynamic event triggering has the potential to reduce the number of triggering times compared with
static event triggering methods, by triggering later than the static one, in the sense of [26]. To see how, let us denote the value 𝑡𝑖+1
obtained by (7) with 𝛿 = 0 by 𝑡𝑑𝑖+1 if the value of the state at time 𝑡𝑖 were 𝑥(𝑡𝑖). Since 𝛿 = 0, we have 𝑤 = 𝑥, and we choose 𝛥 = 0.
Let us denote by 𝑡𝑠𝑖+1 the (𝑖 + 1)st triggering time that is obtained by the static event trigger mechanism

⎧

⎪

⎨

⎪

⎩

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝑥(𝑡𝑖)

𝑒(𝑡) = 𝑥(𝑡𝑖) − 𝑥(𝑡) for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1)

𝑡𝑖+1 = sup
{

𝑡 ≥ 𝑡𝑖 ∶ 𝛤 |𝑥(𝑡)| − |𝑒(𝑡)| ≥ 0
}

(69)

if the state at time 𝑡𝑖 is 𝑥(𝑡𝑖). As in [26], we show now that 𝑡𝑠𝑖+1 ≤ 𝑡𝑑𝑖+1. To show this, we argue by contradiction. Suppose that
𝑡𝑠𝑖+1 > 𝑡𝑑𝑖+1. Then (69) gives 𝛤 |𝑥(𝑡)| − |𝑒(𝑡)| ≥ 0 for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑑𝑖+1]. Since 𝑧(𝑡) > 0 for all 𝑡 ≥ 0, we deduce that

𝑧(𝑡) −𝐷|𝐵𝐾|(|𝑒(𝑡)| − 𝛤 |𝑥(𝑡)|) > 0 (70)

for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑑𝑖+1]. This contradicts the definition of 𝑡
𝑑
𝑖+1 as a supremum and the right continuity of 𝑒(𝑡). As noted in [26, Remark 2.4],

one cannot apply this result repeatedly to show that the dynamic approach always gives better results than the static one. However,
in the next section, we illustrate how our new dynamic triggers can reduce the numbers of trigger times on given intervals compared
with previous static and dynamic event triggering mechanisms.

For the second criterion, note that our lower bound 𝜈 on the inter-execution times for our dynamic event-triggered control is the
largest available 𝜈 > 0 such that |𝛺−1(𝑠) − 𝐼| ≤ 𝛤 for all 𝑠 ∈ [0, 𝜈], where 𝛺 and 𝛤 satisfy the requirements from Section 2.1, and
10
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these requirements can be met for all controllable pairs (𝐴,𝐵) for a suitable choice of 𝐾 in Section 2.1, after a change of coordinates;
see Remark 3.1. By contrast, for the same class of systems, [26] used the usual Euclidean norm, and reported the lower bound for
the inter-execution time, as follows. First, [26] found matrices 𝐾 ∈ R𝑝×𝑛, 𝑃0, and 𝑄0, with 𝑃0 and 𝑄0 being positive definite 𝑛 × 𝑛
matrices, such that

(𝐴 + 𝐵𝐾)⊤𝑃0 + 𝑃0(𝐴 + 𝐵𝐾) = −𝑄0, (71)

and then used the dynamic extension

𝜂̇(𝑡) = −𝜆𝜂(𝑡) + 𝜎̄𝑥⊤(𝑡)𝑄0𝑥(𝑡) − 2𝑥⊤(𝑡)𝑃0𝐵𝐾
(

𝑥(𝜎(𝑡)) − 𝑥(𝑡)
)

, 𝜂(0) = 𝜂0 (72)

and the trigger times

𝑡𝑖+1 = inf
{

𝑡 ≥ 𝑡𝑖 ∶ 𝜂(𝑡) + 𝜃
(

𝜎̄𝑥⊤(𝑡)𝑄0𝑥(𝑡) − 2𝑥⊤(𝑡)𝑃0𝐵𝐾(𝑥(𝜎(𝑡)) − 𝑥(𝑡−))
)

≤ 0
}

(73)

with 𝑡0 = 0, where the constants 𝜎̄ ∈ (0, 1), 𝜆 > 0, 𝜃 > 0, and 𝜂0 > 0 are design parameters, and where 𝜎(𝑡) is the largest trigger time
on [0, 𝑡] as before. Using the preceding notation, [26] then provided the following maximum lower bound on the inter-execution
times, where we use the notation 𝜏0 to distinguish this lower bound from the lower bound 𝜈 that we obtained from Theorems 1–2
from the previous sections:

𝜏0 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫

1

0

1
𝑎 𝑝
𝜎̄𝑞0

+ (𝑎 + 𝑏)𝑠 + 𝑏 𝜎̄𝑞0
𝑝 𝑠2

d𝑠, if 𝑎 ≤ 𝜆∕2

∫

1

0

1

𝑎 𝑝
𝜎̄𝑞0

+ (𝑎 + 𝑏)𝑠 + 𝑏 𝜎̄𝑞0
𝑝 𝑠2 +

(

𝑎 − 𝜆
2

)

(𝑠3 − 𝑠)
d𝑠, if 𝑎 > 𝜆∕2 and 𝜃 ≤ 1∕(2𝑎 − 𝜆)

∫

1

0

1
𝑎 𝑝
𝜎̄𝑞0

+ (𝑎 + 𝑏)𝑠 + 𝑏 𝜎̄𝑞0
𝑝 𝑠2 + 1

2𝜃 (𝑠
3 − 𝑠)

d𝑠, if 𝑎 > 𝜆∕2 and 𝜃 > 1∕(2𝑎 − 𝜆)

(74)

where 𝑞0 > 0 is the smallest eigenvalue of 𝑄0, 𝑝 = 2‖𝑃0𝐵𝐾‖, 𝑎 = ‖𝐴 + 𝐵𝐾‖, and 𝑏 = ‖𝐵𝐾‖. Also, as noted in [26], the first case
lower bound in (74) coincides with the lower bound in the static event-triggered case of [36], but the other lower bounds for the
ther two cases in (74) are strictly larger than the lower bound for the first case. Moreover, (74) is a continuous function of 𝜃 that is
onstant on [0, 1∕(2𝑎− 𝜆)], strictly decreasing on [1∕(2𝑎− 𝜆),+∞) (since 𝑠3 − 𝑠 < 0 for all 𝑠 ∈ (0, 1)), and converges towards the static
vent-triggered lower bound on the inter-execution times (i.e., the first integral in (74)) as 𝜃 → +∞. We turn next to our illustration
f advantages of our methods, using some of the previous criteria and (74).

. Application to BlueROV2 marine vehicle

We revisit a dynamics for the control of the depth and pitch degrees-of-freedom (or DOF) of an autonomous underwater vehicle
or AUV) that we studied in [20,22], e.g., the BlueROV2 vehicle, which is widely used in environmental surveys such as the study
f corals. As in [20,22], we assume that the vehicle has a Doppler Velocity Logger (or DVL) for estimating its velocity. The DVL
ommonly experiences bottom lock, making it impractical to continuously change the control values. Hence, we show how our
ew dynamic event-triggered approach applies, and so we cover cases where only sampled measurements (instead of continuous
easurements) are needed in the triggering rule, which were beyond the scope of [22] or other event-triggered studies of the
ynamics that required continuous system measurements.
As noted in [37, Equation (9.28)], after linearization and assuming that the vehicle is neutrally buoyant, the linearized dynamics

or the depth plane are given by

(𝑚 −𝑋𝑤̇(𝑡))𝑤̇(𝑡) − (𝑚𝑥𝑔 +𝑍𝑞̇)𝑞̇(𝑡) −𝑍𝑤𝑤(𝑡) − (𝑚𝑈 (𝑡) + 𝑧𝑞)𝑞(𝑡) = 𝑍𝛾𝑠𝑢𝑍
(𝑚𝑥𝑔 +𝑀𝑤̇(𝑡))𝑤̇(𝑡) + (𝐼𝑦𝑦 −𝑀𝑞̇)𝑞̇(𝑡) −𝑀𝑤𝑤(𝑡) + (𝑚𝑥𝑔𝑈 −𝑀𝑞)𝑞(𝑡) −𝑀𝜃𝜃 = 𝑀𝛾𝑠𝑢𝑀

(75)

hose parameter values were experimentally computed and presented in [37]. As in [22], we assume that the surge nominal velocity
s 𝑈 = 0.1 m∕s. The states represent the depth velocity 𝑤 and the pitch velocity 𝑞, and the controls 𝑢𝑍 and 𝑢𝑀 are the force and
oment required to produce motion of the vehicle. Using the parameter values and controller from [37], the system (75) becomes

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 with

𝐴=
[

−0.387 0
0 −1.8

]

and 𝐵=
[

0.038
1.5

]

, (76)

hich are the 𝐴 and 𝐵 choices in [20]. Choosing

𝐾 = [−0.977852,−0.097546799] (77)

rovides the eigenvalues −1.94988 and −0.420595 for the matrix

𝐴 + 𝐵𝐾 =
[

−0.424158 −0.00370678
]

(78)
11
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Fig. 1. Comparison of event-triggered controls: Static (Left Panel) and Dynamic (Right Panel).

Fig. 2. Simulation results for Theorem 2: No disturbances (Left) and with disturbances (Right).

which satisfies our requirements from Assumption 1 with 𝐻 = 𝐴+𝐵𝐾. To satisfy the requirements (3), (4), and (6) from Section 2.1,
we chose 𝑉 = [2, 0.2]⊤, 𝑐 = 3.9, 𝑟 = 0.02, 𝜈 = 0.72, and

𝛤 =
[

0.90 0.012
1.36 0.9

]

. (79)

With the preceding choices, we carried out MATLAB simulations, first using the static event-triggered method from [20, Theorem
1] and then using the dynamic event-triggered control method from Theorem 1 from Section 2.2 with 𝐷 = 𝐼 , 𝛿 = 0, and 𝑇 = 0.82.
We also evaluated the performance of the strategy when the Euclidean 2 norm is used instead of the absolute values in Theorem 1
and the one in [26]. We report our simulations in the figures above, for the initial states (𝑤𝑖(0), 𝑞𝑖(0)) for the 𝑖th simulation for
𝑖 = 1, 2, 3 that are indicated in Fig. 1, with the model parameters kept the same in all of the simulations.

Averaged over the three sets of initial states, the static event-triggered method from [20] triggered 25 times while our dynamic
trigger rule triggered 17 times on the same 20 s time horizon. Moreover, switching to the dynamic triggering rule did not introduce
any substantial undershoots or overshoots, and the settling times were also not too adversely affected. This illustrates the benefits of
using the dynamic event triggers from Theorem 1, namely, that they can reduce the numbers of triggering times to address bottom
lock, while only requiring sampled measurements and also not adversely affecting the system performance. In our simulations, most
of the trigger times occurred in the first 5 s, so we omit the trigger times in the figures to clearly highlight the control performance
in terms of convergence properties.

Also, with the preceding parameter choices, we can satisfy the requirements of Theorem 2, e.g., with 𝑄 = [𝑄𝑖𝑗 ] with 𝑄11 = 5
and 𝑄12 = 𝑄21 = 𝑄22 = 4, 𝜅0 = 0.8, 𝐶 = [1, 1], 𝐿 = [0.7, 0.12]⊤, 𝜈 = 0.72, and any 𝑇 ∈ (0.72, 5], which correspond to only having
sampled measurements of the sum of the state variables for the control and triggering rule. The simulation results can be seen in
Fig. 2, for the case when no disturbances are considered for the system and for the case when each of the components 𝛿𝑖 for 𝛿 were
random disturbances that are uniformly sampled from the interval (0.01, 0.08) at each time step. In the case with no disturbances,
the controller was triggered on average 17 times over the three initial state vectors, while for the case when disturbances were
considered, triggering was activated on average 33 times for the three initial state vectors. This improves on works such as [20],
whose results for systems with outputs called for continuous measurements of the outputs in the triggering rule.

In Fig. 3, we present simulations using the dynamic control defined by (44) and (45), except with | ⋅ | replaced by the usual
Euclidean norm ‖ ⋅ ‖, in order to demonstrate the possible advantage of using matrices of absolute values instead of the usual
12
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Fig. 3. Simulation results for Theorem 2 when Euclidean norm is used: No disturbances (Left) and with disturbances (Right).

Fig. 4. Simulation results for work presented in [26, Section III.A]: No disturbances (Left) and with disturbances (Right).

Euclidean norm. In this case all parameters are maintained as previously presented, with the matrix 𝛤 > 0 replaced by the smallest
entry of 𝛤 and 𝟏𝑛 no longer present. When using the usual Euclidean norm, the controller was triggered on average 15 times averaged
over the three initial state vectors when there were no disturbances, while for the case when disturbances were considered, triggering
happened on average 44 times. These results are comparable with the case when the absolute value of matrices was used (instead
of the Euclidean 2-norm) in Theorem 2, in terms of numbers of triggering times, but using the usual Euclidean norm produced
larger overshoots or undershoots that were not present when we used our approach from (44)–(45). This demonstrates a potential
advantage of using our approach based on interval observers and matrices of absolute values.

Lastly, we compared our approach from Theorem 1 with the approach presented in [26, Section III.A], as explained in Section 4
bove. In order to isolate the effects of the different trigger rules, we kept all parameters the same in the simulations based
n Theorem 1 and those that were based on [26, Section III.A], except for the trigger rules. We chose 𝐴 and 𝐵 from (76) and
= [−0.977852,−0.097546799] as before and 𝑄0 = 𝐼 with 𝑛 = 2, and then we solved the corresponding Riccati equation to obtain

𝑃0 =
[

1.73856 −0.161868
−0.161868 0.257203

]

. (80)

e then did simulations for different choices of the four design parameters. For instance, with 𝜎̄ = 0.1, 𝜂0 = 1, and 𝜆 = 𝜃 = 1, the
esults can be seen in Fig. 4.
In this case, the number of triggers was on average 85 when no disturbances are present, and 207 when a disturbance is present

n the system. We choose the disturbance as in our previous simulations above. We summarize results from all of our simulations in
able 1, where SSF-A indicates the simulation that used the static state feedback from [20] with matrices of absolute values, DSF-A
resp., DOF-A) means we used the dynamic state feedback from Theorem 1 (resp., Theorem 2) above with matrices of absolute
alues, DOF-E indicates that we used the method from Theorem 2 above except with matrices of absolute values replaced by the
sual Euclidean norm, and DSF-E indicates a simulation that was done using the dynamic event-triggered rule from [26] using the
alues indicated above.
In addition to the simulations pictured in Figs. 1–4, we ran simulations using the controls from Theorem 1 above and

rom [26, Section III.A] (with the same parameter values that we used to generate the comparisons in Table 1), for 30 different
andom initial state pairs (𝑤(0), 𝑞(0)) ∈ [0.2, 10] × [−6.28, 0.89] without disturbances, and for 100 different random initial states in
0.2, 10] × [−6.28, 0.89] with disturbance amplitudes being random numbers on the interval [0, 0.06], in order to examine the effects
f increasing the size of the sample sets of initial states. For the simulations with the disturbances, the average number of triggers
13
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Table 1
Average numbers of trigger times in Figs. 1–4.
Event-triggered method Zero 𝛿 Rand 𝛿

SSF-A from [20, Theorem 1] 25 –
DSF-A from Theorem 1 17 –
DOF-A from Theorem 2 17 33
DOF-E 15 44
DSF-E from [26, Sec. III.A] 85 207

Table 2
Average numbers of triggers with random initial states.
Event-triggered method Zero 𝛿 Rand 𝛿

DSF-A from Theorem 1 25.3 31.1
DSF-E from [26, Sec. III.A] 94.4 76.9

Table 3
Lower bounds 𝜏0 on inter-execution times for values 𝜎̄ ∈ (0, 1) (Columns) and 𝜆 ∈ (0, 2𝑎) (Rows).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9(2a) 0.045 0.083 0.116 0.144 0.169 0.190 0.209 0.227 0.242
0.8(2a) 0.045 0.084 0.117 0.145 0.170 0.192 0.212 0.229 0.245
0.7(2a) 0.045 0.084 0.118 0.147 0.172 0.195 0.214 0.233 0.249
0.6(2a) 0.045 0.085 0.118 0.148 0.174 0.197 0.217 0.236 0.253
0.5(2a) 0.046 0.085 0.119 0.149 0.176 0.199 0.220 0.239 0.256
0.4(2a) 0.046 0.086 0.120 0.151 0.177 0.202 0.223 0.243 0.260
0.3(2a) 0.046 0.086 0.121 0.152 0.179 0.204 0.226 0.246 0.264
0.2(2a) 0.046 0.087 0.122 0.153 0.181 0.207 0.229 0.249 0.268
0.1(2a) 0.046 0.087 0.123 0.155 0.183 0.209 0.232 0.254 0.273

on the 20 s time horizon was 31.1 for the approach from Theorem 1, and 76.9 triggers for the approach from [26]. Also, for the
simulations without disturbances, the approach from Theorem 1 produced 25.3 triggers on average as compared with 94.4 triggers
on average using the approach from [26]. We summarize these findings in Table 2.

For the preceding examples, we know that our new trigger rules led to fewer trigger times in the cases indicated except for the
DOF-E unperturbed case in Table 1, because all other parameters were kept the same in our comparisons, so all we changed were
the triggering methods. This illustrates the potential advantages from using our method, which produced significantly fewer trigger
times on the 20 s time horizon as compared with [26] in most cases, without adversely affecting control performance. Also, while
the preceding simulations based on the method from [26] required continuous measurements 𝑥(𝑡) of the state, our approach only
required sampled values 𝑥(𝑡𝑖) of the state, and so required less information for implementation.

The preceding cases and simulations compared triggered performance using criteria (iii) from Section 4, i.e., mean numbers
of trigger times on an interval of a given length. In order to also compare our new trigger rules with state-of-the-art results such
as [26], we next compare values of the lower bound 𝜏0 on the inter-execution times from (74) with the lower bound 𝜈 = 0.72 that we
obtained above. This will test our methods using the criterion (ii) from Section 4. The method in [26] called for choosing the design
parameters 𝜆 and 𝜃 from Section 4 above. However, as a function of 𝜃, the formula (74) for 𝜏0 shows that the maximal 𝜏0 occurs when
𝜃 = 1∕(2𝑎 − 𝜆), and that for this choice of 𝜃, 𝜏0 is a decreasing function of 𝜆. This motivates choosing 𝜆 > 0 smaller to get bigger 𝜏0
values. In Table 3, we show the values of 𝜏0 from (74) obtained for the choice 𝜃 = 1∕(2𝑎−𝜆) and for 81 combinations of the different
possible values of 𝜆 ∈ (0, 2𝑎) (ranging from a lowest value of 𝜆 = 0.1(2𝑎) = 0.490207 to a maximum value of 𝜆 = 0.9(2𝑎) = 4.41186)
and different possible values of 𝜎̄ ∈ (0, 1), where 𝑎 = ‖𝐴+𝐵𝐾‖ as before, the 𝜆 values are indicated by row headings, the 𝜎̄ values are
indicated by column headings, and we rounded our 𝜏0 values to the third decimal place to fit their values in Table 3. We computed
the 𝜏0 values in Table 3 by using the numerical integration command 𝙽𝙸𝚗𝚝𝚎𝚐𝚛𝚊𝚝𝚎 in the Mathematica computer program to compute
the second integral in (74). For instance, with the choices 𝜆 = 0.5(2𝑎) and 𝜎̄ = 0.6, the second integral in (74) gave the value 0.199.
In each of the 81 cases in Table 3, the 𝐴, 𝐵, 𝐾, 𝑃0, and 𝑄0 values were chosen the same as for the simulation in Fig. 4.

The preceding table indicates how the maximum lower bound 𝜏0 on the inter-execution times from [26] increases as 𝜎̄ ∈ (0, 1)
increases towards 1 and as 𝜆 ∈ (0, 2𝑎) decreases towards 0, corresponding to moving from the upper left corner of the table to the
lower right. However, the largest 𝜏0 values that we obtained from using (74) were significantly below the value 𝜈 = 0.72 that we
obtained for the lower bound for the inter-execution times using our positive systems approach, regardless of how small we chose
𝜆 in (0, 2𝑎) or how large we chose 𝜎̄ ∈ (0, 1). For instance, with the choices 𝜆 = 0.001(2𝑎) = 0.00490207 and 𝜎̄ = 0.999 and with
𝐴, 𝐵, 𝐾, 𝑃0, and 𝑄0 chosen as we did for Table 3, formula (74) produced the value 𝜏0 = 0.295313. This suggests that when using
the linearized BlueROV2 dynamics with the other parameters specified above, it may be preferable to use our methods based on
matrices of absolute values, instead of using the Euclidean 2-norm based event-triggered rules from [26], since our method ensures
larger lower bounds on the inter-execution times 𝑡 − 𝑡 , and we found similar advantages using many other choices of 𝑄 .
14
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6. Conclusion

We derived new event triggered control laws using the dynamic extension approach of [26] for the classes of systems in [20].
ey ingredients included our new triggering functions and our new interconnections of event-triggered dynamics with continuous–
iscrete observers. The continuous–discrete dynamics made it possible to compute the control values and trigger times from sampled
alues of an output, instead of requiring continuous measurements of the output. Our work also applies when the outputs contain
ncertainties. Our application to a BlueROV2 dynamics illustrated how our new dynamic event triggering methods can reduce
he numbers of triggering times on intervals on average, without substantial degradation of settling times and without producing
ndesirable overshoots or undershoots, as compared to dynamic event-triggered controls that used the usual Euclidean norm, and
lso as compared with static event-triggered controls that used interval observers and positive systems approaches. We also showed
ow our methods can lead to much larger lower bounds on the inter-execution times in the example, as compared with [26],
hen we substitute the earlier dynamic event-triggered control that was based on the usual Euclidean norm by our new event-
riggered methods that were based on matrices of absolute values and interval observers but keep all other parameters the same.
his is useful for knowing a priori that our new triggering rules can ensure larger time horizons between trigger rules, and thereby
otentially lead to fewer trigger times on given intervals. This is a potential benefit for underwater vehicles that are prone to bottom
ock, which precludes continuously changing the control values. Our event-triggered approach helps address the important need to
educe the numbers of times when control values change, to take communication and other resource constraints into account. A
ime-varying extension is expected. Our new approaches may also offer potential enhancement of state-of-the-art results on event-
riggered communication applications [18] and consensus [19] by increasing the lower bounds on the inter-execution times. We
ope to study these applications as well.
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Appendix. Alternate formulas for triggering function (45)

We show how we can replace the trigger function (45) in Theorem 2 by an alternative expression that satisfies the fading property
hat lim𝑡→+∞ 𝜆(𝑡) = 0 when 𝛥 from Assumption 2 also satisfies lim𝑡→+∞ 𝛥(𝑡) = 0. Then we explain how to replace 𝜆(𝑡) in (45) by a
different expression that does not involve the Euclidean 2-norm, using a new discrete time interval observer for the dynamics for
the error 𝑥̃(𝑡𝑖) = 𝑤(𝑡𝑖) − 𝑥(𝑡𝑖) between the state 𝑤 of the continuous–discrete observer and the state 𝑥 of the event-triggered system
from Theorem 2.

A.1. Trigger function with fading effect

A notable difference between the formula (8) for 𝜆(𝛥𝑡) from the triggering rule in Theorem 1 and the corresponding formula for
(𝑡) in (45) for Theorem 2 is that, whereas 𝜆(𝛥𝑡) in Theorem 1 has the fading effect that lim𝑡→+∞ 𝜆(𝛥𝑡) = 0 when lim𝑡→+∞ 𝛥(𝑡) = 0,
e do not have lim𝑡→+∞ 𝜆(𝑡) = 0 when lim𝑡→+∞ 𝛥(𝑡) = 0 for the function 𝜆 in (45). However, we can prove a version of Theorem 2
n which the function 𝜆 in (45) is replaced by a new function 𝜆♯ that has this fading effect. We next show how this can be done.
To this end, first note that for any 𝑗 such that 𝑡𝑘− 𝑡𝑘−1 ∈ [𝜈, 𝑇 ] for all 𝑘 ∈ {1,… , 𝑗}, the argument that led to (55) (except applied

or all integers in {⌊𝑗∕2⌋,… , 𝑗}, and then to all integers in {0,… , ⌊𝑗∕2⌋}) gives

‖𝑥̃(𝑡𝑗 )‖ ≤ 𝜅𝑗∕4
∗

√

𝜆max
𝜆min

‖𝑥̃(𝑡
⌊𝑗∕2⌋)‖ +

√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[𝑡

⌊𝑗∕2⌋ ,𝑡𝑗 ] and

‖𝑥̃(𝑡
⌊𝑗∕2⌋)‖ ≤ 𝜅⌊𝑗∕2⌋∕2

∗

√

𝜆max
𝜆min

‖𝑥̃(0)‖ +
√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡

⌊𝑗∕2⌋]

(A.1)

here ⌊⋅⌋ is the floor function. Using the second inequality in (A.1) to upper bound the ‖𝑥̃(𝑡
⌊𝑗∕2⌋)‖ on the right side of the first

nequality in (A.1), and separately considering cases where 𝑗 is even or odd, we obtain

‖𝑥̃(𝑡𝑗 )‖ ≤ 𝜅𝑗∕2−1∕4
∗

𝜆max
𝜆min

‖𝑥̃(0)‖ + 𝜅𝑗∕4∗
𝜆min

√

𝜆max𝜅∗𝜅∗∗
1−𝜅∗

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡

⌊𝑗∕2⌋]

+
√

𝜅∗𝜅∗∗ ∫ 0
‖𝑒𝐴𝓁‖d𝓁‖𝛥‖ .

(A.2)
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f

Hence, if 𝑖 ∈ Z0 is the first index such that 𝑡𝑖+1 − 𝑡𝑖 < 𝜈, then the reasoning that led to (45) and (58) imply that Theorem 2 remains
true if we replace the definition of 𝜆(𝑡) in (45) by

𝜆♯(𝑡) = |𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)||
|

+ 𝐼 + 2𝛤
]

∫ 𝑡
(𝑡−𝜈)+

|

|

|

𝑒𝐴(𝑡−𝓁)||
|

𝛥(𝓁)d𝓁

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛
(

𝜅𝜎(𝑡)∕(2𝑇 )−1∕4
∗

𝜆max
𝜆min

𝑏0 +
𝜅𝜎(𝑡)∕(4𝑇 )∗

𝜆min

√

𝜆max𝜅∗𝜅∗∗
1−𝜅∗

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡]

)

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛
√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[(𝑡(1−0.5𝑇 ∕𝜈)−𝑇 ∕2)+ ,𝑡],

(A.3)

which enjoys the property that lim𝑡→+∞ 𝜆♯(𝑡) = 0 when lim𝑡→+∞ 𝛥(𝑡) = 0 and when 𝜈 < 𝑇 < 2𝜈, because 𝜅∗ ∈ (0, 1).

A.2. Use of discrete time interval observers

Using the well known Schur complement, it follows that for each positive definite matrix 𝑄 ∈ R𝑛×𝑛 and each matrix 𝐿 ∈ R𝑛×𝑞

and each constant 𝜅0 > 0, the following two conditions are equivalent: (a) condition (43) from Assumption 3 is satisfied for all
𝓁 ∈ [𝜈, 𝑇 ] and (b) the matrix

[

𝜅0𝑄 𝑒𝐴⊤𝓁(𝐼 − 𝐿𝐶)⊤

(𝐼 − 𝐿𝐶)𝑒𝐴𝓁 𝑄−1

]

(A.4)

is positive definite for each 𝓁 ∈ [𝜈, 𝑇 ]. This provides a useful alternative linear matrix inequality reformulation.
We can also prove a variant of Theorem 2 where we replace 𝜆(𝑡) from (45) by an alternative expression that does not contain

the Euclidean 2 norm, by building a discrete time interval observer for the dynamics

𝑥̃(𝑡𝑗 ) = 𝑃 (𝑡𝑗 − 𝑡𝑗−1)𝑥̃(𝑡𝑗−1) + 𝑃 (𝑡𝑗 − 𝑡𝑗−1)𝑗 (A.5)

for the error variable 𝑥̃ −𝑤 − 𝑥 from (54) for any 𝑗 ∈ {1,… , 𝑖}, where the functions 𝑃 and 𝑗 in (A.5) are defined by

𝑃 (𝓁) = (𝐼 − 𝐿𝐶)𝑒𝐴𝓁 and 𝑗 = −∫

𝑡𝑗

𝑡𝑗−1
𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁 (A.6)

and where as in the second part of the proof of Theorem 2, 𝑖 is the smallest index such that 𝑡𝑖+1 − 𝑡𝑖 < 𝜈, so 𝑡𝑗 − 𝑡𝑗−1 ∈ [𝜈, 𝑇 ] for all
𝑗 ∈ {1,… , 𝑖}. This is done by replacing Assumption 3 by:

Assumption A.1. There are a vector 𝑊 > 0 in R𝑛 and a constant 𝜅0 ∈ (0, 1) such that

𝑊 ⊤
|𝑃 (𝓁)| ≤ 𝜅0𝑊

⊤ (A.7)

for all 𝓁 ∈ [𝜈, 𝑇 ].

Since |𝑃 (𝓁)| ≥ 0, the preceding assumption means that |𝑃 (𝓁)| is Schur stable, with the additional requirement that 𝑊 and 𝜅0
can be chosen independently of 𝓁 ∈ [𝜈, 𝑇 ]; see, e.g., [34, Lemma 2.7, p.79]. The assumption can therefore be interpreted to mean
that |𝑃 (0)| is Schur stable and that 𝑃 is in some sense slowly time varying. To prove Theorem 2 with the preceding replacements,
we first rewrite (A.5) as

𝑥̃(𝑡𝑗 ) = (𝑃 (𝑡𝑗 − 𝑡𝑗−1))+𝑥̃(𝑡𝑗−1) − (𝑃 (𝑡𝑗 − 𝑡𝑗−1))−𝑥̃(𝑡𝑗−1) + 𝑃 (𝑡𝑗 − 𝑡𝑗−1)𝑗 (A.8)

and we use the discrete time interval observer

𝑥̃(𝑡𝑗 ) = (𝑃 (𝑡𝑗 − 𝑡𝑗−1))+𝑥̃(𝑡𝑗−1) − (𝑃 (𝑡𝑗 − 𝑡𝑗−1))−𝑥̃(𝑡𝑗−1) +
(

𝑃 (𝑡𝑗 − 𝑡𝑗−1)𝑗
)+

𝑥̃(𝑡𝑗 ) = (𝑃 (𝑡𝑗 − 𝑡𝑗−1))+𝑥̃(𝑡𝑗−1) − (𝑃 (𝑡𝑗 − 𝑡𝑗−1))−𝑥̃(𝑡𝑗−1) −
(

𝑃 (𝑡𝑗 − 𝑡𝑗−1)𝑗
)− (A.9)

whose initial states are assumed to satisfy

𝑥̃(0) ≤ 𝑥̃(0) ≤ 𝑥̃(0) and − 2|𝑥̃(0)| ≤ 𝑥̃(0) ≤ 0 ≤ 𝑥̃(0) ≤ 2|𝑥̃(0)|. (A.10)

By noting that the nonnegative orthant is forwardly invariant for the discrete time dynamics for (𝑥̃,−𝑥̃) and for (𝑥̃− 𝑥̃, 𝑥̃− 𝑥̃) (which
ollows from (A.8)–(A.9) by an induction argument on 𝑗), it follows that

𝑥̃(𝑗) − 𝑥̃(𝑗) ≤ 𝑥̃(𝑗) ≤ 𝑥̃(𝑗) ≤ 𝑥̃(𝑗) ≤ 𝑥̃(𝑗) − 𝑥̃(𝑗) (A.11)

and therefore also

|𝑥̃(𝑗)| ≤ 𝑠̃(𝑗) (A.12)

for all 𝑗 ∈ {1,… , 𝑖}, where 𝑠̃ = 𝑥̃ − 𝑥̃ satisfies

𝑠̃(𝑡 ) = |𝑃 (𝑡 − 𝑡 )|𝑠̃(𝑡 ) + |𝑃 (𝑡 − 𝑡 ) | (A.13)
16

𝑗 𝑗 𝑗−1 𝑗−1 𝑗 𝑗−1 𝑗
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for all 𝑗 ∈ {1,… , 𝑖}. Hence, Assumption A.1 gives

𝑊 ⊤𝑠̃(𝑡𝑗 ) ≤ 𝜅0𝑊
⊤𝑠̃(𝑡𝑗−1) + 𝜅0𝑊

⊤
|𝑗 | (A.14)

for all 𝑗 ∈ {1,… , 𝑖}. Then we can argue inductively as in the second part of the proof of Theorem 2 and use our condition 𝜅0 ∈ (0, 1)
and the geometric sum formula to get

𝑊 ⊤
|𝑥̃(𝑡𝑗 )| ≤ 𝑊 ⊤𝑠̃(𝑡𝑗 ) ≤ 𝜅𝑗

0𝑊
⊤𝑠̃(0) + 𝜅0

1−𝜅0
𝑊 ⊤ ∫ 0

−𝑇 |𝑒𝐴𝓁|d𝓁|𝛥|[0,𝑡𝑗 ]

≤ 4𝜅𝑗
0𝑊

⊤
|𝑥̃(0)| + 𝜅0

1−𝜅0
𝑊 ⊤ ∫ 0

−𝑇 |𝑒𝐴𝓁|d𝓁|𝛥|[0,𝑡𝑗 ]
(A.15)

and so also

|𝑥̃(𝑡𝑗 )| ≤
⎡

⎢

⎢

⎢

⎣

1
𝑤1

𝑊 ⊤

⋮
1
𝑤𝑛

𝑊 ⊤

⎤

⎥

⎥

⎥

⎦

(

4𝜅𝑗
0|𝑥̃(0)| +

𝜅0
1 − 𝜅0 ∫

0

−𝑇
|𝑒𝐴𝓁|d𝓁|𝛥|[0,𝑡𝑗 ]

)

(A.16)

for all 𝑗 ∈ {1,… , 𝑖}, by using the bound

𝑤𝑖|𝑥̃𝑖(𝑡𝑗 )| ≤ 𝑊 ⊤
|𝑥̃(𝑡𝑗 )| (A.17)

where 𝑥̃𝑖(𝑡𝑗 ) is the 𝑖th component of 𝑥̃(𝑡𝑗 ) for 𝑖 = 1,… , 𝑛 and separately considering the 𝑛 components of |𝑥̃(𝑡𝑗 )|, where 𝑤𝑖 is the 𝑖th
component of 𝑊 for 𝑖 = 1,… , 𝑛, and where the third inequality in (A.15) followed from our initial conditions in (A.10). Then the
reasoning that led to (45) implies that Theorem 2 remains true if we replace Assumption 3 by Assumption A.1 and if we replace
the function 𝜆(𝑡) in (45) by

𝜆(𝑡) = |𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)||
|

+ 𝐼 + 2𝛤
]

∫ 𝑡
(𝑡−𝜈)+

|

|

|

𝑒𝐴(𝑡−𝓁)||
|

𝛥(𝓁)d𝓁

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)

⎡

⎢

⎢

⎢

⎣

1
𝑤1

𝑊 ⊤

⋮
1
𝑤𝑛

𝑊 ⊤

⎤

⎥

⎥

⎥

⎦

(

4𝜅𝜎(𝑡)∕𝑇
0 𝐵0 +

𝜅0
1−𝜅0

∫ 0
−𝑇 |𝑒𝐴𝓁|d𝓁|𝛥|[0,𝜎(𝑡)]

)

(A.18)

where 𝐵0 ∈ R𝑛 is any vector such that |𝑥̃(0)| ≤ 𝐵0, which is expressed without using the Euclidean 2 norm.

.3. Uncertainties in measurements

Under our Assumptions 1–3, we can generalize Theorem 2 to cases where the measurement is instead

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝛿0(𝑡) (A.19)

or an unknown piecewise continuous function 𝛿0 that admits a known continuous function 𝛥0 such that

|𝛿0(𝑡)| ≤ 𝛥0(𝑡) (A.20)

or all 𝑡 ≥ 0, by instead picking 𝜖0 ∈ (0, 1) such that (1 + 1.5𝜖0)𝜅0 ∈ (0, 1) (where the existence of such a constant 𝜖0 ∈ (0, 1) follows
from the fact that the constant 𝜅0 as introduced in Assumption 3 was chosen to satisfy 𝜅0 ∈ (0, 1), by choosing a small enough
constant 𝜖0 > 0), and then redefining 𝜅∗ and 𝜆(𝑡) from Theorem 2 to be 𝜅∗ = (1 + 1.5𝜖0)𝜅0 and

𝜆(𝑡) = |𝐵𝐾|

[

sup
𝑠∈[0,𝜈]

|

|

|

𝛺−1(𝑠)||
|

+ 𝐼 + 2𝛤
]

∫ 𝑡
(𝑡−𝜈)+

|

|

|

𝑒𝐴(𝑡−𝓁)||
|

𝛥(𝓁)d𝓁 + max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛𝜅
𝜎(𝑡)∕(2𝑇 )
∗

√

𝜆max
𝜆min

𝑏0

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛
√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝜎(𝑡)]

+ max
𝑠∈[0,𝜈]

𝐽 (𝑠)𝟏𝑛
1

√

𝜆min(1−𝜅∗)

[

𝐿𝑎‖𝛥0‖
2
[0,𝑡] + 𝐿𝑏 ∫

0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡]‖𝛥0‖[0,𝑡]

]1∕2
,

(A.21)

respectively, where

𝐿𝑎 =
𝐿2
𝑏

2𝜆min𝜅0𝜖0
+ ‖𝐿⊤𝑄𝐿‖ and 𝐿𝑏 = 2‖𝐼 − 𝐿𝐶‖ sup

𝓁∈[𝜈,𝑇 ]
‖𝑒𝓁𝐴‖ ‖𝑄𝐿‖ (A.22)

and where the other notation is the same as what we used for Theorem 2. To obtain the preceding new formula for 𝜆 when the
output is (A.19), we indicate the changes that are needed in the proof of Theorem 2.

The first and second parts of the proof remain the same, except (54) must be changed to

𝑥̃(𝑡𝑗 ) = (𝐼 − 𝐿𝐶)𝑥̃(𝑡−𝑗 ) + 𝐿𝛿0(𝑡𝑗 ) = (𝐼 − 𝐿𝐶)𝑒(𝑡𝑗−𝑡𝑗−1)𝐴
(

𝑥̃(𝑡𝑗−1) − ∫

𝑡𝑗

𝑡𝑗−1
𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

)

+ 𝐿𝛿0(𝑡𝑗 ) (A.23)

for all 𝑗 ∈ {1,… , 𝑖}, because the added disturbance 𝛿0 on the output 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝛿0(𝑡) produces the new formula
− −
17

𝑤(𝑡𝑗 ) = 𝑤(𝑡𝑗 ) + 𝐿(𝐶𝑥(𝑡) − 𝐶𝑤(𝑡𝑗 )) + 𝐿𝛿0(𝑡𝑗 ) (A.24)
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and because 𝑥̃ = 𝑤−𝑥. Also, since the formula ̇̃𝑥(𝑡) = 𝐴𝑥̃(𝑡)− 𝛿(𝑡) continues to hold for all 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1) and all 𝑗 ≥ 0, the lower bound

𝜆min‖𝑥̃(𝑡𝑗−1)‖2 ≤ 𝑊 (𝑥̃(𝑡𝑗−1)) (A.25)

and the bound (A.20) give

2
[

(𝐼 − 𝐿𝐶)𝑥̃(𝑡−𝑗 )
]⊤

𝑄𝐿𝛿0(𝑡𝑗 )

≤ 2‖𝐼 − 𝐿𝐶‖ sup
𝓁∈[𝜈,𝑇 ]

‖𝑒𝓁𝐴‖
(

‖𝑥̃(𝑡𝑗−1)‖ + ∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)

‖𝑄𝐿‖ ‖𝛿0(𝑡𝑗 )‖

= 𝐿𝑏

(

‖𝑥̃(𝑡𝑗−1)‖ + ∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)

‖𝛿0(𝑡𝑗 )‖

≤
(

√

𝜖0𝜆min𝜅0‖𝑥̃(𝑡𝑗−1)‖
)

(

𝐿𝑏
√

𝜖0𝜆min𝜅0
‖𝛥0(𝑡𝑗 )‖

)

+ 𝐿𝑏 ∫
0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0(𝑡𝑗 )‖

≤ 𝜖0𝜅0
2 𝑊 (𝑥̃(𝑡𝑗−1)) +

𝐿2
𝑏

2𝜆min𝜅0𝜖0
‖𝛥0(𝑡𝑗 )‖2 + 𝐿𝑏 ∫

0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0(𝑡𝑗 )‖,

(A.26)

where 𝐿𝑏 was defined in (A.22), so and our choice of 𝐿𝑎 in (A.22) gives

2
[

(𝐼 − 𝐿𝐶)𝑥̃(𝑡−𝑗 )
]⊤

𝑄𝐿𝛿0(𝑡𝑗 ) +
[

𝐿𝛿0(𝑡𝑗 )
]⊤ 𝑄𝐿𝛿0(𝑡𝑗 )

≤ 𝜖0𝜅0
2 𝑊 (𝑥̃(𝑡𝑗−1)) + 𝐿𝑎‖𝛥0(𝑡𝑗 )‖2 + 𝐿𝑏 ∫

0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0(𝑡𝑗 )‖

(A.27)

where the last inequality in (A.26) used the triangle inequality and (A.25). Hence, using the first equality in (A.23), it follows that
the argument that gave (56) gives

𝜆min‖𝑥̃(𝑡𝑗 )‖2 ≤ 𝑊 (𝑥̃(𝑡𝑗 )) ≤ 𝜅0𝑊 (𝑥̃(𝑡𝑗−1)) − 2𝜅0𝑥̃(𝑡𝑗−1)⊤𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

+ 𝜅0
[

∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁
]⊤

𝑄 ∫ 𝑡𝑗
𝑡𝑗−1

𝑒𝐴(𝑡𝑗−1−𝓁)𝛿(𝓁)d𝓁

+ 2
[

(𝐼 − 𝐿𝐶)𝑥̃(𝑡−𝑗 )
]⊤

𝑄𝐿𝛿0(𝑡𝑗 ) +
[

𝐿𝛿0(𝑡𝑗 )
]⊤ 𝑄𝐿𝛿0(𝑡𝑗 )

(A.28)

and therefore also

𝜆min‖𝑥̃(𝑡𝑗 )‖2 ≤ 𝑊 (𝑥̃(𝑡𝑗 )) ≤ 𝜅∗𝑊 (𝑥̃(𝑡𝑗−1)) + 𝜅0𝜅∗∗
(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

+𝐿𝑎‖𝛥0(𝑡𝑗 )‖2 + 𝐿𝑏 ∫
0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0(𝑡𝑗 )‖

≤ … ≤ 𝜅𝑗
∗𝑊 (𝑥̃(0)) + 𝜅∗𝜅∗∗

1−𝜅∗

(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

+ 1
1−𝜅∗

(

𝐿𝑎‖𝛥0‖
2
[0,𝑡𝑗 ]

+ 𝐿𝑏 ∫
0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0‖[0,𝑡𝑗 ]

)

≤ 𝜅𝑗
∗𝜆max‖𝑥̃(0)‖2 +

𝜅∗𝜅∗∗
1−𝜅∗

(

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

)2

+ 1
1−𝜅∗

(

𝐿𝑎‖𝛥0‖
2
[0,𝑡𝑗 ]

+ 𝐿𝑏 ∫
0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0‖[0,𝑡𝑗 ]

)

,

(A.29)

where the second inequality in (A.29) used (A.27), and where the third inequality in (A.29) used the geometric sum formula and
the fact that 𝜖0 ∈ (0, 1) was chosen such that our constant 𝜅∗ = (1+ 1.5𝜖0)𝜅0 satisfies 𝜅∗ ∈ (0, 1), which allowed us to incorporate the
effects of the first right side term in (A.27) into the 𝜅∗𝑊 (𝑥̃(𝑡𝑗−1)) in (A.29). Therefore, instead of (55), we can divide (A.29) through
by 𝜆min and then use the subadditivity of the square root to obtain the bound

‖𝑥̃(𝑡𝑗 )‖ ≤ 𝜅𝑗∕2
∗

√

𝜆max
𝜆min

‖𝑥̃(0)‖ +
√

𝜅∗𝜅∗∗
𝜆min(1−𝜅∗)

∫ 0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]

+ 1
√

𝜆min(1−𝜅∗)

[

𝐿𝑎‖𝛥0‖
2
[0,𝑡𝑗 ]

+ 𝐿𝑏 ∫
0
−𝑇 ‖𝑒𝐴𝓁‖d𝓁‖𝛥‖[0,𝑡𝑗 ]‖𝛥0‖[0,𝑡𝑗 ]

]1∕2
.

(A.30)

Then we use (A.30) instead of (55) to bound the ‖𝑥̃(𝑡𝑖)‖ terms in the remainder of the proof of Theorem 2. This produces the added
terms in the formula (A.21) for 𝜆 that were not present in (45). Then the statement of Theorem 2 remains true, except with 𝛥 in
he final stability estimate replaced by (𝛥, 𝛥0).
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