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1. Introduction

Skilled nursing facilities, or nursing homes (NHs), are responsible for caring the frail and elderly
population, who may suffer from multiple chronic diseases, multi-functional (e.g., physical, mental and
social) losses and aging-related disabilities, by providing 24/7 personal medical care and daily-living
assistance. Due to rapid population aging, the United States (U.S.) will soon experience a significant growth
in the elderly population with disability and the trend will continue in future decades.

While NH care is known to be expensive, the large spending does not necessarily translate into high
quality of care at NHs. Over 120,000 deficiencies were issued to NHs due to regulatory violations in 2013
[1], and 20.5% of NHs received deficiencies issued for causing potential/actual harm to their residents in
2014 [2]. Moreover, rapid population aging triggers escalating workforce shortage and public financing
shortfall [3]. The above challenges imply that providing high-quality NH care is clearly at risk.

NH staffing is influential to resident outcomes (e.g., re-hospitalization, morbidity and mortality rates,
percentages of pressure sores and incontinence) and service quality indices of NH facility (e.g., facility
deficiency citation) [4, 5]. So far, practice at NH is either based on diverse administrator experience [6] or
“one-size-fit-all” government regulation (e.g., minimum staff-to-resident ratio requirements enforced by
federal/state agencies) [7]. There is a lack of predictive analytics integrated simulation-based decision
support platform to inform appropriate staffing decisions to NH administrators in various practical contexts.
On the other hand, in the existing literatures of simulation modeling for healthcare resource (e.g., bed
capacity, staffing, etc.) planning and management, most of them focused on acute care settings, such as
hospital [8-12] and emergency department [13-15]. There were also many operation research studies
utilizing simulation to investigate resource management in other service systems, such as call center [16],
transportation system [17] and power system [18].

To investigate appropriate NH staffing decisions, there are several challenges to overcome. First, unlike
patients in acute-care hospitals where their length-of-stays (LOSs) do not differ much, NH residents either
spend a few days to a month in the facility receiving post-acute care to recover from surgery or stay in the
facility for a substantially longer time to maintain their functioning performance on daily activities (e.g.,
eating, dressing, bathing) [19]. Thus, their NH LOS, or dwelling duration, may vary from a few weeks to
several months and even years. The highly skewed and right-censored LOS observations make conventional
LOS modeling assumptions of symmetry and normality inappropriate in many simulation-based healthcare
literature [20]. In addition, NH residents have multiple potential discharge dispositions. They may be either
discharged to their residential community for further recovery or transferred to hospital due to occurrence
of critical events (e.g., fall and infection). The mutually exclusive events are community discharge and
re/hospitalization; and whichever comes first determines the NH dwelling duration of a resident. Existing
healthcare literatures of simulation modeling have studied various parametric survival analysis models (e.g.,
Lognormal [8], Weibull [21], and exponential models [9]) to predict LOS, but they cannot address the data
complexity resulting from multiple types of discharge dispositions. There is a need to develop predictive



analytics method to characterize the complex LOS data via considering multiple discharge dispositions and
to improve LOS prediction of NH residents. Further, there is a need to integrate the successful predictive
model with computer simulation to improve resident flow modeling and prediction performance at NH
facility level.

Moreover, NH residents often suffer from diverse chronic diseases and functional limitations, and their
service needs are highly heterogeneous. The service demand heterogeneity of NH residents cannot be well
addressed by existing approaches. Many of existing studies utilized computer simulation to model service
demand of patients for healthcare resource planning and management, such as appointment scheduling [10,
14], surgery planning [13, 21], capacity planning and bed management [20, 22-23], workforce planning and
staffing management [11-12, 24]. However, many of these works mainly assumed homogeneity among
different individual patients and analyzed service demand based on patient volume, which neglected the
diversity in the amount of care needed by each individual resident with varied individual characteristics
(e.g., multiple chronic diseases, physical, mental, cognitive functioning limitations and losses, etc.) on
different types of caregivers (e.g., nurses, aides, etc.). For example, according to Centers for Medicare &
Medicaid Services (CMS) [25], average daily time spent by certified nursing assistants on caring residents
varies from 30 to 240 minutes, depending on each resident’s functional performance. With the same patient
volume but different patient censuses, the total service demand at the facility level can differ drastically.
There is a need to develop a simulation model to characterize the highly heterogeneous service demand of
individual NH residents with improved simulation modeling fidelity.

To address the aforementioned research needs and to fill the research gaps, we propose a latent survival
analysis integrated computer simulation platform to characterize the heterogeneous service demand of NH
residents over time and to further allow staffing strategy evaluation under various census composition
scenarios of NH residents. The main contributions of this paper lie in the following three aspects. First, as
compared to the existing literatures of integrating survival analysis in simulation modeling for healthcare
applications, the proposed predictive analytics method based on latent survival analysis can characterize
multiple discharge dispositions (e.g., community discharge, hospitalization) of NH residents with improved
NH LOS modeling performance. Further, the development of sampling algorithm for the proposed LOS
model enables the integration of developed predictive analytics with computer simulation to estimate
service demand of a population of NH residents at facility level. Second, as compared to the existing
literatures of simulation-based service demand modeling in healthcare service operations and management,
the proposed simulation model can characterize the heterogeneous service demand of NH individual
resident via incorporating rich and diverse individual characteristics (e.g., functional performance, clinical
diagnoses, care services received, treatment prescribed, etc.). The successful modeling of heterogeneous
service demand can facilitate the staffing strategy evaluation for NH management group under various
what-if scenarios of the census composition of a heterogeneous population of NH residents, and can further
inform NH administrators about the most appropriate staffing strategy which succeeds in meeting the
overall service demand over time at the most reduced total labor costs. Last but not least, as compared to
the limited existing simulation-based healthcare applications in long-term care settings of NH research and
real practice, the developed simulation-based staffing decision support platform is the first initiative in NH
industry to integrate analytics-based method with computer simulation and NH domain knowledge in
helping inform NH management group of NH staffing decision. In a proof-of-the-concept study, we used
de-identified clinical assessment data from a local NH facility in Tampa Bay area, to illustrate the proposed
work and to demonstrate its validity and superior performance. To enhance the tool usability, we design a
graphic user interface so NH administrators can flexibly adjust practical contexts, modify staffing strategies,
and visualize detailed simulation results, all of which help large-scale adoption of the tool in practice.



2. Methods

The proposed predictive analytics integrated simulation platform for NH staffing strategy evaluation was
developed in a bottom-up manner. The proposed platform embraced several key modules, such as
individual NH LOS predictor, individual daily staff-time simulator and graphical user interface. The details
were elaborated as follows.

2.1 Individual NH LOS Predictor

To implement this module, historical data on NH LOS was used to develop and parameterize disposition-
specific discharge probability distributions. These distributions were then used in the module to determine
the LOS of each resident. With the predicted LOS for each resident, we determined whether the resident
stays at NH on a given day after his/her arrival.

Each NH resident has multiple types of discharge disposition. S/he can either be discharged to home
and community due to improved health condition or be transferred to a hospital due to occurrence of critical
events (e.g., injury and infection) and/or deteriorating functioning status. In addition, multiple discharge
events with different discharge dispositions are mutually exclusive and competing to each other. Whichever
occurs first will determinate the dwelling duration of an individual NH resident and make the other events
unobserved. For instance, a resident who is discharged to community still has a risk of being transferred to
hospital. Since the hospitalization event has not been triggered when discharge-to-community event occurs
first for a resident, time-to-hospitalization then becomes a latent variable that cannot be directly observed.
Many existing literatures of survival analysis models in healthcare simulation either assumed single
discharge disposition for LOS modeling [8-9, 21], or analyzed LOS data by segregating LOS observations
into multiple groups with observed disposition labels [26]. Simply adopting them without considering latent
discharge events and multiple discharge dispositions may lead to inaccurate LOS prediction of NH
residents.

To address the above complexities of NH LOS data, we developed a predictive model based on latent
survival analysis to account for multiple discharge dispositions and latent discharge events. Specifically,
considering N NH residents and each of them may be discharged to one of K different disposition settings,
let us denote random variable T, to be the latent time-to-discharge of resident 7 with disposition y, i=1, ..., N,
u=1,...,K. The NH LOS of resident i can be expressed as T;"" = min{T4, ..., T;x}. Then the disposition-
specific discharge risk, d, (t), was modeled as

. Pr(tsTy,st+At | T2t
du(t) = Jjm PR 20 (1)
where d, (t) captures the instantaneous probability of being discharged to disposition u at time ¢. Thus, the

overall instantaneous probability of being discharged was estimated by d(t) = ¥, d, (t). Following Eq. 1,

we expressed the cumulative probability of a resident staying in NH until time ¢, i.e., S(t) = Pr(T/™" >
t) = exp[— fot Yu 4, (s)ds], and the cumulative probability of being discharged to disposition p until time

t, ie., F#(t)=Pr(Tﬂ < t) = fot d, (t)exp[— fOT 2ud,(s)ds]dr. We implemented the above mathematical
expressions in the module to simulate how long each resident would stay in NH.

To account for right skewness in real LOS observations, we considered a log-normal distribution for
each discharge disposition u and calculated the disposition-specific discharge risk as d,(t) =
¢((Int — 7 W/ a#) / [taﬂcb(—(lnt —nu)/ aﬂ)], where 7, and o, represent discharge disposition-specific
mean and standard deviation parameters, and ¢ () and ®(-) represent the probability density function and
cumulative distribution function of a standard normal distribution, respectively. We then fitted the LOS
observations to estimate the above model parameters. We denoted binary indicators Z;;,’s, u=1,..., K, which
takes value 1 if resident i is discharged to disposition u, and 0 otherwise. To account for observations being
right-censored, we further introduced a right-censored indicator §; for each LOS observation #, i.e., §;=1 if
t; is observed (i.e., resident 7 is discharged) and 6;=0 if ¢ is right-censored (i.e., resident i is still in NH by
the end of the time period under investigation). We denoted D to be the set of observations, i.e.,



D = {t;,Zy,6,i=1,..,N,u=1,..,K}and O to be the set of unknown model parameters, i.c., @ =
{Oﬂ}l’fﬂ, where 0, = {77 w0y} then we computed the joint likelihood as
N K ti Zi) % t; 1=8i

L@ 1D) = [T, {Tses (duCedexpl— [y Tudu(9)ds]) ] [expl= [y Sudus]] - @)

When all ©,°s are mutually exclusive or in other words, each disposition-specific risk model is

characterized by a distinct set of model parameters associated with that discharge disposition, Eq. (2) can

be further decomposed into the multiplication of multiple disposition-specific likelihoods, i.e., L(® |D) =
Hﬁ:l L, (9# |D), where L, (9# |D) can be explicitly written as 5 5
320 _ 1-9;

Lu(@u |D) HLEI {t on \/— Xp [_ (lntleg#)]} Iiv=1 [1 -o (lnt;—n#)] (3)

u
where [, is an index set of individuals who have been discharged to disposition p. To estimate the model

parameters, we employed the maximum likelihood principle, e.g., @# = argming, — lu(@# |D), where

L (Ou |D) is the logarithm of Eq. (3) by ignoring the additive constant, i.¢., l#(O# |D) = Zielﬂ (— Ino, —
(Int;j—ny)?
Zaﬁ
been discharged. We further employed the Newton-Raphson algorithm to realize the model estimation. The
proposed algorithm for estimating the disposition-specific model parameters can be summarized as follows.

) - Zieu” I, In(1-& (lnt;—;n”)) The union set U, I, is an index set of all individuals who have

Step 1: At iteration 1=0, initialize n ﬂ(o), O'#(O), u = 1..K, and further specify a small tolerance value & > 0
for algorithm termination.

(t+1) (@)
Step 2: For u=1..K, update [n“ ]= [n“ ]—] 1(17 @ aﬂ(t)) [g" T

JIL(T+1) O-[L(T) n (1:) (™

@ 4 (T)
o g] , where the

derivation details of g, (n#(r), G,ET)), 9o (UM(T), G,ET)) and J7(n,, 6,(V) are given in Appendix. A.

Step 3: If |r)u(”1) - nM(T)| =g or |O'M(T+1) - O'#(T)l =g u=1..K, update T = 1+1 and go to Step 2;
otherwise, terminate the algorithm.
With the model parameters estimated by the above procedure, ® = w &#}ﬁﬂ, we calculated the

probability of being discharged to disposition (, A#(t|@) as:
~ ~ Int-7
E(t1®) =Pr(T;, <t) = CD( 7 “) u=1..K. (4)

Based on the estimated latent survival model, there is a need to further develop a sampling algorithm
to generate predictive samples of NH residents, including how long each resident will stay in NH and which
disposition each resident will be discharged to. There is a lack of such sampling algorithm in the existing
literatures of healthcare simulation. We developed a sampling algorithm to account for the multiple
discharge dispositions. The proposed algorithm can be summarized as follows.

(Int-Mu)
9 o ) p=1..K
5 #CD( (Int— 77#))'

Step 2: Simulate NH LOS 7 for individual i based on total risk of being discharged &(tl@) =2u czu (tl@)
Step 3: Simulate discharge disposition Z;,, for resident i based on categorical distribution with probability

_ du(Til0)
Pziu=1 = 3(r,0) ’
discharged to disposition Z;,.

Step 1: Calculate disposition-specific discharge risk du(t|@) =

= 1...K. Individual i stayed in NH till the dwell duration reached T;, and would be

2.2 Individual Daily Staff-Time Simulator

During the NH stay, the individual daily service need may significantly differ from one resident to another,
due to the diverse chronic conditions (e.g., vascular disease, osteoporosis, dementia and depression),
multifunctional (e.g., physical and cognitive) limitations, and different types of therapies (e.g., audiology,



occupational and/or physical therapy) and treatments (e.g., radiation, dialysis and/or skin treatment)
received. As a result, the individual service demand measured by the amount of daily staff-time needed,
was significantly diverse among NH residents. Such demand heterogeneity was not well addressed in the
existing literatures. In many of existing works of simulation-based decision support platform for healthcare
systems [11-12, 15, 22, 24], they often characterized service demand of patients based on patient volume
without differentiating the service demand difference among different individuals. To account for daily
service demand heterogeneity among NH residents, we developed a service need-based simulator via
incorporating domain knowledge and existing quantitative studies [25, 27].

The proposed simulator consisted of two submodules: service need classification and staff-time
generation. In the submodule of service need classification, we classified a heterogeneous population of
NH residents into multiple service need groups based on their varied individual characteristics. The daily
service demand of NH residents from different service need groups, quantified as daily staff-time needed
(in minutes), was characterized by different distribution parameters. To be more specific, we utilized RUG-
IV [27], the most recent version of a patient classification system adopted by the CMS for reimbursement
purpose. This classification categorized NH residents into multiple service need groups and each service
need group comprised residents with similar resource usage level. The classification was performed on
individual health records extracted from the Minimum Data set (MDS). MDS was established as part of a
federally mandated process for standardized and comprehensive assessment of all Medicare and Medicaid
paid NH residents in CMS certified NHs throughout the U.S. [28]. The raw MDS data contained admission
and discharge information of each resident, as well as rich resident-level health assessment information
with more than 600 coded items, such as individual demographics, functional performance and disease
diagnoses. MDS data was primarily utilized for Medicare and Medicaid reimbursement, personalized care
planning, and NH quality monitoring.

To reduce the dimensionality of the classification, we generated 9 composite variables to capture
different aspects of NH residents, including their physical, mental and cognitive functioning performance
(e.g., x1, X2 and Xy), illnesses and comorbidities (e.g., Xe, X7, Xg), as well as service level on rehabilitation,
restorative care and extensive medical service (e.g., X3, X4, Xs). Table 1 showed a detailed description of the
9 composite variables. For each resident, we calculated the value of each composite variable from the raw
MDS data. For instance, x; was Activities of Daily Living (ADLs), which measured the physical disability
condition of NH residents [29]. ADL score ranged from 0 to 16 and was calculated from resident-level
assessment of four “late loss” ADLs, namely, bed mobility, transfer, toilet use, and eating. A higher ADL
value implied a higher level of functional assistance required by the resident. When generating each
hypothetical resident (i.e., agent) in the simulation, we assigned the above 9 attributes (composite variables)
and classified the generated agent into a service need group accordingly. Fig. 1 (a) further elaborated this
classification process. Attributes (e.g., X1, X2, etc.) annotated along different branches and a set of rules
described in each diamond symbol determined the pathways of NH residents being classified into different
service need groups. For example, Fig. 1 (b) gave a more detailed view of the classification rules of the first
diamond symbol, which were established by attributes x; (ADL score), x4 (rehabilitation service level) and
x5 (extensive medical service level). NH residents who needed daily living assistance with different levels,
rehabilitation with different intensity levels and extensive medical service would be classified into one of
the mutually exclusive service need groups (e.g., groups 1 to group 9).

Table 1
Summary of variables used in service need classification [29]
Variable Type Range Description
X1 Ordinal 0-16 Activities of Daily Living (ADL) score: Functional disability
X2 Binary 0,1 Depression indicator: Whether resident has depressive symptoms
X3 Binary 0,1 Restorative nursing services indicator: Whether resident receives restorative
assistance of motion, splint/brace, bed mobility, etc.

X4 Ordinal 0-5 Rehabilitation services level: level of therapy services needed for speech,

audiology, occupational and physical therapy.




Xs Ordinal 0-3 Extensive medical services level: level of medical services needed on
tracheostomy, ventilator and/or respirator treatment.

X6 Binary 0,1 High special care indicator: Whether resident has septicemia, diabetes,
quadriplegia, COPD, fever, etc.

X7 Binary 0,1 Low special care indicator: Whether resident has cerebral palsy, Parkinson’s
disease, multiple sclerosis, oxygen therapy, etc.

X8 Binary 0,1 Clinical complex indicator: Whether resident has pneumonia, hemiplegia,
surgical wounds, burns, chemotherapy, etc.

X9 Binary 0,1 Cognitive impairment indicator: Whether resident has mental score <=9,

hallucinations, delusions, behavioral symptoms, etc.

With the above submodule of service need classification, we further used daily staff-time needed to
quantify service demand of NH residents in each service need group, as demonstrated in the subsequent
submodule of staff-time generation. Due to the lack of actual staff-time measurements in our studied NH,
we incorporated STRIVE project from existing NH studies to quantify the “representative” daily staff-time
needed (in minutes) of each type of caregivers (e.g., nurses or aides) for NH residents in each service need
group. STRIVE, one of the most recent national staff-time projects, provided nationwide reference values
of average daily staff-time needed for residents in each service need group based on the aggregation of raw
staff-time measurements (collected using personal digital assistants) of approximately 97,000 NH residents
from more than 200 representative high-quality NHs across different states. For each service need group,
STRIVE contained (i) daily average staff-time spent directly with or on behalf of a resident; and (ii) daily
average staff-time proportion spent indirectly for supporting the delivery of care for a resident. The former
was defined as direct care staff-time, which involved activities such as feeding, helping dress, giving
medications, charting for a resident, calling a physician about a resident, etc. The latter was defined as
indirect care staff-time, which involved activities such as stocking medication cabinet, performing

administration, participating in training sessions, taking time for breaks and meals, etc. To generate daily
staff-time needed for each NH resident, we denoted T,?iige“ and T,i?;ir“t as staff-time of direct care and
indirect care of type k caregivers for resident i in service need group g, respectively. To ensure the modeling
simplicity and practical convenience [30], we considered exponential distribution with single parameter to
model daily staff-time of direct care and indirect care, and further assumed they were independent.
Specifically, we assumed T,?igeCt~Expo(Ak1 g) and T,i?;ireCt~Expo(Ak2 g) » Wwhere 1/A4,, and
1/ 2y gwere nationwide reference values of daily average staff-time of type k caregivers for NH residents
in service need group g extracted from STRIVE project. The total daily staff-time of resident i then became
Thig = T,?L-i;eCt + T,i(‘l-‘;ire“, which was simulated on a daily basis from hypo-exponential distribution, i.c.,
Tyig~HypoEXpo (Ag14, Ak2g). The individual daily staff-time on each type of caregiver was repeatedly

simulated for each resident until the end of his/her NH stay (see Fig. 1).
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Fig. 1. Individual daily staff-time simulator, (a) overview, (b) zoom-in details of classification rules of
first diamond symbol

2.3 Simulation Implementation and Graphical User Interface Development

We developed the above modules and implemented the proposed simulation platform in AnyLogic
simulation environment. Fig. 2 illustrated a descriptive diagram of the proposed predictive analytics
integrated computer simulation platform. We first assigned a set of attributes to each NH individual to
represent his/her physical/mental status and service category (e.g., rehabilitation, restoration, etc.). Then,
we simulated resident arrival, dwell and discharge based on the individual attributes. These attributes also
jointly determined the course of resident’s states over time and the daily staff-time needed on each type of
caregivers. The aggregated daily service demand at facility level over time must be met by the staffing
supply from nursing staffs assigned. The resultant labor cost was computed to assess the decision
performance of each staffing strategy at facility level. Note that a promising staffing strategy needed to be
robust to resident census fluctuation at facility level and staffing need randomization at individual level.
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Fig. 2. Descriptive diagram of the developed simulation platform
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To improve the usability of our tool in real practice by NH administrators, we further developed a user-
friendly graphical user interface (GUI), as shown in Fig. 3. It included three panels: (1) input setting panel,



(2) visualization panel, and (3) evaluation output panel. The input setting panel allowed the user to specify
simulation settings, such as number of simulation days, arrival rate of residents, parameters settings of the
LOS model, and SR ratio to be evaluated. It also allowed for importing individual characteristics data of
NH residents. The visualization panel gave a descriptive statistical summary of simulated residents in terms
of their characteristics and LOS quantities. The evaluation output panel displayed the facility-level service
demand over time under some scenario of resident census, the staffing level over time, and the total labor
cost of the strategy evaluated.
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Fig. 3. GUI of the decision support platform
3. Real Case Study

3.1 Real Data Description

To demonstrate the viability of the simulation in real-world settings, we obtained Minimum Data Set (MDS)
data from a representative NH facility of our industrial collaborator in the Tampa Bay area. A summary of
descriptive statistics was shown in Table 2. More than half of the residents were females and the majority
were elderly residents over 65 years old. Most of the residents (over 90%) had at least one chronic disease
(e.g., cancer, hypertension and diabetes). Typically, 75% of NH residents required daily living assistance
at a medium level (e.g., ADL from 2 to 10) while 20% of residents were more physically disabled and
required daily living assistance at a higher level (e.g., ADL from 11 to 16). More than 95% residents
received rehabilitation and therapy service at various intensity levels.

Table 2
Summary of individual characteristics in real NH data
Characteristics Type Statistics
Age Numeric  Mean: 76, SD: 10.73
Gender, n (%) Binary
Female 64.2%

Chronic diseases, n (%) Binary




Having at least one disease 91.6%

ADL, n (%) Ordinal
Less dependent (<2) 5%
Medium (2-10) 75%
More dependent(11-16) 20%

Rehabilitation level, n (%) Ordinal
No need of rehabilitation (0) 5%
Low/Medium rehabilitation (1-2) 18%
High rehabilitation (3-5) 77%

Extensive medical care level, n (%) Ordinal
No need of extensive care (0) 96%
Need any of the following: tracheostomy

care, ventilator or respirator care, isolation 4%
for active infectious disease (1-3)
Having cognitive impairment, n (%) Binary 12.7%

3.2 Prediction Performance Comparison and Model Validation

Based on the NH data acquired from 759 NH residents, we analyzed daily number of arrivals based on
parametric distribution using real arrival data. We compared various distributions such as Poisson
distribution Pois(A) and Negative binomial distribution, i.c., NB(r, p). We employed Chi-square test to
evaluate the goodness-of-fit of the fitting distributions. The arrival model based on NB(r, p) distribution
exhibited the best goodness-of-fit performance. The p-value of the estimated NB(#,p) was 0.38, which
indicated satisfactory goodness-of-fit of real arrival data. For details of estimated parameters (including
point estimates and standard errors), please refer to Appendix B.

With the estimated arrival model, we then employed the proposed latent survival model to analyze real
NH LOS data and evaluated its prediction performance. In the real data, community and hospital were the
two main discharge dispositions (about 61% of residents went back to community and 24% of residents
were readmitted to hospital). Other discharge dispositions, such as transferring to another NH or death,
were negligible and thus discarded. We evaluated the prediction performance of the proposed model. As
illustrated in Fig. 4 (a), the predicted Kaplan-Meier (K-M) curve of the predictive samples of the proposed
approach was close to the K-M curve of the observed actual LOS samples. We further compared the
prediction performance of the proposed model with two alternative modeling approaches [9, 26], namely,
LOS modeling without considering multiple discharge dispositions, and LOS modeling by segregating LOS
data into multiple groups based on the observed labels. As shown in Figs. 4 (b) and (c), both alternative
approaches exhibited unsatisfactory prediction performance and they both tended to underestimate LOS as
compared to the proposed model. The inaccurate prediction of LOS model without considering multiple
discharge dispositions was attributed to its simplified modeling assumption of utilizing identical model
parameters in capturing NH stay with essentially different types of dispositions. The modeling approach of
segregating LOS data into multiple groups based on the observed disposition labels and estimating model
via group-specific data also yielded less prediction accuracy since it neglected the latent discharge events.
A resident segregated into community discharge group will still have potential risk of being transiting to
hospital and vice versus. Thus, partitioning LOS observations into multiple groups cannot reflect multiple
types of discharge dispositions and latent discharge events associated with NH stay of each resident.
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Fig. 4. Comparison between the observed (blue) and the predicted (red) survival curves based on different
modeling approaches, (a) proposed model, (b) LOS model without considering multiple discharge
dispositions, (c) LOS model by segregating data into multiple groups based on the observed labels

With the demonstrated superior performance of proposed predictive LOS model, we further validated
the performance of simulation outputs. We compared the simulated samples of daily resident volume over
a month with the actual observed samples, as shown in Fig. 5 (a). It visually verified that the simulated
results exhibited a similar distribution to the real observations. In addition, two-sample Kolmogorov-
Smirnov (K-S) test was also used to compare their differences and a p-value of 0.52 implied that there was
no statistically significant difference between the two. On the other side, the simulation output of
conventional approach without considering multiple discharge dispositions did not show satisfactory
validation results (see Fig. 5 (b)) with a p-value of <2.2e-16 in the K-S test. The simulated resident volume
based on the conventional LOS models tended to be lower than the actual resident volume. This was
attributed to the underestimated LOS of conventional models (as shown in Fig. 4) which neglected the
multiple discharge dispositions. The LOS underestimation resulted in a higher-than-actual NH discharge
rate and a lower-than-actual resident volume. To further provide validation of the simulation outputs at
finer scale, we compared the simulated daily number of residents over time (under multiple replication runs)
based on the proposed approach with real data. As shown in Fig. 5 (c¢), the 95% confidence bands of
simulated resident volume can fully cover the observed daily number of residents over time.
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Fig. 5. Comparison between observed data and simulated samples of daily number of residents (a) based
on the proposed LOS model, (b) based on LOS model without considering multiple discharge
dispositions, (c) over time at finer scale based on the proposed LOS model

To further emphasize the importance of the proposed predictive analytics method, we compared the
simulated demand, staffing supply and total labor cost based on LOS model with and without considering
multiple discharge dispositions, as shown in Fig. 6. As compared to the proposed LOS model with improved
prediction performance, the prediction inaccuracy of LOS model which neglected multiple discharge
dispositions propagated to facility-level and induced the lower-than-actual service demand generated in
Fig. 6 (a), and subsequently resulted in the inadequate staff supply determined in Fig. 6(b). The improper
staffing decision based on LOS model without considering multiple discharge dispositions eventually led
to a higher labor cost due to significant understaffing cost incurred, as shown in Fig. 6(c). In summary, with
the improved modeling accuracy of proposed predictive analytics integrated simulation model, the
suggested staffing strategy could meet the residents demand at reduced overall labor cost.
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Fig. 6. Facility-level performance comparison of (a) simulated service demand, (b) staffing supply, and
(c) labor cost between LOS models with (proposed) and without (alternative) considering multiple
discharge dispositions

3.3 Staffing Strategy Evaluation and Comparison

After validating the simulation model, we can then evaluate various staffing strategies with different staff-
to-resident (SR) ratios, i.e., strategies that maintain a pre-specified SR ratio. We primarily compared three
staffing strategies, namely, (1) the minimum SR ratio based on state regulation (i.e., state SR ratio), (2) the
SR ratio implemented in current NH based on observed staffing data (i.e., facility SR ratio), and (3) the
promising SR ratio recommended by the proposed platform (i.e., suggested SR ratio). We considered the
total labor cost during a simulation period as performance metric in evaluating and comparing different
staffing strategies. Given the simulated facility-level service demand over time and a staffing strategy with
specified SR ratio, we can calculate the total staffing surplus in minutes (in the case that overstaffing
occurred) or the total unmet demand in minutes (in the case that understaffing occurred). To satisfy the
unmet demand, additional temporary nursing staffs (e.g., PRN nurses as needed or agency aides) needed to
be called in. The total labor cost over a simulation period embraced both the total planned staffing cost in
paying wages for regular nursing staffs over the whole simulation period, and the total understaffing staffing
cost in paying wages for temporary nursing staffs over the whole simulation period.

To simulate the service demand for evaluating different SR ratios, we considered a real NH resident
census based on the acquired data (see Table 2). We first considered certified nursing assistants (CNAs),
or nursing aides, since they were essential nursing staff who provided the most direct care to residents.
Other types of caregivers will be considered in the following subsections. With the above performance
evaluation scheme, we compared and illustrated three staffing strategies of CNAs, namely, (1) state SR
ratio, (2) facility SR ratio, and (3) suggested SR ratio identified by the developed simulation platform. As
shown in Fig. 7, the suggested SR ratio provided a more appropriate level of staff resource commitment in
meeting the service demand, as compared to the other two staffing strategies. Note that the state SR ratio
led to understaffing whereas the facility SR ratio led to overstaffing.
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Fig. 7. Matching CNA service demand and supply under different SR ratios



Fig. 8 illustrated the total labor cost of CNAs under different SR ratios, including the above three. The
total labor cost included planned CNA staffing cost and additional understaffing cost due to CNA shortage.
Due to either understaffing or overstaffing, both state and facility SR ratios yielded a larger total labor cost.
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Fig. 8. Comparison of total labor cost of CNAs under different SR ratios

To account for uncertainty in our stochastic simulation, we ran 20 replications, which was determined
by the approximation formula in [31]. We further increased number of replications (e.g., 30 and 50) to
empirically investigate the variability of simulation outputs as well as computational time. The variability
of simulation results under different replications scenarios were similar. However, when more replications
were considered, the computational time dramatically increased. Thus, 20 replications were finally selected.
Based on the simulated service demand, we then evaluated the staffing strategies and summarized the
results in Table 3, including both point and interval estimates of the total labor cost. The discrepancy
between service demand and supply, quantified by average daily staff-time associated with overstaffing
and understaffing, was also reported. As shown in Table 3, the suggested SR ratio achieved a lower total
labor cost of CNAs with reduced overstaffing and understaffing.

Table 3
Total labor cost of CNAs under different staffing ratios with 20 replications
Staffing strategy Total labor 95% CI Staffing cost ~ Avg. daily Avg. daily
(SR ratio) cost (thousand §)  (thousand §) overstaffing understaffing
(thousand $) (minutes) (minutes)
State SR ratio (1/20) 110.2 (107.3, 112.9) 58.1 0 2366.6
Facility SR ratio (1/10) 116.2 (114.4,117.9) 116.2 2914.4 0
Suggested SR ratio (1/14)  85.9 (83.8, 88.1) 82.9 32 135.3

3.4 What-if Scenario with Different Censuses

The NH resident census may vary considerably at different time periods (e.g., season, year) or across
different NHs, which may lead to adjustment of SR ratios. The developed simulation was able to generate
“what-if” scenarios of alternative censuses and to evaluate the SR ratios under each scenario. In the above
scenario of real census (baseline scenario), 75% and 95% of NH residents were at a medium level of
physical dependency (e.g., ADL score between 1 and 12) and needed therapy services, such as physical,
occupation and/or speech therapy, respectively. We considered three alternative scenarios as follows.

e “More physically independent” scenario (S1): 70% of residents were less physically dependent
(i.e., ADL between 0 and 1) and could either live independently or require less daily living
assistance. The mean ADL decreased by 60% compared to the baseline scenario.

e “Less physically independent” scenario (S2): 70% of residents were more physically dependent
(i.e., ADL between 11 and 16) and required more daily living assistance. The mean ADL increased
by 60% compared to the baseline scenario.

e “Less therapy needs” scenario (S3): Residents had same ADL to those in the baseline scenario.
However, the percentage of residents who received therapy service decreased by 50%.



The simulated service demand under each scenario and staffing supply with different SR ratios are
illustrated in Fig. 9. It is noticed that, under different scenarios, resident volume was assumed approximately
identical (i.e., based on the same arrival distribution and LOS model). Conventional volume-based service
demand modeling failed to consider individual difference and consequently cannot capture the service
demand difference among different scenarios with different census compositions. In the proposed work, we
characterized heterogeneous service demand of NH residents based on the varied individual characteristics.
We were able to generate service demand under various census compositions of a heterogeneous population
of NH residents. Fig. 9 showed that service demand among different scenarios differed significantly. Under
these different scenarios, NH residents had various health conditions and service needs, and it required
adaptive adjustment of staffing strategy to meet the diverse service demand. The one-size-fits-all staffing
strategy based on a fixed SR ratio could not uniformly meet the NH service demand under different
scenarios. For instance, the state SR ratio (i.e., | CNA for 20 residents) could more adequately meet the
service demand under scenario S1 than the facility SR ratio (i.e., 1/10). It is because most residents under
scenario S1 were more independent and consequently fewer CNAs were needed. On the contrary, under
scenario S2, when most residents were more physically dependent, the amount of staffing based on the state
SR ratio became inadequate and was less appropriate than the facility SR ratio to address the higher service
demand from more frail and dependent NH residents.
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Fig. 9. Comparison of service demand under different composition scenarios and staffing supply based on
staffing strategies with different SR ratios

To meet the service demand under different census scenarios, we identified the suggested SR ratios and
compared their corresponding total labor costs of CNAs under the same scale. As shown in Fig. 10, the
suggested SR ratio under S1 was lower than that under the baseline scenario. It is because residents under
S1 were more physically independent, and thus requiring fewer CNAs to assist with daily living of
activities. On the other hand, the suggested SR ratio under S2 was higher because residents were more
physically disabled. As compared to the baseline scenario, the suggested SR ratio under S3 was lower
because even though residents had the same ADL, fewer of them needed rehabilitation service. The reduced
rehabilitation service need led to reduced CNA staff-time and thus reduced the number of CNAs needed.
Note that in a typical NH, CNAs are not only responsible for providing daily living assistance for residents,
they also assist residents with their rehabilitation plans, such as assisting residents with physical or
occupational therapy activities established by the therapists.
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Further, we ran 20 replications and calculated the average total labor cost over the replications based
on the identified ratios under each census scenario, as summarized in Table 4. The suggested SR ratios
under different census scenarios differed due to the service demand variation under different scenarios.
More specifically, given the same number of residents, the total amount of service demand and the number
of CNAs needed would vary due to different health conditions under different scenarios. The simulation
characterized the service demand heterogeneity at a higher fidelity to make more appropriate staffing
recommendation at reduced labor cost. It was also noticed that, under all scenarios, the suggested SR ratio
yielded a smaller total labor cost, while a one-size-fits-all staffing strategy, such as the one using the state
or facility SR ratio, led to a higher labor cost. The higher cost is attributed to inappropriate staffing for
either increased understafting or unnecessarily planned staffing.

Table 4
Comparison of total labor cost of CNAs under different composition scenarios
No. Staffing strategy Total labor 95% CI Staffing cost  Avg. daily Avg. daily
(SR ratio) cost (thousand §)  (thousand §) overstaffing understaffing
(thousand $) (minutes) (minutes)
State SR ratio (1/20) 58.4 (57.6,59.3) 58.4 682.3 0
S1 Facility SR ratio (1/10) 116.9 (1152, 118.5) 116.9 5994.7 0
Suggested SR ratio
(120) 58.4 (57.6,59.3) 58.4 682.3 0
State SR ratio (1/20) 127.7 (125.6, 129.7) 59.4 0 3101.7
9 Facility SR ratio (1/10) 118.9 (117.7, 119.9) 118.9 2300.7 0
S“gges(tfﬁ 3S)R ratio 95.9 (94.3,97.5) 91.4 12.3 205
State SR ratio (1/20) 82.7 (80.8, 84.6) 59.1 0 1072
S3 Facility SR ratio (1/10) 118.2 (116.6, 119.8) 118.2 4300.4 0
S“gges(tle/‘i 7S)R ratio 725 (70.9, 74.1) 69.5 1.7 135.6

3.5 Staffing Evaluation of Other Types of NH Caregivers

To further demonstrate the flexibility of the proposed work, we extended the simulation platform to staffing
evaluation of other types of caregivers in NH, such as registered nurse (RN) and licensed practical nurse
(LPN). Unlike CNAs who are responsible for caring NH residents via providing personal assistance and
support on daily routine activities, both RNs and LPNs have more advanced training and provide more
advanced nursing service than CNAs. RNs are primarily responsible for administering medication and
treatment to residents, coordinating care plans, operating medical equipment and educating residents as
well as their families. Under supervision of RNs or physicians, LPNs mainly provide basic and routine
medical care for residents, such as recording vital signs, monitoring health conditions of residents and
administering injections. Due to the different roles of each type of caregivers, the corresponding service



demand (quantified in daily staft-time need) will also differ. As shown in Fig. 11 (a) and (b), we evaluated
and compared different staffing strategies for RN and LPN. The staffing strategies in comparison included
state SR ratio, facility SR ratio and suggested SR ratio identified by the proposed platform. As shown in
Fig. 11, both state and facility SR ratios for both RN and LPN led to significant understaffing.
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Fig. 11. Matching service demand and supply under different SR ratios for (a) RNs, and (b) LPNs

Fig. 12 (a) and (b) further showed the reduced total labor cost of the suggested SR ratio as compared
to the cost of the other SR ratios for RN and LPN, respectively. Further, Table 5 summarized both the point
and interval estimates of total labor cost under different SR ratios for RN and LPN. Due to the understaffing,
both state and facility SR ratios led to significantly larger total labor cost for both RN and LPN.
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Table 5
Total labor cost of RNs and LPNs under different staffing ratios
Care- Staffing Total labor 95% CI Staffing cost Avg. daily Avg. daily
giver strategy cost (thousand §)  (thousand $) overstaffing  understaffing
type (SR ratio) (thousand $) (minutes) (minutes)
RN State (1/40) 97.4 (94.7,100.1) 66.9 0 608.9
Facility (1/37)  92.1 (89.5, 94.6) 72.4 2.2 394.1
Suggested 86.6 (84.7, 88.5) 81.1 68.4 109.4

(1/33)



LPN State (1/40) 130.5 (120.8,132.7) 482 0 2286.8

Facility (1/55)  143.7 (1412, 146.1)  35.1 0 3017
Suggested 94.1 (92.6,95.6)  87.6 83.8 180.1
(1/22)

4. CONCLUSION AND FUTURE WORK

In this paper, a data-driven simulation tool was proposed to characterize heterogeneous service demand of
NH residents and to evaluate system performance outcomes (e.g., facility-level labor cost of CNAs) under
different SR ratios. In the proposed simulation, a predictive LOS model considering multiple discharge
dispositions was first developed based on latent survival analysis to estimate dwelling duration of NH
residents with improved prediction performance. Further, a predictive analytics method integrated
computer simulation model was developed to characterize heterogeneous service demand of individual NH
resident based on the varied individual characteristics and to generate the daily staff-time needed via
incorporating domain knowledge from a national study. Next, the daily staff-time was aggregated at the
facility level. Our study based on a realistic NH resident population helped justify the validity of our tool
for the following analysis requests. First, given a sample of residents with various individual characteristics,
the tool can output service demand over time and evaluate the corresponding labor costs at the facility level
under a specific SR ratio. Second, based on the simulated service demand, the tool can further evaluate
different SR ratios and thus identify a suggested ratio with the most reduced labor cost. Third, the tool
allows users to perform “what-if” analysis by simulating service demand under different scenarios of NH
resident composition and identifying the most cost-saving SR ratio under each scenario.

In the proposed simulation, model inputs, such as LOS quantity (modeled by latent survival analysis)
and arrival process (modeled with a negative binomial distribution), were modeled based on the resident
data of a single NH available to us. Thus, our simulation could not be directly applied to different NHs with
different facility and resident characteristics without re-estimating the inputs. However, the input estimation
procedure (i.e. parameter estimation and distribution selection) could still be viable. For instance, the
formulation and estimation of the predictive LOS model based on latent survival analysis in Equations 1
and 2 are generic and can be applied to any finite number of discharge dispositions, not necessarily restricted
to two dispositions as in this paper. Different parametric models other than log-normal distribution may
apply as long as they exhibit reasonable goodness-of-fit for the new dataset. In addition, our simulation
platform utilized the national staffing time measurement study (i.e., STRIVE) to characterize daily service
demand of NH residents in each service need group. Ideally, such staff-time generation submodule,
including the staff-time distribution parameters, needed to be recalibrated with detailed staff-time
measurements from local NHs to improve the modeling accuracy. However, due to the lack of local staff-
time measurement study available, there may exist modeling bias with the use of data from a national study.
We would actively collaborate with local NHs in future to address this data challenge. Moreover, in this
study, we investigated the aggregated staffing decision and assessed the facility-level performance with
current available data. We would collect more data to investigate more detailed staffing decisions such as
shift scheduling and to explore the individual-level decision in capacity management (e.g., individual
difference in required number of beds and number of staffs). Besides, we will study observed interactions
among residents and interactions between caregivers and residents within same NH facility, and analyze
system nonlinearity due to unobserved interaction between individual and organization.
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B. Detailed NH inputs and practical knowledge used for the simulation platform and case study

Table B.1 Estimated model parameters based on real NH data

Model Parameter Description Estimate Standard Error
Arrival r size of arrival event 4.95 1.1144

P probability of arrival 0.64 0.0524
LOS m community-specific mean on log scale 341 0.0377

0, community-specific standard deviation on log scale  0.94 0.0299

M, hospital-specific mean on log scale 4.52 0.1072

0y hospital-specific standard deviation on log scale 1.58 0.0835
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