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1 Introduction

Quantum field theory has proven to be a remarkably successful framework for simplifying
and unifying fundamental particle physics. Nevertheless, because gravitational quantum field
theories are non-renormalizable, they ostensibly do not predict a unique theory of quantum
gravity. Holography, a proposed correspondence between theories of quantum gravity and non-
gravitational quantum field theories in fewer spacetime dimensions, offers an alternative way
to constrain quantum gravity using quantum field theory. The holographic correspondence
thus reframes quantum field theory as the central tool for describing microscopic physics,
including in the context of quantum gravity.

In the decades following the discovery of the AdS/CFT correspondence [1–3], holography
has been put to the test both within AdS/CFT [4–6] and by a number of new holographic
proposals [7–10]. In recent years, celestial holography has emerged as an important new type
of holography. Celestial holography posits a duality between scattering in asymptotically
flat four-dimensional (4D) spacetime and a two-dimensional conformal field theory (2D
CFT) on the celestial sphere. Reviews and references on the subject can be found in [11–
13]. The celestial duality is motivated by the isomorphism between the Lorentz group in
four dimensions SO(1, 3) and the global conformal group in two dimensions SL(2,C). This
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isomorphism ensures that scattering amplitudes for particles in highest weight representations
of SL(2,C) transform under Lorentz transformations like correlation functions of primary
operators in a 2D CFT under global conformal transformations [8, 14–17]. The basis of states
in highest weight representations of SL(2,C) is referred to as the conformal primary basis
and scattering amplitudes in this basis are known as celestial amplitudes.

Holographic proposals stipulate that the defining properties of a quantum field theory are
imprinted in a corresponding dual gravitational theory, and vice versa. However, identifying
these signatures appropriately can be a difficult task. Locality, in particular, is a key property
of quantum field theory with a nontrivial holographic imprint even in the well-studied example
of AdS/CFT. In celestial holography, the full implications of locality of the dual 2D CFT are
yet to be determined. 2D locality may turn out to require properties of celestial amplitudes
that appear nontrivial or are obscure from the perspective of scattering in 4D.

A simple notion of 2D locality does readily appear in the 4D scattering of massless
particles. Two essential ingredients underlie this result. First, the wavefunction of a massless
particle in a momentum eigenstate localizes to a point on a spatial cross section of null infinity
that can be identified with the spatial direction of the momentum four-vector. Second, a
state in a conformal primary basis for massless particles can be constructed from the subset
of momentum eigenstates with momenta pointing in a fixed direction. The resulting state
transforms like a primary operator located at the associated point on a spatial cross section
of null infinity. In this construction, the location of operators in 2D thus coincides with a
projective location of particles in 4D. Consequently, 2D local behavior, such as singularities
when operators approach one another, has a simply origin and interpretation in 4D physics.

On the other hand, a notion of 2D locality for massive particles is less straightforward. In
this case, the wavefunctions of momentum eigenstates localize to points on the resolution of
timelike infinity to a spacelike hyperboloid (Euclidean AdS3) [18, 19]. States in a conformal
primary basis have been constructed by convolving momentum eigenstates with AdS3/CFT2
bulk-to-boundary propagators and therefore receive contributions from all momenta, not
just a momentum subset [16, 17]. This can be understood geometrically as the statement
that the subset of SL(2,C) transformations that preserve a point on the boundary of AdS3
preserve no proper subset of points in the bulk of AdS3. A derivation of this statement is
provided in appendix B. As a result, for massive particles, there is no direct analog of the
massless correspondence between 2D and 4D locality.1

While such a correspondence is not necessary for 2D locality to exist — indeed, in
AdS/CFT the regimes of bulk and boundary locality do not coincide — its absence nevertheless
calls into question the realization of 2D locality for massive particles. So far, there are very few
examples of explicit formulas for celestial amplitudes containing massive external particles.2

1A similar conclusion seems to apply to the conformal primary of basis of massless particles whose
construction involves an additional shadow transformation. It would very interesting, but beyond the scope of
this paper, to investigate whether locality is restored when working with a discrete basis for massive particles
analogous to the massless basis in [20, 21].

2This is especially true beyond three-point correlators, where the singularity structure is no longer tightly
constrained by 2D global conformal symmetry. [22–24] consider amplitudes with a massive source that breaks
translation invariance. [25] considers a ∆ = 0 massive celestial scalar coupled to gravitons. Several works have
considered partial wave decompositions and factorization of four-point celestial amplitudes with an internal
massive exchange [26–30].
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The possibility therefore remains that local behavior emerges only when computing a full
celestial amplitude.

In the hope of inspiring more rigorous studies of 2D locality, we now present an explicit
example to illustrate that a local 2D description of massive particles must involve modifications
to the current prescription. Consider the scattering of a conformally soft photon J , two
massless scalars ϕ of charge Q, and a massive scalar Φ of charge −2Q. The celestial amplitude
for this process, which to our knowledge has not yet appeared in the literature and we
derive in appendix A, is given by

⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

=Q

[
1

z21
+ 1

z23
− 2

z24

(
1+ z34

z23

z−1+z̄ 2F1(1, ∆1−∆3+∆4
2 ,∆4;1− z

z−1
z̄

z̄−1)
z−1+z̄

)]
×⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩,

(1.1)

where the three-point celestial amplitude is

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

= g

8

(
m

2

)∆1+∆3−4 B
(
∆4+∆1−∆3

2 , ∆4−∆1+∆3
2

)
(z41z̄41)

1
2 (∆4+∆1−∆3)(z13z̄13)

1
2 (∆1+∆3−∆4)(z34z̄34)

1
2 (∆3+∆4−∆1)

(1.2)

and z is the conformal cross ratio

z = z12z34
z13z24

. (1.3)

The asymmetry in scalars 1 and 3 results from the assumption that Re(∆4) > Re(∆1−∆3+∆4
2 ) >

0, which is needed for the integral expression (A.31) for the hypergeometric function to con-
verge. Appendix A includes a full derivation of this formula, as well as more detailed
explanations of the statements that follow.

The hypergeometric function in the amplitude (1.1) presents a striking difference from
the corresponding all-massless celestial amplitude. Momentarily ignoring the additional
complexity of this hypergeometric function, note that the first two terms contain simple
poles in z2 at z1 and z3 with residues Q1 = Q and Q3 = Q, respectively. These two terms,
along with only the first contribution in the round parentheses (i.e. the term − 2

z24
), would

be the complete expression in a standard local 2D conformal field theory, which would
have a third simple pole at z2 → z4 with residue Q4 = −2Q. By contrast, in (1.1) we find
an additional contribution given by the second term in round parentheses. Together, the
third term (including both contributions in round parentheses) naively appears to contain
simple poles in z2 at z3, z4, and z⋆, where z⋆ is the value of z2 for which z + z̄ − 1 vanishes.
However, a more careful analysis of residues reveals that the third term actually contains no
simple poles. The celestial amplitude therefore only contains simple poles at the locations of
each of the massless particles (from the first two terms, at z1 and z3) but not the massive
particle (z4). To summarize, the simple poles in this celestial amplitude differ from those
in a traditional conformal field theory with a U(1) current by the absence of a pole at the
location of the charged massive particle. Still, the residues at z1 and z3 are each Q, as in
a standard conformal field theory.
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To reconcile the discrepancy between the singularity structure of the celestial amplitude
and that of standard CFT correlation functions, recall that the (1, 0) conformal weight carried
by J guarantees that it must respect a conservation law of the form∮

∞
dz ⟨J(z)O1(z1, z̄1) · · · On(zn, z̄n)⟩ = 0. (1.4)

Since the sum of the residues of the simple poles in the celestial amplitude (1.1) is 2Q ̸= 0,
this implies that there must be some other singularity in the amplitude that cancels the
simple pole contribution. Indeed, the hypergeometric function 2F1(a, b, c;x) contains a branch
cut in x extending from x = 1 to x = ∞, which we choose to extend along the positive real
axis. In the z2 plane, this corresponds to a branch cut extending between the locations of the
massless particle insertions, z1 to z3. In appendix A, we show that this branch cut accounts
for precisely the missing contributions that allow (1.4) to hold.

The example (1.1) is especially instructive because it is a particularly clean and robust
result, for the following reasons. First, all of the momentum-conserving delta functions are
absorbed by the integral transformations to the conformal primary basis. The resulting
celestial amplitudes are consequently smooth in the sense that they do not contain delta-
function singularities, unlike their massless counterparts. Second, (1.1) is essentially fixed by
kinematics and thus unaffected by loop corrections. In particular, neither the leading soft
photon theorem [31] nor the kinematic dependence of three-point amplitudes receive loop
corrections [32]. Furthermore, as detailed in appendix A, the contour arguments and other
components of the analysis treat z and z̄ as independent complex variables, and so it is not
obvious how a different choice of spacetime signature could resolve this non-locality.

Massive particles are a definitive feature of our universe, and more generally are often
instrumental to the consistency of theories of quantum gravity, including celestial holography.
For example, in the context of celestial holography, an exchange of massive particle states
was found to appear in the conformal block decomposition of a four-point celestial amplitude
with only massless external particles [33]. This result is likely quite general for the following
reason. Celestial holography is a manifestly conformally covariant framework that naturally
involves physics at all energies and therefore may require regulators. Because the number of
dimensions remains fixed, it would not be surprising if all manifestly conformally covariant
regulators are of “Pauli-Villars” form, i.e. involve the addition of massive particles. Outside
of celestial holography, massive particles are not only ubiquitous in string theory, our known
example of a consistent theory of quantum gravity, but also frequently feature in general
consistency conditions for quantum gravity [34–40].

This compelling evidence from both theory and observation suggests that massive particles
should be included in celestial holography, although their celestial amplitudes appear to admit
nonlocal behavior. Therefore — especially without 2D locality — it is important to establish
general properties of massive states that control their dynamics. Symmetries naturally supply
such dynamical constraints and are the subject of our work.3 In particular, we establish

3Indeed, celestial amplitudes are known to admit other forms of non-local behavior, but some of these
instances are regarded with less concern precisely because they are understood as result of symmetry.
Specifically, four-point celestial amplitudes for massless particles are known to admit a delta-function singularity
constraining the conformal cross ratio to be real. However, this constraint can be identified as a remnant of
4D translation symmetry. Additional forms of non-locality are discussed in [41, 42].
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that massive particles transform non-trivially under action of the w1+∞ symmetry generated
by an infinite tower of soft gravitons.

The existence of a w1+∞ symmetry in celestial holography was first discovered in [43, 44]
by analyzing the algebra of an infinite collection of soft graviton currents that are universal to
any celestial holographic dual. The non-trivial action of w1+∞ on generic massless particles
was subsequently determined in the conformal primary basis in [45]. Both analyses rely
heavily on the 2D local behavior of massless particles described above as well as a conformally-
invariant notion of left and right-moving coordinates that permits an asymmetric treatment
of z and z̄.4 By contrast, as mentioned earlier in the introduction, massive particles do
not obviously enjoy a notion of 2D locality. Likewise, there is no conformally-invariant
notion of left and right-moving coordinates in the bulk of AdS3 and consequently the massive
analysis demands a uniform treatment of all coordinates. While these may appear to be
mere technical differences between massive and massless particles, they inhibit a simple
generalization of the massless analysis to the massive case. Indeed, while the number of
investigations regarding w1+∞ in celestial holography has risen rapidly [45–48, 52–72], none
yet pertain directly to massive particles.5

In this work, we generalize the analysis of [45] to incorporate massive particles and thereby
establish that the symmetry acts non-trivially on massive particles. The generalization
involves modifying the formulas for the infinite tower of momentum-space soft theorems
found in [74, 75] to facilitate a simple transformation to the conformal primary basis. In
particular, we demand that the associated soft factors transform like conformal primaries
under SL(2,C). We find that these improved soft factors admit descendants that also
transform like primaries (i.e. primary-descendants). Our analysis thereby affirms that the
shortened conformal multiplet structure found in [43, 76, 77] is unaffected by the specific
particle content of the theory (i.e. massive versus massless) and thus is an intrinsic of property
of the soft gravitons and their SL(2,C) representations. We then find that the symmetry
action on momentum-space massive scalar particles takes a particularly simple form, which
we use to establish that it respects the algebra of w1+∞. Finally, we transform our results to
the conformal primary basis and recover the known action of Poincaré generators on massive
scalar particles in [78, 79]. We discover that the additional w1+∞ generators beyond those
that generate the Poincaré algebra act in a highly non-diagonal manner on massive particles
in the conformal primary basis. Specifically, they transform a state of definite conformal
weight into a combination of a infinite number of states with conformal weights differing
by integer values from that of the original state.

The paper is organized as follows. First, we present our conventions and carefully review
the SL(2,C) transformation properties of celestial amplitudes in section 2. In section 3, we
derive the action of w1+∞ on hard particles directly from the infinite tower of momentum

4Recently, this asymmetry has been elevated in celestial holography to the extent that the left-moving
coordinate z is treated as a point in the 2D spacetime, while the anti-holomorphic coordinate z̄ is treated as an
auxiliary parameter, akin to a structure constant [46–48]. Several of these works were inspired by investigations
in twistor space, where this perspective arises naturally [49, 50]. [51] first established the connection of twistor
space to celestial holography.

5There is a construction [73] of a massive self-dual black hole state with a tower of w1+∞ charges, although
this state is built as a coherent sum of massless graviton celestial operators and relies on the asymmetry in z

and z̄ in the self-dual context.
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space soft theorems in [75]. We begin by synthesizing various results from the existing
literature to present a systematic derivation of the symmetry action on massless hard particles
in (3, 1) signature. We demonstrate that this analysis yields the same results as were obtained
from (2, 2) analysis in [45]. Then, we generalize the (3, 1) analysis to massive hard particles.
In section 4, we construct charges that generate the symmetries associated to the infinite
tower of soft theorems and show that their action on massive particles in momentum space
respects the algebra of w1+∞. We construct a generating function for the symmetry action
at each order in the soft expansion in section 5, which elucidates the differences between
the massless and massive case and facilitates the transformation of the symmetry action
to the conformal primary basis. In section 6, we transform our results to the conformal
primary basis. Appendix A is dedicated to the derivation of (1.1) and further explanation
of the surrounding discussion in the introduction. Appendix B provides a derivation of the
statement in the introduction that the subset of SL(2,C) transformations that preserve a
point on the boundary of AdS3 preserve no proper subset of points in the bulk of AdS3.
Further details of the generating function derivation and proof of the w1+∞ commutators
are presented in appendix C and appendix D, respectively.

2 Review of celestial amplitudes and SL(2,C) transformations

In this section, we review the construction of celestial amplitudes from scattering amplitudes
in momentum space. In preparation for subsequent sections, we also include the SL(2,C)
transformation properties of expressions at various intermediate stages of the analysis.

The first step in constructing conformal primary states of massless particles is to
parametrize the scattering data, consisting of momenta pk and polarizations εk, by an
energy scale ωk, a point on the 2D celestial plane (zk, z̄k), and a sign ϵk to distinguish
outgoing (ϵk = +1) from incoming (ϵk = −1) particles:

pµ
k = ϵkωkq̂µ(zk, z̄k), εµ

k+ = 1√
2

1
z0k

q̂µ(z0, z̄k), εµ
k− = 1√

2
1

z̄0k
q̂µ(zk, z̄0), (2.1)

where

q̂µ(z, z̄) = (1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄) . (2.2)

Here we have introduced an auxiliary point (z0, z̄0) so that the polarizations transform
covariantly under SL(2,C). This is equivalent to the introduction of a reference vector in
the spinor helicity formalism. Explicitly, under the transformation

z → z′ = az + b

cz + d
, z̄ → z̄′ = āz̄ + b̄

c̄z̄ + d̄
, ad − bc = ād̄ − b̄c̄ = 1, (2.3)

we find

q̂µ(z, z̄) → q̂µ(z′, z̄′) = 1
(cz + d)(c̄z̄ + d̄)

Λµ
ν q̂ν(z, z̄),

εµ
+(z, z̄; z0) → εµ

+(z′, z̄′; z′0) =
(cz + d)
(c̄z̄ + d̄)

Λµ
νεν

+(z, z̄; z0),

εµ
−(z, z̄; z̄0) → εµ

−(z′, z̄′; z̄′0) =
(c̄z̄ + d̄)
(cz + d)Λ

µ
νεν

−(z, z̄; z̄0),

pµ
k(ωk, zk, z̄k) → pµ

k(ω
′
k, z′k, z̄′k) = Λµ

νpν
k(ωk, zk, z̄k),

(2.4)

– 6 –
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where Λ is the corresponding Lorentz transformation in the vector representation and in
the last line we use

ω′
k = (czk + d)(c̄z̄k + d̄)ωk. (2.5)

Note that in the limit z0, z̄0 → ∞, we recover the familiar expressions for polarization vectors:

εµ
k+ = 1√

2
∂zk

q̂µ(zk, z̄k), εµ
k− = 1√

2
∂z̄k

q̂µ(zk, z̄k). (2.6)

Polarization tensors for gravitons are built out of the polarization vectors in (2.1) by
εµν

k± = εµ
k±εν

k±.
After parametrizing the scattering data as described above, conformal primary states

of massless particles can be obtained by performing a Mellin transformation with respect
to energy scale ωk: ∫ ∞

0

dωk

ωk
ω∆k

k . (2.7)

Massive conformal primary states are likewise constructed using a parametrization of
massive momenta pk by a mass mk, a point p̂k(yk, wk, w̄k) on the unit hyperboloid p̂2k = −1,
and a sign ϵk:

pµ
k = ϵkmkp̂µ

k , p̂µ
k = 1

2yk

(
y2knµ + q̂µ(wk, w̄k)

)
, (2.8)

where

nµ ≡ ∂z∂z̄ q̂µ(z, z̄). (2.9)

SL(2,C) acts on these parameters like the isometries of AdS3 on coordinate charts,

wk → w′
k = (awk + b)(c̄w̄k + d̄) + ac̄y2

k

(cwk + d)(c̄w̄k + d̄) + cc̄y2
k

,

w̄k → w̄′
k = (āw̄k + b̄)(cwk + d) + ācy2

k

(cwk + d)(c̄w̄k + d̄) + cc̄y2
k

,

yk → y′k = yk

(cwk + d)(c̄w̄k + d̄) + cc̄y2
k

,

(2.10)

and generates Lorentz transformations on massive momenta:

pµ
k(yk, wk, w̄k) → pµ

k(y
′
k, w′

k, w̄′
k) = Λµ

νpν
k(yk, wk, w̄k). (2.11)

Conformal primary states of massive scalars are then obtained by integrating the result
against an AdS3 bulk-to-boundary propagator

G∆(p̂k; q̂k) ≡
1

(−p̂k · q̂(zk, z̄k))∆
=
(

yk

y2k + (wk − zk)(w̄k − z̄k)

)∆
(2.12)
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with the SL(2,C)-invariant measure on the unit three-dimensional hyperboloid∫
[dp̂k] =

∫ ∞

0

dyk

y3k

∫
d2wk. (2.13)

This construction readily generalizes to massive spinning particles by simply replacing the
scalar bulk-to-boundary propagator with its appropriate spinning counterpart [80–82].

Putting everything together, we obtain the following relation between celestial amplitudes
⟨O · · · ⟩ and momentum-space amplitudes A:

⟨O∆1(z1, z̄1) · · · O∆n(zn, z̄n)⟩ =
∏

j massless
k massive

∫ ∞

0

dωj

ωj
ω
∆j

j

∫
[dp̂k] G∆k

(p̂k; q̂k) A(p1, · · · , pn),

(2.14)

where we have suppressed all spin labels on both celestial operators O∆ and bulk-to-boundary
propagators G∆. Under the action of SL(2,C) (2.3), celestial amplitudes transform ac-
cording to

⟨O∆1(z
′
1, z̄′1) · · · O∆n(z′n, z̄′n)⟩ =

[
n∏

k=1
(czk + d)2hk(c̄z̄k + d̄)2h̄k

]
⟨O∆1(z1, z̄1) · · · O∆n(zn, z̄n)⟩,

(2.15)

where (hk, h̄k) are the left and right conformal weights, related to ∆k and sk by

(hk, h̄k) =
(∆k + sk

2 ,
∆k − sk

2

)
. (2.16)

The analysis in the following sections will focus on amplitudes for scalar particles and
positive helicity (conformally) soft gravitons. We introduce G∆ to denote a positive helicity
graviton of conformal weight ∆ and Φ∆ (ϕ∆) to denote massive (massless) conformal primary
scalars of weight ∆. In expressions where mass is irrelevant, Φ∆ and ϕ∆ are collectively
represented by O∆. We expect that all non-trivial aspects of the analysis appear in the
coupling of (conformally) soft gravitons to scalar particles and thus the generalization of the
following analysis to spinning particles will be straightforward.

3 From soft theorems to w1+∞

In [75], the authors use gauge invariance to show that an amplitude for graviton emission
admits universal behavior to all orders in the low-energy expansion

A(ωq̂; p1, · · · , pn) =
κ

2

∞∑
ℓ=−1

ωℓA(ℓ)(q̂; p1, · · · , pn), (3.1)

where κ2 = 32πG. The leading and subleading terms in the expansion take the previously-
discovered [31, 83] form

A(−1)(q̂; p1, · · · , pn) =
n∑

k=1
S
′′(−1)
k A(p1, · · · , pn), S

′′(−1)
k = εµνpµ

kpν
k

q̂ · pk
, (3.2)

– 8 –
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and

A(0)(q̂; p1, · · · , pn) =
n∑

k=1
S
′′(0)
k A(p1, · · · , pn), S

′′(0)
k = εµνpµ

k(iq̂σJ νσ
k )

q̂ · pk
, (3.3)

respectively. Here the soft graviton has momentum ωq̂ and polarization εµν and pk, Jk

are the momentum and total angular momentum of the kth particle. Both orbital Lk and
intrinsic Sk angular momentum contribute to Jk:

Jk = Lk + Sk, Lkµν = −i

(
pkµ

∂

∂pν
k

− pkν
∂

∂pµ
k

)
. (3.4)

Beyond subleading order, the soft theorems were found to take the form [74, 75]

A(ℓ>0)(q̂; p1, · · · , pn) =
n∑

k=1
S
′′(ℓ)
k A(p1, · · · , pn) + εµνBµν

ℓ (q̂; p1, · · · , pn), (3.5)

where

S
′′(ℓ)
k = 1

(ℓ + 1)!
εµν(iq̂ρJ µρ

k )(iq̂σJ νσ
k )

q̂ · pk

(
q̂ · ∂

∂pk

)ℓ−1
, ℓ ∈ Z≥1. (3.6)

Here Bµν
ℓ is a non-universal contribution, which is generally non-vanishing. The non-universal

corrections at subsubleading order (ℓ = 1) are controlled at tree level by a finite number of
curvature couplings (including RF 2 and R2Φ) [84]. Analogous structure beyond subsubleading
order is not known nor necessarily expected.

Equivalent statements for celestial amplitudes are obtained by performing the appropriate
change of basis, reviewed in the previous section. Using the mathematical identity6

lim
ω→0

∂ℓ+1
ω (ωA(ω)) = (ℓ + 1)! lim

ϵ→0
ϵ

∫ ∞

0

dω

ω
ω−ℓ+ϵA(ω), (3.7)

we recall that the soft limit takes the following form in the conformal primary basis [15,
28, 85–89]

⟨H−ℓ(z, z̄)O∆1(z1, z̄1) · · · O∆n(zn, z̄n)⟩

=
∏

j massless
k massive

∫ ∞

0

dωj

ωj
ω
∆j

j

∫
[dp̂k] G∆k

(p̂k; q̂k)A(ℓ)(q̂; p1, · · · , pn), (3.8)

where

H−ℓ(z, z̄) ≡ lim
ϵ→0

ϵG−ℓ+ϵ(z, z̄), (3.9)

is a conformally soft graviton that transforms under SL(2,C) with conformal weight

(h, h̄) =
(−ℓ + 2

2 ,
−ℓ − 2

2

)
. (3.10)

6(3.7) converges provided that the amplitude falls off at high energies as A(ω) ∼ ω−m where m + ℓ > ϵ.
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Notice that the soft graviton in (3.8) is already in a state with definite conformal weight.
This equivalence between momentum-space soft limits and emissions of particles of definite
conformal weight has several non-trivial consequences.

First, it clarifies the conditions under which non-universal corrections Bµν
ℓ can appear. To

see this, treat z and z̄ as independent complex variables and consider the following celestial
amplitude involving only massless celestial operators ϕ∆:

⟨H−ℓ(z, z̄)ϕ∆1(z1, z̄1) · · · ⟩

=
∮

z

dw

2πi

1
w − z

⟨H−ℓ(w, z̄)ϕ∆1(z1, z̄1) · · · ⟩

= −
m∑

j=1

∮
zj

dw

2πi

1
w − z

⟨H−ℓ(w, z̄)ϕ∆1(z1, z̄1) · · · ⟩+
∮
∞

dw

2πi

1
w − z

⟨H−ℓ(w, z̄)ϕ∆1(z1, z̄1) · · · ⟩.
(3.11)

To reach the last line, we have exploited the fact that in the soft limit, the delta-function
for momentum conservation no longer constrains the position w of the soft graviton and the
amplitude is thus meromorphic in w. This allows us to deform the contour to infinity at
the price of including contributions from singularities at other points, denoted collectively
by zj . As mentioned in the introduction and detailed in appendix A, the assumption of
meromorphicity is only strictly justified for massless scattering.

Next, we exploit SL(2,C) symmetry to study the contribution at infinity. Using (2.15), we
find that under a general conformal transformation (2.3), the celestial amplitude transforms as

⟨H−ℓ(z′, z̄′)ϕ∆1(z
′
1, z̄′1) · · ·ϕ∆n(z′n, z̄′n)⟩ = (cz + d)−ℓ+2(c̄z̄ + d̄)−ℓ−2

n∏
k=1

[(czk + d)(c̄z̄k + d̄)]∆k

× ⟨H−ℓ(z, z̄)ϕ∆1(z1, z̄1) · · ·ϕ∆n(zn, z̄n)⟩. (3.12)

Notice that the limit z → ∞ sends z′ → a/c. Since a and c are generic, we expect the right-
hand side of (3.12) to be finite when evaluated in this limit at z′ = a/c. Hence, we deduce that

lim
z→∞

⟨H−ℓ(z, z̄)ϕ∆1(z1, z̄1) · · ·ϕ∆n(zn, z̄n)⟩ ∼
1

z−ℓ+2 . (3.13)

The leading, subleading, and subsubleading soft limits have ℓ = −1, 0, 1, respectively. In
these cases the contribution from the contour around infinity in (3.11) thus vanishes and the
conformally soft limit is entirely determined by the singularities in z. In celestial amplitudes
for massless scattering, the singularities in z are entirely dictated by the collinear singularities
in momentum space amplitudes or equivalently the singular terms in the celestial operator
product expansion (OPE). Indeed, one can verify that these precisely reproduce the soft
factors in (3.2) and (3.3), the leading and subleading case respectively. At subsubleading
order, the celestial OPE can receive corrections from a finite number of curvature couplings
(including RF 2 and R2Φ), but still precisely reproduces the corrections to the subsubleading
soft graviton theorem that arise from these couplings. Thus, in purely massless scattering,
the form of the soft theorems up to subsubleading order is tightly controlled by SL(2,C)
symmetry. In particular, SL(2,C) symmetry implies factorization, namely that the amplitude
for soft emission can be written as a soft factor (or operator) acting on the amplitude for
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a hard scattering process. As we saw in the introduction, the singularity structure is more
subtle when massive particles are present. Nevertheless, conformal symmetry ensures a
sufficiently fast fall-off in the limit z → ∞ so that the contribution from z = ∞ to a contour
integral of H−ℓ vanishes for ℓ = −1, 0, 1. Therefore, up to and including subsubleading order,
the conformally soft limit is still fully determined by the singularity structure in z.7

On the other hand, when ℓ ≥ 2 (equivalently beyond subsubleading order), the contri-
bution from the contour around infinity in (3.11) need not vanish. This means that the
conformally soft limit is not entirely determined by the singularities in z, and thus for massless
particles not entirely determined by the collinear singularities of momentum-space amplitudes,
nor equivalently by the celestial OPE. This result is fully consistent with the non-universal
corrections in (3.5) that were found in [75] to appear beyond subsubleading order and need
not admit the factorizing form described above.

This result further demonstrates that statements about universal soft behavior beyond
subsubleading order require more care. In particular, the presence of a non-universal
contribution introduces an ambiguity in defining the universal contribution because terms
can in principle be freely moved between the two. The authors in [75] address this ambiguity
by defining the universal contribution as the image of a particular projection operator.

In this work, we demonstrate that the ambiguity can be resolved such that the infinite
tower of soft graviton theorems organizes according to a w1+∞ symmetry. The manifest
SL(2,C)-covariance of scattering amplitudes in a conformal primary basis was instrumental in
the discovery of the original formulation of w1+∞ in celestial holography [43–45]. We therefore
seek expressions for the soft factor that render the partition into universal and non-universal
pieces invariant under the action of SL(2,C). Since the conformally soft graviton transforms
like a primary of weight (h, h̄) =

(
−ℓ+2

2 , −ℓ−2
2

)
, a conformally-invariant partition thus requires

the associated soft factor also to transform as a primary with the same conformal weight.
Upon identifying expressions that transform like SL(2,C) primaries, we further demonstrate
that these generate a w1+∞ symmetry action on hard massless and massive particles. Our
derivation of a w1+∞ symmetry action on massless hard particles from momentum-space soft
theorems merely synthesizes a variety of existing results from the literature into a systematic
procedure. On the other hand, the generalization to massive particles reveals new expressions
for universal soft behavior that to our knowledge have not yet appeared in the literature.

3.1 Massless particles

The soft factors appearing in (3.6) do not transform like primaries. Specifically, the factors
of q̂ · ∂pk

are problematic. However, a natural proposal is to complete these factors into
angular momentum generators:

q̂µ ∂

∂pµ
k

→ 1
ε+ · pk

(
(ε+ · pk) q̂µ ∂

∂pµ
k

− (q̂ · pk) εµ
+

∂

∂pµ
k

)
= 1

ε+ · pk
F µν
+ Lkµν , (3.14)

7Taking a contour integral in z of (3.11) that surrounds all of the hard insertions, a similar argument
implies that the leading and subleading soft graviton insertions with ℓ = −1, 0 correspond to globally conserved
charges (the familiar global translations and Lorentz transformations). The analog of this statement for global
U(1) charge conservation is presented in appendix A in the derivation of (A.23). However, at subsubleading
order and beyond (ℓ ≥ 1) the contour integrals include terms from infinity and therefore the soft insertions at
these orders do not correspond to globally conserved charges.
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where F± is the field strength

F µν
± = iε

[µ
± q̂ν]. (3.15)

Notice that division by ε+ · pk renders the expression gauge-dependent (i.e. non-invariant
under ε+ → ε+ + q̂). We will show that this gauge dependence ultimately drops out from
the symmetry action.

Under SL(2,C) transformations (2.3) in which the reference point z0 is also transformed,
the modified soft factors

S
′(ℓ)
k (z, z̄) = ε+µνpµ

kpν
k

q̂ · pk

1
(ℓ + 1)!

(
F+ · Jk

ε+ · pk

)ℓ+1
(3.16)

transform like primaries, which we demonstrate shortly. In (3.16),

q̂µ = q̂µ(z, z̄), εµ
+ = εµ

+(z, z̄; z0), F+ · Jk = F µν
+ Jkµν , (3.17)

and we have further replaced the orbital angular momentum Lk with the total angular
momentum Jk. These are equivalent for scalars, which are the focus of the present analysis,
but we expect that (3.16) is also the correct generalization for spinning particles. In fact, (3.16)
has appeared before in the literature [54, 90, 91]. The authors of [90, 91] observe that this
expression implies that the full soft factor expansion resums into an exponential:

∞∑
ℓ=−1

ωℓS
′(ℓ)
k (z, z̄) = ε+µνpµ

kpν
k

ωq̂ · pk
exp

(
ω

F+ · Jk

ε+ · pk

)
. (3.18)

An additional advantage of (3.16) is that it subsumes the leading and subleading cases
and applies to every order in the soft expansion (ℓ ≥ −1). Therefore, we can verify the
transformation of the tower of soft factors under SL(2,C) all in one go. In particular,
using (2.4) and (2.11), one finds

ε+µνpµ
kpν

k

q̂ · pk
→ (cz + d)3

(c̄z̄ + d̄)
ε+µνpµ

kpν
k

q̂ · pk
,

ε+ · pk → (cz + d)
(c̄z̄ + d̄)

ε+ · pk,

F+ · Lk → 1
(c̄z̄ + d̄)2

F+ · Lk.

(3.19)

Putting these together, the total transformation of the proposed soft factor

S
′(ℓ)
k (z, z̄) → (cz + d)−ℓ+2(c̄z̄ + d̄)−ℓ−2S

′(ℓ)
k (z, z̄), (3.20)

precisely matches the transformation of a weight (−ℓ+2
2 , −ℓ−2

2 ) primary.
Notice that (3.20) follows from transforming the reference point z0 in addition to the

points that specify the momenta of the scattering particles. Since the reference point is
arbitrary and the full amplitude is independent of its choice, the “non-universal” piece beyond
subsubleading order must also depend on the reference point. At leading and subleading
order, momentum and angular momentum conservation can be used to show that the choice
of reference point drops out in the sum over k in (3.2) and (3.3), respectively, while at
subsubleading order S

′(ℓ=1)
k is simply independent of the reference point.
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Strictly speaking, the non-trivial dependence on the reference vector for ℓ > 1 indicates
that the partition is not conformally invariant. Explicitly, when the reference vector is not
transformed, it is clear that the partition is not preserved. This is equivalent to the previous
observation that the factors of ε+ · pk appearing in the denominator of S

′(ℓ)
k (z, z̄) when ℓ > 1

render the soft factor non-invariant under gauge transformations ε+ → ε+ + q̂. Nevertheless,
we now show that our analysis of massless hard particles tolerates this subtle non-invariance
because it can be removed in a conformally covariant manner.

To do so, we exploit the property of conformally soft positive-helicity gravitons that they
admit right-moving descendants that are also primaries (i.e. primary-descendants) [43, 76,
77, 92, 93]. By virtue of respecting SL(2,C) transformations identical to those of conformally
soft gravitons, S

′(ℓ)
k (z, z̄) is likewise guaranteed to admit a primary descendant. That is,

under SL(2,C), the soft factor descendant ∂ℓ+3
z̄ S

′(ℓ)
k (z, z̄) transforms like a primary of weight

(−ℓ+2
2 , ℓ+4

2 ):

∂ℓ+3
z̄ S

′(ℓ)
k (z, z̄) → (cz + d)−ℓ+2(c̄z̄ + d̄)ℓ+4∂ℓ+3

z̄ S
′(ℓ)
k (z, z̄), (3.21)

which follows from the following identity for any function f(z̄):

[
(c̄z̄ + d̄)2∂z̄

]ℓ+3
[

f(z̄)
(c̄z̄ + d̄)ℓ+2

]
= (c̄z̄ + d̄)ℓ+4∂ℓ+3

z̄ f(z̄), (3.22)

which can be proved by induction. Rewriting (3.16) using (3.17) and the parametrization for
massless particles (2.1), we obtain the following explicit expression:8

S
′(ℓ)
k (z, z̄)=− ϵkωk

(ℓ+1)!
z̄−z̄k

z−zk

(
z−z0

zk−z0

)ℓ−1( 1
ϵkωk

[ωk∂ωk
−(z̄k−z̄)∂z̄k

]
)ℓ+1

= (−1)ℓ

(ℓ+1)!
z̄−z̄k

z−zk

(
z−z0

zk−z0

)ℓ−1
(

ℓ+1∑
m=0

(
ℓ+1
m

)
Γ(−ωk∂ωk

+1)
Γ(−ωk∂ωk

−ℓ+m)(z̄k−z̄)m∂m
z̄k

)
(ϵkωk)−ℓ

.

(3.23)

Here Γ(−ωk∂ωk
+1)

Γ(−ωk∂ωk
−ℓ+m) denotes the following commuting product of operators:

Γ(−ωk∂ωk
+ 1)

Γ(−ωk∂ωk
− ℓ + m) = (−ωk∂ωk

) (−ωk∂ωk
− 1) · · · (−ωk∂ωk

− ℓ + m) . (3.24)

To arrive at this expression, it is helpful to notice that

F+ · Lk = −
√
2
[
(z̄k − z̄)2∂z̄k

− (z̄k − z̄)ωk∂ωk

]
,

F− · Lk = −
√
2
[
(zk − z)2∂zk

− (zk − z)ωk∂ωk

]
.

(3.25)

Then, expression for the associated primary descendant takes the explicit form

∂ℓ+3
z̄ S

′(ℓ)
k (z, z̄)=

ℓ+1∑
m=0

(−1)ℓ+m(m+1)
(ℓ+1−m)!

Γ(−ωk∂ωk
+1)

Γ(−ωk∂ωk
−ℓ+m)2π∂ℓ+1−m

z̄ δ(2)(z−zk) ∂m
z̄k
(ϵkωk)−ℓ .

(3.26)
8Also compare section 4.1 of [58].
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Importantly, this descendant no longer depends on the reference point z0. This implies that
— so long as the modes of the primary descendant can be shown to generate the action w1+∞
— we need not identify a conformally invariant partition at the level of the soft factor. In
other words, we have obtained a conformally invariant partition at the level of the primary
descendant of the soft factor. Of course, it may be possible to modify the massless soft
factor from [75] to be strictly conformally covariant or equivalently independent of choice
of reference point z0. However, as we will now demonstrate, it is unnecessary to find such
an expression for the sole purpose of establishing a w1+∞ symmetry action.

A central lesson from the equivalence between soft theorems and Ward identities for
infinite-dimensional symmetries is the interpretation of the universal soft factor as the
generator of an infinitesimal symmetry transformation on hard, single-particle states:

S
(ℓ)
k (z, z̄)|pk⟩ ∼ δ

(ℓ)
(z,z̄)|pk⟩. (3.27)

The underlying symmetry algebra can be extracted by decomposing these local symmetry
transformations in a basis of modes and calculating the commutation relations between the
modes. A proper labelling of these modes was essential to the previous discovery [44] of
an underlying w1+∞ symmetry.

To the same end, we now show that modes of the primary descendant correctly reproduce
the action of w1+∞ on massless particles found in [45]. Explicitly, consider

δp
m|pk⟩ ≡ −1

2

∫
d2z

2π
z̄p+m−1∂2p−1

z̄ S
′(2p−4)
k (z, z̄)|pk⟩, (3.28)

where

p = 1,
3
2 , 2,

5
2 , · · · , 1− p ≤ m ≤ p − 1. (3.29)

Here, in anticipation of the results in [44] and [45], we have labelled the transformations
by the right-moving conformal weight p = h̄ = ℓ+4

2 and right-moving SL(2,C) mode m of
the primary descendant.

To compare directly with the results in [45], we need to work in a conformal primary
basis. Using (3.26), we immediately find the action on outgoing particles (ϵk = 1) to be

δq
nϕ∆k

(zk, z̄k)=
∫ ∞

0

dωk

ωk
ω∆k

k δq
n|pk⟩

= 1
2

2q−3∑
m=0

(
q+n−1

m

)
(2q−2−m)Γ(∆k+1)

Γ(∆k+1−m) z̄q+n−1−m
k ∂2q−3−m

z̄k
ϕ∆k−2q+4(zk, z̄k),

(3.30)

which precisely matches the action of w1+∞ found in [45]. Then, by directly importing the
results in [45], we reach the conclusion that the symmetry transformations defined in (3.28)
respect the algebra

[δp
m, δq

n] = [m(q − 1)− n(p − 1)] δp+q−2
m+n . (3.31)
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3.2 Massive particles

The massless analysis in the previous subsection can only be directly extended to massive
particles provided that analogous simplifications arise. In particular, the observation that
the primary descendant was independent of the reference point z0, and thereby constituted
a conformally covariant expression for universal soft behavior, was a critical component
of the argument.

However, when pk is timelike, the primary descendant of (3.16) is independent of z0 only
in the leading few cases. Specifically, when ℓ = −1, 0, 1, we find

∂ℓ+3
z̄ S

′(ℓ)
k (z, z̄) = Nℓ

p4k
(q̂ · pk)ℓ+4 (F− · Jk)ℓ+1 , (3.32)

where Nℓ is just a normalization factor

Nℓ = (−
√
2)ℓ−1(ℓ + 3)(ℓ + 2). (3.33)

To verify z0-independence of (3.32), note that with the parametrization of massive mo-
menta (2.8), the angular momentum generators are z0-independent and take the form

F+ · Lk = −
√
2
[
(w̄k − z̄)2∂w̄k

+ (w̄k − z̄)yk∂yk
− y2k∂wk

]
,

F− · Lk = −
√
2
[
(wk − z)2∂wk

+ (wk − z)yk∂yk
− y2k∂w̄k

]
.

(3.34)

It then directly follows that (3.32) is independent of z0.
On the other hand, when ℓ > 1, the primary descendant of (3.16) depends on z0 and

thus is not conformally covariant. To see this explicitly, consider ℓ = 2. In this case, using

1 = p2k
p2k

= (∂z q̂ · pk)(∂z̄ q̂ · pk)− (q̂ · pk)(n · pk)
p2k

(3.35)

we can split S
′(2)
k (z, z̄) into a sum of individually conformally covariant terms, one of which

depends on the reference point and one which does not:

S
′(2)
k (z, z̄) = N2

6!

[
1
p2k

(q̂ · pk)6∂z̄

(
(F+ · Lk)3

(q̂ · pk)6

)
− 1

p2k
(q̂0 · pk)6∂z̄

(
(F+ · Lk)3

(q̂0 · pk)6

)]
, (3.36)

where

q̂0 ≡ q̂(z0, z̄). (3.37)

The conformal covariance of each individual term can be verified using the following SL(2,C)
transformations of the constituent pieces:

q̂ · pk → q̂ · pk

(cz + d)(c̄z̄ + d̄)
, F+ · Jk → F+ · Jk

(c̄z̄ + d̄)2
. (3.38)

Since each term individually transforms like a primary, each term individually admits a
primary descendant. Explicitly,

∂5
z̄

[
N2
6!

1
p2k

(q̂ · pk)6∂z̄

(
(F+ · Lk)3

(q̂ · pk)6

)]
= N2

p4k
(q̂ · pk)6

(F− · Lk)3 , (3.39)

which is the natural generalization of (3.32) to ℓ = 2. Similarly, the descendant relation for
the second term in (3.36) takes the same form only with q̂ replaced by q̂0.
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More generally, at any order (ℓ ≥ 1) the soft expression from the previous subsection
can be written as a sum over individually conformally covariant terms, only one of which
is independent of the reference point:

S
′(ℓ)
k (z, z̄)= Nℓ

(2ℓ+2)!f
2ℓ+2 1

p2ℓ−2
k

∂ℓ−1
z̄

[
(F+ ·Lk)ℓ+1

f ℓ+4

]

− Nℓ

(ℓ+3)!(ℓ−2)!
1

p2ℓ−2
k

ℓ−2∑
j=0

(
ℓ−2

j

)
(−1)j

j+ℓ+4f ℓ−2−jf ℓ+4+j
0 ∂ℓ−1

z̄

[
f j(F+ ·Lk)ℓ+1

f ℓ+4+j
0

]
.

(3.40)

Here we have introduced the shorthand

f ≡ q̂ · pk, f0 ≡ q̂0 · pk. (3.41)

As in (3.36), the explicit division by p2k indicates that the massless limit requires some care.
Specifically, it requires that we assemble various contractions of pk as in the numerator
in (3.35) and evaluate p2k/p2k = 1 before taking p2k → 0. Also as in (3.36), the conformal
covariance of each term in (3.40) can be verified using (3.38) and (3.22).

Since the first term in (3.40) is conformally covariant by itself and independent of the
reference point, it is the natural proposal for the universal soft behavior at subℓ+1leading
order for massive particles:

S
(ℓ)
k (z, z̄) = Nℓ

(2ℓ + 2)!
(q̂ · pk)2ℓ+2

p2ℓ−2
k

∂ℓ−1
z̄

[
(F+ · Lk)ℓ+1

(q̂ · pk)ℓ+4

]
. (3.42)

With a strictly conformally covariant soft factor at hand, we can now proceed exactly as in
the massless case. In particular, the primary descendant is now guaranteed to be independent
of the reference point and generalizes the simplification found in (3.32) to ℓ > 1:

∂ℓ+3
z̄ S

(ℓ)
k (z, z̄) = Nℓ

p4k
(q̂ · pk)ℓ+4 (F− · Lk)ℓ+1 . (3.43)

In deriving (3.43), it is helpful first to exchange powers of F+ · Lk for powers of F− · Lk

by using the identity

(F+ · Lk)n = (q̂ · pk)2n+1

(p2k)n(2n)!
∂2n

z

((F− · Lk)n

q̂ · pk

)
, (3.44)

which can be proved by induction. Combining this result with the result (3.32) for ℓ = −1, 0, 1,
we arrive at the following set of transformations of massive particles, each now associated
with a fixed order of the soft expansion:

δp
m|pk⟩ ≡ −1

2

∫
d2z

2π
z̄p+m−1∂2p−1

z̄

S
′(2p−4)
k (z, z̄)|pk⟩, p = 3

2 , 2, 5
2

S
(2p−4)
k (z, z̄)|pk⟩, p > 5

2

= −N2p−4
2

∫
d2z

2π
z̄p+m−1 p4k

(q̂ · pk)2p
(F− · Lk)2p−3 |pk⟩.

(3.45)
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Note the last line applies for p ≥ 3
2 , but omits the case when p = 1. As observed in [44],

p = 1 corresponds to a central term in the wedge algebra. No soft theorem analysis has
yet provided a non-vanishing value for this central extension so we leave the question of an
appropriate expression for massive scalars to a future investigation. To complete the same
analysis as for massless particles in the previous subsection, it remains to be shown that
the transformations (3.45) generate a w1+∞ symmetry action on massive particles. This
is the subject of the next section.

4 Momentum space action of w1+∞

In this section, we establish that the transformation

δp
m|pk⟩ = −N2p−4

2

∫
d2z

2π
z̄p+m−1 p4k

(q̂ · pk)2p
(F− · Lk)2p−3 |pk⟩, (4.1)

respects the algebra

[δp
m, δq

n] = [m(q − 1)− n(p − 1)] δp+q−2
m+n . (4.2)

This result follows from an induction proof that mirrors the one presented in appendix C of [45].
Here we will sketch the logic and point the reader to [45] for explicit details omitted here.

In [45], an abstract symmetry action δp
m with p = 1, 3

2 , 2, 5
2 , · · · and 1− p ≤ m ≤ p − 1

was proven generally to respect the algebra (4.2), provided that it respects base cases of (4.2)
with (p, m) = (1, 0), (32 ,−1

2), (2,±1), (2, 0) and (52 ,−3
2) and (q, n) compatible with (3.29)

but otherwise arbitrary. The proof in [45] of (4.2) for generic p, m, q, n given these base cases
depended solely on the abstract algebra (4.2) and not on the explicit representation of δp

m.
Hence we can directly import that result, thus reducing the general proof to establishing
these base cases for the explicit transformation in (4.1). Also note that we will not treat
the case (p, m) = (1, 0) since our expression does not extend to this case, as discussed in
the previous section. Importantly, this base case was not used in proving the induction step
in [45] and thus its omission will not affect the above argument.

First consider (p, m) = (32 ,−1
2). Evaluating (4.1), we find

δ
3
2
− 1

2
|pk⟩ =

ϵkmk

4yk
|pk⟩ = −1

4(n · pk)|pk⟩. (4.3)

To evaluate the commutator, we will need the identity[
pµ

k , (F− · Lk)ℓ
]
= −2iℓF µν

− pkν(F− · Lk)ℓ−1. (4.4)

Then, we find9[
δ

3
2
− 1

2
, δq

n

]
|pk⟩ = −1

4
N2q−4

2

∫
d2z

2π
z̄q+n−1 p4k

(q̂ · pk)2q

[
n · pk, (F− · Lk)2q−3

]
|pk⟩

= −1
2
N2q−4

2

∫
d2z

2π
z̄q+n−1p4k

(−i)(2q − 3)nµpkνF µν
−

(q̂ · pk)2q
(F− · Lk)2q−4 |pk⟩.

(4.5)

9Note to compute the commutators, we employ the standard interpretation of the ordering so that for
example SL(2,C) transformations of the form δ2

mO = z̄m
[
(m + 1)h̄ + z̄∂z̄

]
O obey the familiar commutation

relation
[
δ2

m, δ2
n

]
= (m − n)δ2

m+n. This requires that

δ2
mδ2

nO = z̄n
(
(n + 1)h̄ + z̄∂z̄

)
δ2

mO = z̄n
(
(n + 1)h̄ + z̄∂z̄

)
z̄m
(
(m + 1)h̄ + z̄∂z̄

)
O.
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Next, we note that

−iN2q−4(2q − 3)
nµpkνF µν

−
(q̂ · pk)2q

= N2q−5∂z̄

( 1
(q̂ · pk)2q−1

)
. (4.6)

Integrating by parts with respect to z̄ and using the fact that ∂z̄ (F− · Lk) = 0, we find[
δ

3
2
− 1

2
, δq

n

]
|pk⟩ =

1
2 (q + n − 1) N2q−5

2

∫
d2z

2π
z̄q+n−2 p4k

(q̂ · pk)2q−1 (F− · Lk)2q−4 |pk⟩

= −1
2 (q + n − 1) δ

q− 1
2

n− 1
2
|pk⟩.

(4.7)

To establish (4.2) when p = 2 and m = −1, 0, 1, we again explicitly evaluate (4.1)
with these values:

δ2m|pk⟩ =
1
2 w̄m−1

k

(
2w̄2

k∂w̄k
+ (m + 1)w̄kyk∂yk

− m(m + 1)y2k∂wk

)
︸ ︷︷ ︸

≡L̄m

|pk⟩. (4.8)

Notice these are just three of the Killing vectors on the unit hyperboloid parametrized
by (yk, wk, w̄k). Hence, their commutators are just familiar SL(2,C) expressions. We will
need the following [

L̄m,
1

(q̂ · pk)2q

]
= −z̄m ((m + 1)q + z̄∂z̄)

1
(q̂ · pk)2q

,[
L̄m, F− · Lk

]
= 0.

(4.9)

Using these, we readily find[
δ2m, δq

n

]
|pk⟩ =

N2q−4
2

∫
d2z

2π
z̄q+n−1p4k

[
L̄m,

(F− · Lk)2q−3

(q̂ · pk)2q

]
|pk⟩

= −N2q−4
2

∫
d2z

2π
z̄q+n+m−1 ((m + 1)q + z̄∂z̄) p4k

(F− · Lk)2q−3

(q̂ · pk)2q
|pk⟩.

(4.10)

Once again integrating by parts in z̄, this becomes[
δ2m, δq

n

]
|pk⟩ = − (m(q − 1)− n) N2q−4

2

∫
d2z

2π
z̄q+n+m−1(pk)4

(F− · Lk)2q−3

(q̂ · pk)2q
|pk⟩

= (m(q − 1)− n) δq
m+n|pk⟩.

(4.11)

Finally, we treat the case when p = 5
2 and m = −3

2 . Proceeding as before, we evaluate (4.1)
for these values and find

δ
5
2
− 3

2
|pk⟩ =

3yk

ϵkmk
∂2

w̄k
|pk⟩. (4.12)

Using this expression, one can verify by brute force that this generator likewise respects[
δ

5
2
− 3

2
, δq

n

]
|pk⟩ = −3

2 (q + n − 1) δ
q+ 1

2
n− 3

2
|pk⟩. (4.13)

The details of this calculation are outlined in appendix D. Having thus established the base
cases (4.7), (4.11), and (4.13), we can directly apply the induction proof in appendix C
of [45] to establish that the symmetry transformation respects the algebra (4.2) when acting
on massive particles.
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5 Generating functions

Before turning to the conformal primary basis, it is helpful to compare the results of
our momentum-space analysis in the massless and massive cases. The w1+∞ symmetry
transformations of massless particles in the conformal primary basis can be easily deduced
from momentum space expressions. In particular, the coordinates zk, z̄k are preserved
and the energy scale ωk raises the conformal weight ∆k by one. By contrast, for massive
particles, momentum becomes a non-trivial differential operator in the conformal primary
basis. Therefore, simple expressions for the charges like (4.1) involving inverse powers of
momentum must be treated with some care.

To derive expressions in the conformal primary basis, we proceed in two steps. First, we
re-express the integral expression in sum form in this section. Second, in the next section,
we transform to the conformal primary basis. Rather than dealing with each mode n of
a transformation δq

n individually, we find it convenient to work with a generating function
that neatly packages all the SL(2,C)-related symmetry transformations associated to a
particular order of the soft expansion. We begin with a discussion of the generating function
for massless particles. Previous analyses in (2, 2) signature [43, 94–98] essentially treat the
massless soft factor itself as a generating function, and massless generating functions have
appeared explicitly in analyses of celestial OPEs from twistor space [54, 99–101]. In order
to generalize to the massive case, we explain how the same massless generating function
can be equivalently derived directly from the charges in (1, 3), as opposed to the soft factor
in (2, 2). Finally, we present the massive generalization and use the generating function to
re-express the integral in (4.1) in sum form, which will facilitate the transformation to the
conformal primary basis in the next section.

5.1 Massless particles

We begin with the definition of the generators (3.28). We can find a generating function
by considering

Gp(ā)|pk⟩ ≡
p−1∑

m=1−p

Γ(2p − 1)
Γ(p + m)Γ(p − m)(−ā)p−m−1δp

m|pk⟩

= −1
2

∫
d2z

2π
(z̄ − ā)2p−2 ∂2p−1

z̄ S
′(2p−4)
k (z, z̄)|pk⟩.

(5.1)

Now, integrating by parts, using the explicit form of the massless soft factor primary
descendant (3.26), the form of F+ ·Lk (3.25) and ∂z q̂ ·pk for massless particles, and relabelling
a → z, we find

Gp(z̄)|pk⟩ =
1
2(2p − 2)(−1)2p−3ϵkωk(z̄k − z̄)

( 1
ϵkωk

[ωk∂ωk
− (z̄k − z̄)∂z̄k

]
)2p−3

|pk⟩

= N2p−4
2(2p − 1)∂z q̂ · pk

(
F+ · Lk

∂z q̂ · pk

)2p−3
|pk⟩.

(5.2)

Note that this expression is a polynomial in positive powers of (z̄ − z̄k). The powers of
F+ · Lk naturally produce the expected action in terms of z̄ descendants. Although the
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same powers of F+ · Lk appear in the soft factor (3.16) and the right-hand side of (5.2), the
two expressions fundamentally differ because the right-hand side of (5.2) is independent of
the reference point z0 while the soft factor (for p > 5

2) is not, as emphasized in section 3.1.
Consequently, Gp(z̄) does not transform as a primary, which is consistent with the integral
in (5.1) not taking the form of a shadow or light transformation.

This same generating function equivalently can be found by taking a contour integral of
the massless soft factor, which is a similar prescription to that in a standard 2D CFT and to
that in [45] for determining the w1+∞ symmetry action on massless particles. In particular,
when z and z̄ are regarded as independent complex variables, the contour integral of the
soft factor (3.16) reproduces (5.2) up to normalization:∮

zk

dz

2πi
S
′(2p−4)
k (z, z̄)|pk⟩ =

(−1)2pN2p−4
(2p − 1)! ∂z q̂ · pk

(
F+ · Lk

∂z q̂ · pk

)2p−3
|pk⟩. (5.3)

Note that the reference point z0 is also projected out by the contour integral. Recognizing
that (5.3) is related to the sum form of Gp(z̄) by (5.2), we recover precisely the form of the
discrete light transform that appears in [44, 45]:

∮
zk

dz

2πi
S
′(2p−4)
k (z, z̄)|pk⟩ =

p−1∑
m=1−p

(−1)2p

1
2Γ(p + m)Γ(p − m)

(−z̄)p−m−1δp
m|pk⟩. (5.4)

The coefficients in the sum are precisely the ones that were previously introduced by hand
in [44, 45] to make the w1+∞ symmetry manifest. Here we see that they appear naturally in
the expansion of the contour integral of the soft factor in powers of z̄.

5.2 Massive particles

In this subsection, we present a generating function for the momentum-space action of w1+∞
on massive particles, which can be directly compared with the generating function for the
massless case in the previous subsection.

In the massless case, the generators involve descendants of the soft factor (3.26) that
can be naturally rewritten in terms of F+ · Lk, as we saw in the previous subsection. In the
massive case, however, we begin from an integral expression involving angular momentum
generators of the opposite helicity. To write a generating function in a form analogous with
that of the massless case, we proceed in two steps: first, find a sum (rather than integral)
expression for the generating function for the generators (4.1), and second, rewrite that
expression in terms of the right-moving angular momentum generators.

First, in analogy with the massless case, we consider the integral

Gp(ā)|pk⟩ ≡ −N2p−4
2

∫
d2z

2π
(z̄ − ā)2p−2 p4k

(q̂ · pk)2p
(F− · Lk)2p−3 |pk⟩. (5.5)

To turn this integral into a sum, we recognize that it can be recast in terms of a shadow
transform [102] (recall that q̂ · pk has weight (h, h̄) =

(
−1

2 ,−1
2

)
):

∫
d2z

2π

[(z − a)(z̄ − ā)]2p−2

(q̂ · pk)2p = Cp
(q̂(a) · pk)2p−2

m4p−2
k

, (5.6)
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where Cp is a normalization given by

Cp = Γ(2p − 1)
Γ(2p) = 1

(2p − 1) . (5.7)

Expanding F− · Lk in powers of (z − a), we have

Gp(ā)|pk⟩ = −N2p−4
2

4p−6∑
n=0

1
n!

(∫
d2z

2π
(z̄ − ā)2p−2(z − a)n p4k

(q̂ · pk)2p

)
∂n

a (F−(a) · Lk)2p−3 |pk⟩.

(5.8)

Then using

(−∂a)B(z − a)A = A!
(A − B)! (z − a)A−B, (5.9)

which remains formally true for inverse derivatives interpreted as definite integrals from
z to a, we find

Gp(ā)|pk⟩ = − N2p−4
2(2p − 2)!

4p−6∑
n=0

(
(−∂a)2p−2−n

∫
d2z

2π
(z̄ − ā)2p−2(z − a)2p−2 p4k

(q̂ · pk)2p

)
× ∂n

a (F−(a) · Lk)2p−3 |pk⟩.
(5.10)

Finally, using the shadow transform (5.6) and relabelling a → z, we have

Gp(z̄)|pk⟩=− N2p−4Cp

2(2p−2)!m4p−6
k

4p−6∑
n=0

(−∂z)2p−2−n(q̂ ·pk)2p−2 ∂n
z (F−(z)·Lk)2p−3 |pk⟩. (5.11)

To compare this expression to the massless case, and also to rewrite the generating function in
an explicit form that does not involve formal inverse powers of derivatives, we use the identity

(F− · Lk)n = (−1)n

(2n)!m2n
k

2n∑
m=0

[
(−∂z̄)2n−m(pk · q̂)2n

]
∂m

z̄ (F+ · Lk)n , (5.12)

which follows from the identity (3.44). Now, using the completeness relation (3.35) for massive
particles to expand the factors of q̂ · pk and evaluating the derivatives, we ultimately find

Gp(z̄)|pk⟩=
N2p−4Cp

2(−n·pk)2p−4

4p−6∑
ℓ=0

1
ℓ!

 4p−6∑
j=2p−4

(−1)j

(
ℓ

j

)(−∂z q̂ ·pk

n·pk

)ℓ−2p+4
∂ℓ

z̄ (F+ ·Lk)2p−3 |pk⟩.

(5.13)
More details of the derivation of this result are presented in appendix C. Note that this
expression is a polynomial in positive powers of (z̄ − w̄k). For particular values of p, the
generating functions become

G 3
2
(z̄)|pk⟩=

1
4∂z q̂ ·pk|pk⟩,

G2(z̄)|pk⟩=−
√
2
2 (F+ ·Lk) |pk⟩,

Gp>2(z̄)|pk⟩=
N2p−4Cp

2(−n·pk)2p−4
(−1)2p

(2p−5)!

4p−6∑
ℓ=2p−4

1
ℓ(ℓ−2p+4)!

(
−∂z q̂ ·pk

n·pk

)ℓ−2p+4
∂ℓ

z̄ (F+ ·Lk)2p−3 |pk⟩.

(5.14)
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For p = 3
2 and p = 2 these exactly match the expressions found in the previous subsection.

For p > 2, the massless limit of these expressions reduces to the form found in the previous
subsection. For massive momenta when p > 2, (5.14) is not equivalent to the massless
expression (5.2) because the massive soft factor was modified as described in section 3.2. This
modification was ultimately required to obtain conformally covariant expressions.

6 Action of w1+∞ on massive celestial conformal primaries

In this section, we formulate the action of w1+∞ on massive scalar celestial primaries by
transforming the results of the previous section to the conformal primary basis.

Although we now have expressions for the symmetry action in terms of simple powers
of q̂ · pk, n · pk, and F+ · Lk, one subtlety still remains in determining the associated action
on massive particles in the conformal primary basis: the momentum-space expressions for
the charges involve inverse powers of the four-momentum pk. In the conformal primary
basis, the four-momentum P becomes a non-trivial differential operator [79, 80] that acts
on massive scalars as

P µ
k Φ∆k

(zk, z̄k)

= ϵkmk

2

[(
∂zk

∂z̄k
q̂µ

k +
(
∂z̄k

q̂µ
k

)
∂zk

+
(
∂zk

q̂µ
k

)
∂z̄k

∆k−1 + q̂µ
k ∂zk

∂z̄k

(∆k−1)2

)
e−∂∆k + ∆kq̂µ

k

∆k−1e∂∆k

]
Φ∆k

(zk, z̄k),

(6.1)

so in the case of massive external particles, inverse powers of momentum must be treated
with some care. This is in contrast to the massless conformal primary basis, in which the
action of four-momentum is simply weight-raising and so inverse powers of momentum can
be easily interpreted as weight-lowering.

One benefit of the generating function form (5.13) as a sum, rather than an integral, is
that it makes manifest the fact that inverse powers of the differential operator Pk, as opposed
to just the scalar multiplier mk, are necessarily involved in the expressions for the massive
generators for p > 2. To work with these expressions in the conformal primary basis, it is
therefore helpful to provide a prescription for performing calculations.

A natural (albeit formal) interpretation of the inverse powers is to replace them with a
Schwinger parametrization: specifically, recalling the action (4.3) of n · pk, consider making
the replacement

4m

(−n · pk)m
|pk⟩ 7→

(
δ

3
2
− 1

2

)−m

|pk⟩ ≡
1

(m − 1)!

∫ ∞

0
dx xm−1

∞∑
j=0

1
j!

(
−x δ

3
2
− 1

2

)j

|pk⟩. (6.2)

The Schwinger parametrization is a popular trick for working with formal expressions involving
inverted differential operators and has even appeared before in studies of the matrix elements
of momentum generators in a Lorentz basis [103]. To prove that the parametrization of
the symmetry action with (6.2) will give the same algebra, we must simply check that this
replacement gives the same commutators with the δ

3
2
n and δ2n generators, because q̂ · pk and

F+ · Lk are constructed from these modes and all of the generators in (5.13) are constructed
from powers of these operators. Since the momenta commute, the only nontrivial cases to
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check are δ20 and δ21. Before making the replacement (6.2), we compute the commutators
explicitly from their derivative form (4.8):[1

2yk∂yk
+w̄k∂w̄k

,

(
yk

ϵkmk

)m]
|pk⟩=

m

2

(
yk

ϵkmk

)m

|pk⟩,[
w̄2

k∂w̄k
+w̄kyk∂yk

−y2
k∂wk

,

(
yk

ϵkmk

)m]
|pk⟩=mw̄k

(
yk

ϵkmk

)m

=m

(
w̄kϵkmk

yk

)(
yk

ϵkmk

)m+1
|pk⟩.

(6.3)
After making the replacement, it is straightforward to check using the commutators

[
δ2n, δ

3
2
− 1

2

]
and the expression in (6.2) that[

δ20 ,

(
δ

3
2
− 1

2

)−m
]
|pk⟩ = −m

2

(
δ

3
2
− 1

2

)−m

|pk⟩,[
δ21 ,

(
δ

3
2
− 1

2

)−m
]
|pk⟩ = −mδ

3
2
1
2

(
δ

3
2
− 1

2

)−m−1
|pk⟩.

(6.4)

Recalling the sign difference in derivative ordering (see footnote 9), the commutators before
and after the replacement precisely match and confirm that (δ

3
2
− 1

2
)−m has right-weight m

2

and that δ21 has the proper raising action. Thus, to transform to the conformal primary
basis, we simply use the replacement

w̄k = −∂z q̂ · pk|z̄=0
n · pk

7→ δ
3
2
1
2

(
δ

3
2
− 1

2

)−1
,

1
−n · pk

7→ 1
4

(
δ

3
2
− 1

2

)−1
. (6.5)

With this new interpretation of the generators in (5.13) involving positive powers of
momentum, the action in the conformal primary basis now readily follows from the action
in momentum space:

δq
nΦ∆k

(zk, z̄k) ≡
∫
[dp̂k] G∆k

(p̂k; q̂k)δq
n|pk⟩. (6.6)

To evaluate this action, first note that the bulk-to-boundary propagator satisfies

pµ
kG∆k

(p̂k; q̂k)

= ϵkmk

2

[(
∂zk

∂z̄k
q̂µ

k +
(
∂z̄k

q̂µ
k

)
∂zk

+
(
∂zk

q̂µ
k

)
∂z̄k

∆k−1 + q̂µ
k ∂zk

∂z̄k

(∆k−1)2

)
e−∂∆k + ∆kq̂µ

k

∆k−1e∂∆k

]
G∆k

(p̂k; q̂k),

(6.7)

(which is how one verifies (6.1)). Collecting the transformations (6.6) in the generating
function from the previous section, we find

Gp(z̄)Φ∆k
(zk, z̄k) =

N2p−4Cp

2 (−n · Pk)2p−4

4p−6∑
ℓ=0

1
ℓ!

 4p−6∑
j=2p−4

(−1)j

(
ℓ

j

)(−∂z q̂ · Pk

n · Pk

)ℓ−2p+4

× ∂ℓ
z̄

∫
[dp̂k] G∆k

(p̂k; q̂k) (F+ · Lk)2p−3 |pk⟩,

(6.8)

where in the above expression capital Pk is used to indicate that momentum is now the operator
appearing in (6.1) and inverse powers are evaluated using the Schwinger parametrization
as in (6.2).
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Next, note that the bulk-to-boundary propagator is an intertwiner and thus obeys

(F+ · Lk)G∆k
(p̂k; q̂k) =

√
2
[
∆k(z̄k − z̄) + (z̄k − z̄)2∂z̄k

]
G∆k

(p̂k; q̂k). (6.9)

As a result, we can integrate by parts and then further pull this action outside the momentum
integral to find

Gp(z̄)Φ∆k
(zk, z̄k)=

N2p−4Cp

2(−n·Pk)2p−4

4p−6∑
ℓ=0

1
ℓ!

 4p−6∑
j=2p−4

(−1)j

(
ℓ

j

)(−∂z q̂ ·Pk

n·Pk

)ℓ−2p+4

×∂ℓ
z̄

(
−
√
2
[
∆k(z̄k−z̄)+(z̄k−z̄)2∂z̄k

])2p−3
Φ∆k

(zk, z̄k),
(6.10)

where we have identified ∫
[dp̂k] G∆k

(p̂k; q̂k) |pk⟩ = Φ∆k
(zk, z̄k). (6.11)

As in the massless case, we identify the leading q = 3
2 generators as simply reproducing

the action of translations (6.1) in the conformal primary basis. Likewise, the q = 2 charges
generate the action of (half of) SL(2,C). Explicitly,

δ2mΦ∆k
(zk, z̄k) = z̄m

k

(
(m + 1)∆k

2 + z̄k∂z̄k

)
Φ∆k

(zk, z̄k)

= L̄mΦ∆k
(zk, z̄k).

(6.12)

When p > 2, the inverse powers of n · pk in the momentum-space generating function
become an infinite number of weight-shifting operators in the conformal primary basis, as is
made explicit by the Schwinger parameter representation. As such, the action of w1+∞ on
massive celestial primaries is notably more complicated than on massless celestial primaries,
where the action maps a single conformal family to a single other conformal family. By
contrast, in the massive case, a single conformal family is mapped by generators with p > 2
to an infinite number of other conformal families. It would interesting to investigate whether
some form of simplification or organizing structure materializes when working with a discrete
conformal primary basis involving only integer-valued conformal dimensions.
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A Non-local behavior in conformally soft theorems

Consider a U(1) gauge theory with three species of charged scalar particles, ϕ1, ϕ3 and Φ4,
which couple via the three-point interaction

Lint ∼ gϕ1ϕ3Φ4. (A.1)
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Let ϕ1 and ϕ3 be massless and Φ4 be massive with mass m. Their respective charges, Q1,
Q3, and Q4, are required by the U(1) gauge symmetry to obey charge conservation:

Q1 + Q3 + Q4 = 0. (A.2)

In this appendix, we will see that a contour integral of a 2D U(1) current encircling the
operator insertions will vanish, as we expect in a standard conformal field theory. However,
unlike in a standard conformal field theory, there are non-local contributions to the contour
integral that are due to the presence of a massive particle.

A.1 Three-point interaction

Here we review the celestial three-point amplitude coupling one massive and two massless
charged particles. Note that this amplitude has previously appeared in [27]. The three-point
celestial amplitude takes the general form

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

=
∫ ∞

0

dω1
ω1

ω∆1
1

∫ ∞

0

dω3
ω3

ω∆3
3

∫
[dp̂4] G∆4(p̂4; q̂4) A3(ϵ1ω1q̂1, ϵ3ω3q̂3, ϵ4mp̂4),

(A.3)

where A3 is the momentum-space three-point amplitude

A3(p1, p2, p3) = gδ(4)(p1 + p2 + p3) (A.4)

and
q̂µ

k ≡ q̂µ(zk, z̄k). (A.5)

Using SL(2,C) covariance to send z1 → 0, z3 → 1 and z4 → ∞, (A.3) becomes

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩=
limτ,τ̄→∞ τ∆4 τ̄∆4⟨ϕ∆1(0,0)ϕ∆3(1,1)Φ∆4(τ, τ̄)⟩

(z41z̄41)
1
2 (∆1+∆4−∆3)(z13z̄13)

1
2 (∆1+∆3−∆4)(z34z̄34)

1
2 (∆3+∆4−∆1)

,
(A.6)

where
lim

τ,τ̄→∞
τ∆4 τ̄∆4⟨ϕ∆1(0, 0)ϕ∆3(1, 1)Φ∆4(τ, τ̄)⟩

=
∫ ∞

0

dω1
ω1

ω∆1
1

∫ ∞

0

dω3
ω3

ω∆3
3

∫ ∞

0

dy4
y34

∫
d2w4 y∆4

4

× gδ(4)
(

ϵ1ω1q̂(0, 0) + ϵ3ω3q̂(1, 1) + ϵ4
m

2y4
(y24n + q̂(w4, w̄4))

)
.

(A.7)

The solution to the delta function constraint is

w4 = w̄4 =
m2

m2 + 4ω2
1

, y4 = −ϵ1ϵ4
2mω1

m2 + 4ω2
1

, ω3 = ϵ1ϵ3
m2

4ω1
. (A.8)

Since both y4 and ω3 are positive, notice that scattering is only nontrivial when ϵ1 = ϵ3 = −ϵ4.
Assuming this, the delta function can be written as

δ(4)
(

ϵ1ω1q̂(0, 0) + ϵ3ω3q̂(1, 1) + ϵ4
m

2y4
(y24n + q̂(w4, w̄4))

)
= 8mω2

1
(m2 + 4ω2

1)3
δ(2)

(
w4 −

m2

m2 + 4ω2
1

)
δ

(
y4 −

2mω1
m2 + 4ω2

1

)
δ

(
ω3 −

m2

4ω1

)
.

(A.9)
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Using this result to perform the integrals, we find

lim
τ,τ̄→∞

τ∆4 τ̄∆4⟨ϕ∆1(0, 0)ϕ∆3(1, 1)Φ∆4(τ, τ̄)⟩ =

g

8

(
m

2

)∆1+∆3−4
B

(∆4 +∆1 −∆3
2 ,

∆4 −∆1 +∆3
2

)
.

(A.10)

Substituting this into (A.6), we obtain the following closed form expression for the three-point
celestial amplitude:

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩=

g
8
(

m
2
)∆1+∆3−4

B
(
∆4+∆1−∆3

2 , ∆4−∆1+∆3
2

)
(z41z̄41)

1
2 (∆1+∆4−∆3)(z13z̄13)

1
2 (∆1+∆3−∆4)(z34z̄34)

1
2 (∆3+∆4−∆1)

.
(A.11)

A.2 Four-point conformally soft theorem

Now consider the celestial amplitude for the emission of a conformally soft photon J . Once
again, we use conformal invariance to write this as

⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

= z41z34
z13z224

limτ,τ̄→∞ τ∆4 τ̄∆4⟨ϕ∆1(0, 0)J(z, z̄)ϕ∆3(1, 1)Φ∆4(τ, τ̄)⟩
(z41z̄41)

1
2 (∆1+∆4−∆3)(z13z̄13)

1
2 (∆1+∆3−∆4)(z34z̄34)

1
2 (∆3+∆4−∆1)

.
(A.12)

Here
z = z12z34

z13z24
(A.13)

is the conformal cross ratio and

lim
τ,τ̄→∞

τ∆4 τ̄∆4⟨ϕ∆1(0,0)J(z, z̄)ϕ∆3(1,1)Φ∆4(τ, τ̄)⟩

=
√
2
∫ ∞

0

dω1

ω1
ω∆1

1

∫ ∞

0

dω3

ω3
ω∆3

3

∫ ∞

0

dy4

y3
4

∫
d2w4 y∆4

4 A4(ϵ1ω1q̂(0,0), q̂(z, z̄), ϵ3ω3q̂(1,1), ϵ4mp̂4).

(A.14)

The four-point amplitude A4 is determined in momentum space by the soft theorem:

A4(p1, q̂, p3, p4) =
∑

k=1,3,4
Qk

ε+ · pk

q̂ · pk
A3(p1, p3, p4) =

∑
k=1,3,4

Qk
ε+ · pk

q̂ · pk
gδ(4)(p1 + p3 + p4).

(A.15)

Parametrizing the momenta as in (A.14), we find

A4(ϵ1ω1q̂(0,0), q̂(z, z̄), ϵ3ω3q̂(1,1), ϵ4mp̂4)

= 1√
2

[
Q1
z

+ Q3
z−1+

Q4(z̄−w̄4)
y24+|z−w4|2

]
gδ(4)

(
ϵ1ω1q̂(0,0)+ϵ3ω3q̂(1,1)+ ϵ4m

2y4
(y24n+q̂(w4, w̄4))

)
.

(A.16)

Notice, the same delta function appears here as in the expression for the three-point func-
tion (A.7) and thus is also solved by (A.8). Using (A.9) to evaluate the integrals, (A.14)
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becomes

lim
τ,τ̄→∞

τ∆4 τ̄∆4⟨ϕ∆1(0,0)J(z, z̄)ϕ∆3(1,1)Φ∆4(τ, τ̄)⟩

= g

4

(
m

2

)∆1+∆3−4 ∫ ∞

0

dω1
ω1

ω∆1−∆3+∆4
1

(
1+ω2

1

)−∆4
[

Q1
z

+ Q3
z−1+

Q4(z̄(1+ω2
1)−1)

(z−1)(z̄−1)+ω2
1zz̄

]
.

(A.17)

Including the prefactors in (A.12), making the additional change of variables

t = ω2
1

1 + ω2
1

, (A.18)

and recalling the expression for the three-point amplitude (A.11), we arrive at the following
expression for the conformally soft theorem:

⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

= z41z34
z13z224

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩
B
(
∆4+∆1−∆3

2 , ∆4−∆1+∆3
2

) ∫ 1

0

dt

t(1− t) t
1
2 (∆4+∆1−∆3)(1− t)

1
2 (∆4−∆1+∆3)

×

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

 .

(A.19)

Before performing the remaining integral, let us pause for a moment and examine the
singularity structure in z2. First, note that the explicit dependence on z̄ reveals that in the
presence of massive particles, correlators of J are no longer meromorphic functions, despite
the fact that J is a weight (1, 0) current. As a result, in (3, 1) signature where zk and z̄k are
related by complex conjugation, one can no longer freely deform contours of integration with
respect to z2. Thus, if we construct charges from line integrals of J , then, strictly speaking,
standard arguments about contour deformations do not apply in this context.

Nevertheless, if we relax the signature and allow zk and z̄k to be independent complex
variables, then the correlator is meromorphic in z2 and SL× SL symmetry guarantees that
the physics of charge conservation is still encoded in the singularity structure in z2. To see
this, consider the following contour integral:∮

C∞

dz

2πi
⟨J(z, z̄)O1(z1, z̄1) · · · On(zn, z̄n)⟩, (A.20)

where C∞ is a closed contour encircling the point at infinity. We can evaluate this integral
in two ways. First, we can deform the integral to encircle the singularities in the correlator,
denoted collectively by zj :∮

C∞

dz

2πi
⟨J(z, z̄)O1(z1, z̄1) · · · On(zn, z̄n)⟩ =

∑
j

∮
Czj

dz

2πi
⟨J(z, z̄)O1(z1, z̄1) · · · On(zn, z̄n)⟩.

(A.21)
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Note that generically there may be both pointlike and extended singularities, so it is a slight
abuse of notation to label them by individual points zj on the complex plane. Next, we can use
the requirement from conformal symmetry that any correlator involving J must fall off as10

lim
z→∞

⟨J(z, z̄)O1(z1, z̄1) · · · On(zn, z̄n)⟩ ∼
1
z2

(A.22)

to argue that this integral must vanish:∮
C∞

dz

2πi
⟨J(z, z̄)O1(z1, z̄1) · · · On(zn, z̄n)⟩ = 0. (A.23)

Thus, (A.21) and (A.23) together imply a constraint on the singularity structure in z.
It is instructive to verify this behavior explicitly in our example. Let us focus on the

following contribution to the integrand in (A.19):

z41z34
z13z224

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

 , (A.24)

which contains all the non-trivial z2 dependence. We focus on the singularity structure in
z2, holding z̄2 fixed. Note that studying the singularity structure before taking the integral
with respect to t effectively amounts to working in momentum space. Specifically, a similar
argument directly applies to A4 in (A.15).

The integrand (A.24) contains simple poles in z2 at z1 and z3. Near these points, the
conformal cross ratio z approaches 0 and 1, respectively, and we find

lim
z2→z1

z41z34
z13z224

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

→ Q1
z21

,

lim
z2→z3

z41z34
z13z224

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

→ Q3
z23

.

(A.25)

Here, it is also helpful to notice that

z41z34
z13z224

[
Q1
z

+ Q3
z − 1

]
= Q1

z21
+ Q3

z23
− Q1 + Q3

z24
. (A.26)

In a standard local 2D conformal field theory with charge conservation such that Q4 =
−(Q1 + Q3), these terms would constitute the complete singularity structure. In particular,
as z2 approaches z4, there would be a simple pole with residue Q4. However, in (A.24)
there is an additional term involving Q4, which also contributes a simple pole in the limit
as z2 approaches z4:

lim
z2→z4

z41z34
z13z224

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

→ −Q1 + Q3 + Q4
z24

= 0.

(A.27)
10A derivation of (A.22) is presented in the main text. See the discussion leading up to (3.13).
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Thus, unlike in a standard 2D conformal field theory, the full expression is regular at z4.
Notice that (A.23) implies that (A.24) must contain another singularity in z2, since the
residues considered so far do not add to zero. Indeed, the final singularity is the solution to

1−
[
1− zz̄

(z − 1)(z̄ − 1)

]
t = 0. (A.28)

Denoting the solution by z∗, where

z∗ =
tz̄z1z34 − (1− t)(z̄ − 1)z3z41

tz̄z34 − (1− t)(z̄ − 1)z41
, (A.29)

we find

lim
z2→z∗

z41z34
z13z224

Q1
z

+ Q3
z − 1 + Q4

(z − 1)(z̄ − 1)
z̄ − 1 + t

1−
(
1− zz̄

(z−1)(z̄−1)

)
t

→ Q4
z2∗

. (A.30)

The explicit dependence of z∗ on t in (A.29) reflects the fact that in complexified momentum
space, a null momentum q̂ (satisfying q̂2 = 0) can have vanishing inner product with a timelike
momentum pk (satisfying p2k < 0). That is, the simple pole at z∗ is the pole that arises when
the inner product between q̂(z2, z̄2) and p4 = mp̂4 vanishes.

Consistency requires that the singularity structure of the celestial amplitude in z2 also
conspires to respect (A.23) after performing the final integral in t. To investigate this behavior,
we use the integral definition of the hypergeometric function

B(b, c − b)2F1(a, b, c;x) =
∫ 1

0
dt tb−1(1− t)c−b−1(1− xt)−a, (A.31)

and the identity

2F1(a, b, c;x)− 2F1(a − 1, b, c;x)− b

c
x 2F1(a, b + 1, c + 1;x) = 0 (A.32)

to obtain the following closed form expression for the conformally soft theorem:

⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

=
[

Q1
z21

+ Q3
z23

+ Q4
z24

(
1 + z34

z23

1
z−1+z̄

[
z−1+z̄ 2F1

(
1,

∆1−∆3+∆4
2 ,∆4; 1−

z

z−1
z̄

z̄−1
)])]

× ⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩.
(A.33)

The hypergeometric integral (A.31) converges provided Re(c) > Re(b) > 0 so here we assume
that the conformal weights respect

Re(∆4) > Re
(∆1 −∆3 +∆4

2

)
> 0. (A.34)

Notice that the spectrum of conformal weights presented in [17] satisfies this condition. In
the conformal primary basis, (A.33) retains the simple poles in z2 at z1 and z3 with residues
proportional to Q1 and Q3, respectively:

lim
z2→z1

z21
⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩
= Q1,

lim
z2→z3

z23
⟨ϕ∆1(z1, z̄1)J(z2, z̄2)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩

⟨ϕ∆1(z1, z̄1)ϕ∆3(z3, z̄3)Φ∆4(z4, z̄4)⟩
= Q3.

(A.35)
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For the second limit, we use z23 → 0, which corresponds to z → 1 and sends the argument of
the hypergeometric function to infinity. Note that the hypergeometric function has branch
points at the arguments x = 1 and x = ∞, and a branch cut extends between them. Generic
paths z23 → 0 avoid this branch cut and in this limit

lim
|x|→∞

B

(∆1 −∆3 +∆4
2 ,

∆3 −∆1 +∆4
2

)
2F1

(
1,

∆1 −∆3 +∆4
2 ,∆4;x

)
= lim

|x|→∞

∫ 1

0

dt

t(1− t) t
1
2 (∆4+∆1−∆3)(1− t)

1
2 (∆4−∆1+∆3) 1

1− xt
= 0.

(A.36)

Similarly, for generic paths z21 → 0 that avoid the branch cut, the hypergeometric function
is regular. Also, as before, there is no simple pole in (A.33) at z4. To see this, recall that
z2 → z4 implies z → ∞, so we find

lim
z2→z4

Q4
z24

(
1 + z34

z23

1
z−1+z̄

[
z−1+z̄ 2F1

(
1,

∆1−∆3+∆4
2 ,∆4; 1−

z

z−1
z̄

z̄−1
)])

= lim
z2→z4

Q4
z24

(
1 + z34

z23

)
= Q4

z43
,

(A.37)

which is manifestly regular. Finally, as in momentum space, there naively appears to be
another pole in z2, this time where

z − 1 + z̄ → 0, (A.38)

or equivalently,

z2 →
z1z34 + z4z13(1− z̄)

z34 + z13(1− z̄) . (A.39)

However, in this limit, the hypergeometric function approaches unity

lim
z→1−z̄

2F1
(
1,

∆1 −∆3 +∆4
2 ,∆4; 1−

z

z − 1
z̄

z̄ − 1
)
= 2F1

(
1,

∆1 −∆3 +∆4
2 ,∆4; 0

)
= 1,

(A.40)
so there is no simple pole in z2 at this point.

Specifying (A.23) to the four-point amplitude (A.33) and deforming the contour, we
again reach the conclusion that there must be some other singularity in z2. We will now
demonstrate that the contribution from the third simple pole in momentum space (A.30) is
replaced by a contribution from the discontinuity along the branch cut of the hypergeometric
function, so that

0 =
∮
C∞

dz2
2πi

⟨ϕ∆1(z1)J(z2)ϕ∆3(z3)Φ∆4(z4)⟩

= Resz1 [⟨ϕ∆1(z1)J(z2)ϕ∆3(z3)Φ∆4(z4)⟩] + Resz3 [⟨ϕ∆1(z1)J(z2)ϕ∆3(z3)Φ∆4(z4)⟩]

+
∫
C

dz2
2πi

disc [⟨ϕ∆1(z1)J(z2)ϕ∆3(z3)Φ∆4(z4)⟩]

= (Q1 + Q3) ⟨ϕ∆1(z1)ϕ∆3(z3)Φ∆4(z4)⟩+
∫
C

dz2
2πi

disc [⟨ϕ∆1(z1)J(z2)ϕ∆3(z3)Φ∆4(z4)⟩] ,

(A.41)
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where C is a contour along the branch cut in z2 between z1 and z3. Choosing the contour
around infinity to have clockwise orientation as usual, it can be deformed to contours around
each simple pole and the branch cut with counterclockwise orientation.

To determine the contribution from the cut, first note that we can take the branch cut
in the hypergeometric function to extend along the positive real x-axis from x = 1 to x = ∞
and the discontinuity to be defined as the negative imaginary contour subtracted from the
positive imaginary contour along this axis. The contribution to contour integral is11

∫
C

dz2
2πi

disc
[

z34
z23z24

Q4z̄

z − 1 + z̄
2F1

(
1,

∆1 −∆3 +∆4
2 ,∆4; 1−

z

z − 1
z̄

z̄ − 1
)]

= Q4
2πi

∫ ∞

1

dx

x
disc

[
2F1

(
1,

∆1 −∆3 +∆4
2 ,∆4;x

)]
,

(A.42)

where we simplified using the change of variables

x = 1− z

z − 1
z̄

z̄ − 1 , dx = z13z34
z41z223

z̄

z̄ − 1dz2. (A.43)

The value of the discontinuity can be determined from the integral form (A.31):

disc [2F1(1, b, c;x)] = 1
B(b, c − b)

∫ 1

0

du

u(1− u) ub(1− u)c−b lim
ϵ→0

[ 1
1− ux − iϵ

− 1
1− ux + iϵ

]
= 1

B(b, c − b)

∫ 1

0

du

u(1− u) ub(1− u)c−b2πiδ(1− ux)

= 2πi

B(b, c − b)Θ(x − 1) x−c+1(x − 1)c−b−1.

(A.44)

Substituting back into (A.42), we find∫
C

dz2
2πi

disc
[

z34
z23z24

Q4z̄

z − 1 + z̄
2F1

(
1,

∆1 −∆3 +∆4
2 ,∆4; 1−

z

z − 1
z̄

z̄ − 1
)]

= Q4, (A.45)

which is precisely the contribution needed for the consistency of (A.41).
The main lesson to take away from this appendix is that celestial operators representing

massive particles can admit non-local behavior. In particular, in theories with charged
massive particles, it appears that charge conservation in celestial holography is still consistent
with contour integrals of soft photon currents, but massive particles may produce branch
cut singularities instead of the simple poles that are familiar from the context of a local
conformal field theory.

B SL(2,C) action on bulk and boundary points

In this appendix, we justify the statement in the introduction that the set of SL(2,C)
transformations that preserve a point on the celestial sphere preserve no proper subset
of points in the bulk of AdS3. For simplicity and without loss of generality, consider the

11The orientation of the x contour can be deduced from the counterclockwise contour orientation in z2 by
mapping z1 → 0, z3 → 1, z4 → ∞.
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conformal transformations that preserve the origin on the celestial plane (z, z̄) = (0, 0). These
take the form of (2.3) with (

a b

c d

)
=
(
1/d 0
c d

)
. (B.1)

Selecting an arbitrary bulk point (yk, wk, w̄k), notice that the transformation with

(c, d) =
√

yk

y2k + wkw̄k
(w̄k/yk, 1) , (B.2)

maps the bulk point (1, 0, 0) to this point (yk, wk, w̄k). Likewise, the inverse transformation
maps the arbitrarily point (yk, wk, w̄k) to (1, 0, 0). Therefore by suitably combining such
transformations, we can find an SL(2,C) transformation that preserves the boundary point
(z, z̄) = (0, 0), but maps between any pair of bulk points.

C Derivation of massive generating function

In this appendix, we include more details about the derivation of (5.13). Starting from (5.11)
and using (5.12) we find:

Gp(z̄)=− N2p−4Cp

2(2p−2)!m4p−6
k

(−1)2p−3

(4p−6)!m4p−6
k

×
4p−6∑
n=0

(−∂z)2p−2−n (q̂ ·pk)2p−2∂n
z

4p−6∑
ℓ=0

[
(−∂z̄)4p−6−ℓ(pk ·q̂)4p−6

]
∂ℓ

z̄ (F+ ·Lk)2p−3

 .

(C.1)
Now consider the sum

S =
4p−6∑
n=0

(−∂z)2p−2−n (q̂ ·pk)2p−2∂n
z

4p−6∑
ℓ=0

(−∂z̄)4p−6−ℓ (q̂ ·pk)4p−6∂ℓ
z̄ (F+ ·Lk)2p−3

 . (C.2)

Using completeness (3.35) and the fact that

∂n
z (∂z̄ q̂ · pk)m = m!

(m − n)! (∂z̄ q̂ · pk)m−n (n · pk)n , (C.3)

which is formally true for both positive and negative n, we can rewrite this as

S =
4p−6∑
ℓ=0

(m2
k)4p−6(−1)ℓ (∂z q̂ · pk)ℓ−2p+4

(n · pk)ℓ
∂ℓ

z̄ (F+ · Lk)2p−3

×


4p−6∑
n=0

2p−2∑
m=0

4p−6∑
j=0

(
2p − 2

m

)(
4p − 6

j

) (−1)6p−8−nm!j!j!
(

∂z̄ q̂·pk∂z q̂·pk

m2
k

)j+m−2p+2

(m − (2p − 2− n))!(j − (4p − 6− ℓ))!(j − n)!

 .

(C.4)
To simplify the sum in brackets, consider the sum

S′=
4p−6∑
n=0

2p−2∑
m=0

4p−6∑
j=0

(−1)6p−8−n

(
2p−2

m

)(
4p−6

j

)
m!j!j!Aj+m−2p+2

(m−(2p−2−n))!(j−(4p−6−ℓ))!(j−n)! ,

(C.5)
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where A does not depend on the indices in the sum. We re-index with k = m + j and
evaluate the sum in n first:

S′ =
4p−6∑
j=0

2p−2+j∑
k=j

(−1)2p

(k−2p+2)
(2p−2)!(4p−6)!Ak−2p+2

(k−j−2p+1)!(2p−2−k+j)!(4p−6−j)!(j−4p+6+ℓ)! . (C.6)

Notice that if k − j < 2p + 1, the first factorial in the denominator diverges, while if
k − j > 2p − 2, the second factorial in the denominator diverges. This will only be cancelled
by the divergence in 1

(k−2p+2) if k = 2p − 2, which also enforces j ≤ 2p − 2 since k = m + j.
Therefore, the sum collapses and we find, including normalization, that

Gp(z̄)=
N2p−4Cp

2
1

(−n·pk)2p−4

4p−6∑
ℓ=0

1
ℓ!

 4p−6∑
j=2p−4

(−1)j

(
ℓ

j

)(−∂z q̂ ·pk

n·pk

)ℓ−2p+4
∂ℓ

z̄ (F+ ·Lk)2p−3 ,

(C.7)
which is manifestly zero when ℓ < 2p − 4. Note that for p > 2 and ℓ ≤ 4p − 6 we have
the simplification

4p−6∑
j=2p−4

(−1)j

(
ℓ

j

)
=(−1)2p (2p−4)

ℓ

(
ℓ

2p−4

)
, p > 2 and ℓ≤ 4p−6, (C.8)

which is used to obtain the simplified form (5.14).

D Details of massive momentum-space action

In this appendix, we provide details of the proof of the base case (4.13). First, note that
if we demonstrate that [

δ
5
2
m, δq

n

]
|pk⟩ =

(
m(q − 1)− 3

2n

)
δ

q+ 1
2

m+n|pk⟩ (D.1)

holds for all modes −3
2 ≤ m ≤ 3

2 and a single mode n ∈ [1− q, q − 1], then using the action
of δ2k (4.11), it can be shown that it also holds for all n ∈ [1− q, q − 1]. This statement is
a consequence of SL(2,C) symmetry and the proof is exactly as in appendix C.2 of [45].
Then (4.13) will follow as a special case of (D.1) with m = −3

2 . We will therefore be done
if we show that [

δ
5
2
m, δq

1−q

]
|pk⟩ = (q − 1)

(
m + 3

2

)
δ

q+ 1
2

1+m−q|pk⟩ (D.2)

for −3
2 ≤ m ≤ 3

2 . To do so, we use the explicit form of δ
q+ 1

2
1−q+m for −3

2 ≤ m ≤ 3
2 , which can

be derived from the integral form (4.1) or equivalently from the generating function (5.13).
The modes relevant to the commutator (D.2) have action

δq
1−q|pk⟩=

1
2

( 2yk

ϵkmk

)2q−4
(2q−2)∂2q−3

w̄k
|pk⟩,

δq
2−q|pk⟩=

1
2 [(2q−2)w̄k∂w̄k

+(2q−3)yk∂yk
]
( 2yk

ϵkmk

)2q−4
∂2q−4

w̄k
|pk⟩,
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δq
3−q|pk⟩=

1
2
[
(2q−2)w̄2

k∂2
w̄k

+2(2q−3)yk∂yk
w̄k∂w̄k

+(2q−4)yk∂yk
(yk∂yk

−1)−2y2k∂wk
∂w̄k

]
×
( 2yk

ϵkmk

)2q−4
∂2q−5

w̄k
|pk⟩,

δq
4−q|pk⟩=

1
2
[
(2q−2)w̄3

k∂3
w̄k

+3(2q−3)yk∂yk
w̄2

k∂2
w̄k

+3(2q−4)yk∂yk
(yk∂yk

−1)w̄k∂w̄k

+(2q−5)yk∂yk
(yk∂yk

−1)(yk∂yk
−2)−6y2kw̄k∂2

w̄k
∂wk

−6y3k∂yk
∂wk

∂w̄k

]
×
( 2yk

ϵkmk

)2q−4
∂2q−6

w̄k
|pk⟩. (D.3)

Using this form, one can verify (D.2) for −3
2 ≤ m ≤ 3

2 by brute force, completing the proof.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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