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Abstract

Recent large vision-language models such as CLIP have shown remarkable out-of-distribution
(OOD) detection and generalization performance. However, their zero-shot in-distribution (ID) accu-
racy is often limited for downstream datasets. Recent CLIP-based fine-tuning methods such as
prompt learning have demonstrated significant improvements in ID classification and OOD gen-
eralization where OOD labels are available. Nonetheless, it remains unclear whether the model
is reliable to semantic shifts without OOD labels. In this paper, we aim to bridge the gap and
present a comprehensive study to understand how fine-tuning impact OOD detection for few-shot
downstream tasks. By framing OOD detection as multi-modal concept matching, we establish a con-
nection between fine-tuning methods and various OOD scores. Our results suggest that a proper
choice of OOD scores is essential for CLIP-based fine-tuning. In particular, the maximum con-
cept matching (MCM) score provides a promising solution consistently. We also show that prompt
learning demonstrates the state-of-the-art OOD detection performance over the zero-shot counterpart.

Keywords: CLIP, OOD detection, fine-tuning, multi-modality, vision-language models, prompt learning,
few-shot learning, adaptor

1 Introduction

Machine learning (ML) is undergoing a paradigm
shift with the rise of models that are trained on
massive data and are adaptable to a wide range
of downstream tasks. Popular pre-trained large
vision-language models (Radford et al., 2021; Jia
et al., 2021; Yao et al., 2021; Li et al., 2022)
demonstrate remarkable performance, and allow
researchers without extensive computation power
to benefit from these models. It is now the com-
mon practice of the ML community to adopt
pre-trained models for transfer learning on down-
stream tasks rather than learning from scratch.
Despite the promise, the safety risks of these large
pre-trained models can be potentially inherited

by all the fine-tuned models. Without appropri-
ately understanding the safety risks, development
on top of pre-trained models can exacerbate and
propagate safety concerns writ large, causing pro-
found impacts on society.

In response to these urgent challenges, the
overall objective of this paper is to systemati-
cally understand the out-of-distribution risks of
learning with pre-trained vision-language mod-
els. This paper seeks to address the research
question that arises in building responsible and
ethical AI models: How does fine-tuning influ-
ence out-of-distribution (OOD) detection for large
vision-language models? Detecting OOD samples
is crucial for machine learning models deployed in
the open world, where samples from unseen classes
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naturally emerge, and failure to detect them
can have severe consequences. Despite increas-
ing attention (Yang et al., 2021), OOD detection
research for large vision-language models has been
scant. Among the most recent works, Ming et al.
(2022) investigated training-free OOD detection
based on the pre-trained CLIP model. However,
the impact of fine-tuning on OOD detection has
been unexplored in the vision-language literature.

In this paper, we bridge the gap by investigat-
ing how fine-tuning large vision-language models
a↵ects OOD detection. Parameter-e�cient fine-
tuning methods have been popularized in recent
years. In particular, prompt learning (Zhou et al.,
2022a,b) optimizes learnable word embeddings
of the prompts, while adaptors directly opti-
mize the internal feature representations (Gao
et al., 2021; Zhang et al., 2022). Both meth-
ods are parameter-e�cient as image and text
encoders are frozen during fine-tuning, and have
shown significant improvement for few-shot in-
distribution (ID) classification. Complementary to
existing research, we focus on OOD detection
for fine-tuned models using multi-modal concept
matching. At the core of the concept matching
framework, we use the few-shot ID training set and
textual descriptions of the labels to derive a set
of visual and textual features that represent the
typical features for each ID class. We can measure
OOD uncertainty based on the distance between
the input feature and the nearest ID prototype.

Based on the concept matching framework,
we then present a comprehensive and system-
atic study to explore how di↵erent parameter-
e�cient fine-tuning methods impact OOD detec-
tion performance, and contribute unexplored find-
ings to the community. We disentangle various
aspects such as adaptation methods and OOD
scoring functions. Interestingly, we observe that
parameter-e�cient fine-tuning can significantly
improve OOD reliability compared to zero-shot
CLIP models. In particular, prompt learning
methods exhibit very competitive performance
when coupled with the maximum concept match-
ing (MCM) score (Ming et al., 2022).

Furthermore, we delve deeper into prompt
learning and analyze how the pre-trained fea-
tures are modified during fine-tuning, and how
it impacts OOD detection as a consequence. We
study the impact of shots, architectures, and

explore the e↵ects of prompt learning on vari-
ous downstream tasks, including the challenging
ImageNet-1k (ID) benchmark. Our results demon-
strate that prompt learning perturbs the pre-
trained feature space that benefits both ID and
OOD performance. More encouragingly, the trend
holds consistently across di↵erent settings, high-
lighting its potential for reliable fine-tuning in
vision-language modeling.

We summarize the contributions of this work
as follows:

• We provide a timely and systematic study on
how CLIP-based fine-tuning influences OOD
detection in the few-shot setting. Our study dis-
entangles various factors, including adaptation
methods and OOD scoring functions.

• We present novel evidence that parameter-
e�cient fine-tuning does not deteriorate pre-
trained features. Instead, they can improve both
ID and OOD performance with a proper OOD
scoring function, especially the MCM score. We
show that prompt learning consistently demon-
strates the state-of-the-art OOD detection per-
formance over the zero-shot counterpart.

• We provide an in-depth analysis of prompt
learning’s impact on the feature space for OOD
detection and conduct comprehensive ablations
across datasets, architectures, and the number
of shots with various OOD detection scores.

2 Preliminaries

Contrastive vision-language models. Recent
large vision-language models have shown great
potential for various computer vision tasks. In
this paper, we focus on CLIP-like models (Rad-
ford et al., 2021; Yao et al., 2021), which adopt
a dual-stream architecture with one text encoder
f : t ! Rd and one image encoder g : x ! Rd.
CLIP is pre-trained on a massive web-scale image-
caption dataset with a multi-modal contrastive
loss that promotes the alignment of features from
di↵erent modalities. CLIP learns transferable fea-
ture representations and demonstrates promis-
ing zero-shot generalization performance (Fort
et al., 2021). Despite the promise, existing vision-
language models perform zero-shot classification
in a closed-world setting. That is, it will match
an input into a fixed set of categories, even if it
is irrelevant. For example, a bird in Figure 1 can
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Fig. 1 A unified pipeline for OOD detection with parameter-e�cient fine-tuning of CLIP models on few-shot datasets.
Given ID text labels Yin and a few-shot training set, we view the textual and visual embeddings of ID classes as concept
prototypes in the feature space. The OOD uncertainty of an input image can be characterized by the distance from its
visual feature to the closest ID prototype from both modalities. See Section 3 for details.

be blindly predicted as one of the in-distribution
classes Yin ={headphone, cat, flamingo, butter-
fly}. This motivates the importance of OOD
detection for vision-language models.

OOD detection for vision-language models.
In the open-world setting, the goal of OOD detec-
tion is to detect samples that do not belong to ID
classes Yin. Here ID classes are defined w.r.t. the
classification task of interest, instead of the classes
used in pre-training. Accordingly, OOD is defined
w.r.t. the ID classes, not the data distribution
during pre-training. Ming et al. (2022) explore
the zero-shot OOD detection for the pre-trained
CLIP model, without adapting to the ID dataset.
Instead, we focus on the setting where CLIP mod-
els are fine-tuned on a few-shot dataset Din, and
hence are better adapted to the downstream ID
task. We evaluate the fine-tuned CLIP model on a
combination of ID and OOD datasets Din [Dout,
where Dout = {xi, youti }mi=1 contains inputs with
semantically di↵erent categories yout /2 Yin. For-
mally, given an input x, OOD detection can be
formulated as:

G(x; f, g) =

(
1 S(x; f, g) � �

�1 S(x; f, g) < �
,

where S(·) is a scoring function that measures
OOD uncertainty. In practice, � is chosen so that
a high fraction of ID data (e.g., 95%) is above the
threshold.

Parameter-e�cient fine-tuning. To improve
the performance on downstream tasks, parameter-
e�cient approaches are proposed to fine-tune
CLIP on datasets of interest. Prompt learning and
adaptor tuning have recently gained popularity
and demonstrated improved results over zero-shot
settings. In particular, prompt learning optimizes
the word embeddings of the prompts, while adap-
tors directly optimize the internal feature repre-
sentations. Both methods are parameter-e�cient
as image and text encoders are frozen during
fine-tuning. In what follows, we introduce prompt-
based and adaptor-based methods respectively.

For a downstream dataset with K in-
distribution classes Yin = {y1, y2, ..., yK}, prompt
learning method such as CoOp (Zhou et al., 2022b)
introduces M learnable context vectors vi 2 Re

to replace hand-engineered text prompts such as
“this is a photo of”, where e is the dimen-
sion of word embeddings. For each class yk, we
obtain its contextualized representation tk =
[v1, v2, · · · , vM , wk] by concatenating the context
vectors and the word embedding wk 2 Re of
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the label (upper left, Figure 1). To avoid over-
fitting and improve generalization performance,
CoCoOp (Zhou et al., 2022a) further introduces
instance-conditional prompts via a meta-network
which produces a meta token m(x) given the
visual feature of the input x. The meta token is
added to each context token vi(x) = vi + m(x)
for i 2 {1, 2, · · · ,M}. Therefore, the prompt for
class k is conditioned on each input: tk(x) =
[v1(x), v2(x), · · · , vM (x), wk]. To learn the con-
text vectors, the cross-entropy loss is used in
fine-tuning:

p(yk | x) = exp (sk(x)/⌧)PK
i=1 exp (si(x)/⌧)

, (1)

where sk(x) =
g(x)·f(tk)

kg(x)k·kf(tk)k is the cosine similar-
ity of input x with the k-th label, and ⌧ is the
temperature.

Alternatively, adaptor-based methods directly
optimize the feature representations g(x) instead
of learning context vectors. Specifically, given
a K-way-D-shot ID training set (consisting of
K classes with D examples per class), Zhang
et al. (2022) propose a training-free adaptation
method TipAdaptor which extracts all the visual
features Wg = [g(x1,1), g(x1,2), · · · , g(xK,D)] 2
RKD⇥d from the few-shot training dataset. For
each input x, we can obtain K ⇥ D cosine sim-

ilarities sk,d(x) = g(x)·g(xk,d)
kg(x)k·kg(xk,d)k . The cosine

similarities are scaled by an exponential function
s̃ : s 7! exp(�� + �s) with a hyperparame-
ter � that modulates the sharpness. Therefore,
we can obtain an average similarity vector for
each class based on visual features, s̃k(x) =
1
D

PD
d=1 s̃k,d(x). The final similarity for class k is

a weighted sum of similarities from the two modal-
ities ↵s̃k(x) + sk(x). To achieve better few-shot
ID performance, Zhang et al. (2022) set visual
features Wg as learnable parameters and denote
the method as TipAdaptorF, where F stands
for fine-tuning. Despite the stronger downstream
classification performance, it remains unknown if
fine-tuning leads to more reliable OOD detection
at test time. We aim to provide a comprehensive
understanding in this paper.

3 Method

3.1 OOD detection with fine-tuning

We investigate OOD detection with parameter-
e�cient fine-tuning on downstream tasks. We
present a unified framework in Figure 1, where
the learnable part of the CLIP model is marked
with an “unlock” icon while the frozen part is
marked with a “lock” icon. For prompt learning
methods such as CoOp and CoCoOp, the cosine sim-
ilarity of the input feature with the k-th class
sk(x) = g(x)·f(tk)

kg(x)k·kf(tk)k is derived based on the
adapted textual feature vector tk. Alternatively,
adaptor-based methods such as TipAdaptor and
TipAdaptorF first scale the cosine similarities of
visual prototypes and perform a weighted sum
with the similarities of textual prototypes. There-
fore, we can view TipAdaptor as an ensemble
method that utilizes multi-modal prototypes.

To summarize, for each adaptation algorithm
A, OOD detection can be performed by:

GA(x; f, g) =

(
ID S(x; f, g) � �

OOD S(x; f, g) < �
,

where A can be instantiated by an adaptation
method such as CoOp, CoCoOp, TipAdaptor, or
TipAdaptorF. Therefore, the OOD detector GA(·)
can be viewed as a “safeguard” for the classifi-
cation model. Next, we introduce various OOD
score functions S(x; f, g) assuming GA(x; f, g)
is defined implicitly as each score function corre-
sponds to an OOD detector G.

3.2 OOD score for vision-language

models

Recently, Ming et al. (2022) propose a concep-
tual framework of CLIP-based OOD detection via
concept matching, where the textual feature f(tk)
is viewed as the concept prototype for ID class
k 2 {1, 2, ...,K}. OOD uncertainty is then char-
acterized by the distance from the visual feature
of the input to the closest ID textual prototype.
That is, images closer to one of the ID proto-
types are more likely to be ID and vice versa.
Ming et al. (2022) suggest that softmax scaling
with a proper temperature ⌧ provably leads to
state-of-the-art performance under the zero-shot
(training-free) setting. Specifically, the maximum
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concept matching (MCM) score is defined as:

SMCM(x) = max
k2[K]

esk(x)/⌧
PK

j=1 e
sj(x)/⌧

, (2)

where the temperature ⌧ needs to be tuned on the
downstream dataset. As a special case of MCM,
we use MSP to denote the MCM score when the
temperature ⌧d is set as default for CLIP models
at inference time (e.g., 100 for CLIP-B/16).

Additionally, we consider a simpler scoring
function based on the maximum similarity (MS)
among ID prototypes before applying softmax
scaling:

SMS(x) = max
k2[K]

sk(x), (3)

which does not require any hyperparameter tun-
ing. We show in Section 4 that the MS score
demonstrates strong OOD detection performance
with fine-tuning, especially for fine-grained ID
datasets. We now proceed to experiments where
we investigate the impact of fine-tuning on real-
world tasks.

4 Experiments

4.1 Setup

Datasets. Following Ming et al. (2022), we con-
sider a wide range of real-world ID datasets with
various semantics and number of classes: Caltech-
101 (Bossard et al., 2014), Stanford-Cars (Krause
et al., 2013), Food-101 (Bossard et al., 2014),
Oxford-Pets (Parkhi et al., 2012) and ImageNet-
1k (Deng et al., 2009). For each ID dataset, we
follow Zhou et al. (2022a) and construct the train-
ing set with D random samples per class, while
the original test set is used for testing. We use
D = 16 by default and study the impact of shots
as ablations in Section 4.3. For OOD test datasets,
we use the same ones in Huang and Li (2021),
including subsets of iNaturalist (Van Horn et al.,
2018), Sun (Xiao et al., 2010), Places (Zhou
et al., 2017), and Texture (Cimpoi et al., 2014).
For each OOD dataset, the categories do not
overlap with the ID dataset. For ImageNet-1k
as ID, we also consider two additional OOD
datasets ImageNet-O (Hendrycks et al., 2021) and
OpenImage-O (Wang et al., 2022).

Models and training details. For pre-trained
models, we use CLIP-B/16 as the default back-
bone for main experiments, which uses ViT-
B/16 (Dosovitskiy et al., 2021) as the image
encoder. The impact of backbones is included in
the ablation studies. We use ZOCLIP to denote
pre-trained CLIP without fine-tuning. For each
method, we closely follow the original implemen-
tations. Specifically, for CoOp and CoCoOp, the
context length is set to 4, and the context vectors
are initialized using the pre-trained word embed-
dings of “a photo of a”. CoCoOp is trained with
a batch size of 1 for 10 epochs using SGD, while
CoOp is trained for 100 epochs with a batch size
of 32. TipAdapterF is trained with a batch size
256 using AdamW (Loshchilov and Hutter, 2019)
for 20 epochs. Cosine scheduling is used for all
methods and the data preprocessing protocol con-
sists of random re-sizing, cropping, and random
horizontal flip.

Evaluation metrics. We consider the follow-
ing evaluation metrics: (1) the false positive rate
(FPR95) of OOD samples when the true posi-
tive rate of in-distribution samples is at 95%, (2)
the area under the receiver operating character-
istic curve (AUROC), and (3) ID classification
accuracy (ID ACC).

4.2 Main results and discussions

In this section, we first present novel evidence that
parameter-e�cient fine-tuning generally improves
OOD performance over the zero-shot counter-
part with a simple OOD scoring function. Next,
we investigate the e↵ects of various OOD scor-
ing functions in the parameter-e�cient fine-tuning
setting. In particular, we will show that the MCM
score consistently demonstrates the most promis-
ing performance compared to alternative OOD
scores when coupled with prompt learning.

How does parameter-e�cient fine-tuning
impact OOD detection? We evaluate the OOD
detection performance on various ID datasets. The
results are summarized in Table 1. We show that
adapted CLIP models demonstrate nearly perfect
OOD detection performance for ID datasets with
fine-grained categories such as Stanford-Cars and
Oxford-Pets. Moreover, when the ID dataset con-
tains a diverse collection of categories such as
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Table 1 OOD detection performance based on SMS score (w.o. softmax scaling). When ID datasets contain finer-grained
categories semantically di↵erent from OOD categories, the pre-trained CLIP model demonstrates nearly perfect OOD
detection performance. More encouragingly, after adapting the model to downstream datasets, OOD detection
performance remains competitive.

ID Dataset Method
SUN Places Textures iNaturalist Average

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"

Training not required

Food-101

ZOCLIP 0.04 99.92 0.12 99.93 4.63 98.29 0.15 99.87 1.24 99.50
TipAdaptor 0.00 99.94 0.04 99.95 2.87 98.85 0.06 99.90 0.74 99.66

Requires training
TipAdaptorF 0.00 99.94 0.03 99.95 3.16 98.77 0.05 99.91 0.81 99.64
CoOp 0.01 99.97 0.00 99.98 1.45 99.68 0.00 99.97 0.36 99.90
CoCoOp 0.00 99.98 0.00 99.98 1.97 99.51 0.01 99.97 0.49 99.86

Training not required

Oxford-Pets

ZOCLIP 0.03 99.99 0.14 99.96 0.12 99.95 0.00 100.00 0.07 99.97
TipAdaptor 0.01 100.00 0.07 99.98 0.07 99.99 0.00 100.00 0.04 99.99

Requires training
TipAdaptorF 0.02 100.00 0.07 99.98 0.09 99.98 0.00 100.00 0.04 99.99
CoOp 0.02 100.00 0.18 99.97 0.25 99.92 0.00 100.00 0.11 99.97
CoCoOp 0.03 99.99 0.19 99.96 0.11 99.96 0.00 100.00 0.08 99.98

Training not required

Stanford-Cars

ZOCLIP 0.02 99.99 0.24 99.94 0.00 100.00 0.00 100.00 0.07 99.98
TipAdaptor 0.01 100.00 0.08 99.98 0.00 100.00 0.00 100.00 0.02 100.00

Requires training
TipAdaptorF 0.01 100.00 0.06 99.98 0.00 100.00 0.00 100.00 0.02 100.00
CoOp 0.01 100.00 0.07 99.97 0.00 100.00 0.00 100.00 0.02 99.99
CoCoOp 0.01 100.00 0.07 99.97 0.00 100.00 0.00 100.00 0.02 99.99

Training not required

Caltech-101

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58

Requires training
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

Caltech-1011, parameter-e�cient fine-tuning still
significantly improves the OOD detection per-
formance on average compared to ZOCLIP. In
particular, CoCoOp yields the best performance
among other adaptation methods on Caltech-101
(ID). It achieves an average FPR95 of 5.94% using
SMS, improving by 32.02% over ZOCLIP. While
prior works suggest that parameter-e�cient fine-
tuning methods improve ID accuracy on few-shot
datasets, our results complement their findings
and show that fine-tuning also improves the OOD
detection performance with proper OOD scoring
functions.

E↵ects of OOD scoring functions. We inves-
tigate the e↵ect of OOD scoring functions under
fine-tuned vision-language models. In Table 2, we
contrast the OOD detection performance using
MCM (Ming et al., 2022) vs. MS on Caltech-
101 (ID). Our findings suggest that: (1) SMCM

performs on par with SMS for fine-grained ID
tasks across a wide range of adaptation methods
(Table 3). (2) However, when ID contains diverse

1Similar trends also hold for ImageNet-1k as ID.

categories, utilizing SMCM generally leads to bet-
ter performance compared to using SMS for most
adaptation methods (Table 2). (3) In particular,
prompt learning methods such as CoCoOp demon-
strate very competitive results with both OOD
scores (an average FPR95 of 5.02% with SMCM

and 5.94% with SMS in Table 2).

E↵ects of softmax scaling. Previously, Ming
et al. (2022) observed that the commonly used
maximum softmax score (SMSP) is suboptimal
for zero-shot OOD detection with vision-language
models. We investigate whether MSP is compet-
itive for OOD detection with fine-tuned mod-
els. To better illustrate the e↵ects, we plot the
score distributions for Stanford-Cars (ID) vs. SUN
(OOD) in Figure 2 when the model is fine-tuned
with CoOp, CoCoOp, and TipAdaptorF respectively.
For each fine-tuning method, we can clearly see
that the SMS leads to superior ID-OOD sep-
arability, while SMSP displays significant over-
lapping. Quantitatively, compared to SMSP, the
average FPR95 is significantly decreased with SMS

(Table B4). Our findings highlight that directly
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Table 2 OOD detection performance with SMS and SMCM score when the ID dataset contains diverse categories.
Prompt learning methods display clear advantages over zero-shot models. The results are based on Caltech-101 (ID).

OOD Score Method
SUN Places Textures iNaturalist Average

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"

SMS

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

SMCM

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

Table 3 OOD detection performance based on SMCM score.

ID Dataset Method
SUN Places Textures iNaturalist Average

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"

Food-101

ZOCLIP 1.75 99.46 2.04 99.35 5.54 98.05 2.80 99.17 3.03 99.01
TipAdaptor 0.63 99.75 0.64 99.71 3.76 98.59 1.32 99.55 1.59 99.40
TipAdaptorF 1.77 99.57 1.57 99.53 4.43 98.34 1.85 99.40 2.40 99.21
CoOp 2.00 99.46 1.60 99.47 5.85 98.39 1.37 99.54 2.71 99.22
CoCoOp 1.06 99.69 1.01 99.63 4.17 98.42 1.40 99.53 1.91 99.32

Oxford-Pets

ZOCLIP 1.18 99.73 3.37 99.28 1.37 99.73 6.17 98.84 3.02 99.40
TipAdaptor 0.05 99.97 0.62 99.87 0.17 99.96 0.11 99.87 0.24 99.92
TipAdaptorF 0.48 99.89 1.74 99.66 0.43 99.88 0.93 99.53 0.90 99.74
CoOp 0.06 99.96 0.55 99.85 0.39 99.90 2.07 99.37 0.77 99.77
CoCoOp 0.08 99.95 0.53 99.85 0.25 99.91 1.12 99.55 0.49 99.82

Stanford-Cars

ZOCLIP 0.02 99.96 0.31 99.89 0.02 99.96 0.10 99.74 0.11 99.89
TipAdaptor 0.01 99.98 0.11 99.94 0.00 99.97 0.00 99.84 0.03 99.93
TipAdaptorF 0.03 99.98 0.19 99.94 0.00 99.99 0.00 99.93 0.06 99.96
CoOp 0.01 99.98 0.17 99.93 0.00 99.98 0.02 99.84 0.05 99.93
CoCoOp 0.02 99.98 0.15 99.93 0.00 99.97 0.00 99.87 0.04 99.94

Caltech-101

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

applying MSP is not competitive for fine-tuned
vision-language models.

4.3 Delving into parameter-e�cient

fine-tuning for OOD detection

The impact of fine-tuning on feature geome-
try. To better understand how fine-tuning leads to
improved OOD detection performance, we exam-
ine the geometry of the feature representations.
For illustration, we use the simple SMS score as
it provides an intuitive geometric interpretation.
For each test input, SMS captures the angular dis-
tance between its visual features and the closest
ID prototype. Figure 3 shows SMS for ID and each
OOD test dataset, where radians are converted
to degrees for better readability. Intuitively, one
desires to learn compact ID clusters such that ID
inputs are closer to the nearest ID prototypes than

OOD inputs. We illustrate the e↵ects of prompt
learning in Figure 4. Compared to zero-shot CLIP,
CoOp and CoCoOp decrease the angular distance for
ID inputs to the nearest concept prototype while
simultaneously increasing the angular distance for
OOD inputs. In particular, CoCoOp decreases the
angular distance for ID inputs more significantly,
resulting in better ID-OOD separability. Although
prompt learning methods introduce perturbations
to the feature space, the overall e↵ect is modest,
with only a slight deviation of a few degrees from
the pre-trained model2. Nonetheless, these pertur-
bations play a crucial role in enhancing both ID
classification and OOD detection performance.

Exploring prompt learning for OOD detec-
tion on challenging large-scale benchmarks

2Similar observations can also be verified for adaptor-based
methods.
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Fig. 2 The impact of softmax scaling. We use Stanford-
Cars (ID) vs. SUN (OOD) for illustration. Applying soft-
max scaling significantly decreases ID-OOD separability
for CoOp (top row), CoCoOp (second row), and TipAdaptorF

(last row), resulting in worse OOD detection performance.

Fig. 3 Average SMS for ID (Caltech-101) and OOD test
sets. Prompt learning methods decrease the angular dis-
tance for ID inputs while increasing the angular distance
for OOD inputs to the nearest concept prototype, leading
to better ID-OOD separability (Figure 4).

In previous sections, we show that prompt learn-
ing with both SMS and SMCM scores display com-
petitive performance. Next, we consider a more

Fig. 4 Illustration of how prompt learning methods
impact the hyperspherical features. Left: feature of an ID
sample and its nearest ID prototype; Right: feature of an
OOD sample and its nearest ID prototype.

Fig. 5 OOD detection performance (FPR95) on
ImageNet-1k (ID). Using SMCM score leads to significant
improvement over SMSP.

Fig. 6 OOD detection performance (AUROC) on
ImageNet-1k (ID). The trend is consistent with Fig 5.

challenging large-scale benchmark ImageNet-1k
(ID). The results in FPR95 and AUROC are
shown in Figure 5 and Figure 6. While SMS out-
performs SMSP score, we can clearly see that
SMCM is particularly advantageous compared to
the simpler SMS baseline. In particular, SMCM

outperforms SMS by 7.44% in FPR95 averaged
across the four OOD test sets. Moreover, CoOp

with SMCM achieves an average FPR95 of 37.74%
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on the benchmark, surpassing the zero-shot per-
formance of the large backbone CLIP-L/14 model
which has an FPR95 of 38.17% (Ming et al., 2022).
These results further demonstrate the e↵ective-
ness of SMCM in CLIP-based prompt learning for
challenging scenarios.

The impact of shots. We investigate the impact
of shots for CoOp and CoCoOp with various OOD
detection scores. The results are shown in Figure 7
and Figure 8, where each point represents the
average FPR95 over the four OOD test sets. We
highlight two key findings. First, the OOD detec-
tion performance with both SMS and SMCM score
improves as the number of shots increases. This
trend is consistent with the ID classification accu-
racy reported in Zhou et al. (2022b), suggesting
that using a suitable OOD uncertainty score can
enhance the representation quality as more data is
incorporated during prompt learning. Second, the
performance of SMCM is promising even with a low
number of shots, demonstrating its e↵ectiveness in
resource-constrained settings.

Fig. 7 The e↵ects of shots for CoOp with various OOD
detection scores on Caltech-101 (ID). The performance is
averaged over the four OOD test sets.

The impact of backbone architecture. We
conduct another ablation study on the impact
of model architectures. We consider CLIP with
ResNet backbones (N50, RN101) and ViT back-
bones (CLIP-B/32, CLIP-L/14), where the vision
encoder is based on ViT-B/32 and ViT-L/14,
respectively. We train with CoOp with hyperpa-
rameters following the original implementation for
each architecture (Zhou et al., 2022b). We eval-
uate the models using SMSP, SMS, and SMCM

score and summarize the results in Table 4 and

Fig. 8 The e↵ects of shots for CoCoOp with various OOD
detection scores on Caltech-101 (ID). The performance is
averaged over the four OOD test sets.

Table 4 The impact of model architecture on ResNet
backbones with CoOp on Caltech-101 (ID).

Arch Score OOD Dataset FPR95# AUROC"

RN50

SMSP

SUN 29.93 93.95
Places 37.64 91.96
Textures 35.69 93.58
iNaturalist 43.42 91.27
AVG 36.67 92.69

SMS

SUN 6.02 98.45
Places 9.02 97.79
Textures 23.17 95.25
iNaturalist 12.39 97.37
AVG 12.65 97.22

SMCM

SUN 8.56 98.03
Places 17.02 95.88
Textures 12.09 97.56
iNaturalist 21.00 95.93
AVG 14.67 96.85

RN101

SMSP

SUN 23.60 95.20
Places 29.37 93.94
Textures 21.29 96.24
iNaturalist 34.18 94.05
AVG 27.11 94.86

SMS

SUN 19.08 96.56
Places 20.79 96.25
Textures 36.97 94.39
iNaturalist 30.89 95.41
AVG 26.93 95.65

SMCM

SUN 6.19 98.42
Places 11.57 97.16
Textures 5.83 98.49
iNaturalist 10.56 97.69
AVG 8.54 97.94

Table 5. Interestingly, compared to SMSP, SMS

brings more significant improvements under ViT
backbones than ResNet backbones. In contrast,
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Table 5 The impact of model architecture on ViT
backbones with CoOp on Caltech-101 (ID).

Arch Score OOD Dataset FPR95# AUROC"

CLIP-B/32

SMSP

SUN 24.20 96.02
Places 27.94 94.99
Textures 24.54 96.09
iNaturalist 28.90 95.37
AVG 26.40 95.62

SMS

SUN 13.81 97.41
Places 16.49 96.48
Textures 25.23 95.24
iNaturalist 13.00 97.60
AVG 17.13 96.68

SMCM

SUN 4.06 98.92
Places 7.31 98.01
Textures 4.61 98.81
iNaturalist 8.70 98.17
AVG 6.17 98.48

CLIP-L/14

SMSP

SUN 7.73 98.36
Places 10.96 97.71
Textures 19.18 96.60
iNaturalist 11.33 97.71
AVG 15.85 97.41

SMS

SUN 13.81 97.41
Places 16.49 96.48
Textures 25.23 95.24
iNaturalist 13.00 97.60
AVG 12.30 97.59

SMCM

SUN 2.15 99.33
Places 5.60 98.30
Textures 2.32 99.31
iNaturalist 3.94 99.06
AVG 3.50 99.00

SMCM score consistently demonstrates competi-
tive performance for all the architectures con-
sidered. For instance, with CLIP-B/32, SMCM

achieves an average FPR95 of 6.17%, a 20.23%
improvement over the SMSP baseline. We observe
similar improvements for RN101 (18.57%) and
RN50 (22%). Moreover, larger backbones lead
to superior performance when fixing the OOD
detection score as MCM. For example, with CLIP-
L/14, the average FPR95 is improved by 11.17%
compared to RN50 and 2.67% compared to CLIP-
B/32. A similar trend has been shown for ID
classification (Radford et al., 2021), where larger
models yield better feature representation.

5 Related works

Parameter-e�cient fine-tuning of vision-
language models. Large-scale vision-language
models have shown impressive performance on
various downstream tasks (Radford et al., 2021;
Jia et al., 2021; Yao et al., 2021; Li et al., 2022).

These models learn transferable feature represen-
tations via pre-training on web-scale heteroge-
neous datasets. However, as downstream datasets
can have a limited number of samples, adapting
these large models in a parameter and data-
e�cient manner is crucial for e↵ective knowledge
transfer. Recent works propose various ways to
tackle this challenge. Zhou et al. (2022b) pro-
pose to tune a set of soft prompts (Li and
Liang, 2021; Lester et al., 2021) while freezing
the encoders of CLIP. Zhou et al. (2022a) aims
to improve the generalization ability of CoOp
by introducing a meta-network that learns input-
dependent tokens. Huang et al. (2022) propose to
learn prompts in an unsupervised manner while
TPT (Manli et al., 2022) uses test-time prompt
tuning to learn adaptive prompts on the fly.
Beyond textual prompt learning, Bahng et al.
(2022) propose to tune visual prompts for CLIP-
based fine-tuning. Another line of work focuses
on adaptor-style fine-tuning, where instead of tun-
ing prompts, the feature embedding is directly
optimized using an adaptor module (Gao et al.,
2021; Zhang et al., 2022; Udandarao et al., 2023).
Prior works demonstrate significant improvement
over zero-shot CLIP for few-shot ID classifica-
tion and OOD generalization where OOD labels
are given. However, it is unclear how reliable
these parameter-e�cient fine-tuning methods are
for OOD detection tasks. Our work bridges this
gap and explores how fine-tuning impacts OOD
detection for few-shot downstream datasets.

OOD detection with vision-language repre-
sentations. A plethora of OOD detection meth-
ods have been proposed on visual inputs (Lee
et al., 2018; Liang et al., 2018; Hendrycks et al.,
2019; Tack et al., 2020; Sun et al., 2022; Ming
et al., 2022; Du et al., 2022; Wang et al., 2022;
Ming et al., 2023). With the rise of large-scale
pre-trained models on vision language inputs, an
increasing number of works utilize textual infor-
mation for visual OOD detection and demonstrate
promising performance. Fort et al. (2021) propose
a scheme where pre-trained CLIP models are pro-
vided with candidate OOD labels for each target
dataset, and show that the output probabilities
summed over the OOD labels e↵ectively cap-
ture OOD uncertainty. Without the assumption
of OOD labels, Esmaeilpour et al. (2022) propose
to train a decoder based on the visual encoder of
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CLIP to generate candidate labels for OOD detec-
tion. However, training a high-quality decoder
incurs significant computational costs and requires
extra data. While both Esmaeilpour et al. (2022)
and Radford et al. (2021) focus on small-scale
inputs, Ming et al. (2022) propose an OOD label-
free method MCM which demonstrates promising
results on a wide range of large-scale and challeng-
ing tasks (Ming et al., 2022). However, Ming et al.
(2022) only investigate pre-trained CLIP models.
For multi-modal OOD detection benchmarks, Bit-
terwolf et al. (2023) curate a new OOD test set
for ImageNet-1k while Gu et al. (2023) provide
new OOD datasets for document understanding.
In contrast, our work focuses on the impact of
parameter-e�cient fine-tuning methods for OOD
detection in few-shot downstream tasks, which has
not been explored.

6 Conclusion

In this paper, we provide a timely study on the
impact of parameter-e�cient fine-tuning meth-
ods for OOD detection with large vision-language
models. We focus on the few-shot setting with-
out access to OOD labels, which has been
largely unexplored in the literature. We show
that parameter-e�cient fine-tuning methods can
improve both ID and OOD performance when
coupled with a proper OOD score, with prompt
learning-based methods showing the strongest
performance under the MCM score. We analyze
the feature space and provide insights into the
e↵ectiveness of such methods through the lens of
multi-modal concept matching. We hope our find-
ings will inspire and motivate future research on
designing reliable fine-tuning methods for large
vision-language models.
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Appendix A Dataset Details

Details on ID and OOD dataset con-
struction For ID datasets, we follow the same
construction as in previous works (Zhang et al.,
2022; Zhou et al., 2022a,b). Detailed instruc-
tions on dataset installation can be found in
https://github.com/KaiyangZhou/CoOp/blob/
main/DATASETS.md. For OOD datasets, Huang
and Li (2021) curate a collection of subsets from
iNaturalist Van Horn et al. (2018), SUN Xiao
et al. (2010), Places Zhou et al. (2017), and
Texture Cimpoi et al. (2014) as large-scale OOD
datasets for ImageNet-1k, where the classes of
the test sets do not overlap with ImageNet-1k.
Detailed instructions can be found in https:
//github.com/deeplearning-wisc/large scale ood.

Appendix B Additional

Results

B.1 ID accuracy

While we primarily focus on the OOD detection
performance of CLIP-based fine-tuning methods,
we present the results of the ID accuracy for each
dataset based on CLIP-B/16 in Table B1 for com-
pleteness. Further results on the ID accuracy with
various datasets and architectures can be seen
in Zhou et al. (2022a), Zhou et al. (2022b), and
Zhang et al. (2022).

B.2 OOD detection performance

based on visual features alone

In this section, we explore several commonly used
OOD detection scores solely based on the visual
branch of CLIP models. Specifically, we con-
sider the Mahalanobis score (Lee et al., 2018) on
the penultimate layer of the visual encoder and
MSP (Hendrycks and Gimpel, 2017), Energy (Liu
et al., 2020), and KL Matching (Hendrycks et al.,
2022) scores on the logit layer after linear probing
the visual encoder. The results are summarized
in Table B2, based on 16-shot Caltech-101 (ID).
We can see that the Mahalanobis score does not
yield promising performance because 1) the fea-
ture embeddings from the visual encoder of CLIP
may not follow class-conditional Gaussian distri-
butions, 2) it is challenging to estimate the mean

https://github.com/KaiyangZhou/CoOp/blob/main/DATASETS.md
https://github.com/KaiyangZhou/CoOp/blob/main/DATASETS.md
https://github.com/deeplearning-wisc/large_scale_ood
https://github.com/deeplearning-wisc/large_scale_ood
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Table B1 ID accuracy on the downstream datasets for
CLIP-based fine-tuning methods with CLIP-B/16.

ID Dataset Method ID Acc

Caltech-101

ZOCLIP 92.90
TipAdaptor 95.01
TipAdaptorF 95.66
CoOp 95.30
CoCoOp 95.00

Food-101

ZOCLIP 86.10
TipAdaptor 86.49
TipAdaptorF 87.43
CoOp 85.50
CoCoOp 87.30

Stanford-Cars

ZOCLIP 65.27
TipAdaptor 75.29
TipAdaptorF 83.40
CoOp 78.50
CoCoOp 72.30

Oxford-Pets

ZOCLIP 89.10
TipAdaptor 91.85
TipAdaptorF 92.91
CoOp 93.40
CoCoOp 93.30

ImageNet-1k

ZOCLIP 68.77
TipAdaptor 70.26
TipAdaptorF 73.70
CoOp 71.63
CoCoOp 71.20

and especially covariance matrix when the num-
ber of samples is much smaller than the feature
dimension in the few-shot setting. On the other
hand, the OOD scores based on fine-tuned logit
layer result in worse performance compared to the
MCM score. One major reason is that fine-tuning
CLIP in the few-shot setting is prone to overfitting
the downstream ID dataset, making the model
less reliable. This further highlights the impor-
tance of choosing OOD detection scores fitted to
parameter-e�cient fine-tuning methods.

B.3 Additional results on

ImageNet-1k

In this section, we consider two additional OOD
test sets ImageNet-O (Hendrycks et al., 2021) and
OpenImage-O (Wang et al., 2022) for ImageNet-
1k (ID). OpenImage-O is a subset curated from
the test set of OpenImage-V3 (Krasin et al., 2017)
containing a diverse set of categories. ImageNet-O

Table B2 Additional results for OOD scores based on
visual encoder only. ID dataset is Caltech-101 (16 shot).

OOD Score OOD Dataset FPR95# AUROC"

Maha

SUN 34.15 95.20
Places 20.50 96.21
Textures 64.10 92.43
iNaturalist 66.62 92.97
AVG 46.34 94.20

Energy

SUN 15.02 97.05
Places 21.10 95.75
Textures 15.60 97.00
iNaturalist 33.77 95.49
AVG 21.37 96.32

KL Matching

SUN 4.56 98.21
Places 8.92 97.52
Textures 42.64 94.47
iNaturalist 9.70 97.35
AVG 16.46 96.89

MSP

SUN 16.23 96.59
Places 20.98 95.97
Textures 7.15 98.33
iNaturalist 11.79 97.31
AVG 14.04 97.05

is a challenging OOD dataset that contains nat-
urally adversarial examples for ImageNet-1k. The
results are shown in Table B3. The model (CLIP-
B/16) is trained with CoOp. We can see that:
1) The performance on ImageNet-O is generally
worse than the rest of OOD test sets (iNaturalist,
Textures, SUN, Places) in Section 4.3, suggesting
that this task remains challenging in the context
of few-shot prompt learning. 2) MCM score still
performs the best compared to MS and MSP on
both OOD test sets, consistent with our previous
observations, which further highlights the impor-
tance of softmax and temperature scaling for OOD
detection with fine-tuning.

Table B3 OOD detection performance on two OOD
additional test sets for ImageNet-1k (ID). We train
CLIP-B/16 with CoOp.

OOD Dataset OOD Score FPR95# AUROC"

ImageNet-O
SMSP 77.20 74.01
SMS 70.75 82.30
SMCM 61.50 84.13

OpenImage-O
SMSP 56.89 83.73
SMS 39.18 91.48
SMCM 36.68 92.76
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B.4 Alternative OOD scores

In this section, we investigate the performance
with several alternative OOD scoring functions
based on the cosine similarities of input x with
the k-th label sk(x), k 2 {1, 2, ...,K} (defined in
Section 3.2). Specifically, we consider the energy
and the KL matching score for each adapta-
tion method and summarize the results based on
Caltech-101 (ID) in Table B5. We observe that
1) using the energy score, all adaptation meth-
ods significantly enhance the performance over
the zero-shot baseline (ZOCLIP). 2) the gen-
eral performance vastly improves when utilizing
the KL Matching score. However, even the high-
est achieved performance (FPR95 at 7.91 with
CoCoOp) falls short when compared to the MCM
score (FPR95 at 5.02 with CoCoOp).
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Table B4 OOD detection performance based on SMSP score. The average performance for most adaptation methods is
much worse than using SMS (Table 1) and SMCM (Table 3).

ID Dataset Method
SUN Places Textures iNaturalist Average

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Food-101

ZOCLIP 11.48 97.76 13.11 97.48 15.04 96.08 16.65 96.73 14.07 97.01
TipAdaptor 7.32 98.51 9.03 98.31 11.88 96.94 14.47 97.21 10.68 97.74
TipAdaptorF 15.08 97.26 15.38 97.24 17.57 95.99 20.95 96.18 17.25 96.67
CoOp 19.66 96.20 21.15 95.95 28.33 93.62 23.80 95.51 23.23 95.32
CoCoOp 8.67 98.28 10.56 98.03 14.77 96.23 14.33 97.26 12.08 97.45

Oxford-Pets

ZOCLIP 24.67 94.72 28.54 93.71 19.01 96.42 39.77 93.01 28.00 94.47
TipAdaptor 15.66 97.11 18.83 96.45 12.50 97.92 25.19 95.90 18.04 96.84
TipAdaptorF 16.79 96.77 20.33 96.04 12.22 97.90 26.62 95.80 18.99 96.63
CoOp 8.46 98.50 10.75 98.13 11.21 98.09 32.13 94.08 15.64 97.20
CoCoOp 9.06 98.31 10.43 98.13 7.39 98.70 27.97 95.11 13.71 97.56

Stanford-Cars

ZOCLIP 6.99 98.49 10.33 97.68 8.24 98.39 32.85 92.56 14.60 96.78
TipAdaptor 1.94 99.58 3.30 99.31 1.97 99.56 12.52 97.80 4.93 99.06
TipAdaptorF 15.39 97.19 14.01 97.32 8.39 98.49 21.88 95.90 14.92 97.22
CoOp 9.88 98.05 14.07 97.12 10.71 97.71 36.73 91.51 17.85 96.10
CoCoOp 9.99 97.81 11.87 97.15 10.46 97.69 31.58 92.59 15.97 96.31

Caltech-101

ZOCLIP 16.17 96.47 22.45 94.96 17.89 96.33 15.01 96.96 17.88 96.18
TipAdaptor 12.98 97.40 17.79 96.77 13.74 97.72 20.08 96.65 16.15 97.13
TipAdaptorF 17.94 96.68 22.92 95.74 15.16 97.40 24.18 96.01 20.05 96.46
CoOp 24.07 96.11 29.91 94.59 26.29 95.72 26.35 95.92 26.66 95.58
CoCoOp 14.92 97.32 20.67 95.91 19.20 96.56 21.74 96.33 19.13 96.53

Table B5 Comparison with additional OOD scores on Caltech-101 (ID). SKL stands for the KL matching
score (Hendrycks et al., 2022) and SEnergy denotes the energy score (Liu et al., 2020).

OOD Score Method
SUN Places Textures iNaturalist Average

FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC" FPR95# AUROC"

SMS

ZOCLIP 32.03 94.06 33.01 93.39 54.66 89.29 32.14 94.30 37.96 92.76
TipAdaptor 9.69 98.07 11.25 97.84 20.90 96.68 13.62 97.72 13.86 97.58
TipAdaptorF 10.20 97.76 11.60 97.42 23.32 95.54 14.01 97.36 14.78 97.02
CoOp 5.53 98.56 9.88 97.50 13.10 97.10 4.89 98.76 8.35 97.98
CoCoOp 2.86 99.19 6.42 98.37 8.81 98.09 5.68 98.68 5.94 98.58

SMCM

ZOCLIP 14.83 97.20 20.45 96.00 14.98 97.35 10.84 97.76 15.28 97.08
TipAdaptor 5.12 98.83 8.05 98.34 4.65 99.05 6.94 98.77 6.19 98.75
TipAdaptorF 4.83 98.79 8.09 98.07 6.41 98.11 4.94 98.98 6.07 98.49
CoOp 3.62 99.01 8.15 97.89 6.29 98.62 7.57 98.35 6.41 98.47
CoCoOp 4.26 98.94 6.76 98.00 4.33 98.88 4.71 98.68 5.02 98.62

SEnergy

ZOCLIP 53.83 90.22 50.51 90.21 74.10 83.20 56.00 90.13 58.61 88.44
TipAdaptor 11.71 97.72 12.20 97.61 30.48 95.73 16.42 97.30 17.70 97.09
TipAdaptorF 11.57 97.46 11.89 97.30 29.38 94.70 16.18 96.90 17.26 96.59
CoOp 6.58 98.29 11.16 97.20 18.19 96.32 5.92 98.53 10.46 97.59
CoCoOp 5.22 98.87 8.80 98.13 17.30 96.87 11.28 97.95 10.65 97.95

SKL

ZOCLIP 5.51 97.57 9.48 96.61 7.41 97.64 11.43 96.22 14.02 97.31
TipAdaptor 5.54 97.63 7.69 97.13 5.74 97.96 8.00 97.37 6.74 97.52
TipAdaptorF 8.52 96.89 13.00 95.92 7.02 98.02 10.71 97.11 9.81 96.98
CoOp 7.15 98.06 12.37 96.60 8.74 97.62 9.33 98.00 9.40 97.57
CoCoOp 4.07 98.95 9.61 97.59 5.30 98.77 12.67 97.57 7.91 98.22
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