
Singular Foliations for Knit Graph Design
Rahul Mitra
rahulm@bu.edu
Boston University
Boston, MA, USA

Erick
erickjb@bu.edu
Boston University
Boston, MA, USA

Jimenez Berumen

Megan Hofmann
m.hofmann@northeastern.edu

Northeastern University
Boston, MA, USA

Edward Chien
edchien@bu.edu
Boston University
Boston, MA, USA

This
4.0 License.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657487

work is licensed under a Creative Commons Attribution International

CCS CONCEPTS
• Computing methodologies → Shape analysis; • Applied
computing → Computer-aided manufacturing.

KEYWORDS
computational knitting, foliations
ACM Reference Format:
Rahul Mitra, Erick Jimenez Berumen, Megan Hofmann, and Edward Chien.
2024. Singular Foliations for Knit Graph Design. In Special Interest Group on
Computer Graphics and Interactive Techniques Conference Conference Papers
’24 (SIGGRAPH Conference Papers ’24), July 27–August 01, 2024, Denver, CO,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.
3657487

Figure 1: Via a singular foliations perspective on the course stripe pattern, we are able to automatically match singular triangles
(blue/red) and separatrices (cyan) to ensure that all integral curves (candidate course rows) do not helix. Our improved workflow
for [Mitra et al. 2023] extends it to models with non-zero genus, decomposing the input mesh 𝑀 into cylindrical components
along critical level sets of the knitting time function. We then solve an optimal assignment LP to obtain appropriate linear
level set constraints (orange) .

ABSTRACT
We build upon the stripes-based knit planning framework of [Mitra
et al. 2023], and view the resultant stripe pattern through the lens
of singular foliations. This perspective views the stripes, and thus
the candidate course rows or wale columns, as integral curves of
a vector field specified by the spinning form of [Knöppel et al.
2015]. We show how to tightly control the topological structure
of this vector field with linear level set constraints, preventing
helicing of any integral curve. Practically speaking, this obviates
the stripe placement constraints of [Mitra et al. 2023] and allows for
shifting and variation of the stripe frequency without introducing
additional helices. En route, we make the first explicit algebraic
characterization of spinning form level set structure within singular
triangles, and replace the standard interpolant with an “effective”

one that improves the robustness of knit graph generation. We also
extend the model of [Mitra et al. 2023] to surfaces with genus, via a
Morse-based cylindrical decomposition, and implement automatic
singularity pairing on the resulting components.

1 INTRODUCTION
There has been much recent interest in designing algorithms for
stitch structure planning in computational knitting. In the setting of

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641519.3657487
https://doi.org/10.1145/3641519.3657487
https://doi.org/10.1145/3641519.3657487
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641519.3657487&domain=pdf&date_stamp=2024-07-13
mailto:edchien@bu.edu
mailto:erickjb@bu.edu
mailto:m.hofmann@northeastern.edu
mailto:rahulm@bu.edu

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Mitra et al.

AutoKnit [Narayanan et al. 2018], these algorithms abstract stitch
patterns with the notion of a knit graph, which must satisfy numer-

ous important properties to achieve machine-knittability. The most
challenging property to maintain is the helix-free condition: that
the course rows should not form spirals. Narayanan et al. [2018]
use iterative, local geodesic distance estimates to produce their knit
graphs, which while helix-free, are not globally smooth and provide
little to no user-control in stitch irregularity placement.

Nader et al. [2021] and Mitra et al. [2023] both leverage the more
global stripe generation framework of [Knöppel et al. 2015] to gen-
erate knit graphs of an input surface 𝑀 , although these techniques
may introduce arbitrary helicing. Nader et al. [2021] use the op-
erators presented in [Bommes et al. 2011] to address helicing, but
this method is not guaranteed to remove all helices. Mitra et al.
[2023] optimize for stripes directly in the space of differential 1-
forms and present numerous linear constraints which may be used
individually or together to generate helix-free knit graphs.

In this work, we extend and provide further insights on the 1-
form-based framework of [Mitra et al. 2023]. We view the resulting
spinning form and its stripes as a vector field flow over 𝑀 . The
integral curves make up the leaves in a singular foliation of 𝑀 ,
decomposing it into 1-dimensional curves that serve as candidate
course rows or wale columns. Singularities of the foliation corre-
spond to vector field singularities, and represent stitch irregularities
(short rows, increases/decreases).

The singular foliation splits 𝑀 into cells of equivalent flow behav-
ior, along separatrices emanating from foliation singularities. We
prove that matching these separatrices appropriately with linear
level set constraints guarantees that none of the integral curves will
form helices. Practically, this allows one to “shift” the course rows
arbitrarily and change their frequency without introducing addi-
tional helices. Local variation of frequency, and thus knit density,
is also used by practitioners to achieve different aesthetic/physical
properties, e.g., joining of knit textures of different resolution, or
knitting of ribbed cuffs. Our matching level set constraints also
obviate the use of stripe placements in [Mitra et al. 2023], needed to
prevent specific integral curves from helicing.

Precise topological control of foliation structure also presents
an opportunity for “single-thread-level modelling”. The integral
curves of our foliations may be used to explicitly trace the helical
yarn path in a machine knit. This constrasts with the popular knit
graph of AutoKnit [Narayanan et al. 2018], where each graph node
corresponds to two stacked stitches, and uses a tracing procedure to
produce the knitting order on these stitches. As a result, this classic
knit graph cannot represent certain elementary knit structures that
singular foliations should be able to model.

We leverage the above understanding into an improved workflow
for [Mitra et al. 2023]. This includes automation of singularity
matching, extension to models with genus, and more robust knit
graph generation. We list our main contributions below.

• A novel topological understanding of stripe patterns as sin-
gular foliations (§3), leading to a theoretical guarantee on
no helicing from any integral curve (§3.2 & Prop. 1).
– Eliminates need for stripe placement constraints of [Mitra
et al. 2023].

– Allows for shifting and frequency adjustment of stripe
pattern without introduction of helicing (see Fig. 9a).

• A first algebraic characterization of the spinning form level
set structure in singular triangles (§3.1.3), and a novel “effec-
tive interpolant” that improves robustness of stripe tracing
for knit graph generation (§4.4.1).

• An improved pipeline for the form-based framework of [Mi-

tra et al. 2023] (§4):
– An automatic process for optimal singularity matching
and construction of level set constraints (§4.3).

– Extension to models of genus𝑔 > 0, using a Morse-theoretic
cylindrical decomposition (§4.1).

• First steps toward “single-thread-level modelling” with stripe
patterns following the actual (helical) yarn path of a machine
knit extending the space of representable knit structures
beyond that of the popular knit graph of [Narayanan et al.
2018] (§5.1).

2 RELATED WORK
Our work has been influenced by several knitting frameworks from
the graphics and computational fabrication communities. A primer
on knitting terminology is presented in Supp. §1. Narayanan et al.
[2018] present an end-to-end pipeline for machine-knitting arbi-
trary input geometries and the works of [Jones et al. 2022; Kaspar
et al. 2019, 2021; Narayanan et al. 2019] demonstrate interfaces for
varying stitch layout, coloring and texturing. Albaugh et al. [2023];
Hofmann et al. [2019, 2023, 2020] construct tools and a domain-

specific language for generating machine knitting instructions, with
special care taken for handling knit textures. Other works [Wu et al.
2018; Yuksel et al. 2012] generate stitch-meshes for rendering pur-
poses while the works of [Igarashi et al. 2008; Wu et al. 2019] are
aimed at producing hand-knittable output. Lastly, the works of
[Mitra et al. 2023] and [Nader et al. 2021] leverage stripe pattern
tracing to produce knit graphs that are machine-knittable.

2.1 Stripe Patterns for Fabrication
Methods of stripe generation on surfaces have received much re-
cent attention in the realm of digital fabrication. The ability to
specify evenly-spaced stripes with directional guidance has found
several modeling uses. Nader et al. [2021] were the first to use stripe
patterns for knit graph generation, tracing the stripes of [Knöppel
et al. 2015]. Noma et al. [2022] presented a spinning-form-based
framework for editing and connecting stripe singularities in such
patterns, applying their tools to 3D wireframe structures and “zip-
pables” [Schüller et al. 2018]. Mitra et al. [2023] extend and apply
a similar form-based framework, developing novel constraints for
eliminating the helicing inherent in stripe patterns generated with
[Knöppel et al. 2015]. The work of [Tricard et al. 2020] generates
2D stripe patterns with phasor noise methods and extrude them
to obtain microstructures with tailored deformation properties.
Montes Maestre et al. [2023] develop a differentiable version of the
[Knöppel et al. 2015] pipeline and use it for inverse design of stripe-
shaped bi-material distributions. Lastly, [Jourdan et al. 2023] utilize
[Knöppel et al. 2015] stripe patterns to generate layer toolpaths for
3D printing of self-shaping shells. Like many works above, we use
the spinning form interpolant of [Knöppel et al. 2015], but we are

Singular Foliations for Knit Graph Design SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

the first to explicitly characterize the level set structure in singular
triangles (§3.1.3).

With regard to [Mitra et al. 2023]: we improve their pipeline by
preventing helicing of any level set in the stripe pattern, as opposed
to only specific level sets. This allows for shifting and frequency
change of the stripe pattern without introducing additional he-
lices, removing their need for stripe placement constraints. We also
implement an automatic optimal-assignment-based strategy for
matching singular triangles (§4.3), and appropriately extend their
framework to models with genus (§4.1). Lastly, we achieve more
robust stripe tracing for knit graph generation via our “effective
interpolant” (§4.4.1).

2.2 Foliations in Geometry Processing
There have been several works in graphics and geometry processing
that have used and referenced foliations in various applied contexts.

Vekhter et al. [2019] produce approximately geodesic foliations
for fabricating triaxial weaves of input mesh surfaces. In our setting,
we do not require our foliations to be approximately geodesic,
but we do require more precise global topological control on the
foliation structure due to the manufacturing constraints of knitting.

Campen et al. [2016b] produce bijective maps between simply-

connected 2D and 3D domains via globally trivial simplicial foli-
ations, specified via face- or tet-wise constant vector fields. Our
setting requires foliations with singularities to produce geometric
shaping and is formulated on surface domains with more complex
topology (at least two boundaries, and potentially some genus).

Foliations are implicit in many works on vector field design or
tracing, as any vector field (in the smooth setting) gives rise to a
foliation via its integral curves. We highlight specific works that are
particularly relevant, and refer the reader to [Vaxman et al. 2017]
for a broader survey. Explicit care is taken in [Zhang et al. 2006],
where they describe the dynamics of the vector field flow, but do not
attempt to specify global control over the orbit complex (see §3.2),
instead focusing on the ability to combine and move singularities.
Two relevant field tracing works are [Bhatia et al. 2011; Ray and
Sokolov 2014] which aim to provide vector field representations
and robust tracing algorithms that guarantee a well-defined global
vector field flow. Our analysis in §3.1.3 provides just such a tracing
for the spinning form considered as a vector field representation.

A related line of works are quad- and hex-meshing works, with
these meshes arising from integral curves of orthogonal vector
fields (perhaps on a branched cover). Again, we cite particularly
relevant works and refer the reader to surveys [Bommes et al. 2013;
Pietroni et al. 2022] for more information. One work that explicitly
uses the language of foliations is [Liu and Bommes 2023]. They
consider the matter of locally hexable volumetric frame fields, and
use the singularity theory of foliations to characterize hexability.
Within the quad meshing setting, there are also several works
that aim to control the analogous helicing behavior [Bommes et al.
2011; Campen et al. 2016a]. The latter is especially relevant, with
the use of “cycle” constraints (akin to our level set constraints)
on the parameterization (§4.3) used. The knit graph generated by
our method may also be viewed as the edges of a quad-dominant
mesh, with singular triangles arising as position field singularities,
as described in [Jakob et al. 2015]. Unlike this more general setting,

our manufacturing constraints do not allow orientation singularities
and require more precise topological control than their framework
affords. Finally, we note a recent work [Mitropoulou et al. 2024]
that considers a subset of quad meshes, strip-decomposable, that
are aimed at adjacent fabrication tasks. While they provide manual
topological editing tools for controlling separatrix behavior, our
singularity matching is automatic. Furthermore, their setting is also
different, with pure quad meshes and only orientation singularities.

3 FOLIATIONS LENS

Figure 2: Stripe patterns as oriented foliations. Oriented foli-
ations are a collection of integral curves of a vector field. A
contiguous set of integral curves form the stripes in a stripe
pattern specified via spinning form. We visualize these inte-
gral curves on the right by increasing the stripe frequency
and highlighting specific curves. The surface is partitioned
into 0- and 1-dimensional integral curves: leaves and singu-
larities (flow fixed points), respectively. The red point de-
notes a source, the yellow point denotes a saddle. The curves
are colored black, orange, and blue to denote curves born at
the source, separatrices, and curves born elsewhere respec-
tively.

In
stripe patterns as 1 oriented foliations

, or equivalently as the collec-
tion of integral curves of a vector field. Informally, a foliation of a
surface 𝑀 is a partition of the surface into 1-dimensional curves,
called leaves, and 0-dimensional points, called singularities. Away
from singularities, the partition looks locally like the partition of
the 𝑥𝑦-plane into constant 𝑥 or 𝑦 lines. As can be seen in Fig. 2,
the stripes in a pattern are sets of “contiguous” leaves, starting
and ending at singularities. We will see that control over the foli-
ation topology translates into the strict helix-free manufacturing
constraints required of machine knitting.

Throughout the exposition below, we will refer to [Aranson et al.
1996] as a detailed source on surface foliations. The manuscript
discusses many foliations more exotic than those arising from stripe
patterns, so we summarize and extract the sections relevant to our
setting. Implicit above is a key fact from the study of foliations:
Whitney’s Theorem (Theorem 2.3 in [Aranson et al. 1996]), which
states that every orientable foliation is induced by the flow of a
vector field. That is to say, the leaves and singularities are formed

1
Unoriented foliations contain singularities of half-integer index, like those specified
via line field (rather than vector field) in [Knöppel et al. 2015]. These singularities are
undesirable as they result in stitch structures that are not machine-knittable.

this section, we set down a basis for structural understanding of

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Mitra et al.

by the integral curves of a vector field 𝑉 . A curve 𝛾 : 𝐼 → 𝑆 is
integral if 𝛾 ′ (𝑡) = 𝑉 (𝛾 (𝑡)) for all times 𝑡 .

3.1 Spinning-form-based stripes
We use the setting of form-based stripe patterns, first introduced
in [Knöppel et al. 2015], and built upon for knitting applications
in [Mitra et al. 2023]. We provide a review of the framework, and
present a novel analysis of the stripe patterns on singular triangles
from a foliations perspective. For background on discrete differen-
tial forms and exterior derivatives we refer readers to the works
above and [Crane et al. 2013] for an in-depth introduction.

The method of [Knöppel et al. 2015] is based on a smooth setting
where a complex function 𝜓 : 𝑀 → C over a surface 𝑀 is consid-
ered, with arg𝜓 used as a stripe texturing coordinate. The input
to their method is a vector field 𝑍 that is used to roughly specify
∇(arg𝜓), designating the direction and frequency of pattern vari-
ation. Intuitively, stripes are “born" or “die" at zeros of 𝜓 , where
arg𝜓 has no continuous local definition.

In their discretization, 𝑍 and the resulting optimized 𝜓 are spec-
ified per-vertex, and a discrete spinning form is used to interpolate
arg𝜓 into the interior of mesh triangles. The spinning form is a
discrete 1-form, specified by a scalar per mesh edge: 𝜎 : 𝐸 → R,
where 𝜎𝑒 = 𝜎𝑖 𝑗 represents the change in arg𝜓 over edge 𝑒𝑖 𝑗 . 𝜎𝑒 is
optimized to best match the desired frequency specified by 𝑍 , over
the mesh as a whole. The result is a 1-form for which (𝑑1𝜎)𝑚 =
2𝜋𝐾𝑚, 𝐾 ∈ Z |F | on each face 𝑚 of the mesh. In general, 2𝜋 may be
replaced by a user-specified period 𝑃 , resulting in stripes of width
𝑃 /2.

On most triangles within the mesh, one should have 𝐾𝑚 = 0. This
denotes zero curl of ∇(arg𝜓) over face 𝑚, leading to a well-defined
arg𝜓 , and a simple linear stripe pattern (Fig. 3, left). On other
triangles, 𝐾𝑚 ≠ 0, indicating non-zero curl, and these correspond
to zeros of 𝜓 . These are termed singular triangles and 𝐾𝑚 is the
singular index of face 𝑚. On such triangles, 𝐾𝑚 stripes are created
(Fig. 3, right), and the stripe pattern is governed by a discontinuous
texture function interpolant 𝜑 , presented in Supp. §2 and analyzed
in §3.1.3.

The work of [Mitra et al. 2023] optimized for such a spinning
form directly, in a framework that allowed for the use of linear level
set and stripe placement constraints to prevent helicing of certain
level sets. In particular, stripe placement constraints ensured that
stripes were centered on non-helicing level sets (see Fig. 6 of [Mitra
et al. 2023]). In their framework, a harmonic knitting time function
ℎ (e.g., Fig. 1, top left) and its gradient ∇ℎ roughly specify the
course row alignment and direction of knitting via an optimization
objective (Eq. (2a) and §3.1 of [Mitra et al. 2023]). Several linear
structural constraints were applied to achieve singularity placement
and stripe alignment amongst other aims (§3.2 of [Mitra et al. 2023]).
Most relevant here are the level set constraints, which set the path
integral

∫
𝛾 𝜎 = 0, where𝛾 is a path of mesh halfedges (e.g., visualized

in Fig. 1 in orange). These ensure that no level set (or stripe) crosses
𝛾 without crossing back, and are used to match separatrices starting
or ending at singular triangles.

3.1.1 Forms as discretized vector fields. One-forms are common
“edge” discretizations of continuous vector fields 𝑊 on triangle
meshes 𝑀 [de Goes et al. 2016]. Typically, one takes the field 𝑊

Figure 3: Non-singular triangle left, singular triangle right,
with integral curves (cyan) of 𝑉 = 𝑊 ⊥ (pink) and 𝑊 = ∇𝜑
(blue) illustrated. The convention to rotate 𝑊 clockwise is
adopted so that a positive/negative singular index implies
that the barycenter is a source/sink fixed point.

(a) source (b) sink (c) saddle

(d) sector examples
(e) effective in-
terpolant

Figure 4: Flow structure near singularities: (a) a source, (b) a
sink, (c) a saddle, (d) sector examples (inspired by Fig. 1.44
from [Aranson et al. 1996]), (e) a schematic representation of
our “effective interpolant” with two hyperbolic sectors and
one parabolic sector (see §4.4.1).

and sets the 1-form value on edges to be equal to the path integral
𝜎𝑒 =

∫
𝑒 𝑊 . This perspective results in simple discretized differential

operators like the discrete curl given by the exterior derivative
𝑑1. To go in the other direction, from a discretized 1-form to a
vector field 𝑊 on the entire mesh 𝑀 , one makes a choice of field
interpolant, like the common Whitney basis [Whitney 1957].

In our setting, we may consider the texture interpolant 𝜑 , (Eq.
3, supp.) as a particular choice of field interpolant, via its gradient
𝑊 = ∇𝜑 . The level sets of 𝜑 are then perpendicular to 𝑊 and are
traced out by the integral curves of 𝑉 = 𝑊 ⊥

. This is illustrated in
Fig. 3. Ultimately, we characterize the flow and integral curves of
𝑉 via an algebraic analysis of the level sets of 𝜑 .

3.1.2 Basic terminology for 2-dimensional flows near singularities.
We recall some basic definitions for 2-dimensional flows near sin-
gularities. Further information may be found in [Aranson et al.
1996], or in [Günther and Baeza Rojo 2020]. Singularities are fixed
points of the flow: points 𝑝 for which 𝑉 (𝑝) = 0. The integral curve
containing 𝑝 is simply stationary: 𝛾 (𝑡) = 𝑝 for all times 𝑡 .

Singular Foliations for Knit Graph Design SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

In our setting2
, at a given singularity 𝑝 , the flow is split locally

into sectors bounded by separatrices. Separatrices are integral curves
that approach or leave 𝑝 as 𝑡 → ∞ or 𝑡 → −∞, and that have nearby
integral curves not converging to 𝑝 (see §2.3.3 of [Aranson et al.
1996] for an epsilon-delta definition). These sectors may be of three
types: hyperbolic, elliptic, or parabolic, and are illustrated in Fig. 4d.
Arising from 𝜑 , there are three kinds of singularities we encounter:
sinks, sources, and saddles; all illustrated in Fig. 3.1.1.

3.1.3 Flow structure in singular triangles. We now present an alge-
braic characterization of the integral curves of 𝑉 , via an analysis of
the level sets of 𝜑 , the texture interpolant of [Knöppel et al. 2015].
In non-singular triangles the level sets are linear and easily inferred,
but on singular triangles the level sets are quadratic in barycentric
coordinates, and more challenging to detail.

For the sake of brevity, we present just the case of 𝑛𝑃 > 0, illus-
trated in Fig. 5. When 𝑛𝑃 < 0, the characterization merely differs
by a few sign changes. The expression for 𝜑 and full arguments
for this characterization are deferred to Supp. §2, as we are mostly
interested in the topological structure of the flow.

Subcases are formed by considering the set of signs of 𝜎𝑖 𝑗 , 𝜎 𝑗 𝑘 , 𝜎𝑘𝑖 .
As their sum is positive, at least one must be positive, and we denote
the cases + + +, + + −, + − −. Note that ordering does not matter,
merely how many positive and negative values there are.

• + + +: A single source singularity is present at the barycenter,
with all integral curves exiting at the boundary (Fig. 5, left).

• + + −: There is a source at the barycenter, and a saddle in
the barycentric region bounded by the negative sign edge
(Fig. 5, middle). A separatrix from the saddle exits the source,
and the rest of the integral curves exiting the source start on
the edges with positive 𝜎 .

• + − −: There is a source at the barycenter, and a saddle in
the barycentric region bounded by the more negative edge
(Fig. 5, right). A separatrix from the saddle exits the source,
and the rest of the integral curves exiting the source start on
the single positive edge.

Our optimization overwhelmingly produces the + + − case, as the
spinning form optimization of [Mitra et al. 2023] motivates the 𝜎𝑖 𝑗
to agree with ∇ℎ · 𝑒𝑖 𝑗 .

Figure 5: Behavior of integral curves in singular triangles
when 𝑛𝑃 > 0. Signs of 𝜎𝑖 𝑗 , 𝜎 𝑗𝑘 , 𝜎𝑘𝑖 are indicated with ±’s. Pur-
ple indicates the birth interval where integral curves exiting
the source leave the triangle. Color-coded are separatrices
(orange), sources (red), and saddles (yellow).

For precise control of global foliation structure, we obtain ex-
act expressions for the separatrix level sets in both the + + − and
2
Arising from spinning forms, 𝑉 has isolated singularities (as there are only a finite
number). Furthermore, these singularities are not surrounded by closed cycles.

+ − − cases. Two of these level sets bound the birth/death inter-
val of integral curves that tend to the barycenter as 𝑡 → −∞/+∞
when 𝑛𝑃 > 0 / 𝑛𝑃 < 0, respectively. In Supp. §2 we derive these
expressions and describe how to obtain their intersection with the
triangle boundary.

3.2 Global structure of flows and foliations
The flows induced by spinning forms are of a well-behaved class:
flows without nontrivial recurrent trajectories (see §2.2.1 of [Aranson
et al. 1996]). In particular, the only trajectories that are part of
their limit sets are singularities (fixed points) and closed cycles
({𝛾 (𝑡)}𝑡 ∈R forms a closed loop). A point 𝑝 is in the limit set of a
trajectory 𝛾 if there is a sequence {𝑡𝑖 }∞𝑖=1 with 𝑡𝑖 → ∞ such that
𝛾 (𝑡𝑖) → 𝑝 .

For this set of flows, the global topological struc-
ture is captured by an object called the orbit com-
plex. Roughly speaking (see §6.5 of [Aranson et al.
1996] for detail), this describes a decomposition of
𝑀 into cells that are open disks or annuli topolog-
ically. These cells are the complement of the singu-
larities and the separatrices. Within these cells, the
flow is like that of a parallel flow on an open strip
or a parallel flow on an open annulus (illustrated in the inset).

In Fig. 6, one can see a simple example of this cell structure on a
cylinder. When no level set constraint is used (left), there are two
disc-shaped cells with different flow behaviors with respect to the
candidate wale columns (purple): cell A helices, while cell B does
not. If we join separatrices with a level set constraint (right, orange),
birth/death intervals line up and only one non-helicing disc-shaped
cell results. The practical implication of this behavior is that if one
were to sample the integral curves at a higher rate (by increasing
stripe frequency) or shift the integral curves traced, then no new
helices may be introduced. An example of frequency doubling with
no new helices is demonstrated with the sock model in §5.

Figure 6: Left: With no separatrix (cyan) matching, two cells
with different behavior arise: those in cell A helix, while
those in cell B do not. Right: By matching with a level set
constraint (orange), we ensure a single disc-shaped cell, with
all integral curves not helicing with respect to the central
candidate wale column (purple).

In Supp. §3, we prove the following proposition, which shows
that control of the boundary separatrices via level set constraints
can be used to guarantee that none of the curves in a cell helix
with respect to a transverse wale foliation. In short, if the level set
constraint does not helix, then the integral curves in the neighboring
cell won’t either.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Mitra et al.

Proposition 1. Consider two transverse course and wale foliations
specified by 𝜎𝑐 , 𝜎𝑤 , and our effective interpolant. In any disc-shaped
cell 𝑅 in the orbit complex of 𝜎𝑐 , if either boundary of 𝑅 is helix-free
with respect to 𝜎𝑤 , then all integral curves of 𝑅 are helix-free.

4 METHOD
In this section, we outline our procedure for generating a stripe pat-
tern that avoids helicing over all leaves. First, we semi-automatically
generate singular triangle positions and spinning form values on
said triangles, informed by the geometry of the model. Next, we
automatically match singular triangles with level set constraints
that align their birth/death intervals and ensure no helicing. Lastly,
we use our effective interpolant to more robustly trace and produce
a knit graph suitable for machine knitting.

4.1 Models with non-zero genus
We first describe the additional structures
needed to handle more complex topologies for
𝑀 (those with > 2 boundaries and/or nonzero
genus). The first is a decomposition of 𝑀 into
cylinders along edge cycles that roughly follow
critical level sets (in the Morse sense) of the guid-
ing time function ℎ, as illustrated in the inset. These critical level
sets are the values of ℎ at saddle vertices of 𝑀 . In §4.2, we check that
each cylindrical component has singular indices that sum to 0, and
in §4.3, we only match singular triangles within these cylindrical
components. Details on our method for obtaining the necessary
edge cycles are in Supp. §4.

Secondly, in genus 𝑔 > 0 cases, a spinning form 𝜎 must satisfy in-
teger integrability constraints along homology generators to result
in a well-defined function 𝑀 → S 1

. If these do not hold, the relative
value between two vertices would be path-dependent. To impose
these constraints, the well-known tree-cotree algorithm [Dłotko
2012] is applied to find a set of 2𝑔 + 𝑛 − 1 edge cycle generators.
These are gathered into a matrix H ∈ {+1, −1}(2𝑔+𝑛 −1)× |𝐸 |

that
performs path integration along the generators, and khg

gathers
the corresponding integer variables in Eq. (2d).

4.2 Singular triangle generation
To generate singular triangle positions, indices, and spinning form
values on these triangles, we use [Knöppel et al. 2015] to make
an initial guess. The method generates geometrically-informed
singular triangle positions and indices, and the resulting form values
on these triangles is roughly aligned with the gradient.

Oftentimes, this method alone is suitable for determining reason-
able singular triangle positions. They may then be paired with the
procedure of §4.3 to fix helicing. However, there are two instances
that may trigger manual fixing. First, the singular indices on each
cylindrical component may not sum to 0. This constraint ensures
that short rows do not wander from component to component and
encourages satisfaction of “simple splits and merges” (Property 5
of [Narayanan et al. 2018]). The second related instance is when
pairs of matched singular triangles differ greatly in terms of their
harmonic time function ℎ values. This leads to stripes that are quite
“slanted” with respect to the level sets of ℎ as can be seen in the left
of Fig. 7. The optimization of [Knöppel et al. 2015] does not avoid

Figure 7: Left: Paired singularities highly offset with respect
to ℎ leads to a highly slanted stripe pattern with much width
variation. Middle: The level set constraint (orange) opposes
𝑉 when going from index +1 (red) to index -1 (blue). This
leads to helicing of the integral curves in the resulting cell.
Right: Two level set constraints (purple and green) intersect,
leading to helicing integral curves in the bottom cell.

this, due to the lack of constraints preventing helicing. The manual
fix in both instances is placement of additional singular triangles
on approximately the same isoline of ℎ. We leave to future work the
development of a fully automatic method that solves this problem.

4.3 Birth/death interval matching
In our next step, we automatically match singular triangles, and
align their birth/death intervals with suitable level set constraints.
For simplicity, we assume that singular indices are all ±1, and
thus by the global index theorem (Thm. 3.1 of [Noma et al. 2022]),
there should be an equal number 𝑠 of +1 and −1 singularities to
match. This aligns with the output of [Knöppel et al. 2015] in nearly
all cases, as spacing dislocations in the stripe pattern lowers the
objective energy.

For the singularity matching and level set constraints, three
desiderata inform our automatic pairing strategy (motivating ex-
amples illustrated in Fig. 7):

(1) The value of the time function ℎ on paired singularities
should not differ too much, and level set constraints should
roughly follow the isolines of ℎ.

(2) Level set constraints should roughly follow the direction of
𝑉 when going from index +1 to index −1 singular triangles.

(3) Level set constraints should not cross each other, as this
causes separatrices to wander wildly to avoid crossing.

Thus, we solve for the matching as an optimal assignment prob-
lem, calculating a cost matrix C ∈ (R+)𝑠 ×𝑠 for matching each +1
singularity with each −1 singularity. The cost is obtained via a Djik-
stra’s shortest path search on a custom-weighted graph of mesh
halfedges. The weight for a halfedge 𝑒𝑖 𝑗 is given by the absolute
difference between 𝑒𝑖 𝑗 · (𝑉 /∥𝑉 ∥) and the maximal such dot product
over all mesh halfedges. The dot product measures how well each
halfedge aligns with 𝑉 , and encourages our shortest path algorithm
to find paths satisfying (1) and (2) above. For +1 singularity 𝑖 and
−1 singularity 𝑗 , the length of the shortest path is stored in entry
C𝑖 𝑗 .

Singular Foliations for Knit Graph Design SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

The optimal assignment will be stored in a permutation matrix
T ∈ {0, 1}𝑠 ×𝑠 , where T𝑖 𝑗 = 1 denotes a matching of +1 singularity 𝑖
with −1 singularity 𝑗 . We solve the following LP relaxation which
has a binary minimizer:

min
T∈[0,1]𝑠 ×𝑠

⟨C, T⟩ (1a)

such that T1 = 1 (1b)

1 𝑇 T = 1 𝑇
(1c)

Eq. (1a) denotes a sum of the entrywise products, and Eqs. (1b), (1c)
ensure that any binary minimizer T is a permutation matrix.

Finally, with the matching in hand, we need to find the exact
path of the level set constraints aligning birth/death intervals. We
may not use the paths used to calculate C as these may violate (3)
above. We recall here as well that the choice of path is only relevant
up to homological class in the mesh 𝑀 minus the singular triangles
(see Lemma 1 of [Mitra et al. 2023]), so deviating from the “best
paths” used to calculate C is not damaging.

To find these, we simply take each matched pair in turn and
calculate the best path available currently. After each exact path
is calculated, the halfedges on the path have their weight set to
+∞ to prevent subsequent paths from crossing. Lastly, we utilize
the separatrix intersections described in Supp. §2.3 to complete the
level set constraint. Our matching automates the manual matching
of [Mitra et al. 2023], and produces good pairings reliably.

4.4 Form optimization and knit graph
generation

With constraints gathered, we solve the following optimization
problem for the course 1-form 𝜎𝑐 . We provide a brief review of
our notation here, borrowed from [Mitra et al. 2023], and refer
the reader there for a more in-depth description, if desired. The
gradient of the time function, ∇ℎ should be approximately orthog-
onal to the course rows and parallel to the wale columns. Thus, we
define our comparison 1-form 𝜔𝑐 as the average of the normalized
adjacent face gradients for each edge [Mitra et al. 2023]. 𝑑1, 𝑃 , 𝑊 ,
and H are the discrete exterior derivative operator, stripe period,
diagonal cotangent weight matrix, and set of homology generators, 5 RESULTS
respectively. 𝛾 𝑙𝑠

𝑗 is used to denote a particular level set constraint,
where the total number of such constraints are given by 𝑁 𝑙 𝑠 . Finally,
k, kℎ𝑔

are integer variables that represent singularity index at a face
and the number of striping level sets modulo 𝑃 that pass through a
homology generator, respectively.

min
𝜎𝑐 ,khg

| |𝑊 (𝜎𝑐 − 𝜔𝑐) | | 2
(2a)

subject to 𝜎𝑐
 
𝜕𝑀 = 0, (2b)

𝑑1𝜎𝑐 = 𝑃 k (2c)

H𝜎𝑐 = 𝑃 khg
(2d) ∫

𝛾 ls
𝑗

𝜎𝑐 = 0, 1 ≤ 𝑗 ≤ 𝑁 ls (2e)

This problem only has 2𝑔 +𝑛 −1 integer variables, and is significantly
quicker to run than the mixed-integer problems considered in S2
of [Mitra et al. 2023] (𝑂 (|𝐹 |) integer variables).

Figure 8: Left: The spinning form interpolant 𝜑 produces
course curves (cyan) that intersect with a single wale col-
umn (purple) multiple times if they pass close enough to the
barycenter. Right: Our effective interpolant ensures that this
problem does not occur, only modifying the course foliation
locally.

For the wale 𝜎𝑤 , we can usually simply call [Knöppel et al. 2015].
In the rare instances when we have collisions of wale and course
singular triangles, we are forced to run a larger mixed-integer
problem, with integer variables k ∈ Z |𝐹 |

. This problem drops the
level set constraints, Eq. (2e), as in [Mitra et al. 2023] (see last
paragraph of §4.1 in that work). Finally, we note that it is possible
to include the stripe alignment constraints of [Mitra et al. 2023],
but care would need to be taken to avoid infeasibility, so we do not
include them here.

4.4.1 Effective interpolant. Our final step is to generate the knit
graph by tracing the integral curves of 𝑉 . However, as our analysis
in the singular triangles shows, this is likely to cause failure in
certain cases (Fig. 8). Thus, we develop an effective interpolant, that
achieves the spinning form values on the edges of a singular triangle
(also shown in Fig. 8) and does not suffer these robustness issues.

Schematically, we replace the interior integral curve structure
with a single source/sink singularity at the barycenter with two
hyperbolic sectors and a parabolic sector. Our procedure for tracing
this effective interpolant is described in Supp. §5.

We apply our improved workflow and automatic separatrix match-

ing to numerous models illustrated throughout the text and in Fig.
9. We highlight the “torus” and “holey pants” as models with genus,
and the two versions of the “sock” as showing frequency doubling
without introduction of additional helices. With regard to manual
intervention for singularity placement: a pair of singularities is
induced for explanatory purposes in the cylinder model (Fig. 9d);
the automatic singularity positions from [Knöppel et al. 2015] are
used directly on the sock model (Fig. 9a); for the remaining models,
initial singularity positions from [Knöppel et al. 2015] are modified
minimally to ensure appropriate time function alignment. Edge
length error histograms for our knit graphs are in Fig. 10.

After knit graph generation, we use Autoknit [Narayanan et al.
2018] for machine scheduling. All samples were knitted on a Shima
Seiki SWG91N2 15-gauge v-bed knitting machine using 2/28NM
rayon yarn at a 35-stitch size at a rate of 0.8 m/s.

To solve the optimization problems of §4.4, we use the vanilla
Gurobi solver [Gurobi Optimization, LLC 2022] on a 2.3GHz Intel

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Mitra et al.

Core i5 Macbook Pro with 8GB of RAM. As with S1 of [Mitra et al.
2023], with few integer variables, our runtimes are interactive and
under a second. The applications of [Knöppel et al. 2015] are even
faster, and follow the behavior noted in their paper.

5.1 Single-thread-level modelling
In Fig. 11, we show that our representation provides the oppor-
tunity for “single-thread-level modelling” of knit patterns and is
capable of representing knit patterns that are not accessible to the
widely-used knit graph representation of AutoKnit [Narayanan
et al. 2018]. On the left, a tracing of the bent cylinder model is
implied by the foliation structure. On the right, a similar tracing
is implied, and the short row wraps around the cylinder model
multiple times, something not possible with the knit graph repre-
sentation of [Narayanan et al. 2018]. These are generated with our
novel topological understanding and separatrix matching level set
constraints, which allow us to precisely specify the “amount” of
helicing. We are excited at the prospect of a “tracing-free” pipeline
for generating machine instructions, but leave this to future work.

6 CONCLUSION
In this work, we outline and demonstrate the benefits of a greater
topological understanding of stripe patterns. We view them as
singular foliations, and match separatrices appropriately to effect
precise control on integral curves, and thus candidate course rows
and wale columns. This prevents helicing in a more robust fash-
ion, and presents an opportunity for development of a form-based
tracing-free pipeline for generation of machine knitting instruc-
tions. We also improve greatly on the workflow of [Mitra et al.
2023] as outlined in §1, and demonstrate it on a selection of models
in §5.

6.1 Limitations and Future Work
Our workflow still sometimes requires manual intervention in the
generation of singular triangle positions. Going forward, we hope
to develop a method that will automatically generate pairs of sin-
gularities along isolines of ℎ. Alternately, the development of a
tracing-free pipeline would allow for matched pairs to differ greatly
in ℎ values (Fig. 11, right). The development of such a pipeline for
generating machine knit instructions is interesting for indepen-
dent reasons. Foremost among these is that it allows for a vastly
expanded range of representable knit structures.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
(NSF) under Grant No. 2327137. We would like to thank James
McCann for assistance with the AutoKnit scheduler, and Samuel
Silverman for generation of the “holey pants” model.

REFERENCES
Lea Albaugh, Scott E Hudson, and Lining Yao. 2023. Physically Situated Tools for

Exploring a Grain Space in Computational Machine Knitting. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (<conf-loc>,
<city>Hamburg</city>, <country>Germany</country>, </conf-loc>) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article 736, 14 pages.

S. Kh. Aranson, G.R. Belitsky, and E.V. Zhuzhoma. 1996. Introduction to the Qual-
itative Theory of Dynamical Systems on Surfaces. Translations of Mathematical
Monographs, Vol. 153. American Mathematical Society.

Harsh Bhatia, Shreeraj Jadhav, Peer-Timo Bremer, Guoning Chen, Joshua A. Levine,
Luis Gustavo Nonato, and Valerio Pascucci. 2011. Edge maps: Representing flow
with bounded error. In Proceedings of the 2011 IEEE Pacific Visualization Symposium
(PACIFICVIS ’11). IEEE Computer Society, USA, 75–82.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Computer Graphics Forum 30, 2 (2011), 375–384.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Computer
Graphics Forum 32, 6 (2013), 51–76.

Marcel Campen, Moritz Ibing, Hans-Christian Ebke, Denis Zorin, and Leif Kobbelt.
2016a. Scale-invariant directional alignment of surface parametrizations. In Pro-
ceedings of the Symposium on Geometry Processing (Berlin, Germany) (SGP ’16).
Eurographics Association, Goslar, DEU, 1–10.

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016b. Bijective Maps from Simpli-

cial Foliations. ACM Trans. Graph. 35, 4, Article 74 (jul 2016), 15 pages.
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital

Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013
courses (Anaheim, California) (SIGGRAPH ’13). ACM, New York, NY, USA, 126 pages.

Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector Field Processing
on Triangle Meshes. In ACM SIGGRAPH 2016 Courses (Anaheim, California) (SIG-
GRAPH ’16). Association for Computing Machinery, New York, NY, USA, Article
27, 49 pages.

Paweł Dłotko. 2012. A fast algorithm to compute cohomology group generators
of orientable 2-manifolds. Pattern Recognition Letters 33, 11 (2012), 1468–1476.
Computational Topology in Image Context.

Tobias Günther and Irene Baeza Rojo. 2020. Introduction to Vector Field Topology. In
Topological Methods in Data Analysis and Visualization VI. Springer.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https://www.
gurobi.com

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E. Hudson,
James McCann, and Jennifer Mankoff. 2019. KnitPicking Textures: Programming
and Modifying Complex Knitted Textures for Machine and Hand Knitting. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Tech-
nology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery,
New York, NY, USA, 5–16.

Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, and Scott E Hudson.
2023. KnitScript: A Domain-Specific Scripting Language for Advanced Machine
Knitting. In Proceedings of the 36th Annual ACM Symposium on User Interface Soft-
ware and Technology (<conf-loc>, <city>San Francisco</city>, <state>CA</state>,
<country>USA</country>, </conf-loc>) (UIST ’23). Association for Computing
Machinery, New York, NY, USA, Article 21, 21 pages.

Megan Hofmann, Jennifer Mankoff, and Scott E. Hudson. 2020. KnitGIST: A Program-

ming Synthesis Toolkit for Generating Functional Machine-Knitting Textures. In
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery,
New York, NY, USA, 1234–1247.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008. Knitting a 3D Model.
Computer Graphics Forum 27, 7 (2008), 1737–1743.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6, Article 189 (nov 2015), 15 pages.

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and
Adriana Schulz. 2022. Computational Design of Knit Templates. ACM Transactions
on Graphics 41, 2 (April 2022), 1–16.

David Jourdan, Pierre-Alexandre Hugron, Camille Schreck, Jonàs Martínez, and Sylvain
Lefebvre. 2023. Shrink & Morph: 3D-Printed Self-Shaping Shells Actuated by a
Shape Memory Effect. ACM Trans. Graph. 42, 6, Article 187 (dec 2023), 13 pages.

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skeletons:
Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments.
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST).

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.
Knit Sketching: from Cut & Sew Patterns to Machine-Knit Garments. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 40, 4 (2021).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns
on surfaces. ACM Transactions on Graphics 34, 4 (July 2015), 39:1–39:11.

Heng Liu and David Bommes. 2023. Locally Meshable Frame Fields. ACM Transactions
on Graphics 42, 4 (2023).

Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-Free
Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Proceedings.
1–9.

Ioanna Mitropoulou, Amir Vaxman, Olga Diamanti, and Benjamin Dillenburger. 2024.
Fabrication-aware strip-decomposable quadrilateral meshes. Computer-Aided De-
sign 168 (2024), 103666.

Juan Sebastian Montes Maestre, Yinwei Du, Ronan Hinchet, Stelian Coros, and Bern-
hard Thomaszewski. 2023. Differentiable Stripe Patterns for Inverse Design of
Structured Surfaces. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–14.

Georges Nader, Quek-Yu Han, Chia-Pei Zhi, Oliver Weeger, and Sai-Kit Yeung. 2021.
KnitKit. ACM Transactions on Graphics (TOG) (July 2021).

https://www.gurobi.com
https://www.gurobi.com

Singular Foliations for Knit Graph Design SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Transactions on Graphics
37, 3 (Aug. 2018), 35:1–35:15.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Transactions on Graphics 38, 4 (July 2019), 63:1–63:13.

Yuta Noma, Nobuyuki Umetani, and Yoshihiro Kawahara. 2022. Fast Editing of Singu-
larities in Field-Aligned Stripe Patterns. In SIGGRAPH Asia 2022 Conference Papers
(Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New
York, NY, USA, Article 37, 8 pages.

Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi, David Bommes, Xifeng
Gao, Riccardo Scateni, Franck Ledoux, Jean Remacle, and Marco Livesu. 2022. Hex-
Mesh Generation and Processing: A Survey. ACM Trans. Graph. 42, 2, Article 16
(oct 2022), 44 pages.

Nicolas Ray and Dmitry Sokolov. 2014. Robust Polylines Tracing for N-Symmetry
Direction Field on Triangulated Surfaces. ACM Trans. Graph. 33, 3, Article 30 (jun
2014), 11 pages.

Christian Schüller, Roi Poranne, and Olga Sorkine-Hornung. 2018. Shape Representa-
tion by Zippables. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH)
37, 4 (2018).

Thibault Tricard, Vincent Tavernier, Cédric Zanni, Jonàs Martínez, Pierre-Alexandre
Hugron, Fabrice Neyret, and Sylvain Lefebvre. 2020. Freely orientable microstruc-

tures for designing deformable 3D prints. ACM Trans. Graph. 39, 6 (2020), 211–1.
Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt,

Mirela Ben-Chen Technion, and Daniele Panozzo. 2017. Directional field synthesis,
design, and processing. In ACM SIGGRAPH 2017 Courses (Los Angeles, California)
(SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, Article
12, 30 pages.

Josh Vekhter, Jiacheng Zhuo, Luisa F Gil Fandino, Qixing Huang, and Etienne Vouga.
2019. Weaving Geodesic Foliations. ACM Trans. Graph. 38, 4, Article 34 (jul 2019),
22 pages.

H. Whitney. 1957. Geometric Integration Theory. Princeton University Press.
Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch

meshing. ACM Transactions on Graphics 37, 4 (Aug. 2018), 1–14.
Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Transac-

tions on Graphics 38, 1 (Feb. 2019), 1–13.
Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch

meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG) (July 2012).

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector Field Design on
Surfaces. ACM Trans. Graph. 25, 4 (oct 2006), 1294–1326.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Mitra et al.

Figure 9: Results. (a) Singularities generated by [Knöppel et al. 2015] are matched and the corresponding level set constraints
are shown in orange. We double the frequency of the stripe pattern and still achieve a valid knit graph of higher resolution
without additional helicing. (b) Edited singularities from [Knöppel et al. 2015] are matched to generate a knit graph. (c) Our
method is able to handle models with non-zero genus via a cylindrical decomposition shown in pink. Using our optimal
matching scheme, singularities are matched in each cylindrical component. (d) A pair of singularities are matched using a level
set constraint. This induces a forced short row in the knit graph. (e) Edited singularities from [Knöppel et al. 2015] are matched
in each cylindrical component of the torus model (decomposition shown in teaser).

Singular Foliations for Knit Graph Design SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Figure 10: Edge length error histograms for the fabricated models. While quantifying geometric fidelity is challenging due to
the ability of knits to stretch and be malleable, we note that our histograms are similar to those of [Mitra et al. 2023]. Befitting
the use of our 𝐿 2 objective, our histograms aren’t as strongly concentrated near 0 as those of [Narayanan et al. 2018] but do
present significantly fewer outliers. As is the case with [Narayanan et al. 2018], most of our edge length errors are < 10%.

Figure 11: Implied yarn paths following the blue arrows. Left: the implied path winds up the bent cylinder (both sides of the
model shown), visiting each number in turn, and tracing out the short rows. This example is generated by doubling the singular
triangle indices, and allowing the boundary integral constraints to equal +𝑃 and −𝑃 on the top and bottom, respectively. Right:
the implied path winds up the cylinder, and reverses direction between the short row ends, helicing fully around the cylinder
in the opposite direction several times. This was generated with the same ±𝑃 boundary integral constraints and a single level
set constraint

∫
𝛾 𝜎𝑐 = ˜𝑘𝑃 joining separatrices, where − ˜ 𝑘 denotes the number of opposite direction helices desired.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Stripe Patterns for Fabrication
	2.2 Foliations in Geometry Processing

	3 Foliations Lens
	3.1 Spinning-form-based stripes
	3.2 Global structure of flows and foliations

	4 Method
	4.1 Models with non-zero genus
	4.2 Singular triangle generation
	4.3 Birth/death interval matching
	4.4 Form optimization and knit graph generation

	5 Results
	5.1 Single-thread-level modelling

	6 Conclusion
	6.1 Limitations and Future Work

	Acknowledgments
	References

