
Singular Foliations for Knit Graph Design 
Rahul Mitra 
rahulm@bu.edu 
Boston University 
Boston, MA, USA 

Erick   
erickjb@bu.edu 
Boston University 
Boston, MA, USA 

Jimenez Berumen

Megan Hofmann 
m.hofmann@northeastern.edu 

Northeastern University 
Boston, MA, USA 

Edward Chien 
edchien@bu.edu 
Boston University 
Boston, MA, USA 

This          
4.0 License. 

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0525-0/24/07 
https://doi.org/10.1145/3641519.3657487 

work is licensed under a Creative Commons Attribution International

CCS CONCEPTS 
• Computing methodologies → Shape analysis; • Applied 
computing → Computer-aided manufacturing. 

KEYWORDS 
computational knitting, foliations 
ACM Reference Format: 
Rahul Mitra, Erick Jimenez Berumen, Megan Hofmann, and Edward Chien. 
2024. Singular Foliations for Knit Graph Design. In Special Interest Group on 
Computer Graphics and Interactive Techniques Conference Conference Papers 
’24 (SIGGRAPH Conference Papers ’24), July 27–August 01, 2024, Denver, CO, 
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3641519. 
3657487 

Figure 1: Via a singular foliations perspective on the course stripe pattern, we are able to automatically match singular triangles 
(blue/red) and separatrices (cyan) to ensure that all integral curves (candidate course rows) do not helix. Our improved workflow 
for [Mitra et al. 2023] extends it to models with non-zero genus, decomposing the input mesh 𝑀 into cylindrical components 
along critical level sets of the knitting time function. We then solve an optimal assignment LP to obtain appropriate linear 
level set constraints (orange) . 

ABSTRACT 
We build upon the stripes-based knit planning framework of [Mitra 
et al. 2023], and view the resultant stripe pattern through the lens 
of singular foliations. This perspective views the stripes, and thus 
the candidate course rows or wale columns, as integral curves of 
a vector field specified by the spinning form of [Knöppel et al. 
2015]. We show how to tightly control the topological structure 
of this vector field with linear level set constraints, preventing 
helicing of any integral curve. Practically speaking, this obviates 
the stripe placement constraints of [Mitra et al. 2023] and allows for 
shifting and variation of the stripe frequency without introducing 
additional helices. En route, we make the first explicit algebraic 
characterization of spinning form level set structure within singular 
triangles, and replace the standard interpolant with an “effective” 

one that improves the robustness of knit graph generation. We also 
extend the model of [Mitra et al. 2023] to surfaces with genus, via a 
Morse-based cylindrical decomposition, and implement automatic 
singularity pairing on the resulting components. 

1 INTRODUCTION 
There has been much recent interest in designing algorithms for 
stitch structure planning in computational knitting. In the setting of 
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AutoKnit [Narayanan et al. 2018], these algorithms abstract stitch 
patterns with the notion of a knit graph, which must satisfy numer-

ous important properties to achieve machine-knittability. The most 
challenging property to maintain is the helix-free condition: that 
the course rows should not form spirals. Narayanan et al. [2018] 
use iterative, local geodesic distance estimates to produce their knit 
graphs, which while helix-free, are not globally smooth and provide 
little to no user-control in stitch irregularity placement. 

Nader et al. [2021] and Mitra et al. [2023] both leverage the more 
global stripe generation framework of [Knöppel et al. 2015] to gen-
erate knit graphs of an input surface 𝑀 , although these techniques 
may introduce arbitrary helicing. Nader et al. [2021] use the op-
erators presented in [Bommes et al. 2011] to address helicing, but 
this method is not guaranteed to remove all helices. Mitra et al. 
[2023] optimize for stripes directly in the space of differential 1-
forms and present numerous linear constraints which may be used 
individually or together to generate helix-free knit graphs. 

In this work, we extend and provide further insights on the 1-
form-based framework of [Mitra et al. 2023]. We view the resulting 
spinning form and its stripes as a vector field flow over 𝑀 . The 
integral curves make up the leaves in a singular foliation of 𝑀 , 
decomposing it into 1-dimensional curves that serve as candidate 
course rows or wale columns. Singularities of the foliation corre-
spond to vector field singularities, and represent stitch irregularities 
(short rows, increases/decreases). 

The singular foliation splits 𝑀 into cells of equivalent flow behav-
ior, along separatrices emanating from foliation singularities. We 
prove that matching these separatrices appropriately with linear 
level set constraints guarantees that none of the integral curves will 
form helices. Practically, this allows one to “shift” the course rows 
arbitrarily and change their frequency without introducing addi-
tional helices. Local variation of frequency, and thus knit density, 
is also used by practitioners to achieve different aesthetic/physical 
properties, e.g., joining of knit textures of different resolution, or 
knitting of ribbed cuffs. Our matching level set constraints also 
obviate the use of stripe placements in [Mitra et al. 2023], needed to 
prevent specific integral curves from helicing. 

Precise topological control of foliation structure also presents 
an opportunity for “single-thread-level modelling”. The integral 
curves of our foliations may be used to explicitly trace the helical 
yarn path in a machine knit. This constrasts with the popular knit 
graph of AutoKnit [Narayanan et al. 2018], where each graph node 
corresponds to two stacked stitches, and uses a tracing procedure to 
produce the knitting order on these stitches. As a result, this classic 
knit graph cannot represent certain elementary knit structures that 
singular foliations should be able to model. 

We leverage the above understanding into an improved workflow 
for [Mitra et al. 2023]. This includes automation of singularity 
matching, extension to models with genus, and more robust knit 
graph generation. We list our main contributions below. 

• A novel topological understanding of stripe patterns as sin-
gular foliations (§3), leading to a theoretical guarantee on 
no helicing from any integral curve (§3.2 & Prop. 1). 
– Eliminates need for stripe placement constraints of [Mitra 
et al. 2023]. 

– Allows for shifting and frequency adjustment of stripe 
pattern without introduction of helicing (see Fig. 9a). 

• A first algebraic characterization of the spinning form level 
set structure in singular triangles (§3.1.3), and a novel “effec-
tive interpolant” that improves robustness of stripe tracing 
for knit graph generation (§4.4.1). 

• An improved pipeline for the form-based framework of [Mi-

tra et al. 2023] (§4): 
– An automatic process for optimal singularity matching 
and construction of level set constraints (§4.3). 

– Extension to models of genus𝑔 > 0, using a Morse-theoretic 
cylindrical decomposition (§4.1). 

• First steps toward “single-thread-level modelling” with stripe 
patterns following the actual (helical) yarn path of a machine 
knit extending the space of representable knit structures 
beyond that of the popular knit graph of [Narayanan et al. 
2018] (§5.1). 

2 RELATED WORK 
Our work has been influenced by several knitting frameworks from 
the graphics and computational fabrication communities. A primer 
on knitting terminology is presented in Supp. §1. Narayanan et al. 
[2018] present an end-to-end pipeline for machine-knitting arbi-
trary input geometries and the works of [Jones et al. 2022; Kaspar 
et al. 2019, 2021; Narayanan et al. 2019] demonstrate interfaces for 
varying stitch layout, coloring and texturing. Albaugh et al. [2023]; 
Hofmann et al. [2019, 2023, 2020] construct tools and a domain-

specific language for generating machine knitting instructions, with 
special care taken for handling knit textures. Other works [Wu et al. 
2018; Yuksel et al. 2012] generate stitch-meshes for rendering pur-
poses while the works of [Igarashi et al. 2008; Wu et al. 2019] are 
aimed at producing hand-knittable output. Lastly, the works of 
[Mitra et al. 2023] and [Nader et al. 2021] leverage stripe pattern 
tracing to produce knit graphs that are machine-knittable. 

2.1 Stripe Patterns for Fabrication 
Methods of stripe generation on surfaces have received much re-
cent attention in the realm of digital fabrication. The ability to 
specify evenly-spaced stripes with directional guidance has found 
several modeling uses. Nader et al. [2021] were the first to use stripe 
patterns for knit graph generation, tracing the stripes of [Knöppel 
et al. 2015]. Noma et al. [2022] presented a spinning-form-based 
framework for editing and connecting stripe singularities in such 
patterns, applying their tools to 3D wireframe structures and “zip-
pables” [Schüller et al. 2018]. Mitra et al. [2023] extend and apply 
a similar form-based framework, developing novel constraints for 
eliminating the helicing inherent in stripe patterns generated with 
[Knöppel et al. 2015]. The work of [Tricard et al. 2020] generates 
2D stripe patterns with phasor noise methods and extrude them 
to obtain microstructures with tailored deformation properties. 
Montes Maestre et al. [2023] develop a differentiable version of the 
[Knöppel et al. 2015] pipeline and use it for inverse design of stripe-
shaped bi-material distributions. Lastly, [Jourdan et al. 2023] utilize 
[Knöppel et al. 2015] stripe patterns to generate layer toolpaths for 
3D printing of self-shaping shells. Like many works above, we use 
the spinning form interpolant of [Knöppel et al. 2015], but we are 
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the first to explicitly characterize the level set structure in singular 
triangles (§3.1.3). 

With regard to [Mitra et al. 2023]: we improve their pipeline by 
preventing helicing of any level set in the stripe pattern, as opposed 
to only specific level sets. This allows for shifting and frequency 
change of the stripe pattern without introducing additional he-
lices, removing their need for stripe placement constraints. We also 
implement an automatic optimal-assignment-based strategy for 
matching singular triangles (§4.3), and appropriately extend their 
framework to models with genus (§4.1). Lastly, we achieve more 
robust stripe tracing for knit graph generation via our “effective 
interpolant” (§4.4.1). 

2.2 Foliations in Geometry Processing 
There have been several works in graphics and geometry processing 
that have used and referenced foliations in various applied contexts. 

Vekhter et al. [2019] produce approximately geodesic foliations 
for fabricating triaxial weaves of input mesh surfaces. In our setting, 
we do not require our foliations to be approximately geodesic, 
but we do require more precise global topological control on the 
foliation structure due to the manufacturing constraints of knitting. 

Campen et al. [2016b] produce bijective maps between simply-

connected 2D and 3D domains via globally trivial simplicial foli-
ations, specified via face- or tet-wise constant vector fields. Our 
setting requires foliations with singularities to produce geometric 
shaping and is formulated on surface domains with more complex 
topology (at least two boundaries, and potentially some genus). 

Foliations are implicit in many works on vector field design or 
tracing, as any vector field (in the smooth setting) gives rise to a 
foliation via its integral curves. We highlight specific works that are 
particularly relevant, and refer the reader to [Vaxman et al. 2017] 
for a broader survey. Explicit care is taken in [Zhang et al. 2006], 
where they describe the dynamics of the vector field flow, but do not 
attempt to specify global control over the orbit complex (see §3.2), 
instead focusing on the ability to combine and move singularities. 
Two relevant field tracing works are [Bhatia et al. 2011; Ray and 
Sokolov 2014] which aim to provide vector field representations 
and robust tracing algorithms that guarantee a well-defined global 
vector field flow. Our analysis in §3.1.3 provides just such a tracing 
for the spinning form considered as a vector field representation. 

A related line of works are quad- and hex-meshing works, with 
these meshes arising from integral curves of orthogonal vector 
fields (perhaps on a branched cover). Again, we cite particularly 
relevant works and refer the reader to surveys [Bommes et al. 2013; 
Pietroni et al. 2022] for more information. One work that explicitly 
uses the language of foliations is [Liu and Bommes 2023]. They 
consider the matter of locally hexable volumetric frame fields, and 
use the singularity theory of foliations to characterize hexability. 
Within the quad meshing setting, there are also several works 
that aim to control the analogous helicing behavior [Bommes et al. 
2011; Campen et al. 2016a]. The latter is especially relevant, with 
the use of “cycle” constraints (akin to our level set constraints) 
on the parameterization (§4.3) used. The knit graph generated by 
our method may also be viewed as the edges of a quad-dominant 
mesh, with singular triangles arising as position field singularities, 
as described in [Jakob et al. 2015]. Unlike this more general setting, 

our manufacturing constraints do not allow orientation singularities 
and require more precise topological control than their framework 
affords. Finally, we note a recent work [Mitropoulou et al. 2024] 
that considers a subset of quad meshes, strip-decomposable, that 
are aimed at adjacent fabrication tasks. While they provide manual 
topological editing tools for controlling separatrix behavior, our 
singularity matching is automatic. Furthermore, their setting is also 
different, with pure quad meshes and only orientation singularities. 

3 FOLIATIONS LENS 

Figure 2: Stripe patterns as oriented foliations. Oriented foli-
ations are a collection of integral curves of a vector field. A 
contiguous set of integral curves form the stripes in a stripe 
pattern specified via spinning form. We visualize these inte-
gral curves on the right by increasing the stripe frequency 
and highlighting specific curves. The surface is partitioned 
into 0- and 1-dimensional integral curves: leaves and singu-
larities (flow fixed points), respectively. The red point de-
notes a source, the yellow point denotes a saddle. The curves 
are colored black, orange, and blue to denote curves born at 
the source, separatrices, and curves born elsewhere respec-
tively. 

In            
stripe patterns as 1 oriented foliations  

, or equivalently as the collec-
tion of integral curves of a vector field. Informally, a foliation of a 
surface 𝑀 is a partition of the surface into 1-dimensional curves, 
called leaves, and 0-dimensional points, called singularities. Away 
from singularities, the partition looks locally like the partition of 
the 𝑥𝑦-plane into constant 𝑥 or 𝑦 lines. As can be seen in Fig. 2, 
the stripes in a pattern are sets of “contiguous” leaves, starting 
and ending at singularities. We will see that control over the foli-
ation topology translates into the strict helix-free manufacturing 
constraints required of machine knitting. 

Throughout the exposition below, we will refer to [Aranson et al. 
1996] as a detailed source on surface foliations. The manuscript 
discusses many foliations more exotic than those arising from stripe 
patterns, so we summarize and extract the sections relevant to our 
setting. Implicit above is a key fact from the study of foliations: 
Whitney’s Theorem (Theorem 2.3 in [Aranson et al. 1996]), which 
states that every orientable foliation is induced by the flow of a 
vector field. That is to say, the leaves and singularities are formed 

1
Unoriented foliations contain singularities of half-integer index, like those specified 
via line field (rather than vector field) in [Knöppel et al. 2015]. These singularities are 
undesirable as they result in stitch structures that are not machine-knittable. 

this section, we set down a basis for structural understanding of
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by the integral curves of a vector field 𝑉 . A curve 𝛾 : 𝐼 → 𝑆 is 
integral if 𝛾 ′ (𝑡 ) = 𝑉 (𝛾 (𝑡 )) for all times 𝑡 . 

3.1 Spinning-form-based stripes 
We use the setting of form-based stripe patterns, first introduced 
in [Knöppel et al. 2015], and built upon for knitting applications 
in [Mitra et al. 2023]. We provide a review of the framework, and 
present a novel analysis of the stripe patterns on singular triangles 
from a foliations perspective. For background on discrete differen-
tial forms and exterior derivatives we refer readers to the works 
above and [Crane et al. 2013] for an in-depth introduction. 

The method of [Knöppel et al. 2015] is based on a smooth setting 
where a complex function 𝜓 : 𝑀 → C over a surface 𝑀 is consid-
ered, with arg𝜓 used as a stripe texturing coordinate. The input 
to their method is a vector field 𝑍 that is used to roughly specify 
∇(arg𝜓 ), designating the direction and frequency of pattern vari-
ation. Intuitively, stripes are “born" or “die" at zeros of 𝜓 , where 
arg𝜓 has no continuous local definition. 

In their discretization, 𝑍 and the resulting optimized 𝜓 are spec-
ified per-vertex, and a discrete spinning form is used to interpolate 
arg𝜓 into the interior of mesh triangles. The spinning form is a 
discrete 1-form, specified by a scalar per mesh edge: 𝜎 : 𝐸 → R, 
where 𝜎𝑒 = 𝜎𝑖 𝑗 represents the change in arg𝜓 over edge 𝑒𝑖 𝑗 . 𝜎𝑒 is 
optimized to best match the desired frequency specified by 𝑍 , over 
the mesh as a whole. The result is a 1-form for which (𝑑1𝜎)𝑚 = 
2𝜋𝐾𝑚, 𝐾 ∈ Z |F | on each face 𝑚 of the mesh. In general, 2𝜋 may be 
replaced by a user-specified period 𝑃 , resulting in stripes of width 
𝑃 /2. 

On most triangles within the mesh, one should have 𝐾𝑚 = 0. This 
denotes zero curl of ∇(arg𝜓 ) over face 𝑚, leading to a well-defined 
arg𝜓 , and a simple linear stripe pattern (Fig. 3, left). On other 
triangles, 𝐾𝑚 ≠ 0, indicating non-zero curl, and these correspond 
to zeros of 𝜓 . These are termed singular triangles and 𝐾𝑚 is the 
singular index of face 𝑚. On such triangles, 𝐾𝑚 stripes are created 
(Fig. 3, right), and the stripe pattern is governed by a discontinuous 
texture function interpolant 𝜑 , presented in Supp. §2 and analyzed 
in §3.1.3. 

The work of [Mitra et al. 2023] optimized for such a spinning 
form directly, in a framework that allowed for the use of linear level 
set and stripe placement constraints to prevent helicing of certain 
level sets. In particular, stripe placement constraints ensured that 
stripes were centered on non-helicing level sets (see Fig. 6 of [Mitra 
et al. 2023]). In their framework, a harmonic knitting time function 
ℎ (e.g., Fig. 1, top left) and its gradient ∇ℎ roughly specify the 
course row alignment and direction of knitting via an optimization 
objective (Eq. (2a) and §3.1 of [Mitra et al. 2023]). Several linear 
structural constraints were applied to achieve singularity placement 
and stripe alignment amongst other aims (§3.2 of [Mitra et al. 2023]). 
Most relevant here are the level set constraints, which set the path 
integral 

∫ 
𝛾 𝜎 = 0, where𝛾 is a path of mesh halfedges (e.g., visualized 

in Fig. 1 in orange). These ensure that no level set (or stripe) crosses 
𝛾 without crossing back, and are used to match separatrices starting 
or ending at singular triangles. 

3.1.1 Forms as discretized vector fields. One-forms are common 
“edge” discretizations of continuous vector fields 𝑊 on triangle 
meshes 𝑀 [de Goes et al. 2016]. Typically, one takes the field 𝑊 

Figure 3: Non-singular triangle left, singular triangle right, 
with integral curves (cyan) of 𝑉 = 𝑊 ⊥ (pink) and 𝑊 = ∇𝜑 
(blue) illustrated. The convention to rotate 𝑊 clockwise is 
adopted so that a positive/negative singular index implies 
that the barycenter is a source/sink fixed point. 

(a) source (b) sink (c) saddle 

(d) sector examples 
(e) effective in-
terpolant 

Figure 4: Flow structure near singularities: (a) a source, (b) a 
sink, (c) a saddle, (d) sector examples (inspired by Fig. 1.44 
from [Aranson et al. 1996]), (e) a schematic representation of 
our “effective interpolant” with two hyperbolic sectors and 
one parabolic sector (see §4.4.1). 

and sets the 1-form value on edges to be equal to the path integral 
𝜎𝑒 = 

∫ 
𝑒 𝑊 . This perspective results in simple discretized differential 

operators like the discrete curl given by the exterior derivative 
𝑑1. To go in the other direction, from a discretized 1-form to a 
vector field 𝑊 on the entire mesh 𝑀 , one makes a choice of field 
interpolant, like the common Whitney basis [Whitney 1957]. 

In our setting, we may consider the texture interpolant 𝜑 , (Eq. 
3, supp.) as a particular choice of field interpolant, via its gradient 
𝑊 = ∇𝜑 . The level sets of 𝜑 are then perpendicular to 𝑊 and are 
traced out by the integral curves of 𝑉 = 𝑊 ⊥ 

. This is illustrated in 
Fig. 3. Ultimately, we characterize the flow and integral curves of 
𝑉 via an algebraic analysis of the level sets of 𝜑 . 

3.1.2 Basic terminology for 2-dimensional flows near singularities. 
We recall some basic definitions for 2-dimensional flows near sin-
gularities. Further information may be found in [Aranson et al. 
1996], or in [Günther and Baeza Rojo 2020]. Singularities are fixed 
points of the flow: points 𝑝 for which 𝑉 (𝑝) = 0. The integral curve 
containing 𝑝 is simply stationary: 𝛾 (𝑡 ) = 𝑝 for all times 𝑡 . 
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In our setting2 
, at a given singularity 𝑝 , the flow is split locally 

into sectors bounded by separatrices. Separatrices are integral curves 
that approach or leave 𝑝 as 𝑡 → ∞ or 𝑡 → −∞, and that have nearby 
integral curves not converging to 𝑝 (see §2.3.3 of [Aranson et al. 
1996] for an epsilon-delta definition). These sectors may be of three 
types: hyperbolic, elliptic, or parabolic, and are illustrated in Fig. 4d. 
Arising from 𝜑 , there are three kinds of singularities we encounter: 
sinks, sources, and saddles; all illustrated in Fig. 3.1.1. 

3.1.3 Flow structure in singular triangles. We now present an alge-
braic characterization of the integral curves of 𝑉 , via an analysis of 
the level sets of 𝜑 , the texture interpolant of [Knöppel et al. 2015]. 
In non-singular triangles the level sets are linear and easily inferred, 
but on singular triangles the level sets are quadratic in barycentric 
coordinates, and more challenging to detail. 

For the sake of brevity, we present just the case of 𝑛𝑃 > 0, illus-
trated in Fig. 5. When 𝑛𝑃 < 0, the characterization merely differs 
by a few sign changes. The expression for 𝜑 and full arguments 
for this characterization are deferred to Supp. §2, as we are mostly 
interested in the topological structure of the flow. 

Subcases are formed by considering the set of signs of 𝜎𝑖 𝑗 , 𝜎 𝑗 𝑘 , 𝜎𝑘𝑖 . 
As their sum is positive, at least one must be positive, and we denote 
the cases + + +, + + −, + − −. Note that ordering does not matter, 
merely how many positive and negative values there are. 

• + + +: A single source singularity is present at the barycenter, 
with all integral curves exiting at the boundary (Fig. 5, left). 

• + + −: There is a source at the barycenter, and a saddle in 
the barycentric region bounded by the negative sign edge 
(Fig. 5, middle). A separatrix from the saddle exits the source, 
and the rest of the integral curves exiting the source start on 
the edges with positive 𝜎 . 

• + − −: There is a source at the barycenter, and a saddle in 
the barycentric region bounded by the more negative edge 
(Fig. 5, right). A separatrix from the saddle exits the source, 
and the rest of the integral curves exiting the source start on 
the single positive edge. 

Our optimization overwhelmingly produces the + + − case, as the 
spinning form optimization of [Mitra et al. 2023] motivates the 𝜎𝑖 𝑗 
to agree with ∇ℎ · 𝑒𝑖 𝑗 . 

Figure 5: Behavior of integral curves in singular triangles 
when 𝑛𝑃 > 0. Signs of 𝜎𝑖 𝑗 , 𝜎 𝑗𝑘 , 𝜎𝑘𝑖 are indicated with ±’s. Pur-
ple indicates the birth interval where integral curves exiting 
the source leave the triangle. Color-coded are separatrices 
(orange), sources (red), and saddles (yellow). 

For precise control of global foliation structure, we obtain ex-
act expressions for the separatrix level sets in both the + + − and 
2
Arising from spinning forms, 𝑉 has isolated singularities (as there are only a finite 
number). Furthermore, these singularities are not surrounded by closed cycles. 

+ − − cases. Two of these level sets bound the birth/death inter-
val of integral curves that tend to the barycenter as 𝑡 → −∞/+∞ 
when 𝑛𝑃 > 0 / 𝑛𝑃 < 0, respectively. In Supp. §2 we derive these 
expressions and describe how to obtain their intersection with the 
triangle boundary. 

3.2 Global structure of flows and foliations 
The flows induced by spinning forms are of a well-behaved class: 
flows without nontrivial recurrent trajectories (see §2.2.1 of [Aranson 
et al. 1996]). In particular, the only trajectories that are part of 
their limit sets are singularities (fixed points) and closed cycles 
({𝛾 (𝑡 )}𝑡 ∈R forms a closed loop). A point 𝑝 is in the limit set of a 
trajectory 𝛾 if there is a sequence {𝑡𝑖 }∞𝑖=1 with 𝑡𝑖 → ∞ such that 
𝛾 (𝑡𝑖 ) → 𝑝 . 

For this set of flows, the global topological struc-
ture is captured by an object called the orbit com-
plex. Roughly speaking (see §6.5 of [Aranson et al. 
1996] for detail), this describes a decomposition of 
𝑀 into cells that are open disks or annuli topolog-
ically. These cells are the complement of the singu-
larities and the separatrices. Within these cells, the 
flow is like that of a parallel flow on an open strip 
or a parallel flow on an open annulus (illustrated in the inset). 

In Fig. 6, one can see a simple example of this cell structure on a 
cylinder. When no level set constraint is used (left), there are two 
disc-shaped cells with different flow behaviors with respect to the 
candidate wale columns (purple): cell A helices, while cell B does 
not. If we join separatrices with a level set constraint (right, orange), 
birth/death intervals line up and only one non-helicing disc-shaped 
cell results. The practical implication of this behavior is that if one 
were to sample the integral curves at a higher rate (by increasing 
stripe frequency) or shift the integral curves traced, then no new 
helices may be introduced. An example of frequency doubling with 
no new helices is demonstrated with the sock model in §5. 

Figure 6: Left: With no separatrix (cyan) matching, two cells 
with different behavior arise: those in cell A helix, while 
those in cell B do not. Right: By matching with a level set 
constraint (orange), we ensure a single disc-shaped cell, with 
all integral curves not helicing with respect to the central 
candidate wale column (purple). 

In Supp. §3, we prove the following proposition, which shows 
that control of the boundary separatrices via level set constraints 
can be used to guarantee that none of the curves in a cell helix 
with respect to a transverse wale foliation. In short, if the level set 
constraint does not helix, then the integral curves in the neighboring 
cell won’t either. 
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Proposition 1. Consider two transverse course and wale foliations 
specified by 𝜎𝑐 , 𝜎𝑤 , and our effective interpolant. In any disc-shaped 
cell 𝑅 in the orbit complex of 𝜎𝑐 , if either boundary of 𝑅 is helix-free 
with respect to 𝜎𝑤 , then all integral curves of 𝑅 are helix-free. 

4 METHOD 
In this section, we outline our procedure for generating a stripe pat-
tern that avoids helicing over all leaves. First, we semi-automatically 
generate singular triangle positions and spinning form values on 
said triangles, informed by the geometry of the model. Next, we 
automatically match singular triangles with level set constraints 
that align their birth/death intervals and ensure no helicing. Lastly, 
we use our effective interpolant to more robustly trace and produce 
a knit graph suitable for machine knitting. 

4.1 Models with non-zero genus 
We first describe the additional structures 
needed to handle more complex topologies for 
𝑀 (those with > 2 boundaries and/or nonzero 
genus). The first is a decomposition of 𝑀 into 
cylinders along edge cycles that roughly follow 
critical level sets (in the Morse sense) of the guid-
ing time function ℎ, as illustrated in the inset. These critical level 
sets are the values of ℎ at saddle vertices of 𝑀 . In §4.2, we check that 
each cylindrical component has singular indices that sum to 0, and 
in §4.3, we only match singular triangles within these cylindrical 
components. Details on our method for obtaining the necessary 
edge cycles are in Supp. §4. 

Secondly, in genus 𝑔 > 0 cases, a spinning form 𝜎 must satisfy in-
teger integrability constraints along homology generators to result 
in a well-defined function 𝑀 → S 1 

. If these do not hold, the relative 
value between two vertices would be path-dependent. To impose 
these constraints, the well-known tree-cotree algorithm [Dłotko 
2012] is applied to find a set of 2𝑔 + 𝑛 − 1 edge cycle generators. 
These are gathered into a matrix H ∈ {+1, −1}(2𝑔+𝑛 −1)× |𝐸 | 

that 
performs path integration along the generators, and khg 

gathers 
the corresponding integer variables in Eq. (2d). 

4.2 Singular triangle generation 
To generate singular triangle positions, indices, and spinning form 
values on these triangles, we use [Knöppel et al. 2015] to make 
an initial guess. The method generates geometrically-informed 
singular triangle positions and indices, and the resulting form values 
on these triangles is roughly aligned with the gradient. 

Oftentimes, this method alone is suitable for determining reason-
able singular triangle positions. They may then be paired with the 
procedure of §4.3 to fix helicing. However, there are two instances 
that may trigger manual fixing. First, the singular indices on each 
cylindrical component may not sum to 0. This constraint ensures 
that short rows do not wander from component to component and 
encourages satisfaction of “simple splits and merges” (Property 5 
of [Narayanan et al. 2018]). The second related instance is when 
pairs of matched singular triangles differ greatly in terms of their 
harmonic time function ℎ values. This leads to stripes that are quite 
“slanted” with respect to the level sets of ℎ as can be seen in the left 
of Fig. 7. The optimization of [Knöppel et al. 2015] does not avoid 

Figure 7: Left: Paired singularities highly offset with respect 
to ℎ leads to a highly slanted stripe pattern with much width 
variation. Middle: The level set constraint (orange) opposes 
𝑉 when going from index +1 (red) to index -1 (blue). This 
leads to helicing of the integral curves in the resulting cell. 
Right: Two level set constraints (purple and green) intersect, 
leading to helicing integral curves in the bottom cell. 

this, due to the lack of constraints preventing helicing. The manual 
fix in both instances is placement of additional singular triangles 
on approximately the same isoline of ℎ. We leave to future work the 
development of a fully automatic method that solves this problem. 

4.3 Birth/death interval matching 
In our next step, we automatically match singular triangles, and 
align their birth/death intervals with suitable level set constraints. 
For simplicity, we assume that singular indices are all ±1, and 
thus by the global index theorem (Thm. 3.1 of [Noma et al. 2022]), 
there should be an equal number 𝑠 of +1 and −1 singularities to 
match. This aligns with the output of [Knöppel et al. 2015] in nearly 
all cases, as spacing dislocations in the stripe pattern lowers the 
objective energy. 

For the singularity matching and level set constraints, three 
desiderata inform our automatic pairing strategy (motivating ex-
amples illustrated in Fig. 7): 

(1) The value of the time function ℎ on paired singularities 
should not differ too much, and level set constraints should 
roughly follow the isolines of ℎ. 

(2) Level set constraints should roughly follow the direction of 
𝑉 when going from index +1 to index −1 singular triangles. 

(3) Level set constraints should not cross each other, as this 
causes separatrices to wander wildly to avoid crossing. 

Thus, we solve for the matching as an optimal assignment prob-
lem, calculating a cost matrix C ∈ (R+)𝑠 ×𝑠 for matching each +1 
singularity with each −1 singularity. The cost is obtained via a Djik-
stra’s shortest path search on a custom-weighted graph of mesh 
halfedges. The weight for a halfedge 𝑒𝑖 𝑗 is given by the absolute 
difference between 𝑒𝑖 𝑗 · (𝑉 /∥𝑉 ∥) and the maximal such dot product 
over all mesh halfedges. The dot product measures how well each 
halfedge aligns with 𝑉 , and encourages our shortest path algorithm 
to find paths satisfying (1) and (2) above. For +1 singularity 𝑖 and 
−1 singularity 𝑗 , the length of the shortest path is stored in entry 
C𝑖 𝑗 . 
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The optimal assignment will be stored in a permutation matrix 
T ∈ {0, 1}𝑠 ×𝑠 , where T𝑖 𝑗 = 1 denotes a matching of +1 singularity 𝑖 
with −1 singularity 𝑗 . We solve the following LP relaxation which 
has a binary minimizer: 

min 
T∈[0,1]𝑠 ×𝑠 

⟨C, T⟩ (1a) 

such that T1 = 1 (1b) 

1 𝑇 T = 1 𝑇 
(1c) 

Eq. (1a) denotes a sum of the entrywise products, and Eqs. (1b), (1c) 
ensure that any binary minimizer T is a permutation matrix. 

Finally, with the matching in hand, we need to find the exact 
path of the level set constraints aligning birth/death intervals. We 
may not use the paths used to calculate C as these may violate (3) 
above. We recall here as well that the choice of path is only relevant 
up to homological class in the mesh 𝑀 minus the singular triangles 
(see Lemma 1 of [Mitra et al. 2023]), so deviating from the “best 
paths” used to calculate C is not damaging. 

To find these, we simply take each matched pair in turn and 
calculate the best path available currently. After each exact path 
is calculated, the halfedges on the path have their weight set to 
+∞ to prevent subsequent paths from crossing. Lastly, we utilize 
the separatrix intersections described in Supp. §2.3 to complete the 
level set constraint. Our matching automates the manual matching 
of [Mitra et al. 2023], and produces good pairings reliably. 

4.4 Form optimization and knit graph 
generation 

With constraints gathered, we solve the following optimization 
problem for the course 1-form 𝜎𝑐 . We provide a brief review of 
our notation here, borrowed from [Mitra et al. 2023], and refer 
the reader there for a more in-depth description, if desired. The 
gradient of the time function, ∇ℎ should be approximately orthog-
onal to the course rows and parallel to the wale columns. Thus, we 
define our comparison 1-form 𝜔𝑐 as the average of the normalized 
adjacent face gradients for each edge [Mitra et al. 2023]. 𝑑1, 𝑃 , 𝑊 , 
and H are the discrete exterior derivative operator, stripe period, 
diagonal cotangent weight matrix, and set of homology generators, 5 RESULTS 
respectively. 𝛾 𝑙𝑠 

𝑗 is used to denote a particular level set constraint, 
where the total number of such constraints are given by 𝑁 𝑙 𝑠 . Finally, 
k, kℎ𝑔 

are integer variables that represent singularity index at a face 
and the number of striping level sets modulo 𝑃 that pass through a 
homology generator, respectively. 

min 
𝜎𝑐 ,khg 

| |𝑊 (𝜎𝑐 − 𝜔𝑐 ) | | 2 
(2a) 

subject to 𝜎𝑐 
  
𝜕𝑀 = 0, (2b) 

𝑑1𝜎𝑐 = 𝑃 k (2c) 

H𝜎𝑐 = 𝑃 khg 
(2d) ∫ 

𝛾 ls 
𝑗 

𝜎𝑐 = 0, 1 ≤ 𝑗 ≤ 𝑁 ls (2e) 

This problem only has 2𝑔 +𝑛 −1 integer variables, and is significantly 
quicker to run than the mixed-integer problems considered in S2 
of [Mitra et al. 2023] (𝑂 ( |𝐹 |) integer variables). 

Figure 8: Left: The spinning form interpolant 𝜑 produces 
course curves (cyan) that intersect with a single wale col-
umn (purple) multiple times if they pass close enough to the 
barycenter. Right: Our effective interpolant ensures that this 
problem does not occur, only modifying the course foliation 
locally. 

For the wale 𝜎𝑤 , we can usually simply call [Knöppel et al. 2015]. 
In the rare instances when we have collisions of wale and course 
singular triangles, we are forced to run a larger mixed-integer 
problem, with integer variables k ∈ Z |𝐹 | 

. This problem drops the 
level set constraints, Eq. (2e), as in [Mitra et al. 2023] (see last 
paragraph of §4.1 in that work). Finally, we note that it is possible 
to include the stripe alignment constraints of [Mitra et al. 2023], 
but care would need to be taken to avoid infeasibility, so we do not 
include them here. 

4.4.1 Effective interpolant. Our final step is to generate the knit 
graph by tracing the integral curves of 𝑉 . However, as our analysis 
in the singular triangles shows, this is likely to cause failure in 
certain cases (Fig. 8). Thus, we develop an effective interpolant, that 
achieves the spinning form values on the edges of a singular triangle 
(also shown in Fig. 8) and does not suffer these robustness issues. 

Schematically, we replace the interior integral curve structure 
with a single source/sink singularity at the barycenter with two 
hyperbolic sectors and a parabolic sector. Our procedure for tracing 
this effective interpolant is described in Supp. §5. 

We apply our improved workflow and automatic separatrix match-

ing to numerous models illustrated throughout the text and in Fig. 
9. We highlight the “torus” and “holey pants” as models with genus, 
and the two versions of the “sock” as showing frequency doubling 
without introduction of additional helices. With regard to manual 
intervention for singularity placement: a pair of singularities is 
induced for explanatory purposes in the cylinder model (Fig. 9d); 
the automatic singularity positions from [Knöppel et al. 2015] are 
used directly on the sock model (Fig. 9a); for the remaining models, 
initial singularity positions from [Knöppel et al. 2015] are modified 
minimally to ensure appropriate time function alignment. Edge 
length error histograms for our knit graphs are in Fig. 10. 

After knit graph generation, we use Autoknit [Narayanan et al. 
2018] for machine scheduling. All samples were knitted on a Shima 
Seiki SWG91N2 15-gauge v-bed knitting machine using 2/28NM 
rayon yarn at a 35-stitch size at a rate of 0.8 m/s. 

To solve the optimization problems of §4.4, we use the vanilla 
Gurobi solver [Gurobi Optimization, LLC 2022] on a 2.3GHz Intel 
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Core i5 Macbook Pro with 8GB of RAM. As with S1 of [Mitra et al. 
2023], with few integer variables, our runtimes are interactive and 
under a second. The applications of [Knöppel et al. 2015] are even 
faster, and follow the behavior noted in their paper. 

5.1 Single-thread-level modelling 
In Fig. 11, we show that our representation provides the oppor-
tunity for “single-thread-level modelling” of knit patterns and is 
capable of representing knit patterns that are not accessible to the 
widely-used knit graph representation of AutoKnit [Narayanan 
et al. 2018]. On the left, a tracing of the bent cylinder model is 
implied by the foliation structure. On the right, a similar tracing 
is implied, and the short row wraps around the cylinder model 
multiple times, something not possible with the knit graph repre-
sentation of [Narayanan et al. 2018]. These are generated with our 
novel topological understanding and separatrix matching level set 
constraints, which allow us to precisely specify the “amount” of 
helicing. We are excited at the prospect of a “tracing-free” pipeline 
for generating machine instructions, but leave this to future work. 

6 CONCLUSION 
In this work, we outline and demonstrate the benefits of a greater 
topological understanding of stripe patterns. We view them as 
singular foliations, and match separatrices appropriately to effect 
precise control on integral curves, and thus candidate course rows 
and wale columns. This prevents helicing in a more robust fash-
ion, and presents an opportunity for development of a form-based 
tracing-free pipeline for generation of machine knitting instruc-
tions. We also improve greatly on the workflow of [Mitra et al. 
2023] as outlined in §1, and demonstrate it on a selection of models 
in §5. 

6.1 Limitations and Future Work 
Our workflow still sometimes requires manual intervention in the 
generation of singular triangle positions. Going forward, we hope 
to develop a method that will automatically generate pairs of sin-
gularities along isolines of ℎ. Alternately, the development of a 
tracing-free pipeline would allow for matched pairs to differ greatly 
in ℎ values (Fig. 11, right). The development of such a pipeline for 
generating machine knit instructions is interesting for indepen-
dent reasons. Foremost among these is that it allows for a vastly 
expanded range of representable knit structures. 
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Figure 9: Results. (a) Singularities generated by [Knöppel et al. 2015] are matched and the corresponding level set constraints 
are shown in orange. We double the frequency of the stripe pattern and still achieve a valid knit graph of higher resolution 
without additional helicing. (b) Edited singularities from [Knöppel et al. 2015] are matched to generate a knit graph. (c) Our 
method is able to handle models with non-zero genus via a cylindrical decomposition shown in pink. Using our optimal 
matching scheme, singularities are matched in each cylindrical component. (d) A pair of singularities are matched using a level 
set constraint. This induces a forced short row in the knit graph. (e) Edited singularities from [Knöppel et al. 2015] are matched 
in each cylindrical component of the torus model (decomposition shown in teaser). 
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Figure 10: Edge length error histograms for the fabricated models. While quantifying geometric fidelity is challenging due to 
the ability of knits to stretch and be malleable, we note that our histograms are similar to those of [Mitra et al. 2023]. Befitting 
the use of our 𝐿 2 objective, our histograms aren’t as strongly concentrated near 0 as those of [Narayanan et al. 2018] but do 
present significantly fewer outliers. As is the case with [Narayanan et al. 2018], most of our edge length errors are < 10%. 

Figure 11: Implied yarn paths following the blue arrows. Left: the implied path winds up the bent cylinder (both sides of the 
model shown), visiting each number in turn, and tracing out the short rows. This example is generated by doubling the singular 
triangle indices, and allowing the boundary integral constraints to equal +𝑃 and −𝑃 on the top and bottom, respectively. Right: 
the implied path winds up the cylinder, and reverses direction between the short row ends, helicing fully around the cylinder 
in the opposite direction several times. This was generated with the same ±𝑃 boundary integral constraints and a single level 
set constraint 

∫
𝛾 𝜎𝑐 = ˜𝑘𝑃 joining separatrices, where − ˜ 𝑘 denotes the number of opposite direction helices desired. 
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