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Abstract: The COVID-19 pandemic has given rise to many significant research activities,
among these a resurgence of the use of control-oriented approaches for modeling and controlling
epidemics. An examination of a SIR (Susceptible-Infectious-Recovered) dynamic model under
endemic conditions using Internal Model Control (IMC) shows that a two-degree-of-freedom
(2DoF) PID with filter structure is a natural solution for understanding how to manage a
pandemic, with model-based IMC-PID tuning being extremely effective when evaluated on
a first-principles, nonlinear plant model. Dynamic modeling (nonlinear and linearized), PID
controller design, and closed-loop evaluation (under conditions that include vaccination and the
loss of immunity/potential for re-infection) are presented, with the results demonstrating the
deep insights that can be gained from simple models and control policies. Computational models
as presented in this work could be used to inform the actions of governments and individuals.
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1. INTRODUCTION

The COVID-19 pandemic is a significant world event that
remains among us, and has touched every individual on the
planet in some way. It is difficult to find someone whose
family or loved ones have been unaffected or not impacted.
The pandemic nonetheless has brought about unexpected
opportunities for education and research, which include
contributions to the field of process control (in general)
and PID controller tuning (in particular).

This work is based on experiences using an epidemic
model, namely, a Susceptible-Infectious-Recovered (SIR)
model, to teach process dynamics and control to chemi-
cal engineering undergraduates taking CHE 461: Process
Dynamics and Control, a required course in the chemical
engineering curriculum at Arizona State University. Our
initial efforts were documented in a paper presented at the
13th IFAC Workshop on Advances in Control Education
(ACE 2022; Rivera et al. (2022)). While that paper focused
on educational outcomes and how the problem was inte-
grated in ChE 461, this paper takes a more expansive look,
providing a broader, more comprehensive problem state-
ment (that includes vaccination and loss of immunity);
important details (such as the derivation of the model-
based IMC-PID tuning rules) are also explained.

The paper is organized as follows. Section 2 describes an
open-loop dynamical model and linearization, Section 3
describes the IMC-PID controller design, Section 4 shows
some simulations, and Section 5 describes future work. We
conclude with a description of extensions and current and
future efforts on the problem.
⋆ To whom all correspondence should be addressed (e-mail:
daniel.rivera@asu.edu).

2. SIR MODEL FOR DISEASE TRANSMISSION

Compartmental models used in epidemiology to model
infectious disease can be understood using a chemical
reactor analogy, where disease transmission and remission
correspond to an autocatalytic reaction with catalyst
deactivation (Simon, 2020). In particular, we are interested
in developing a dynamical model for a variation of the
classical Susceptible-Infectious-Recovered (SIR) problem
(Kermack and McKendrick, 1927) that considers births,
deaths, and time-varying transmission ´(t) and recovery
µ(t) rates. A problem schematic is shown in Figure 1,
illustrating the problem in terms of a continuously-stirred
tank reactor (Levenspiel, 1998).

The goal of the model is to determine how the popula-
tions of Susceptible (S(t)), Infectious (I(t)), and Recov-
ered/Removed (R(t))) individuals, as well as the rates of
infection, deactivation, vaccination, and loss of immunity
change over time during an epidemic. For simplicity, the
inflow to the reactor Br (the number of births/day) is
considered constant, as well as mortality rates per day for
each of the populations (µ = µS = µI = µR, respectively).
Correspondingly, the total population N = S(t) + I(t) +
R(t) remains constant, with the population of Removed
individuals R(t) computed from the solutions to S(t) and
I(t). The incidence rate, i.e., the number of new infections
per day, is determined by the autocatalytic reaction with
constitutive expression,

S + I
β(t)
→ 2I rinfect = ´(t)S(t)I(t) (1)

The time-varying transmission rate ´(t) is influenced by
government mandates for social distancing and hygienic
procedures (e.g., mask-wearing). Hence, it is a variable
that could be considered to be “adjustable” by society and



Fig. 1. SIR disease modeling as a continuously-stirred tank
reactor (CSTR) featuring autocatalytic (infection)
and deactivation (recovery) reactions, as well as the
effects of vaccination and loss of immunity.

thus falls as manipulated. A lower value for ´ results in
a decrease in the infection rate, and would result in a de-
crease in the number of infected individuals. Recovery (i.e.,
deactivation) of infected individuals per day is described
by a first-order reaction

I
γ(t)
→ R rdeact = µ(t)I(t) (2)

The recovery rate µ(t) is time-varying, with µ−1 corre-
sponding to the average duration of infectiousness. Increas-
ing µ implies that infected individuals remain infectious for
a shorter amount of time, which would ultimately result in
a decrease in the infected population. Actions such as the
availability of more effective treatments and therapeutics
can influence µ. In this work, we will consider µ(t) as an
exogenous variable that is external to the process and can
thus be treated as a disturbance.

A natural consideration in this problem is to examine
the influence of vaccination rates. The effect of vaccines
is to take susceptible individuals directly to the removed
category. Vaccination of susceptible individuals per day
can be described by a first-order reaction

S
kv(t)
→ R rvacc = kv(t)S(t) (3)

with the rate of vaccination kv(t) now serving as an
additional disturbance to the problem. Incorporating this
problem feature in the nonlinear model and step testing
this additional disturbance (from kv = 0 to some value)
will have a significant positive influence on the problem.

Finally, an important aspect of the problem that has been
an unavoidable reality in the current pandemic is the
possibility of loss of immunity, where recovered individuals
can return to the susceptible population, and hence are
candidates for possible re-infection. Loss of immunity can
be described as a first-order reaction according to:

R
ρ(t)
→ S rreinfect = Ä(t)R(t) (4)

As with µ(t) and kv(t), we consider that the loss of
immunity parameter Ä(t) is also an exogenous influence to
the problem (and acts as a disturbance to the problem).

With this information in hand, it becomes possible to write
species accounting equations that describe the dynamics

of this system; these equations can then be expressed as a
nonlinear lumped parameter model amenable to integra-
tion in computational tools such as MATLAB w/Simulink:

dx

dt
= f(x, u, d) (5)

y = g(x, u, d) (6)

The nonlinear lumped parameter system consistent with
the problem statement can be obtained from (7)-(11):

dS(t)

dt
= Br
︸︷︷︸

Births
(inflow)

−´(t)S(t)I(t)
︸ ︷︷ ︸

Infection
(consumption)

− µS(t)
︸ ︷︷ ︸

Mortality
(outflow)

= f1(x, u, d)

− kv(t)S(t)
︸ ︷︷ ︸

V accination
(consumption)

+ Ä(t)

(
Br

µ
− S(t)− I(t)

)

︸ ︷︷ ︸

Loss of Immunity/Reinfection
(generation)

(7)

dI(t)

dt
= ´(t)S(t)I(t)
︸ ︷︷ ︸

Infection
(consumption)

− µ(t)I(t)
︸ ︷︷ ︸

Deactivation
(consumption)

− µI(t)
︸ ︷︷ ︸

Mortality
(outflow)

= f2(x, u, d)

(8)

x =

[
S(t)
I(t)

]

, u = [´(t)], d =

[
µ(t)
kv(t)
Ä(t)

]

(9)

f(x, u, d) =

[
f1
f2

]

, y =






S(t)
I(t)
R(t)

rinfect(t)




 (10)

g(x, u, d) =






g1
g2
g3
g4




 =








S(t)
I(t)

Br

µ
− S(t)− I(t)

´(t)S(t)I(t)








(11)

Linearization leads to a model in state-space form,

d∆x

dt
=A ∆x+B ∆u+ Γ ∆d (12)

∆y =C ∆x+Du ∆u+Dd ∆d

where A, B, Γ, C, Du and Dd are constant-valued ma-
trices, while ∆ denotes deviation variables. x̄, ū, d̄, and
ȳ represent initial steady-state conditions obtained by
solving f(x̄, ū, d̄) = 0. For the problem at hand there
are two steady-state conditions, with the most interesting
case (denoting endemic conditions) consisting of (shown
here for kv = 0):

S̄ =
(µ+ µ)

´
(13)

Ī = −
(µµ2 + Äµ2 + µ3 −Br´µ−Br´Ä+ µµÄ)

´(µµ+ Äµ+ µ2)
(14)

R̄ =
Br

µ
− S̄ − Ī (15)

The steady-state according to (13)-(15) results in Ī ̸= 0
from which an informative linearized model useful for
control design can be obtained.

An effective computational model (such as one from MAT-
LAB and Simulink) can be used to generate representative



step responses for independent changes in each input vari-
able (´, µ, kv, and Ä) for the base parameters (Br = 500,
µ = 0.1). For each input, it is possible to produce a non-
trivial change that shows when the linear model is a valid
approximation for this system and a second change that
highlights process nonlinearity. To illustrate some desired
simulation results, a set of model responses (linear and
nonlinear) to a ´ change of -0.0004 (at time t = 10 days),
a µ change of +0.4 (at time t = 40 days), a kv change
of +0.2 (at time t=80 days), and a Ä change of +0.25
(at time t = 120 days) for parameters Br = 500, µ = 0.1,
¯́ = 0.0008, µ̄ = 0.25, k̄v = 0, and Ǟ = 0.1 are shown in Fig-
ure 2. A symbolic transfer function for all problem inputs
(from MATLAB’s Symbolic Math Toolbox) is shown in
Figure 3, with the numerical transfer function generated
by MATLAB (in gain-time constant form) (for ´ changes
only) shown in Figure 4, The following observations ensue:

(1) All model responses agree with physical intuition, i.e.,
increasing ´ increases the infected population while
increasing Γ reduces it.

(2) The linearized and nonlinear model responses agree
qualitatively (e.g., shape, speed, and direction) but
can differ quite substantially in magnitude.

(3) Despite this, the linearized transfer function expres-
sions are useful in predicting the intrinsic dynamic
behavior of this system.

The linearized plant model (both numerical and symbolic)
includes the following insights:

• The plant response characteristics can range from
underdamped to overdamped, based on operating
conditions.

• The nominal linearized transfer function model de-
scribing the dynamics between ´(t) and I(t) conforms
to a second-order transfer function according to:

p̃(s) =
b1s+ b2

s2 + a1s+ a2
(16)

• The symbolic transfer function model from Fig. 3
shows that, over all operating conditions, 1) the
steady-state gain for (16) is always greater than zero,
which implies that lowering ´ will always reduce the
infected population, and 2) the plant zero in the
transfer function (16) will always lie in the Left-Half
Plane (LHP). This latter characteristic greatly sim-
plifies the application of the IMC design procedure to
obtain a feedback control law, as the IMC controller
q̃ = p̃−1 will always be stable and causal, requiring
only a first-order filter to be made semiproper.

On the basis of this modeling effort and insights gained
from open-loop responses and transfer functions, it be-
comes possible to examine PID controller design for this
problem, as explained in the ensuing section.

3. PID CONTROLLER DESIGN

The control strategy to be evaluated relies on the transmis-
sion rate constant ´(t) as a manipulated variable (u(t)) to
reduce the infected population I(t) (the controlled variable
y(t)) to a desired setpoint, all while in the presence of
“disturbances” arising from changes in the rate constants
µ(t), kv(t), and Ä(t). Design requirements for the control
system are as follows:
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Fig. 2. Susceptible, infected, removed population responses
and infection rate for linear and nonlinear models to
a ´ change of -0.0004 (occurring at time t = 10 days),
a µ change of +0.15 (occurring at time t = 40 days),
a kv change of +0.2 (occurring at time t = 80 days),
and a Ä change of +0.15 (occurring at time t = 120
days) for parameters Br = 500, µ = 0.1, ¯́ = 0.0008,
µ̄ = 0.25, k̄v = 0, and Ǟ = 0.1.

(1) The control system must not differentiate step set-
point changes;

(2) Controlled variable responses should be smooth with
little or no oscillation; preferably no more than 10%
overshoot (or undershoot) for a step setpoint change,

(3) The closed-loop speed of response should be compara-
ble (and preferably faster) than the open-loop speed
of response,

(4) While an abrupt change may initially be necessary
in the manipulated variable response, the controller
should avoid taking ´(t) to 0 (i.e., full lockdown)



Fig. 3. Symbolic transfer functions for the linearized model, obtained from the Symbolic Math Toolbox in MATLAB.
The absence of RHP zeros in the (2,1) element (i.e., the transfer function between ∆´(s) and ∆I(s)) over all
practical operating conditions simplifies the use of IMC, and has a significant impact on control design.

Fig. 4. MATLAB-generated numerical transfer functions
in gain-time constant form (for ´ changes only) re-
sulting from steady-state conditions obtained from
parameters Br = 500, µ = 0.1, ¯́ = 0.0008, µ̄ = 0.25,
k̄v = 0, and Ǟ = 0.1. Under these conditions, the
system is overdamped in the open loop.

and avoid oscillations and significant variations (e.g.,
imagine what this response might imply for society).

(5) The control system must demonstrate robustness to
nonlinearity; that is, the ability to maintain the
system under control despite changes in operating
conditions.

The Internal Model Control design procedure (Rivera
et al., 1986; Morari and Zafiriou, 1989) is particularly well-
suited to the controller design requirements previously
noted, and can be applied to the linearized second-order

model with zero shown in (16), augmented with a first-
order filter with adjustable parameter ¼d. The design steps
are summarized as follows:

Step 1: Obtain the IMC controller q̃. For this, the plant
model must be factored into p̃+(s) and p̃−(s), correspond-
ing to the non-minimum and minimum phase portions of
the model respectively, as follows:

p̃(s) = p̃+(s)p̃−(s) (17)

Considering that there is no delay or RHP zero in (16),

p̃+(s) = 1 (18)

the controller q̃ is then given by:

q̃(s) = p̃−1(s) =
s2 + a1s+ a2

b1s+ b2
(19)

The controller q̃, although stable and causal, is improper.

Step 2: Augment (19) with a first-order filter f(s) with
adjustable parameter ¼d:

q = p̃−1(s)f(s) (20)

=
s2 + a1s+ a2

(b1s+ b2)(¼ds+ 1)
(21)

The result is a controller that is stable, causal, and
semi-proper. Finally, it is necessary to obtain a classical
feedback controller c(s):

c(s) =
q

1− p̃q
(22)

=

s2+a1s+a2

(b1s+b2)(λds+1)

1− 1
(λds+1)

(23)

=
s2 + a1s+ a2

(b1s+ b2)(¼ds)
(24)

It can be shown that s2+a1s+a2

(b1s+b2)(λds)
conforms to an ideal

PID with filter structure:



c(s) =

(
s2 + a1s+ a2

¼d s

)
1

(b1s+ b2)

=
a1

¼d b2

(

1 +
a2

a1

1

s
+

1

a1
s

)(

1
b1
b2
s+ 1

)

c(s) = Kc

(

1 +
1

ÄIs
+ ÄDs

)(
1

ÄF s+ 1

)

(25)

with tuning rules for this controller determined on the
basis of the model coefficients in (16) and an adjustable
parameter ¼d.

Kc =
a1

¼d b2
ÄI =

a1

a2
ÄD =

1

a1
ÄF =

b1

b2
(26)

A further significant enhancement to the control strategy
is to implement the IMC design as a two-degree-of-freedom
(2DoF) classical feedback controller according to Figure 5.
Such a controller will have individual adjustable param-
eters (e.g., ¼r, ¼d) to allow the user to independently
adjust the speed of response for each degree-of-freedom
(i.e., setpoint tracking versus disturbance rejection). The
setpoint shaping prefilter resulting from a 2DoF design is

h(s) =
¼ds+ 1

¼rs+ 1
(27)

Fig. 5. Two-degree-of-freedom structure for classical feed-
back control. A setpoint shaping prefilter h(s) allows
for decoupling the setpoint tracking response from
disturbance rejection.

4. SIMULATION CASE STUDIES

Many possible closed-loop control scenarios can be eval-
uated for this problem; in this paper, we describe two
deterministic cases and one stochastic case. The first is one
in which the control system performs badly. Consider the
closed-loop responses to a setpoint change corresponding
to a significant (90%) reduction in the initial endemic
infected population (occurring at time t = 5) and a µ
change of +0.8 (occurring at time t = 40 days), a kv
change of +0.3 (occurring at time t = 80 days), and a
Ä change of +0.25 (occurring at time t = 120 days) for a
single DoF controller (¼r = ¼d = 1) and model parameters
Br = 500, µ = 0.1, ¯́ = 0.0008, µ̄ = 0.25, k̄v = 0 and
Ǟ = 0.1 as shown in Figure 6. This controller fails the
desired specifications through offset in I(t), resulting from
´(t) = 0 (i.e., complete lockdown) during the first 40 days
of the simulation, followed then by significant oscillations
(in both I(t) and ´(t). The controller rejects disturbance
changes in µ, kv, and Ä, but with underdamped behavior
in ´(t). Any benefits from model-based tuning are lost as
a result of improper settings for ¼r and ¼d.

Figure 7, in contrast, uses a 2DoF design with ¼r = 5
and ¼d = 0.2 that achieves an overdamped response in
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Fig. 6. Closed-loop response (for infected population, lin-
ear and nonlinear) to a setpoint change corresponding
to a 90% reduction in the endemic infected popula-
tion (occurring at time t = 5), a µ change of +0.8
(occurring at time t = 40 days), a kv change of +0.3
(occurring at time t = 80 days), and a Ä change of
+0.25 (occurring at time t = 120 days) for a single
DoF IMC-PID with filter controller (¼r = ¼d = 1)
and model parameters Br = 500, µ = 0.1, ¯́ = 0.0008,
µ̄ = 0.25, k̄v = 0 and Ǟ = 0.1.
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Fig. 7. Closed-loop responses (for infected population, lin-
ear and nonlinear) to a setpoint change corresponding
to a 90% reduction in the endemic infected popula-
tion (occurring at time t = 5), a µ change of +0.8
(occurring at time t = 40 days), a kv change of +0.3
(occurring at time t = 80 days), and a Ä change of
+0.25 (occurring at time t = 120 days) for a 2DoF
IMC-PID with filter controller (¼r = 5, ¼d = 0.2) and
model parameters Br = 500, µ = 0.1, ¯́ = 0.0008,
µ̄ = 0.25, k̄v = 0 and Ǟ = 0.1.

I(t), avoids undershoot, and keeps ´ from ever reaching
0. In this case, controller response resulting from the µ
change of +0.8 and kv change of +0.3 (as before) leads
to excellent setpoint tracking while allowing ´ to increase
substantially, close to its initial value (implying a return to
normalcy and pre-pandemic conditions). However, this im-
plies the existence of more effective treatments (reducing
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Fig. 8. Closed-loop responses (for infected population,
linear and nonlinear) to a first-order autoregressive
stochastic disturbance in µ(t) (³ = 0.85), no setpoint
change for a 2DoF IMC-PID with filter controller
(¼r = 5, ¼d = 0.4) and model parameters Br = 500,
µ = 0.1, ¯́ = 0.0008, µ̄ = 0.25, k̄v = 0 and Ǟ = 0.1.

the duration of infectiousness) and a societal willingness
for high rates of vaccination (30% of the susceptible pop-
ulation per day). Effective control is not just a product of
sensible tuning, but also of “process design” considerations
leading to these beneficial disturbance changes (in terms
of increases in µ and kv). If the virus mutates (resulting
in increases in Ä), then the control system responds by
reducing ´, leading to more restrictive conditions that
maintain the infected population at desired levels.

Fig. 8 shows the results of a stochastic simulation for the
case of changes in µ(t) (only) corresponding to a first-order
autoregressive disturbance model with ³ = 0.85. Increases
in µ (which denote reduced infectiousness) are addressed
by the controller with corresponding increases in ´(t).
Nonlinearity effects are evident in the responses shown in
Fig. 8; these can be mitigated through adjustments in ¼d.

5. SUMMARY AND CONCLUSIONS

The paper has presented an SIR epidemic model (featuring
vaccination and loss of immunity) and shown that a nat-
ural feedback control system for this problem is obtained
by applying IMC, leading to a 2DoF PID with filter con-
troller. Its effectiveness has been shown in a demanding
deterministic scenario involving a 90% reduction of the
infected population under endemic conditions, as well as
a stochastic scenario.

While this is clearly a very simplified evaluation of infec-
tious disease control, the result is a simple and accessible
computational model that could, in principle, be helpful to
public health officials, and help inform the general public.

Many extensions of the work are possible. Enhancements
to the SIR model through the inclusion of additional com-
partments have been proposed by many (Giordano et al.,
2020); evaluating these would potentially be interesting.
However, additional compartments would lead to higher-
order systems and consequently(from applying IMC) to
feedback control structures that would go beyond PID.

There is interest in applying both nonlinear IMC and MPC
controller approaches to the problem. Dynamic theories of
behavior change such as Social Cognitive Theory (Mart́ın
et al., 2020) can be incorporated into the model to address
how ´(t) and µ(t) are affected by behavioral constructs.
We are furthermore interested in examining how Model
Predictive Control (MPC) and data-driven frameworks
such as “Model-on-Demand” MPC (Banerjee et al., 2024)
could be used in this application.
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