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Abstract: This paper presents a Three-Degree-of-Freedom Model Predictive Control (3DoF
MPC) framework based on Multi-Input-Multi-Output (MIMO) “Model-on-Demand” (MoD)
estimation. MoD is a data-centric weighted regression algorithm that generates local models
over adaptively varying neighborhoods of changing operating conditions. The 3DoF formulation
enables individualized tuning of parameters relating to setpoint tracking and measured and
unmeasured disturbance rejection. Online estimation of system dynamics using MIMO MoD
and augmentation with the 3DoF MPC structure allows the generation of control laws
based on efficient locally linear approximations of system nonlinearities. This paper evaluates
the framework through a case study involving a nonlinear MIMO Continuous Stirred Tank
Reactor (CSTR) model. The MIMO CSTR system is highly interactive, making data-driven
estimation and control notably more challenging than its SISO counterpart. The generation of
an informative database using modified “zippered” multisines is presented. The paper concludes
with a case study demonstrating the effectiveness of 3DoF MoD MPC in achieving constrained
MIMO control of reactor concentration and temperature in the presence of disturbances through
a flexible and intuitive approach.

Keywords: data-based control, nonlinear system identification, time-varying systems, model
predictive control, process control

1. INTRODUCTION

Data-driven methodologies have significantly expanded
the class of complex systems being studied in the context
of system identification and control. These have gained
attention due to their ability to address modeling and
control complexities of nonlinear systems in the absence
of efficient a priori models (Carnerero et al., 2023; Piga
et al., 2018). Nonlinear MIMO systems, in particular,
present a class of problems that are inherently difficult
to control due to the combined challenges of nonlineari-
ties and interactions (Häggblom and Böling, 1998; Rivera
et al., 2007). While many data-centric estimation and
control algorithms implemented in MIMO settings satisfy
predictive requirements, they may suffer from reduced
interpretability and high architectural complexity. There-
fore, integrated modeling and control approaches meeting
fundamental and practical needs are essential for such
systems. This paper presents a multivariable “Model-on-
Demand”-based multi-degree-of-freedom MPC framework
to address these challenges.

“Model-on-Demand” (MoD) estimation has been widely
studied in the literature in the context of open-loop es-
timation and closed-loop model-based control (Stenman,
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1999; Braun, 2001; Nandola and Rivera, 2010). MoD can
be conceptualized as a composite of global and local mod-
eling that uses an informative database to represent best
the changing operating conditions at each time instant,
thereby generating appropriate models “on demand”. This
provides the sophistication of global nonlinear estimation
algorithms while preserving the simplicity of linear and
local estimation approaches. The 3DoF MPC algorithm
provides an improved formulation that allows independent
regulation of parameters related to setpoint tracking, mea-
sured disturbance rejection, and unmeasured disturbance
rejection (Nandola and Rivera, 2013; Khan et al., 2022).
When augmented with the MoD-based predictive models
estimated online, the 3DoF MPC provides an efficient and
robust nonlinear control architecture in the SISO setting
(Nandola and Rivera, 2010). However, the MIMO case
presents additional complexities regarding system identifi-
cation and control. This paper aims to extend the existing
literature by formulating a MIMO MoD estimation frame-
work and implementing it in a closed-loop setting using the
3DoF MPC structure through an intuitional state-space
approach. The concept is validated through a case study
involving a highly interactive MIMO variant of the well-
known Continuous Stirred Tank Reactor (CSTR) model
(Bequette, 2003). It is demonstrated that MoD, through
judicious data selection, adapts well to nonlinearity and



directionality. It exhibits superior control over the conven-
tional ARX-based MPC architecture in a 3DoF setting.

The paper is organized as follows: Section 2 covers the
MoD estimation and the corresponding 3DoF MPC for-
mulation. Section 3 describes the reactor dynamics and
an input signal design for informative data collection,
the MoD-based open-loop estimation, and a comparative
study involving the ARX estimation. It finally discusses
the culminating closed-loop control achieved using the
3DoF MoD MPC framework and demonstrates its advan-
tage over the ARX-based controller. Section 4 concludes
the paper with directions for future work.

2. MOD-BASED NONLINEAR IDENTIFICATION
AND MIMO CONTROL

This section describes the kernel-based weighted regression
involved in MoD estimation and its connection to the
3DoF MPC framework. The identification problem can
formulated at each time instant based on system measure-
ments to generate models that minimize simulation error.
Such models can be generated in open and closed-loop
settings to estimate the desired dynamics effectively.

2.1 Formulation of the identification problem

MoD identification problem (Stenman, 1999) can be de-
scribed as follows: assume a system dynamic can be mod-
eled as yc = m(φc) + ec at a current operating point
c, where φc = [yc−1 · · · yc−na

ūc−nk
· · · , ūc−nb−nk+1]

T is
the regressor at the current operating point (collection
of past system inputs and outputs in either open-loop or
closed-loop settings) based on an ARX regressor structure
[na nb nk]. Given a noisy dataset of input-output mea-
surements (Xk, Yk)

N
k=1, fit a local polynomial (preferably

linear or quadratic) m̂(φk, ¹c) over an adaptively varying
neighborhood of the current operating point based on
a local Taylor Series expansion by evaluating the least-
squares solution of the parameter estimation problem:

¹̂c = arg min
θc

N
∑

k=1

ℓ (yk − m̂(φk, ¹c))Kh

(

∥φk − φc∥M
h

)

(1)

ℓ(·) is a scalar-valued positive norm function (usually the

2-norm). ¹̂c = [¹̂0 ¹̂1] represents the set of parameters
of the design matrix [1 φ̃T · · · (φ̃p)T ] arising from the
polynomial modeling of the regressors, where φ̃ = φk −φc

is the distance between the current regressor and the kth

regressor in the dataset, p is the polynomial degree, and

¹̂1 ∈ R
preg is the vector of the polynomial coefficients. The

length preg of the parameter vector is determined by the
length dreg of the regressor vector. preg = dreg for the
linear case, and preg = dreg + dreg(dreg + 1)/2 for the
quadratic case. Kh(.) is a kernel-based weight function
whose bandwidth parameter is given by h. Weights are
given to the neighboring points based on a scaled distance

function ∥φ̃∥M =
√

φ̃TMφ̃, where M is the inverse of
the covariance matrix of the regressors. The adaptive
bandwidth is implemented in practice through an iterative
procedure involving a user-defined range [kmin, kmax] for
neighborhood size.

2.2 Evaluation of the MoD-based predictive model

MIMO identification typically involves the estimation
of each output as a Multi-Input-Single-Output (MISO)
model of the system inputs as well as of other outputs,
followed by organizing these models to form an aug-
mented MIMO estimator. For the ith output yi, assuming

m̂i(φk, ¹̂) = ¹̂i,0+¹̂Ti,1 (φk−φc) to be a locally linear model,

and ¹̂i,0 and ¹̂i,1 to be the optimal parameter values, a one-
step ahead estimate for yi can be calculated as follows:

ŷi,k = ³i + ¹̂Ti,1φk (2)

where ³i = ¹̂i,0 − ¹i,1
Tφc. The time series model thus

generated from the MoD-based estimation can be general-
ized for the MIMO setting to evaluate state-space matrices
needed for defining a piecewise affine (PWA) predictive
structure of the form:

xk+1 = Axk +Būk + f (3)

yk = Cxk + d′k (4)

where xk ∈ R
nx and ūk ∈ R

nu+ndist represent the states
and the inputs of the system respectively. ūk can be
separated into nu manipulated variables (uk ∈ R

nu) and
ndist disturbances (dk ∈ R

ndist). yk ∈ R
ny represents the

measurable process output vector, and d′k is the lumped
representation of unmeasured disturbances and noises in
the outputs. The A, B, and C matrices are determined
from ¹1, and the scalar f is generated from ³ at each
time step. The B matrix can be split into Bu and Bd,
corresponding to uk and dk, respectively. Furthermore, d′k
is considered to be a stochastic signal and can be described
through a state-space representation:

·k+1 = Aw·k +Bwwk (5)

d′k = Cw·k (6)

where wk is an integrated white noise. It is assumed that
the disturbance vector d′k consists of uncorrelated com-
ponents. Bw = Cw = I and Aw = diag{Λ1, · · · , Λny

}
where the entries of matrix Aw have values of 0 for single-
integrating disturbances and 1 for double-integrating dis-
turbances. This structure allows us to formulate an ex-
tended state-space model (Nandola and Rivera, 2013):

Xk+1 = AXk + Bu∆uk + Bd∆dk + Bw∆wk (7)

yk = CXk (8)

for zero offsets to integrating unmeasured disturbances.

2.3 MoD-based controller formulation

MIMO MoD can be implemented in a closed-loop setting
to perform online estimation through locally linearized
approximations of system dynamics based on system mea-
surements at each time instant and the open-loop training
dataset. The salient features of the 3DoF MoD MPC
architecture include a database storing the open-loop es-
timation data, a local polynomial generator, and a MoD-
based optimizer, as illustrated in Fig.1. As the operating
conditions change, the MoD algorithm generates predictive
models in closed-loop that evolve using "most relevant"
data at each time instant. This is achieved by placing
the current operating point in the regressor space of the
dataset characterized by the [na nb nk] structure used
to create the open-loop dataset and drawing a suitable
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Fig. 1. MoD-Based MPC for setpoint tracking of a process subject to constraints, measured and unmeasured
disturbances. Kalman Filter-I refers to (17)-(18) and Kalman Filter-II refers to (20)-(21)

neighborhood of data points that best represent that oper-
ating point, followed by local polynomial modeling of this
neighborhood. The local polynomial is then rearranged to
evaluate the time-varying state-space matrices for the pre-
dictive model as demonstrated in (3)-(4). These matrices
form the basis of the control law evaluated by the optimizer
at each time step by minimizing:

min
uk+i

p
∑

i=1

∥(yk+i − yr,k+i)∥
2
Wy

+

m−1
∑

i=0

∥(∆uk+i)∥
2
Wdu

(9)

s.t. ymin f yk+j f ymax, 1 f j f p (10)

umin f uk+i f umax, 0 f i f m− 1 (11)

∆umin f ∆uk+i f ∆umax, 0 f i f m− 1 (12)

where p is the prediction horizon, m is the control horizon,
∥(·)∥W∗

≜
√

(·)TW∗(·) is the vector 2-norm weighted by

matrix W∗ > 0 for the respective process variable, and (·)r
is the corresponding reference trajectory.

The 3DoF formulation (Nandola and Rivera, 2013; Khan
et al., 2022) refers to the independent regulation of
parameters related to setpoint tracking (³r), measured
disturbance rejection (³d), and unmeasured disturbance
rejection(fa) based on their desired closed-loop time con-
stants, where ³r = eTs/τr , ³d = eTs/τd , and fa = (1 −
eTs/τu). Ts denotes the sampling time.

Setpoint and Measured Disturbance Filtering To gener-
ate filtered output reference trajectory yr, the following
transfer function is used:

yr,k+i

ytarget
= f(q, ³j

r), 1 f j f ny, 1 f i f p (13)

where f(q, ³j
r) is a Type-I filter for the j-th reference:

f(q, ³j
r) =

(1− ³j
r)q

q − ³j
r

, 0 f ³j
r < 1, 1 f j f ny (14)

³j
r is the tuning parameter to adjust the desired speed

of response of each output j to setpoint change, where
a low value for ³j

r yields a fast output setpoint tracking
response. A similar filter is implemented for the measured
disturbances. The filter transfer function f(q, ³j

d) depends
on whether the disturbance is asymptotically step or

ramp (i.e., Type-I or Type-II signal). In this paper, we
implement Type-I filters for filtering step disturbance
signals. It is given by:

df,k+i

dk+i
= f(q, ³j

d), 1 f j f ndist, 0 f i f p− 1 (15)

f(q, ³j
d) =

(1− ³j
d)q

q − ³j
d

, 0 f ³j
d < 1 (16)

Measured and Unmeasured Disturbance Rejection using
Kalman Filters State estimation for (7)-(8) is performed
through a Kalman Filter approach to achieve multiple
degrees of freedom. This involves a two-step process for
decoupling the effects of the measured and the unmeasured
disturbances. In the first step, an estimate X̂k of the
state Xk is generated at each sampling instant by uti-
lizing unfiltered measured disturbances and unmeasured
disturbances, as follows:

X̂k|k−1 = AX̂k−1|k−1 + Bu∆uk−1 + Bd∆dk−1 (17)

X̂k|k = X̂k|k−1 +Kf (yk − CX̂k|k−1) (18)

where Kf is the gain matrix, defined as follows:

Kf =
[

0 FT
y FT

w

]T
(19)

where

Fw = diag
{

f1
w, · · · , f

ny
w

}

Fy = diag
{

f1
y , · · · , f

ny
y

}

f j
y =

(f j
w)

2

1 + Λj − Λjf
j
w

, 1 f j f ny

f j
w ∈ [0, 1] is a user-defined tuning parameter to adjust

the speed of response of unmeasured disturbance rejection
for each output j through Kf . The terms in the RHS of
(17) consider the manipulated variable and the unfiltered
measured disturbance input to the system. Consequently,
the correction term (yk − CX̂k|k−1) in the equation (18)
accounts for the unmeasured disturbance in the system;
Next, the filtered measured disturbance signal df is uti-
lized along with the unmeasured disturbance to generate
a filtered augmented state equation, which in turn is used
to generate an estimate of the output, as follows:



Xf,k|k−1 = AXf,k−1|k−1 + Bu∆uk−1 + Bd∆df,k−1 (20)

Xf,k|k = Xf,k|k−1 +Kf (yk − CX̂k|k−1) (21)

In this approach, tuning for measured disturbance rejec-
tion (³j

d) and tuning for unmeasured disturbance rejection
(Kf ) remain independent of each other.

3. THE CSTR MODEL: A MIMO CASE STUDY

A MIMO model of the highly interactive nonlinear CSTR
system is chosen to be a suitable test case for demonstrat-
ing the efficacy of the MoD-based 3DoF MPC algorithm.
The widely used CSTR model comprises a single exother-
mic reaction with first-order kinetics taking place in a
perfectly mixed non-adiabatic reactor vessel and can be
characterized by the following set of differential equations:

dCA(t)

dt
=

F (t)

V
(CAf

(t)− CA(t))− rA(t) (22)

dT (t)

dt
=

F (t)

V
(Tf − T (t))−

(

∆H

CpÄ

)

rA(t)

−
UA

CpÄV
(Tj(t)− T (t)) (23)

rA(t) = koexp

(

∆E

RT (t)

)

CA(t) (24)

The system involves manipulating jacket temperature
Tj(t) and feed flow rate F (t) to control reagent concen-
tration (CA(t)) in the tank and reactor temperature T (t).
Feed concentration CAf

(t) is assumed to be constant at

T f , and jacket temperature changes ∆Tj(t) are considered
disturbances. Other constants include feed temperature
Tf , density (Ä), and reacting liquid volume V . The system
exhibits nonlinearities associated with ignition, extinction,
and limit cycles (Bequette, 2003). Independent control
of concentration and temperature is challenging due to
strong interactions between the two. System parameters
(Bequette, 2003) are summarized in Table 1.

3.1 Input Signal Design

The desired outcome of MIMO control of the reactor
involves increasing the yield (lowering CA) while holding
reactor temperature (T ) constant (the low-gain direction).
This, however, is opposite to the high-gain direction of the
system where a decrease in CA increases T (due to the
exothermic reaction), making it hard to sufficiently ex-
cite the desired dynamics for data-driven estimation. This
challenge is overcome by designing modified "zippered"
multisine input signals based on directionality information

Fig. 2. CSTR model for an exothermic, irreversible reac-
tion.

Table 1. Plant parameters for the CSTR model

Parameter Value Parameter Value
∆H -5960 ∆E 11843

(kcal/kgmol) (kcal/kgmol)
ÄCp 500 T f (K) 298.15

(kcal/m3 ◦C)
CAf

10 UA 150
(kgmol/m3) (kcal/m3 ◦C hr)

T j (K) 298.15 CA(kgmol/m3) 8.5695
T (K) 311.267 R 1.98589

(kcal/kgmol ◦C)

(Rivera et al., 2007). The modified zippered approach ex-
cites correlated and uncorrelated harmonics based on user-
specified parameters, thereby suitably highlighting both
low and high-gain directions. Directionality information
can be obtained by considering the steady-state gain ma-
trix G0 of the linearized first-principle-based model. For

the reactor model, G0 =

[

−0.0565 3.2373
0.7490 −26.6572

]

.

An SVD analysis reveals that the low-gain direction, corre-
sponding to the smaller singular value Ã2 =0.0342, points
along ¿ = [−0.9996 − 0.0279]T in the input regressor
space and resultantly along G0¿ = [−0.0339 − 0.0041]T

in the output regressor space.
|ν(1)|
|ν(2)| =

∣

∣

∣

−0.9996
−0.0279

∣

∣

∣
= 35.79

gives a suitable ratio of amplitudes for the modified
zippered input signals for adequately exciting the low-
gain direction. The input signals corresponding to the
manipulated variable Tj and F were generated using
the minimum crest-factor algorithm per Guillaume et al.
(1991) with modified zippered spectra and sampling time
of T= 1 hour, with amplitudes chosen to be 25 K and
25

35.79 m3/hr = 0.6985 m3/hr, respectively. Furthermore,
band-limited white noise with some auto-regressive char-
acter was used to generate data corresponding to the
measured disturbance. The signal power was chosen to be 1
unit, and the autoregressive filter was 0.05

z(z−0.9) . The signal

parameters are summarized in Table 2, and the power
spectrum for the modified zippered design is illustrated
in Fig. 3. The estimation and the validation signals were
generated using different realizations of the input signals
with the same frequency content and same amplitude,

10-1 100

Frequency (rad/min)

10-6

10-4

10-2

100

102

|U
(j

w
)|

2

Power Spectral Density

Tj

F

Fig. 3. Plot illustrating the power spectrum corresponding
to the modified zippered signals for Tj and F .



Table 2. Signal parameters for the design of
modified zippered signals.

Parameter Value Parameter Value

³s 2 ´s 3

ÄLdom 5 hours ÄHdom 10 hours

high-freq ratio 0 low-freq interval 0

ns 20 µ 200

and the corresponding outputs were generated by passing
these signals through the plant model. Fig. 4 shows the
estimation dataset for illustrative purposes.

3.2 Open-loop Model-on-Demand Estimation

After an informative dataset is generated, it is standard-
ized to ensure a well-conditioned estimation of the system.
For estimation purposes, a locally linear polynomial with
a regressor structure of [na nb nk] = [2 2 1] was deemed
suitable for parsimoniously describing the data. During es-
timation, the localized Akaike Information Criterion (AIC)
was chosen as a reasonable measure for goodness-of-fit,
with a variance penalty of 3. The range [kmin, kmax]
for neighborhood size was chosen to be [45, 100] based
on the length of the database, and a tricube kernel was
selected to weigh the points in the neighborhood. Fig 5
demonstrates a comparison between the open-loop esti-
mation results over the validation dataset for MoD and
ARX-based estimators with the same set of parameters
in the simulated setting. The goodness of fit measure is
evaluated by calculating the normalized root mean square
error (NRMSE) fits. As noted in Table 3, MoD-based
estimation (fit percentages: 81.28% for CA and 53.39% for
T ) demonstrates superior performance over its ARX-based
counterpart(fit percentage: 59.03% for CA and 27.89%
for T ) in capturing the nonlinearities in the data with
significantly higher fit.

3.3 Three Degree-of-Freedom MoD MPC

The true effectiveness of the MIMO MoD-based predictive
model is realized when it is tested in the closed-loop setting
for the simultaneous control of two reactor outputs. Al-
though the 3DoF MPC framework provides a sophisticated
and robust control architecture in itself, its performance
greatly relies on the choice of the predictive model. A
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Fig. 4. Estimation datasets for the MIMO CSTR model.
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Fig. 5. Comparison of the open-loop MoD and ARX-based
simulators on the validation dataset.

comparative case study with a conventional ARX-based
predictive model in 3DoF settings under the same set of
plant parameters and constraints (summarized in Table
4) demonstrates the ability of the MoD MPC to address
loop interactions and nonlinearities of the CSTR model
in a superior manner. As shown in Fig 6, a series of set-
point changes are introduced in CA while the temperature
setpoint is held constant at its steady-state value. During
its course of operation, the reactor is subjected to a step
change Dm = ∆CAf

= 0.2 kg mol/m3 at time t = 160
hours (measured), and a step change Du = ∆Tj= 2 K at
t = 200 hours (unmeasured). The MoD-based controller
achieves smooth tracking of changes in reference trajectory
of CA with minimal oscillations and zero offsets, unlike the
ARX-based controller, which demonstrates oscillations of
large magnitudes that take comparatively longer to settle.
Besides the faster setpoint tracking of CA, the former con-
troller keeps the deviations in reactor temperature T from
its steady-state value within an acceptable range of 4 K.
The ARX-based controller, on the contrary, shows notice-
ably higher deviations in T (maximum deviation = 11 K at
t = 110 hrs) while trying to achieve setpoint tracking for
CA, thus making it unsuitable for the control of the reactor
system. Fig. 6 clearly illustrates the interactive nature of

Fig. 6. Closed-loop performance of 3DoF MoD MPC(solid)
and 3DoF ARX MPC (dashed).



Table 3. Open-loop Estimation results for MoD vs ARX-based estimators for CA and T

Method
CA T

NRMSE Fit (%) RMS Error Max Error NRMSE Fit (%) RMS Error Max Error
MoD 81.28 0.20 1.05 53.39 0.49 2.45
ARX 59.03 0.45 1.73 27.89 0.76 3.14
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Time-varying coefficients of the local linear model representing Temperature dynamics
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Fig. 7. Time-varying coefficients of the locally linear model
for T based on MoD estimation. ¹1−¹2 are related to
the time-lagged terms for CA, ¹3 − ¹4 for T , ¹5 − ¹6,
¹7 − ¹8, ¹9 − ¹10 for Tj , F , and CAf

respectively.

the system, which forces the inputs to move in similar
directions, making independent control of two outputs
a challenging task. The ARX-based controller displays
higher sensitivity to the interactive nature of the problem,
thereby exhibiting prominent oscillations in manipulated
variable response, and it pushes the system to more ex-
treme limits to achieve the performance otherwise easily
obtained by the MoD-MPC with notably more feasible
manipulated variable responses. The controller based on
the MoD estimator generates predictions based on superior
linearization of the data in a local neighborhood of each
operating point when compared to the controller using the
ARX-based globally linear predictive model. Fig. 7 demon-
strates the scaled time-varying coefficients of the locally
linear dynamic model for Temperature. This illustration
provides a clear interpretation of the nonlinearities in the
system and the corresponding adaptations of the MoD
model. This establishes the 3DoF MoD MPC as a better
control framework for the highly interactive and nonlinear
MIMO CSTR model than the ARX-based 3DoF MPC.

4. SUMMARY AND CONCLUSIONS

The critical component of any model-based control scheme
is traditionally a linear predictive model that generates
sub-optimal control sequences for highly interactive and
nonlinear operating ranges. MoD provides an attractive
alternative with superior estimation abilities while pre-
serving the accessibility of linear techniques. However, the

Table 4. Control design parameters for the
MIMO CSTR problem

Par Value Par Value
p 50 ymin [−∞ −∞]
m 20 ymax [∞∞]
Är [10 10] hrs ∆umin [-5 K -0.2 m3/h]
Äd 5 hrs ∆umax [∞∞]
Äu [8 8] hrs Wy [1 1]

umin [273.15 K 0 m3/h] W∆u [0 0]
umax [∞∞] Ts 1 hr

current MoD-based model has some limitations that can
be addressed in future work. This includes research related
to robustness to noisy databases, missing data, and high-
dimensional data. Improved measures for the relevance
of data points for local polynomial modeling beyond the
current norm-based approach can also be considered.
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