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ABSTRACT

Most of the existing quantum neural network models, such
as variational quantum circuits (VQCs), are limited in their
ability to explore the non-linear relationships in input data.
This gradually becomes the main obstacle for it to tackle
realistic applications, such as natural language processing,
medical image processing, and wireless communications.
Recently, there have emerged research efforts that enable
VQCs to perform non-linear operations. However, it is still
unclear on the approximability of a given VQC (i.e., the order
of non-linearity that can be handled by a specified design).
In response to this issue, we developed an automated tool
designed to benchmark the approximation of a given VQC.
The proposed tool will generate a set of synthetic datasets
with different orders of non-linearity and train the given VQC
on these datasets to estimate their approximability. Our ex-
periments benchmark VQCs with different designs, where
we know their theoretic approximability. We then show that
the proposed tool can precisely estimate the approximabil-
ity, which is consistent with the theoretic value, indicating
that the proposed tool can be used for benchmarking the
approximability of a given quantum circuit for learning tasks.

Index Terms— Quantum Learning, Variational Quantum
Circuit, Benchmarking, Nonlinearity

1. INTRODUCTION

Quantum machine learning (QML) combines quantum com-
puting with machine learning to improve algorithms. With
its unique features such as superposition and entanglement,
QML is able to perform highly parallel and efficient com-
putations. One popular approach is to use variational quan-
tum circuits (VQCs) [1, 2, 3, 4], which are a type of quantum
model that can be trained using classical optimization tech-
niques. VQCs can be used to classify data, and they have
shown promising results on simple datasets such as MNIST.
However, VQCs have limited capabilities when it comes to
handling non-linear relationships between input and output
data [5]. This is because VQCs are more similar to a linear
model as the computation circuit itself can be represented as
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a parameter matrix used to linearly transform the statevector
to another. They struggle to effectively capture the complex
non-linear relationships present in many real-world datasets.

Motivated by that, research on feeding nonlinearity into
the pipeline of quantum learning has started drawing attention
[6, 7, 8, 9], while the effective validation of whether models
can gain enhancement from the existing techniques needs to
be further explored. In other words, regarding a given VQC
design, its approximability(i.e. to what extent it can handle
the nonlinear) is unclear. In order to measure their capabil-
ity to handle non-linearity, in this paper, we propose an auto-
mated tool that is designed to benchmark the approximation
of a given VQC. The dataset generator within the tool will
create a couple of dataset groups where each group consists
of multiple synthetic datasets with a certain non-linearity de-
gree. In that way, we can train and test the given VQC on
these dataset groups with different non-linearity degrees to
obtain the corresponding approximability. Then, in our ex-
periments, we take different VQC designs for benchmarking
where their theoretical approximability is known. Our results
demonstrate that our proposed tool accurately estimates the
approximability, aligning with the theoretical values. This
shows that our tool is effective for benchmarking the approx-
imability of specific VQC in learning tasks.

2. BACKGROUND, CHALLENGE & MOTIVATION

2.1 Background: Non-linearity in VQCs

The strength of deep learning is its ability to solve com-
plex problems by learning the complicated transformation be-
tween inputs and outputs through different neural network
layers with non-linear functions. On the other hand, despite
recent advances in quantum machine learning [10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21], one of the major challenges is
the ability to effectively handle nonlinearity. The model used
in quantum machine learning itself is basically a linear trans-
formation now given that the computation circuit doesn’t in-
volve any non-linearity but only matrix multiplication. How-
ever, many real-world phenomena cannot be adequately mod-
eled using linear models. The research on non-linearity in
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Fig. 1. From top-left to top-right(a-d) are the prediction result curves of the four quantum models on dataset S1, while from
bottom-left to bottom-right(e-h) are that of quantum models on dataset S2

QML becomes more important in order to enhance the abil-
ity of models. Therefore it can finally extend the frontier of
this area in solving more difficult problems. Some existing
works are making progress toward this goal, and one recent
paper on the design of quantum circuits to help enable deep
learning proposes a framework namely ST-VQC [7]. One im-
portant component of the framework is its data encoder that
encodes the input data in groups, and then selectively dupli-
cates the data groups to bring high-order polynomials as the
duplicated data groups entangle, therefore introducing nonlin-
earity. Using its structure, we can see from Figure 1 (a to d,
from no duplicate to 3 duplicates) that duplicating the input
has the potential to lead to better performance on the poly-
nomial synthetic dataset S1 as we can see that the predicted
curve(orange) can better fit the actual curve(blue).

2.2 Challenge: No silver bullet exists while design space
exploration for dedicate dataset has high cost

As one example of the method proposed to bring nonlin-
earity to QML, despite its design’s ability, ST-VQC, on the
other hand, introduces a rather large exploration space for the
hyperparameters. As a result, it comes with a cost in time re-
garding such a large search space. For example, there might
be different choices among the number of duplications, the
size of each group to be copied, and which group gets the
most benefit from duplications. Although we can apply some
techniques such as neural network search to explore the po-
tential optimum hyperparameter settings, the time to execute
the quantum circuits, on either simulation in classical comput-
ers or real quantum devices, counts for careful consideration.
This situation could possibly get more serious as the number
of involved qubits grows. For example, 100 epochs of normal
training on the MNIST dataset can take up to 1.14 hours for
a quantum neural network with 12 qubits and 82 parameters.
For a more complicated quantum neural network with more

Dataset Model #Qubit | #Param | RMSE R™2
S1 ST-VQC(O dup.) 1 48 5.22E-01 | -1.125
ST-VQC(1 dup.) 2 48 1.65E-01 | 0.788
ST-VQC(2 dup.) 3 49 1.68E-01 | 0.780
ST-VQC(3 dup.) 4 48 1.35E-01 | 0.858
S2 ST-VQC(O dup.) 1 48 6.41E-05 | 0.999
ST-VQC(1 dup.) 2 48 3.89E-03 | 0.999
ST-VQC(2 dup.) 3 49 3.24E-03 | 0.999
ST-VQC(3 dup.) 4 48 4.52E-03 | 0.999

Table 1. Performance of different VQCs on synthetic datasets

qubits and parameters on larger datasets, it can cost days.

At the same time, it is better to take into consideration that
there might be not always a universal solution to all datasets.
As shown in Table 1 and in Figure 1, the ST-VQC(3 dup.)
works the best on S1, while all four models work similarly
in performance on S2. On the other hand, it is also possible
that one searched quantum circuit design performs well on
one dataset while failing on another.

2.3 Motivation: Benchmarking VQCs’ approximability

Motivated by this, there is a need for benchmarking quan-
tum machine learning models on their ability to handle non-
linearity, which can contribute in several ways:
¢ Identify the strengths and weaknesses of different quantum

machine learning models in dealing with nonlinearity. This
information can guide the development of new models or
the improvement of existing ones.

* Provide a quantitative measure of the performance of quan-
tum machine learning models on nonlinear tasks, which can
help evaluate and compare different models.

* The benchmarking results can also provide insights into the
types of problems that quantum machine learning models
are well-suited for and those that may require further devel-
opment. This can potentially guide the selection of appro-
priate quantum learning models for real-world applications.
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Fig. 2. Overview of the proposed framework

3. METHOD

The proposed framework provides a comprehensive approach
to benchmark the performance of quantum learning models.
Figure 2 illustrates an overview of our framework. In the first
step, the framework extracts the necessary property informa-
tion from an input VQC design, which will then be utilized
to generate a set of dataset groups. These datasets are de-
signed to represent various degrees of nonlinearity by em-
ploying different polynomial functions. Next, the quantum
neural network and the generated datasets are passed to the
trainer to learn and adapt to the nonlinear relationships em-
bedded in the data. To assess the model’s performance in
capturing nonlinearity, a metric called the ”Approximability
Score” is employed. This metric quantifies the model’s abil-
ity to approximate the desired nonlinearity by collecting its
performance on dataset groups.

A. Quantum Neural Network Design. The input of
the framework is VQC design from users. There are three
main components in a VQC’s design: the data encoder, the
computation circuit, and the measurement. Each component
contributes to shaping the behavior and performance of the
VQC model. The data encoder determines how the input data
is transformed and encoded into the quantum states of the
qubits. It encompasses various techniques such as amplitude
encoding and angle encoding. The computation circuit de-
fines the sequence of quantum gates and operations applied
to the encoded data within the quantum model. It governs
the flow of quantum information and interactions among the
qubits. The measurement component determines how the
final quantum state of the model is measured to obtain the
output or prediction. When designing a VQC model within
the framework, users have the flexibility to select and con-
figure these components based on their specific requirements
and the nature of the problem at hand. It allows customiza-
tion and experimentation with different combinations of data
encoders, computation circuits, and measurement techniques
to optimize the model’s performance.

B. Dataset Generator. The dataset generation process
will create datasets with different complexity and groups with
different non-linearity for each dataset. They will be used to
estimate the non-linearity of the given VQCs. By plotting a
polynomial equation, we observe that the resulting curve can
assume various shapes, which depend on the degree of the
polynomial. For instance, a linear equation (degree 1) pro-
duces a straight line, while a quadratic equation (degree 2)
generates a parabolic curve. As we increase the degree, more
terms with higher exponents of the variable are introduced.
This allows us to represent complex curves, including those
with multiple peaks, valleys, or sharp turns, which are char-
acteristic of highly nonlinear relationships.

To model the nonlinear relationship between the input and
output in the datasets, we design them using polynomials with
different degrees. Each dataset group is categorized based on
the polynomial’s degree, facilitating a systematic evaluation
of the models’ performance across varying degrees of nonlin-
earity. For example, a dataset group with a degree of 2 may
consist of input variables, xy and =1, and an output variable,
y, defined as y = 3 + 23. We create multiple datasets within
each group, ensuring a diverse range of instances with distinct
random coefficients for the polynomial terms.

This grouping and variation in polynomial degrees enable
us to comprehensively assess the models’ ability to capture
and approximate nonlinear relationships across a spectrum of
complexities. In addition, it is important to note that the input
and output dimensions of the datasets are determined by the
specific configuration of the data encoder and measurement
components of the quantum model. For example, if the data
encoder encodes the input variables into the states of qubits,
the number of qubits used will define the dimensionality of
the input space. Similarly, the choice of the measurement will
influence the dimensionality of the output space. By consid-
ering the structural characteristics of the quantum neural net-
work design, we ensure that the generated datasets are com-
patible with the subsequent training and evaluation steps.

C. Trainer. In the next step, we train the quantum neural
network on each dataset within a specific group. The eval-
uation process involves executing the trained model on each
dataset in the group, obtaining the Root Mean Squared Error
(RMSFE) and R? scores for each dataset.

D. Approximability Quantifier To quantify the overall
performance of the VQC model on a dataset group, we define
a metric that utilizes a weighted combination of the RM SE
and R? scores, assigning a weight of 0.5 to the (1-RM SE)
term and a weight of 0.5 to the R? term. This weight re-
flects our emphasis on both the accuracy and the explained
variance of the model’s predictions. The final score quantita-
tively measures the model’s approximability for each dataset
group, enabling a comparative analysis across different poly-
nomial degrees and dataset complexities. A higher score indi-
cates a better approximation of the nonlinearity, showcasing
the model’s capability to capture the underlying relationships.
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Dataset | Input | Output NL Metric #Qub|#Para|Dep. Enc. Dataset| G1 | G2 | G3 | G4
Gl G2 G3 G4 1 21 | 21 Amplitude D1 {0.999/0.908|0.724{0.509
Dl 2 1 -0.258 | -0.329 | -0.416 | -0.497 2 20 | 15 Angle D1 ]0.954|0.89 |0.745]0.549

D2 4 1 -0.38 | -0.391 | -0.471 | -0.997 2 20 | 15 |ST-VQC(1 dup.)| D1 [0.993]0.998|0.976]0.938
3 21 | 15 |ST-VQC(2 dup.)| D1 |0.966]0.974|0.984/0.979

Table 2. Dataset property

2 20 | 15 Amplitude D2 ]0.844/0.707(0.628| 0.08
4. EXPERIMENTAL RESULTS 4 [ 3218 Angle D2 [0.706(0.669/0.704|-0.086

4 32 | 18 |ST-VQC(1 dup.)] D2 |0.882|0.879|0.783|0.421

4.1 Experimental Setup 6 | 42 | 18 |[ST-VQC(2 dup.)| D2 |0.846|0.808[0.776] 0.52

Our experiments are conducted on 2 datasets: D1 and D2.
In each dataset, there are 4 groups with different orders of
non-linearity (i.e., polynomials): G1, G2, G3, and G4. Note
that the group index X in GX reflects the order of polyno-
mials, which is 2X; say G2 has 4 orders of polynomials. In
each group, there are 10 different combinations of polynomi-
als, each of which contains 400 sample points. We split these
samples for training and testing, where the ratio is 80% for
training and 20% for testing. The experiments on all datasets
are trained with batch size 64 for 100 epochs, using the same
optimizer and learning rate.

In order to better reflect the degree of nonlinearity existing
in different dataset groups, we introduce an extra metric, the
nonlinearity metric (NL Metric), as shown in Table 2. The
lower the NL Metric value, the more complex relationships
exist in that dataset group. For each dataset group, a linear
model will be trained and tested along with the input quantum
network to obtain its performance score. We can see that the
linear model performs worse in the dataset groups with a high
order of polynomials (i.e., larger group index).

4.2 Benchmark Result

The benchmark results provide insights into the perfor-
mance of the quantum machine learning models within the
proposed framework. We conducted a comprehensive eval-
uation of various model designs. The goal was to assess the
models’ approximability, taking into account their perfor-
mance on multiple dataset groups. As shown in Table 3, the
first 4 columns represent the quantum circuits’ properties-
the number of qubits, parameters, the circuit depth, and the
encoding method. The column “Dataset” indicates the dataset
used for training, (e.g., D1 refers to Dataset 1 shown in Table
2). Then the last four columns (G1 to G4) are the approxima-
bility scores on different degree groups.

We can extract useful information for analysis from such
benchmark results. For example, in both datasets, we notice
that the quantum models with amplitude encoding and an-
gle encoding will suffer an accuracy drop when the dataset
has higher orders of non-linearity. This is because the vanilla
VQC only has 2-order polynomials, which are included dur-
ing the measurement. Then, according to [7], the ST-VQC
can present higher-order polynomials by duplicating inputs.
If the number of duplications is 1 (denoted as ST-VQC(1
dup.)), it contains the 4-order polynomials, while duplication
of 2 contains 8-order polynomials. From the results, we can

Table 3. Table for the benchmark result on different quantum
machine learning model designs

see the benchmark results are in accordance with the theoretic
values. On dataset D1, for ST-VQC(1 dup.), the best accuracy
is on group G2, and it suffers an accuracy drop on G3 and G4;
while ST-VQC(2 dup.) maintains the high accuracy on G4,
which indicates it can represent the 8-order polynomials. We
also observe an exception on dataset D2, where ST-VQC(2
dup.) suffers an accuracy drop on G4. This may caused by
the complexity of the dataset, and the number of parameters
in ST-VQC(2 dup.) is not enough. However, ST-VQC(2 dup.)
still outperforms all other competitors on G4 in D2. All these
observations show the effectiveness of the proposed tool to
estimate the approximability of a given VQC model.

5. CONCLUSION

In this paper, we propose an automated tool to evaluate the
ability of variational quantum circuits’ approximability to dif-
ferent orders of polynomials, which reflects their ability to
handle orders of nonlinearity. The tool is composed of a
dataset generator for a given VQC, a trainer, and an approx-
imability quantifier. With the proposed tool, the designers can
efficiently explore the design space for a certain order of non-
linearity without dedicating to a dataset. What’s more, it can
be used for a fair comparison between the quantum version of
learning models and the classical version with the same order
of non-linearity.
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