

1 **Modeling ion transport across thin-film composite membranes during saltwater electrolysis**

2
3 Rachel F. Taylor¹, Xuechen Zhou¹, Chenghan Xie¹, Fernan Martinez³, Xinran Zhang¹, Bastiaan
4 Blankert³, Cristian Picioreanu^{3,4}, Bruce E. Logan^{1,2*}

5
6 ¹Department of Chemical Engineering, The Pennsylvania State University, University Park, PA,
7 16801, USA.

8 ²Department of Civil and Environmental Engineering, The Pennsylvania State University,
9 University Park, PA, 16801, USA.

10 ³Water Desalination and Reuse Center, Biological and Environmental Science and Engineering
11 Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia

12 ⁴Environmental Science & Engineering Program, King Abdullah University of Science and
13 Technology, Thuwal, 23955, Saudi Arabia

14
15 *Corresponding author. Email: blogan@psu.edu; Tel.: +1-814-863-7908

16
17 **ABSTRACT**

18
19 Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive
20 ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a
21 solution-friction transport model to study how the induced potential gradient controls ion
22 transport across the polyamide (PA) active layer and support layers of TFC membranes during
23 electrolysis. The set of parameters was simplified by assigning the same size-related partition
24 and friction coefficients for all salt ions through the membrane active layer. The model was fit to
25 experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at 10 mA
26 cm⁻². When the electrolyte concentration and current density were increased, the transport of
27 major charge carriers was successfully predicted by the model. Ion transport calculated using the
28 model only minimally changed when the negative active layer charge density was varied from 0
29 to 600 mM, indicating active layer charge was not largely responsible for controlling ion
30 crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to
31 occur within the supporting layer of the membrane. These results can help guide membrane
32 design and operation conditions in water electrolyzers using TFC membranes.

33
34 **Key Words:** green hydrogen production; solution-friction modeling; Donnan partitioning;
35 polyamide membrane; seawater electrolysis

36
37 **Synopsis:** With minimal fitting parameters, Nernst-planck modeling fit to replicate ion transport
38 data from saltwater electrolysis with an affordable thin-film composite membrane can provide
39 insights into salt and water ion transport for future membrane optimization.

40
41 **INTRODUCTION**

42
43 Most current methods of hydrogen production use fossil fuels and release carbon dioxide as a
44 byproduct to the atmosphere, but a sustainable alternative is to use renewable electricity to
45 electrolyze water.¹⁻³ High capital costs associated with the membrane and catalyst in the
46 electrolyzer, as well as the system's dependence on ultrapure water, are slowing implementation

47 of this method of green hydrogen production.^{4,5} Directly electrolyzing saltwater would eliminate
48 capital and operating costs associated with water purification currently required for electrolysis.⁶
49 ⁷ In practice, a major challenge that arises during the direct electrolysis of seawater is chloride
50 ions abundant in saltwater can react at the anode to form chlorine gas, which can be further
51 oxidized to form species that damage electrolyzer components.^{8,9} Avoiding or minimizing Cl⁻
52 /Cl₂ reactions at the anode and identifying affordable electrolyzer components will improve the
53 viability of saltwater electrolysis for green hydrogen production.

54
55 A new approach to avoid chlorine generation in hydrogen production with a saltwater catholyte
56 is based on using relatively inexpensive thin-film composite (TFC) membranes and a contained,
57 non-reactive anolyte.⁸ These membranes possess a thin, size-selective active layer that minimizes
58 migration of chloride ions from the saltwater catholyte to the anode. The active layer is a
59 polyamide (PA) film which is formed via interfacial polymerization onto a support layer of
60 polysulfone, which is normally affixed to polyester web for additional mechanical support.¹⁰
61 Initial tests showed that using different TFC membranes impacts electrolyzer performance, but
62 some TFC membranes can produce current densities with applied potentials comparable to those
63 needed with more expensive cation exchange membranes (CEMs).⁸ Modifications to the
64 membrane have been proposed to decrease the overall resistance of the membrane while
65 reducing chloride permeation, but these studies demonstrate the mechanisms governing the TFC
66 membrane-based electrolyzer performance are not straightforward.¹¹⁻¹³ The multiple composite
67 layers of the membrane have different transport properties, and the size-exclusive nature of the
68 active layer causes the resistance of the membrane to change depending on the abundance of
69 varying ions in solution.

70
71 The purpose of this study was to determine whether a simplified Solution-Friction (SF) model
72 could be used to predict transport of the main charge carriers across a TFC membrane during
73 saltwater electrolysis. Modeling has been valuable in deepening our understanding of ion
74 transport across PA TFC membranes during reverse osmosis (RO) and nanofiltration (NF)
75 processes.¹⁴⁻¹⁹ For NF applications there is a large water flux and no external applied electric
76 field, which are conditions much different from those in water electrolyzers. Because this kind of
77 model has never been used to represent ion transport across TFC membranes during saltwater
78 electrolysis quantitatively, it was unknown whether all the typical parameters needed to describe
79 water flux and ion transport for RO applications are largely influential during water electrolysis
80 (WE) applications. A reduced model was developed here to predict ion transport under
81 conditions relevant to WE, by assigning the same size-related partitioning and frictional
82 coefficients to every salt ion. The model was tested under non-steady conditions to observe the
83 dynamic response of the system to large pH changes due to the water splitting reactions. Model
84 calibration was based on using standard salt ion and membrane parameters and fitting four other
85 parameters using ion transport data from electrolysis experiments conducted with electrolytes at
86 a concentration of 600 mM and a set current density of 10 mA cm⁻². The utility of this calibrated
87 model was then demonstrated by comparing the predicted ion transport at varying electrolyte
88 concentrations and current densities with our experimental data. We used the validated model to
89 estimate how ion transport rate and selectivity might change during electrolysis for various
90 membrane charge densities. Finally, we examined the formation of steep pH gradients within the
91 membrane layers, due to water ion association from H⁺ and OH⁻ generated at the electrodes.

92

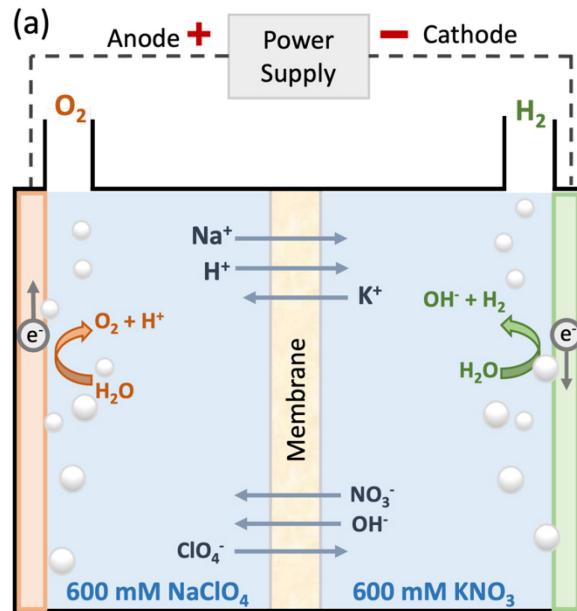
93 **METHODS**

94 **Materials and chemical information**

95 ACS grade NaClO₄ and KNO₃ (Sigma-Aldrich) were used as the anolyte and catholyte,
96 respectively, in all electrolysis experiments. All solutions were prepared using deionized (DI)
97 water (>18.2 MΩ cm, Mili-Q ultrapure water purification system, Synergy). SW30XLE
98 membranes (Dow Chemical) were used for all electrolysis experiments. To fully wet the TFC
99 membranes, they were placed in 25% v/v isopropanol aqueous solution on a shaker for 60
100 minutes. Finally, the membranes were thoroughly rinsed with DI water three times on a shaker
101 for 30 minutes and stored in DI water at 4°C prior to use.

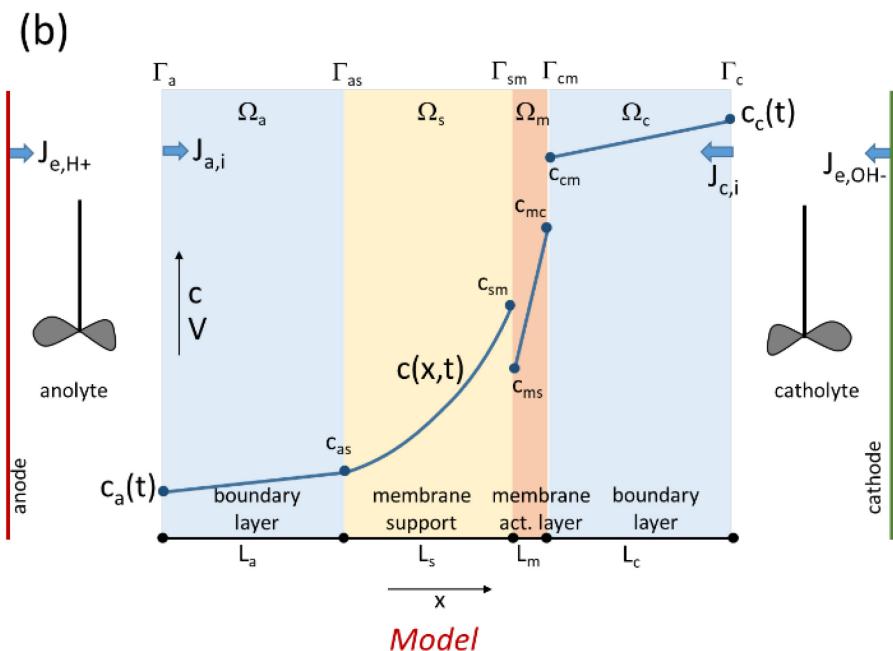
102 **Electrode preparation method**

103 Electrodes were prepared as previously described.^{8, 11} The anode and cathode were circular with
104 the same exposed area as the membrane (7.1 cm²) to enable the electric field to be more evenly
105 distributed across the membrane. Carbon paper was first immersed in a 3/2 v/v ratio of
106 HNO₃/H₂SO₄ for 60 minutes to clean the carbon through oxidation and increase the adhesion of
107 catalyst particles.²⁰ The carbon paper was then thoroughly rinsed with DI water until the pH of
108 the DI water running off the carbon paper was neutral, and then it was dried in air overnight. For
109 each 7.1 cm² electrode, 35.5 mg of 10% Pt/C powder, 29 μL of DI water, 237 μL of a
110 perfluorinated resin solution with 5 wt. % Nafion (Sigma Aldrich), and 118 μL of isopropanol
111 were mixed and painted onto the carbon paper using a brush. The electrodes were dried in air
112 over night before they were used.


113 **Saltwater electrolysis**

114 Two cylindrical reactor chambers, each with a volume of 31 mL, were held together with screws
115 and bolts with an RO membrane positioned between them, as previously described.^{8, 11} The
116 anode and cathode were fixed 4 cm away from the membrane at either end of the reactor
117 chambers to ensure bubble formation did not influence ion transport near the membrane (Figure
118 1a, Figure S1 and S2). Both the anolyte (NaClO₄) and catholyte (KNO₃) were mixed with an
119 overhead stirrer (CafraM) at a rate of 100 rpm. Unlike chloride, NO₃⁻ cannot be oxidized at the
120 anode to compete with the oxygen evolution reaction OER. Additionally, NO₃⁻ and Cl⁻ are both
121 monovalent and have similar hydrated radii.²¹ Therefore, NO₃⁻ was used as counter-ion in place
122 of Cl⁻, to facilitate an accurate measurement of anion concentration transported from catholyte to
123 anolyte. A VMP3 potentiostat (Biologic) was used to apply the set current density to the cell.
124 Samples (0.5 mL) were collected from both the anolyte and catholyte every 20 minutes, resulting
125 in a total volume change of 3 mL in each chamber over the course of an experiment. The
126 experiments were stopped after 120 minutes to avoid a large water volume change in the reactor
127 and maintain constant working membrane and electrode area. Additionally, using a 120-minute
128 experimental period enabled us to examine both the dynamic changes of the system when the pH
129 is rapidly decreasing in the anolyte and increasing in the catholyte as well as relatively stable
130 operation. Previous saltwater electrolysis studies with TFC membranes demonstrated that a
131 pseudo steady-state in pH was reached after a 60 minute period, so 120 minutes was chosen here
132 to ensure both periods of rapidly changing and relatively stable pH conditions.⁸ The samples
133 were diluted 10-fold prior to analysis using an ion chromatograph (Integriton Ion
134 Chromatography system, Thermo Fisher). The pH of the diluted samples was measured using a
135 pH probe (SevenMulti, Mettler Toledo, Switzerland) which was calibrated prior to
136 measurements. Electrolysis experiments were conducted in duplicate.

139


140 **Fraction of charge carried**

141 The fraction of charge carried across the membranes by salt ions (Na^+ , NO_3^- , K^+ , ClO_4^-) and
142 water ions (H^+ , OH^-) was calculated using the transport results at the set current density (detailed
143 calculations in S1). The constant current density i_a provides a fixed charge flux across the
144 membrane at any given point, with the charge carried by salt ions (Na^+ and NO_3^-) and water ions
145 generated by the electrodes (H^+ and OH^-) moving in the direction of the potential gradient. Salt
146 ions crossing the membrane in the direction opposite of the potential gradient (K^+ and ClO_4^-)
147 increase the amount of charge that must be carried by major ions, such that $i_a = F(|J_{\text{Na}^+}| +$
148 $|J_{\text{NO}_3^-}| + |J_{\text{H}^+}| + |J_{\text{OH}^-}| - |J_{\text{ClO}_4^-}| - |J_{\text{K}^+}|)$, with J_i the molar flux of any ion i . After calculating
149 the flux of charge carried by salt ions, any remaining charge not accounted for was attributed to
150 water ions.

Experimental

151

Model

152

153 **Figure 1.** (a) Schematic of saltwater electrolysis cell with anodic and cathodic reactions, and ion
 154 transport directions specified; (b) The model breakdown of the two-chamber system into two
 155 ideally mixed domains (bulk anolyte and catholyte) and four 1-D domains (two diffusion
 156 boundary layers adjacent to the membrane and two membrane layers) with distinct mass
 157 transport properties. The system is here not represented to scale. A typical concentration profile
 158 (K^+) is represented across the domains Ω , separated by interfaces Γ .

159

160

161

162 **Modeling ion transport in a batch saltwater electrolysis cell**

163 We constructed a time-dependent, one-dimensional (1-D) numerical model to simulate the
 164 transport of sodium (Na^+), nitrate (NO_3^-), potassium (K^+), perchlorate (ClO_4^-), protons (H^+), and
 165 hydroxide (OH^-) across a TFC membrane within a batch electrolyzer. This numerical framework
 166 was implemented in COMSOL Multiphysics v. 6.2 software (www.comsol.com, COMSOL AB,
 167 Stockholm, Sweden).

168
 169 *Geometry.* The 1-D concentration and potential gradients were calculated across a system with
 170 interconnected domains, consistent with the geometry of the experimental batch reactor (Figure
 171 1b). Due to vigorous stirring, the anolyte and catholyte (constant) volumes were assumed ideally
 172 mixed, thus represented by one concentration for each ion, $c_{a,i}$ and $c_{c,i}$ - both functions of time.
 173 The Pt/C electrodes were represented as sources of H^+ to the anolyte and OH^- to the catholyte.
 174 Electrolytes were separated by a TFC membrane situated at a distance L from each electrode.
 175 Time-dependent gradients of concentration c_i and potential φ were computed in several layers
 176 forming a series of resistances to mass and charge transfer between the anolyte and catholyte.
 177 Mass transfer boundary layers (concentration boundary layer, CBL) of equal thickness $L_a=L_c$
 178 were considered in the electrolyte adjacent to either side of the membrane. The TFC membrane
 179 consisted of a thin active layer facing the catholyte and porous support layer facing the anolyte.
 180 Based on previous studies, the active layer was estimated to be $L_m=150$ nm thick, and the porous
 181 support layer was $L_s=150$ μm thick.^{10, 14, 22}

182
 183 *Ion and charge balances.* The time-dependent spatial distribution of ion concentrations c_i and
 184 electrolyte potential φ in the four connected layers were computed from material and charge
 185 balances. The time-dependent transport of any ion i of charge z_i within the several layers is
 186 represented by Nernst-Planck ion fluxes including diffusion and electromigration.^{12, 14}

$$187 \quad \frac{\partial c_i}{\partial t} = f D_i \frac{\partial}{\partial x} \left(\frac{\partial c_i}{\partial x} + z_i c_i \frac{F}{RT} \frac{\partial \varphi}{\partial x} \right) + r_i \quad [1]$$

188
 189 A coefficient f was used to modify the magnitude of the diffusion coefficients D_i in different
 190 domains. In the mass transfer boundary layers (domains Ω_a and Ω_c), the diffusion coefficients
 191 were those in water ($f = 1$). In the membrane support layer (Ω_s), where pores are on the micron
 192 scale, $f = \varepsilon_s$ as an effectiveness factor lumping porosity and tortuosity effects. In the dense
 193 active layer (Ω_m), ion transport is also retarded by friction between ions and the membrane
 194 polymer, thus using a smaller factor $f = \varepsilon_a$.²³ Exact values of these effectiveness or friction
 195 factors remain highly uncertain, therefore, to simplify the model, the same values ε_s and ε_a were
 196 assumed for all six ions and fit to our experimental ion transport data. To compute local pH,
 197 water dissociation with equilibrium constant K_w was included in a kinetic way with rate $r_{\text{H}^+} =$
 198 $r_{\text{OH}^-} = k_w (1 - c_{\text{H}^+} c_{\text{OH}^-} / K_w)$ where the rate coefficient k_w takes an arbitrarily large value to
 199 approximate equilibrium in all domains. There are no reaction rate terms r_i for Na^+ , NO_3^- , K^+ and
 200 ClO_4^- .

201
 202 The electroneutrality at every point x in the system is ensured by a charge balance. In electrolyte
 203 boundary layers and membrane support, the balance is a sum of concentrations c_i multiplied by
 204 ion charge z_i (eq. [2a]). In the membrane active layer, the electroneutrality condition includes the
 205 membrane charge density X in molar units, here negatively charged (eq. [2b]).

$$\sum_i z_i c_i = 0 \quad [2a]$$

$$-X + \sum_i z_i c_i = 0 \quad [2b]$$

206
207
208
209
210
211
212
213
214

In every experiment, the membrane active layer faced the catholyte. Because the catholyte pH rapidly becomes highly alkaline (pH~13) during electrolysis under these test conditions in previous studies ⁸, the carboxylic groups on the polyamide will be deprotonated, fully functionalizing the active layer. The negative active layer charge density was set to $X=400$ mM to be consistent with the highly alkaline operating conditions.²⁴ The differential-algebraic system of equations contains six ion balances (eq. [1]) and one charge balance (eq. [2]) in all domains, and - after assigning boundary and initial conditions - allows computing the 6 concentrations c_i and one electrolyte potential φ .

215
216
217
218
219

Boundary conditions. On the bulk anolyte and catholyte boundaries (Γ_a and Γ_c), concentrations $c_{a,i}$ and $c_{c,i}$ were set. These bulk concentrations result from solving a system of differential equations in the batch system in time with constant volume (eq. [3]).

$$\frac{dc_{a,i}}{dt} = \frac{A}{V} (J_{a,i} - J_i) + r_i, \quad \frac{dc_{c,i}}{dt} = \frac{A}{V} (J_{c,i} + J_i) + r_i \quad [3]$$

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

A source flux accounts for H^+ production at anode, equal with the flux of OH^- produced at the cathode, $J_{a,\text{H}^+} = J_{c,\text{OH}^-} = i_a/F$ while no other ions are interacting with the electrodes, thus $J_{a,i} = 0$ for all other ions. Another total flux J_i , (i.e., diffusion + migration), is exchanged with the corresponding boundary layers for all ions. Kinetic rates $r_{\text{H}^+} = r_{\text{OH}^-}$ were included for H^+ and OH^- according to water dissociation, while $r_i = 0$ for other ions. The electrode and membrane areas both have an area of A , and electrolyte volume is V , so the ratio $A/V=1/L$, where L is the distance between the electrode and CBL (electrode-CBL). The electrode-CBL distance is the difference between the electrode-membrane distance (3.7 cm), which is measured, and the CBL length (0.02 cm), which is estimated based on the literature.²⁵ Because the CBL thickness is two orders of magnitude less than the electrode-CBL distance, and therefore negligible, the electrode-membrane distance is defined as $L = 3.7$ cm. The current density was fixed at the anode boundary Γ_a as $i_a = 10 \text{ mA cm}^{-2}$, and the electrolyte potential was fixed at the cathode boundary Γ_c as $\varphi = 0 \text{ V}$ (as reference potential).

235
236
237
238
239
240
241
242
243
244

Internal boundary conditions have to be assigned too. On the interface connecting the membrane support with the anolyte Γ_{as} , continuity of potential and ion current, as well as concentrations and fluxes for all ions hold. On the active layer interfaces (Γ_{sm} and Γ_{cm}) however, partition conditions were set for concentrations and potential to influence ion permeance into the active layer, while ion fluxes and current must remain continuous. The concentration of ion i inside the membrane $c_{m,i}$ is related to its concentration outside in the water $c_{w,i}$ by $c_{m,i} = c_{w,i} K_i$. The partition coefficient K_i is the result of different effects, but we included Donnan partitioning as a function of the potential difference inside/outside the membrane, $\Phi_{D,i} = \exp(-z_i F \Delta\varphi / RT)$, and a lumped coefficient Φ_i for other effects (e.g., steric, dielectric), so that $K_i = \Phi_i \Phi_{D,i}$.^{12, 14} Additionally, Φ_i was set to be the same value for all ions to simplify the number of fitting

parameters. By eliminating differences in size-based partitioning between the ions, we can analyze the importance of using these individual partitioning coefficients to describe selective ion transport across the TFC membranes in an induced electric field.

Initial Conditions. The initial electrolyte concentrations used for model calibration were 600 mM of NaClO₄ in the anolyte and 600 mM of KNO₃ in the catholyte with an initial pH of 5.7. Thus, for example, the initial values were $c_{0,Na^+} = c_{0,ClO_4^-} = 600$ mM, $c_{0,K^+} = c_{0,NO_3^-} = 0$, $c_{0,H^+} = 10^{-pH}$, $c_{0,OH^-} = \frac{K_w}{c_{0,H^+}}$ for concentrations on the anolyte boundary Γ_a and domains Ω_a and Ω_s .

Accordingly, $c_{0,Na^+} = c_{0,ClO_4^-} = 0$, $c_{0,K^+} = c_{0,NO_3^-} = 600$ mM for Γ_c and Ω_c . A zero initial electrolyte potential was set everywhere.

Model parameters. Values for the model parameters were obtained from literature for: diffusion coefficients²⁶⁻²⁹, membrane layer thicknesses^{22, 23}, partitioning for H⁺ and OH⁻²⁴, and membrane charge density^{16, 24}, while boundary layer thicknesses was estimated from correlations and literature.²⁵ Operational parameters (initial concentrations, pH, current density) were measured. The diffusion effectiveness for the active (ε_a) and support (ε_s) membrane layers, and a single partition coefficient for all salt ions (Φ_i) were the three parameters used to fit the solution friction model to ion transport data (Table 1).

Model solution and validation. The model was solved for a 2 h period with an ultra-fine mesh in the membrane layers (20 nm in active layer, 0.5 μ m in the support), and a fine mesh in the CBL (10 μ m). The model was fit using the experimental transport data obtained during electrolysis with 600 mM electrolytes and a set constant current density of 10 mA cm⁻². To verify the model capability in predicting ion transport at different electrolyzer conditions, the set current density and initial electrolyte concentrations were changed according to new experimental conditions: (i) i_a increased to 14 mA cm⁻²; (ii) initial electrolyte concentrations increased to 800 and 1000 mM in both electrolytes ($i_a=10$ mA cm⁻²); (iii) at $i_a=14$ mA cm⁻², the electrolyte concentrations of 600, 800 and 1000 mM. In all cases, the initial pH was kept constant at 5.7.

Sensitivity analysis. A sensitivity analysis was conducted on some parameters taken from literature to determine whether deviations from these assumptions significantly influence ion crossover. The CBL thickness was varied from 50-300 μ m, membrane backbone thickness from 100-150 μ m, active layer thickness from 100-150 nm, and the membrane charge from 0-600 mM, all based on reasonable ranges from literature.^{23, 25, 30}.

Table 1. Model parameters, base case values.

Parameter	Description	Value	Unit	Source/Notes
<i>Geometry</i>				
L	Distance electrode-membrane	3.7	cm	measured
L_a, L_c	Concentration boundary layer thickness	200	μm	25
L_s	Support layer thickness	150	μm	23
L_m	Active layer thickness	150	nm	22
<i>Mass transport</i>				
D_i	Diffusion coefficients in water		$\text{m}^2 \text{s}^{-1}$	20 °C
	Na^+	1.3×10^{-9}		26
	NO_3^-	1.7×10^{-9}		27
	K^+	2.0×10^{-9}		26
	ClO_4^-	1.8×10^{-9}		28
	H^+	9.3×10^{-9}		29
	OH^-	5.3×10^{-9}		26
ε_a	Membrane active layer diffusion effectiveness factor	0.001	-	fitted
ε_s	Membrane support layer diffusion effectiveness factor	0.015	-	fitted
Φ_i	Steric and dielectric partitioning		-	
	$\text{Na}^+, \text{NO}_3^-, \text{K}^+, \text{ClO}_4^-$	0.25		fitted
	H^+, OH^-	1		16
X	Membrane negative charge density	400	mM	24
<i>Aqueous equilibria</i>				
K_w	Water equilibrium constant	1×10^{-14}	$\text{mol}^2 \text{L}^{-2}$	
k_w	Water association rate constant	1×10^{-4}	$\text{mol m}^{-3} \text{s}^{-1}$	arbitrary value ensuring near equilibrium
<i>Operation</i>				
i_a	Applied current density	10	mA cm^{-2}	measured
$c_{0,a}, c_{0,c}$	Initial concentrations anolyte (NaClO_4) / catholyte (KNO_3)	600	mM	measured
pH_0	Initial pH in anolyte / catholyte	5.7	-	measured
<i>Others</i>				
T	Temperature	293.15	K	measured
R	Gas constant	8.3145	$\text{J mol}^{-1} \text{K}^{-1}$	
F	Faraday constant	96485	C mol^{-1}	

285

286 **RESULTS AND DISCUSSION**287 **Ion crossover used as baseline data**

288 At the set current density of 10 mA cm⁻² a relatively large electrolyte potential gradient
 289 developed across the reactor, which promoted the transport of Na⁺ across the membrane into the
 290 catholyte and NO₃⁻ into the anolyte. In contrast, the transport of K⁺ and ClO₄⁻ across the
 291 membrane was minimal, due to their diffusion in the direction opposite to the applied electric
 292 field. As a result, the final experimentally measured concentrations of Na⁺ (63.5 ± 3.9 mM) and
 293 NO₃⁻ (59.6 ± 1.6 mM) were two orders of magnitude higher than the final concentrations of K⁺
 294 (0.4 ± 0.2 mM) and ClO₄⁻ (0.2 ± 0.01 mM) after 2 hours of operation. The anolyte chamber
 295 rapidly became acidic due to H⁺ generation by the OER, with a final pH of 0.9, and the pH in the
 296 catholyte chamber rapidly became basic due to OH⁻ generation by the HER, with a final pH of
 297 13.3.

298

299 **Model calibration**

300 The model was calibrated using three fitting parameters (ε_a , ε_s , Φ) and the other model
 301 parameters (Table 1) based on the ion crossover measured at the set current density of 10 mA
 302 cm⁻² and electrolyte conditions of 600 mM. The fitted non-dimensional parameters were:

303 $\varepsilon_a = 0.001$, the active layer transport effectiveness factor, $\varepsilon_s = 0.015$ the support layer
 304 effectiveness factor (clumping both polysulfone support and polyester backbone), and $\Phi = 0.25$
 305 steric/dielectric partitioning factor for all salt ions. Model agreement was based on the fit
 306 between the experimental data for the transport of the main charge carriers across the TFC
 307 membrane and the model prediction during the initial 120 minutes of electrolysis (Figure 2a).
 308 Initial fitting parameters were selected based on previous modeling of ion transport across
 309 polyamide layers¹⁴, and adjustments were made to these parameters to obtain a better fit. The
 310 model was optimized with root mean square error values of 6.1 mM for Na⁺ and 6.4 mM for
 311 NO₃⁻. Additional membrane characterization and minimization of fitting parameters could be
 312 done in the future to further refine the fitting parameters by using a larger set of data for
 313 calibrating these models.

314

315 Model simulation using the parameters in Table 1 showed good agreement with the ion crossover
 316 results, with only slight deviations between the model and experimental data despite the use of a
 317 limited number of fitting parameters. The agreement of the model and experimental results
 318 indicated that the electric field was the dominant factor in driving the major salt ions across the
 319 PA active layer. Using the fit model, the diffusion and migration fluxes in and around the
 320 membrane could be broken down into their individual components (Figures S4a and S4b). While
 321 diffusion flux was higher inside the active layer, the migration flux dominated the major ion
 322 transport in their initial compartments and across most of the backbone. This fit of the major salt
 323 ions for balancing charge (Na⁺ and NO₃⁻) was possible without having to include individual size-
 324 based partition coefficients or friction factors for individual ions.

325

326 A sensitivity analysis of the active layer thickness L_m , support layer thickness L_s , and boundary
 327 layer thickness, L_a and L_c indicated that changing these parameters between the upper and lower
 328 bounds of a reasonable range for each value based on the literature revealed that there were only
 329 very small changes in ion transport (Figure S5, S6, and S7). The largest change for the main
 330 charge carriers (Na⁺, NO₃⁻) was due to varying the active layer thickness. Increasing the active

layer from 100 nm to 200 nm increased Na^+ ion crossover by 6.7% (from 63.8 mM to 68.1 mM) and decreased NO_3^- crossover by 10% (from 75.1 mM to 67.2 mM). In comparison, changing the backbone thickness from 100 μm to 250 μm caused a 3.8% change in Na^+ crossover and a 4.4% change in NO_3^- crossover, while changing the boundary layer thickness from 50 μm to 300 μm caused a 1.2% change in Na^+ and a 1.8% change in NO_3^- .

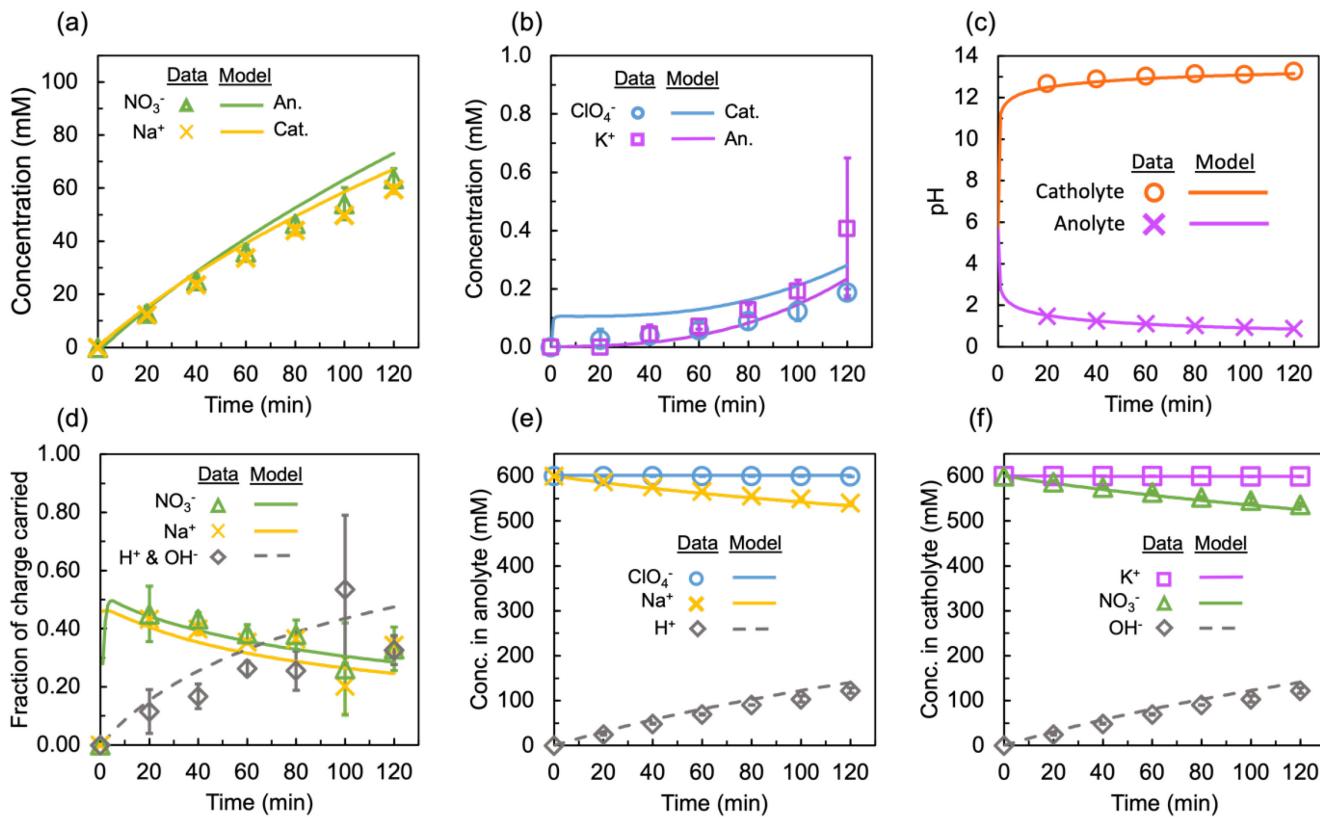
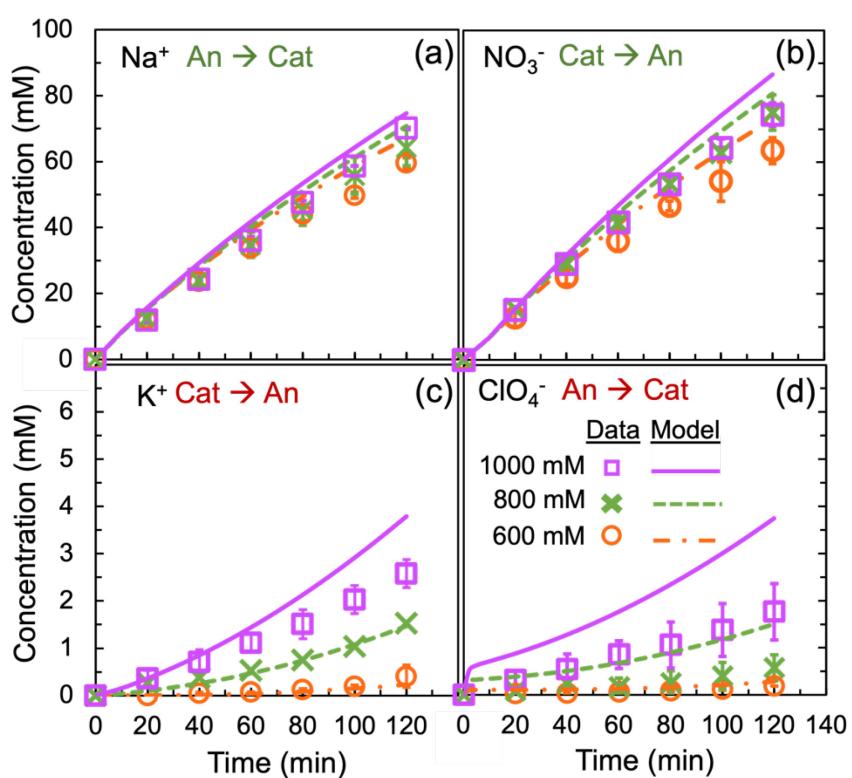


Figure 2. (a) Salt ion transport across the TFC membrane over 120 minutes of electrolysis in the catholyte (Cat) and anolyte (An). (b) Concentration of K^+ and ClO_4^- transported across the membrane. Note the different scales of the y-axis on figures a and b. (c) Bulk pH in the anolyte and catholyte during electrolysis. (d) The fraction of charge carried across the TFC membrane by major salt ions (Na^+ and NO_3^-) and water ions. (e) the bulk concentration of ClO_4^- , Na^+ , and H^+ calculated via electroneutrality with the ion crossover data and projected by the model. (f) Bulk concentration of K^+ , NO_3^- , and OH^- in the catholyte during electrolysis.

The change in the average concentrations of H^+ and OH^- in the two chambers based on pH over time was in good agreement with the model predictions (Figure 2c). Using the measured and modeled ion transport data, the fraction of current carried across the TFC membrane by each ion was calculated to compare the relative importance of salt versus water ion transport in maintaining the set current density (Figure 2d). Salt ions initially carried most of the charge across the membrane in these tests, but the fraction of charge carried by water ions substantially increased over time. A concentration profile of the salt ions across the CBLs, backbone, and active layer is presented in the SI, as well as the potential profile across the system (Figure S3a)

345 and Figure S3c). The concentration profile of Na^+ across the system is plotted at several time
346 positions to demonstrate how transport changes over time in the SI (Figure S3d)


347
348 While the experimental results and the model produced good agreement in the concentrations of
349 H^+ based on pHs (0.9 for the anolyte, and 13.2 for the catholyte according to the model), the final
350 concentrations of H^+ in the anolyte and OH^- were more noticeably different when compared on a
351 linear scale. By using the ion transport data, the linear concentration of water ions in the bulk
352 solutions could be calculated according to electroneutrality. The concentration of H^+ in the
353 anolyte increased from essentially zero (0.002 mM) at the initial neutral pH to $122 \text{ mM} \pm 6 \text{ mM}$
354 according to experimental data and 141 mM according to the model (Figure 2e). The same
355 increase in OH^- concentration was observed in the catholyte, as H^+ and OH^- are generated at the
356 same rate at the electrodes (Figure 2f). These increases in the concentrations of the water ions in
357 the chambers enabled more current to be carried across the membrane by these ions as their
358 concentrations approached those of the salt ions. The final fraction of charge carried by water
359 ions was $33\% \pm 5\%$ based on the final pH, compared to 47% by the model. K^+ and ClO_4^-
360 combined accounted for $<1 \text{ mM}$ of ion transport across the membrane after 120 minutes of
361 electrolysis (Figure 2d). These ions transport across the membrane in the opposite direction of
362 the current density in such small concentrations they can be considered minor current
363 contributors to the system. The ion chromatography methods used were optimized for the
364 measurement of the major ions in the system rather than the dilute minor ions. Because neither
365 ion participates in unwanted side reactions at either the anode or cathode (ClO_4^- is fully oxidized,
366 and the reduction reaction is not known to compete with hydrogen evolution), differences
367 between the experimental data and model simulations were not a concern due to the focus on the
368 transport of chloride or nitration ions.³¹ Likely better agreement between the model and data
369 could be obtained by adjusting individual ion parameters, but the goal here was to minimize
370 fitting parameters needed to reproduce the main characteristics of the system.

371 NO_3^- and Na^+ transport across the membrane is limited to what is required to maintain
372 the set current density, although NO_3^- permeation in the current configuration is higher than
373 desired for larger-scale electrolysis. Additional membrane and electrolyzer modifications are
374 being studied to decrease Cl^- permeation to the anode. For example, adding polyamide active
375 layers to both sides of the TFC membrane successfully reduced Cl^- permeation from the
376 catholyte to the anolyte by 53% during electrolysis with a zero gap electrolyzer.¹³ Additionally,
377 the zero-gap electrolyzer configuration enables lower salt ion permeation in comparison to the
378 batch electrolyzer used here with a membrane-electrode distance of 3.7 cm. The same amount of
379 total salt ion transport after two hours in the batch electrolyzer occurs after 6 hours in the zero-
380 gap electrolyzer.¹² The smaller electrode-membrane distance in the zero-gap configuration
381 enables a higher percentage of charge to be carried by water ions generated at the electrodes,
382 while water ions are forced to first migrate across the electrolyte chambers in the batch
383 configuration.¹³

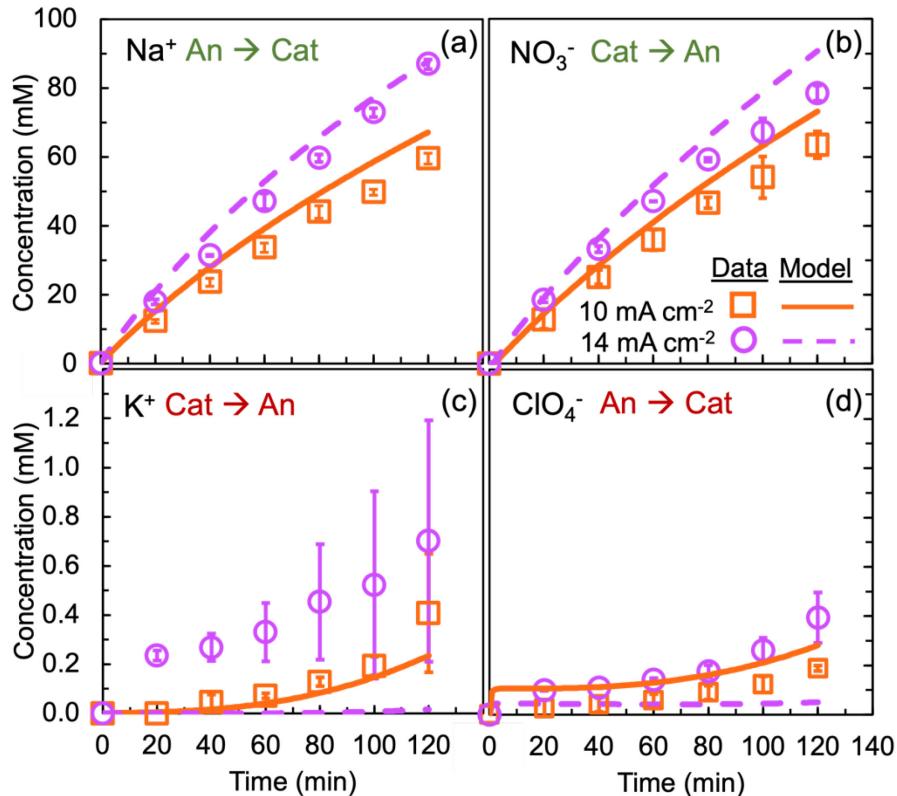
384
385 **Model validation by changing electrolyte concentrations**
386 The crossover of salt ions predicted by the model was compared to experimental results using
387 two additional initial electrolyte concentrations of 800 mM and 1000 mM at a set current density
388 of 10 mA cm^{-2} . When the initial electrolyte concentrations in both chambers were increased to
389 800 mM and 1000 mM, the model predicted only slightly different amounts of total salt ion
390 crossover than those measured. For a 67% increase in electrolyte concentration (600 to 1000

391 mM) the model predicted an 18% increase in NO_3^- crossover compared to the observed $17\% \pm$
 392 2% crossover. For Na^+ the model predicted 11% crossover, compared to $18\% \pm 3\%$ measured
 393 (Figure 3).

394
 395 The final transport of K^+ and ClO_4^- ions predicted by the model was within 2 mM of the total
 396 crossover measured. The final value of K^+ transport predicted for an 800 mM electrolyte was 1.5
 397 mM, which is the same as that obtained in experiments, while the final crossover predicted for
 398 the 1000 mM electrolyte case was 3.8 mM compared to the measurement of 2.6 ± 0.3 mM. The
 399 final transport of ClO_4^- predicted by the model for the 800 mM electrolyte case was 1.5 mM
 400 compared to a measured value of 0.6 ± 0.3 mM and for the 1000 mM case was 3.7 mM
 401 compared to the measured value of 1.8 ± 0.6 mM. While these are large percentage changes, it is
 402 considered here that a better fit of these minor ions through introducing additional parameters is
 403 not needed because these ions carry little charge across the membrane.
 404

Figure 3. The experimentally measured and modeled transport of (a) Na^+ (b) NO_3^- (c) K^+ and (d) ClO_4^- ions across the membrane during electrolysis with increasing initial anolyte and catholyte concentrations. Green text indicates ions moving in the same direction of the potential gradient across the membrane (positively charged ions moving towards the negatively charged electrode, or negatively charged ions moving towards a positively charged electrode) and red text indicates ions moving in the opposite direction of the potential gradient across the membrane (positively charged ions moving towards the positively charged electrode and negatively charged ions moving towards the negatively charged electrode).

405 Increasing the salt concentration resulted in a decrease in the amount of charge carried by water
 406 ions (Figure S8). Water ions accounted for $33 \pm 5\%$ of current transport with a 600 mM


407 electrolyte but decreased to $27 \pm 13\%$ with an 800 mM electrolyte and $24 \pm 4\%$ with a 1000 mM
408 electrolyte. Since the current density was the same while the salt concentration was increased,
409 the ratio of salt ions to water ions in solution increased, resulting in more salt ions carrying
410 charge across the membrane.

411

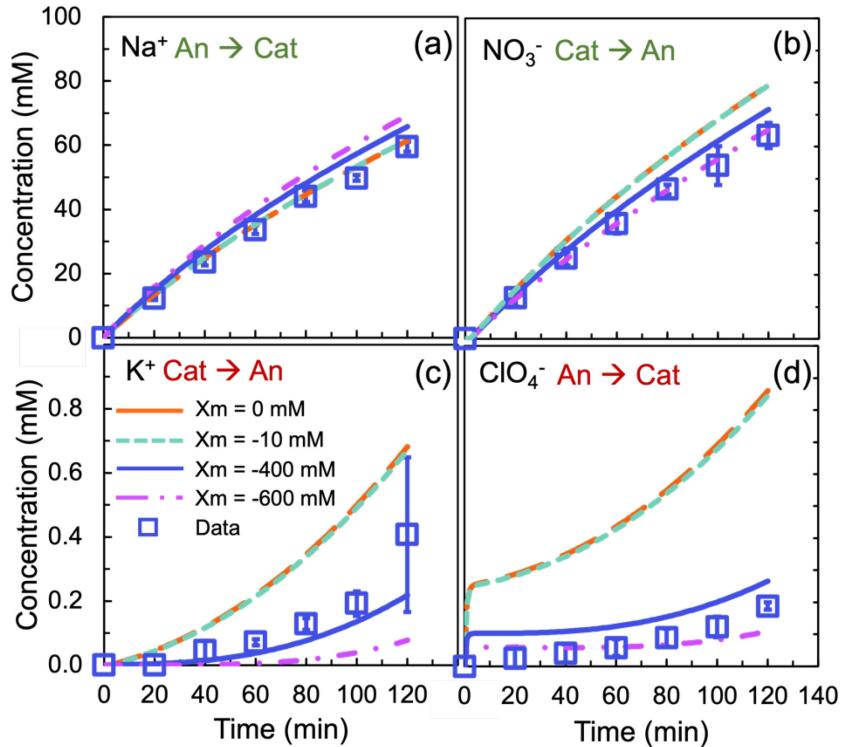
412 **Impact of current density on ion transport**

413 Increasing the current density will require a corresponding increase in total ion migration across
414 the membrane. The main charge carrier transport was predicted reasonably well by the model
415 when the current density was increased from 10 to 14 mA cm⁻² with an electrolyte concentration
416 of 600 mM. The predicted crossover of NO₃⁻ into the anolyte after 120 minutes was 90.7 mM
417 compared to the 78.5 ± 2.2 mM observed, and the predicted crossover of Na⁺ into the catholyte
418 was 87.8 mM compared 86.9 ± 1.4 mM (Figure 4a and 4b). Increasing the current density by
419 40% caused a 33.7% increase in total crossover of main salt ions, as salt ions are the main charge
420 carriers across the membrane. Additional simulations were done using 800 mM and 1000 mM
421 electrolytes with similarly good agreement between the model and data (Figure S9 and S10).
422 Increasing the current density resulted in an increased fraction of charge carried by water ions
423 and decreased fraction of charge carried by salt ions predicted by the model at the end of 120
424 minutes of electrolysis (Figure S11). Although the higher current density caused more salt ion
425 transport, it also resulted in a larger rate of water ions generated at the electrodes. The water ions
426 are preferable charge carriers across the membrane, so increasing the ratio of water ions to salt
427 ions in solution caused a higher fraction of charge to be carried by water ions.
428

429 The differences in minor ion transport data and model predictions after 120 minutes of
 430 electrolysis were within 0.7 mM for K^+ and 0.5 mM for ClO_4^- with a current density of 14 mA
 431 cm^{-2} (Figure 4c, 4d). At the higher current density, the model predicted final crossover of 0.02
 432 mM for K^+ and 0.05 mM for ClO_4^- , while K^+ was experimentally measured to have 0.7 ± 0.5
 433 mM and ClO_4^- had 0.4 ± 0.1 mM of total transport. The model predicted that increasing the
 434 current density would decrease the amount of minor ions crossing over the membrane. However,
 435 the experimental trend was the opposite, showing a higher transport of K^+ and ClO_4^- across the

Figure 4. The experimentally measured and modeled transport of (a) Na^+ (b) NO_3^- (c) K^+ and (d) ClO_4^- ions across the membrane during electrolysis with increasing current density and initial anolyte and catholyte concentrations of 600 mM. Green text indicates ions moving in the same direction of the potential gradient and red text indicates ions moving in the opposite direction of the potential gradient.

436 membrane at higher current densities. Determining whether this discrepancy is meaningful or
 437 merely a result of slight inaccuracies in measuring ClO_4^- and K^+ ion crossover is challenging, as
 438 ion chromatography techniques were optimized for the measurement of the major ions in the
 439 system, rather than the dilute minor ions. Additional electrolysis simulations and experiments
 440 done with initial conditions of 800 mM and 1000 mM electrolytes can also be found in the SI
 441 (Figure S7 and S8).


442

443 Relative insignificance of membrane charge and Donnan partitioning on ion crossover

444 The model was used to predict the impact of membrane charge on ion crossover. Increasing the
 445 membrane charge from -400 to -600 mM was predicted to increase the crossover of Na^+ ions by
 446 5% (total of 3.5 mM) and decrease NO_3^- ion crossover by 9% (6.3 mM) (Figure 5a and Figure
 447 5b). In the absence of a charge on the membrane (0 mM), Na^+ was predicted to decrease by 7%

448 (4.4 mM), and NO_3^- was predicted to increase by 11% (7.7 mM). Making the membrane more
449 negatively charged should have increased the Donnan partitioning effect, which would have
450 decreased NO_3^- crossover, consistent with the model's predicted decrease of this ion.

451
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

Figure 5. Concentration measured in adjacent chamber of (a) Na^+ (b) NO_3^- (c) K^+ and (d) ClO_4^- during electrolysis when the membrane charge is changed between -600 mM and 0 mM . Green arrows indicate ions moving in the same direction as the potential gradient, and red arrows indicate ions moving in the opposite direction of the potential gradient.

Previous studies using Rutherford backscattering spectroscopy and electron impedance spectrometry have suggested the maximum negative charge of a fully aromatic polyamide membrane might be somewhere between -400 mM or -600 mM depending on the membrane at pH values greater than 13.^{24, 32} Using the COMSOL simulation to sweep the membrane charge from 0 mM to -600 mM predicted that the ratio of Na^+ versus NO_3^- transporting across the membrane changed, although the total major salt ion transport across the membrane remained relatively constant (141 mM with 0 mM charge and 135 mM with -600 mM charge). One potential explanation for the decrease in NO_3^- crossover is because the negatively charged membrane resisted the transport of this anion due to increased Donnan partitioning at the membrane interface. Conversely, more Na^+ ions might have been partitioned into the negative membrane to maintain electroneutrality, resulting in higher flux of Na^+ into the catholyte.³³ For the other two ions (K^+ and ClO_4^-) where the direction of the electric field is not driving their transport across the membrane changing the membrane charge from 0 mM to 600 mM caused less than a 1 mM change in their overall transport across the membrane.

469 These simulation results corroborate with previous experimental ion transport results in a zero-
 470 gap electrolyzer which demonstrated that membrane charge could be used to tune the ratio of salt
 471 ions transported but could not be used to increase the total fraction of charge carried by water
 472 ions.¹³ Recent studies have debated the impact of polyamide membrane charge on water
 473 purification systems using typical reverse osmosis and nanofiltration membranes, suggesting the
 474 RBS and EIS studies might not be capturing the effective membrane charge that exists during
 475 operation in high salinity and pH solutions.³⁴ Whether or not the membrane is truly highly
 476 charged in this electrolyzer set-up with high pH values is unclear based on the simulation results.
 477 The differences in ion transport due to a higher negatively charged membrane versus an
 478 uncharged membrane are small enough to be fixed by slightly changing other fitting parameters.
 479 In comparison to the set current density, which dictated a flux of salt ions across the membrane,
 480 the membrane charge was relatively insignificant in controlling salt ion transport across the
 481 membrane.

482

483 Insights into water ion transport through the TFC membrane

484 The model was used to predict spatial changes in pH across the membrane, as pH changes within
 485 the two membrane layers would be difficult to measure. The pH data is presented over a general
 486 schematic of the reactor to provide some spatial reference points to make the data easier to
 487 interpret. The pH was indicated to be constant across the concentration boundary layers in the
 488 electrolyte chambers, consistent with the construction of the model to have diffusion coefficients
 489 like those in water, resulting in fast diffusion across these regions (Figure 6). While there might
 490 be linear concentration gradients across these concentration boundary layers, small changes in
 491 H^+ and OH^- concentrations on a linear scale do not translate to large pH changes on a log scale.
 492 The pH in the active layer was calculated to be nearly constant at pH=12.6. Thus, the active layer
 493 was highly alkaline, and at this pH all the carboxylic acid groups in the membrane would be
 494 deprotonated, causing the membrane to have a negative charge somewhere between -400 to -

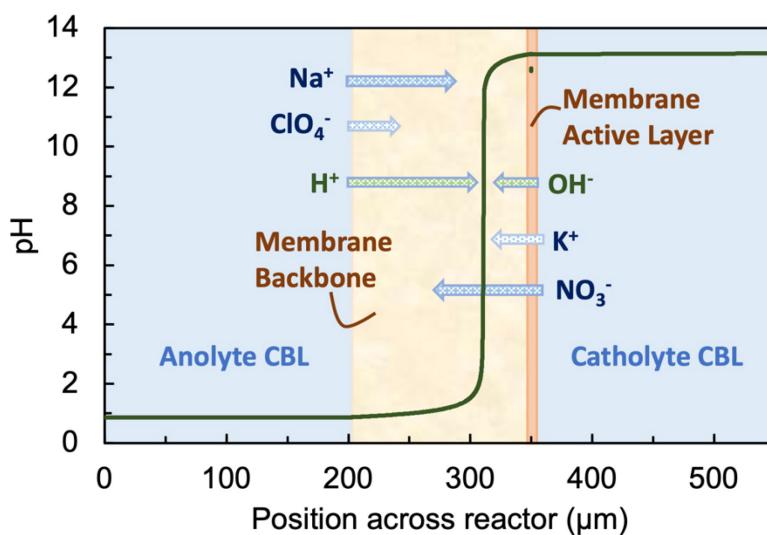


Figure 6. pH across model, which includes concentration boundary layers, the membrane backbone, and membrane active layer.

495 600 mM.²⁴ The model predicted a steep pH gradient in the support layer, nearer to the active
 496 layer (cathode side) than the anolyte, where H^+ meet OH^- and essentially instantaneously
 497 combine in the water association reaction (Figure 6). At higher current densities typically used

498 industrially, this pH gradient would be more difficult to compute because the flux of H^+ and OH^-
499 through the membrane will be larger, so more water association would be occurring. More
500 computational power (finer meshes, smaller step sizes, different assumptions, etc.) will be
501 required for future studies at industrial level current densities but these simulations will provide
502 necessary insights into salt and water ion transport.

503 Short term stability tests (5 h) indicated that the polyamide membranes were stable for
504 the pH conditions in these experiments, and manufacturer spec sheets suggest these membranes
505 are stable for short periods of time in pH conditions from 1 to 13.³⁵ The purpose of this work is
506 validating the model during the initial electrolysis period with extreme pH changes, so the long-
507 term stability of the membrane does not impact the results here. Future work could study long
508 term membrane stability during electrolysis and examine different membrane modifications to
509 improve stability.

510

511 **Implications**

512 In this study, a solution friction transport model was fit to ion transport data across a polyamide
513 membrane during electrolysis using minimal fitting parameters in the active layer. Specifically,
514 the same steric and dielectric partition coefficient, as well as friction coefficient, was used for all
515 salt ions through the membrane. Without accounting for size differences in salt ions other than
516 their different diffusion coefficients, the fit model was successfully validated against the
517 transport data of main charge carriers across the membrane when the current density and
518 electrolyte concentrations were increased. A set current density required a flux of charge across
519 the membrane, and water ions existed in solution at much lower concentrations than salt ions, so
520 salt ions consistently carried most of the charge across the membrane. Increasing the membrane
521 charge changed the ratio of salt ions carrying charge across the membrane but did not decrease
522 the total amount of salt ions transported. NO_3^- crossover, which is indicative of Cl^- crossover,
523 can be reduced in saltwater electrolysis by increasing the negative charge of the membrane.
524 Additionally, salt ion transport is controlled by the set current density, so modifying the
525 electrolyzer conditions to change the main charge carriers in conjunction with membrane
526 modifications can decrease Cl^- transport further.

527

528 ■ ASSOCIATED CONTENT

529

530 Supporting Information: Pictures of experimental apparatus used; concentration and potential
531 profiles across the reactor and membrane parts generated by the model; flux profiles, including
532 the separation of diffusion and migration fluxes, across the reactor generated by the model;
533 example calculation of fraction of charge carried by salt ions; results of parametric sweeps of
534 values estimated from literature; additional model validation of ion transport with a set current
535 density of 14 mA cm^{-2} and increasing electrolyte concentrations; and both model and
536 experimental results for the fraction of charge carried by salt and water ions with increasing
537 electrolyte concentration and increasing current density (PDF).

538

539 Notes

540 The authors declare no competing financial interest.

541

542

543

544 ■ ACKNOWLEDGMENTS

545 This research was funded by National Science Foundation grant CBET-2027552 and Penn State
546 University through the Stan and Flora Kappe endowment.

547

548 **References**

549

550 (1) *Global Hydrogen Review 2023*; International Energy Agency, Paris, 2023.
551 <https://www.iea.org/reports/global-hydrogen-review-2023> (accessed 2024-05-30).

552 (2) *Electrolysers*; International Energy Agency, Paris, 2023.
553 <https://www.iea.org/reports/electrolysers> (accessed 2024-05-30).

554 (3) Boyano, A.; Blanco-Marigorta, A. M.; Morosuk, T.; Tsatsaronis, G. Exergoenvironmental
555 analysis of a steam methane reforming process for hydrogen production. *Energy* **2011**, *36* (4),
556 2202-2214. DOI: 10.1016/j.energy.2010.05.020.

557 (4) Esposito, D. V. Membraneless electrolyzers for low-cost hydrogen production in a
558 renewable energy future. *Joule* **2017**, *1* (4), 651-658. DOI: 10.1016/j.joule.2017.07.003.

559 (5) Lee, H.; Lee, B.; Byun, M.; Lim, H. Economic and environmental analysis for PEM
560 water electrolysis based on replacement moment and renewable electricity resources. *Energy*
561 *Conversion and Management* **2020**, *224*, 113477. DOI: 10.1016/j.enconman.2020.113477.

562 (6) Gao, F.-Y.; Yu, P.-C.; Gao, M.-R. Seawater electrolysis technologies for green hydrogen
563 production: Challenges and opportunities. *Current Opinion in Chemical Engineering* **2022**, *36*,
564 100827. DOI: 10.1016/j.coche.2022.100827.

565 (7) Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S.-Z.; Ling, T.
566 Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. *Nat.*
567 *Energy* **2023**, *8* (3), 264-272. DOI: 10.1038/s41560-023-01195-x.

568 (8) Shi, L.; Rossi, R.; Son, M.; Hall, D. M.; Hickner, M. A.; Gorski, C. A.; Logan, B. E.
569 Using reverse osmosis membranes to control ion transport during water electrolysis. *Energy*
570 *Environ. Sci.* **2020**, *13* (9), 3138-3148. DOI: 10.1039/d0ee02173c.

571 (9) Dionigi, F.; Reier, T.; Pawolek, Z.; Gleich, M.; Strasser, P. Design criteria, operating
572 conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis.
573 *Chemsuschem* **2016**, *9* (9), 962-972. DOI: 10.1002/cssc.201501581.

574 (10) Petersen, R. J. Composite reverse-osmosis and nanofiltration membranes. *J. Membr. Sci.*
575 **1993**, *83* (1), 81-150. DOI: 10.1016/0376-7388(93)80014-O.

576 (11) Taylor, R.; Shi, L.; Zhou, X.; Rossi, R.; Pocioreanu, C.; Logan, B. E. Electrochemical and
577 hydraulic analysis of thin-film composite and cellulose triacetate membranes for seawater
578 electrolysis applications. *J. Membr. Sci.* **2023**, *679*, 121692. DOI:
579 10.1016/j.memsci.2023.121692.

580 (12) Zhou, X.; Shi, L.; Taylor, R. F.; Xie, C.; Bian, B.; Pocioreanu, C.; Logan, B. E. Relative
581 insignificance of polyamide layer selectivity for seawater electrolysis applications. *Environ. Sci.*
582 *Technol.* **2023**, *57* (39), 14569-14578. DOI: 10.1021/acs.est.3c04768.

583 (13) Zhou, X.; Taylor, R. F.; Shi, L.; Xie, C.; Bian, B.; Logan, B. E. Reducing chloride ion
584 permeation during seawater electrolysis using double-polyamide thin-film composite
585 membranes. *Environ. Sci. Technol.* **2024**, *58* (1), 391-399. DOI: 10.1021/acs.est.3c07248.

586 (14) Wang, L.; Cao, T. C.; Dykstra, J. E.; Porada, S.; Biesheuvel, P. M.; Elimelech, M. Salt
587 and water transport in reverse osmosis membranes: Beyond the solution-diffusion model.
588 *Environ. Sci. Technol.* **2021**, *55* (24), 16665-16675. DOI: 10.1021/acs.est.1c05649.

589 (15) Geraldes, V.; Brites Alves, A. M. Computer program for simulation of mass transport in
590 nanofiltration membranes. *J. Membr. Sci.* **2008**, *321* (2), 172-182. DOI:
591 10.1016/j.memsci.2008.04.054.

592 (16) Zhang, L.; Hamelers, H. V. M.; Biesheuvel, P. M. Modeling permeate pH in RO
593 membranes by the extended Donnan steric model. *J. Membr. Sci.* **2020**, *613*. DOI:
594 10.1016/j.memsci.2020.118511.

595 (17) Biesheuvel, P. M.; Zhang, L.; Gasquet, P.; Blankert, B.; Elimelech, M.; van der Meer, W.
596 G. J. Ion selectivity in brackish water desalination by reverse osmosis: Theory, measurements,
597 and implications. *Environ. Sci. Tech. Let.* **2020**, *7* (1), 42-47. DOI: 10.1021/acs.estlett.9b00686.

598 (18) Castaño Osorio, S.; Biesheuvel, P. M.; Spruijt, E.; Dykstra, J. E.; van der Wal, A.
599 Modeling micropollutant removal by nanofiltration and reverse osmosis membranes:
600 Considerations and challenges. *Water Res.* **2022**, *225*, 119130. DOI:
601 10.1016/j.watres.2022.119130.

602 (19) Zubair, M. M.; Saleem, H.; Zaidi, S. J. Recent progress in reverse osmosis modeling: An
603 overview. *Desalination* **2023**, *564*, 116705. DOI: 10.1016/j.desal.2023.116705.

604 (20) Zhang, G.; Sun, S.; Yang, D.; Dodelet, J.-P.; Sacher, E. The surface analytical
605 characterization of carbon fibers functionalized by H₂SO₄/HNO₃ treatment. *Carbon* **2008**, *46*
606 (2), 196-205. DOI: 10.1016/j.carbon.2007.11.0027.

607 (21) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte
608 materials and compositions for electrochemical supercapacitors. *Chemical Society Reviews* **2015**,
609 *44* (21), 7484-7539, 10.1039/C5CS00303B. DOI: 10.1039/C5CS00303B.

610 (22) Chu, K. H.; Mang, J. S.; Lim, J.; Hong, S.; Hwang, M.-H. Variation of free volume and
611 thickness by high pressure applied on thin film composite reverse osmosis membrane.
612 *Desalination* **2021**, *520*, 115365. DOI: 10.1016/j.desal.2021.115365.

613 (23) Liu, F.; Wang, L.; Liu, Q.; Deng, B. A review: the effect of the microporous support
614 during interfacial polymerization on the morphology and performances of a thin film composite
615 membrane for liquid purification. *Rsc Adv* **2019**, *9*, 35417-35428. DOI: 10.1039/C9RA07114H.

616 (24) Coronell, O.; González, M. I.; Mariñas, B. J.; Cahill, D. G. Ionization behavior,
617 stoichiometry of association, and accessibility of functional groups in the active layers of reverse
618 osmosis and nanofiltration membranes. *Environ. Sci. Technol.* **2010**, *44* (17), 6808-6814. DOI:
619 10.1021/es100891r.

620 (25) Li, M.; Xiang, Z.; Guo, J.; Zhang, N.; Zheng, H.; Li, X.; Hao, Y. Direct measurement of
621 boundary layer thickness on ion-exchange membrane surfaces during reverse electrodialysis.
622 *Sustainable Energy & Fuels* **2023**, *7* (13), 3060-3066, 10.1039/D3SE00404J. DOI:
623 10.1039/D3SE00404J.

624 (26) Samson, E.; Marchand, J.; Snyder, K. A. Calculation of ionic diffusion coefficients on the
625 basis of migration test results. *Materials and Structures* **2003**, *36* (3), 156-165. DOI:
626 10.1007/BF02479554.

627 (27) Kreft, J. U.; Picioreanu, C.; Wimpenny, J. W.; van Loosdrecht, M. C. Individual-based
628 modelling of biofilms. *Microbiology (Reading)* **2001**, *147* (Pt 11), 2897-2912. DOI:
629 10.1099/00221287-147-11-2897 From NLM.

630 (28) Heil, S.; Holz, M.; Kastner, T.; Weingärtner, H. Self-diffusion of the Perchlorate Ion in
631 Aqueous Electrolyte Solutions Measured by 35-Cl NMR Spin-Echo experiments. *Journal of the
632 Chemical Society Faraday Transactions* **1995**, *91*, 1877-1880. DOI: 10.1039/FT9959101877.

633 (29) Agmon, N. The Grotthuss mechanism. *Chemical Physics Letters* **1995**, *244* (5), 456-462.
634 DOI: 10.1016/0009-2614(95)00905-J.

635 (30) Warnken, K. W.; Zhang, H.; Davison, W. Accuracy of the diffusive gradients in thin-films
636 technique: Diffusive boundary layer and effective sampling area considerations. *Analytical*
637 *Chemistry* **2006**, 78 (11), 3780-3787. DOI: 10.1021/ac060139d.

638 (31) Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of
639 seawater: Opportunities and challenges. *Acs Energy Lett.* **2019**, 4 (4), 933-942. DOI:
640 10.1021/acsenergylett.9b00220.

641 (32) Stolov, M.; Freger, V. Membrane charge weakly affects ion transport in reverse osmosis.
642 *Environ. Sci. Tech. Lett.* **2020**, 7 (6), 440-445. DOI: 10.1021/acs.estlett.0c00291.

643 (33) Fan, H.; Huang, Y.; Billinge, I. H.; Bannon, S. M.; Geise, G. M.; Yip, N. Y. Counterion
644 Mobility in Ion-Exchange Membranes: Spatial Effect and Valency-Dependent Electrostatic
645 Interaction. *ACS ES&T Engineering* **2022**, 2 (7), 1274-1286. DOI: 10.1021/acsestengg.1c00457.

646 (34) Blankert, B.; Huisman, K. T.; Martinez, F. D.; Vrouwenvelder, J. S.; Picioreanu, C. Are
647 commercial polyamide seawater and brackish water membranes effectively charged? *Journal of*
648 *Membrane Science Letters* **2022**, 2 (2), 100032. DOI: 10.1016/j.memlet.2022.100032.

649 (35) *FilmTech SW30XLE-400*; DuPont, 2022.
650 [https://www.dupont.com/content/dam/dupont/amer/us/en/water-](https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-FilmTec-SW30XLE-400-PDS-45-D00972-en.pdf)
651 [solutions/public/documents/en/RO-FilmTec-SW30XLE-400-PDS-45-D00972-en.pdf](https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-FilmTec-SW30XLE-400-PDS-45-D00972-en.pdf) (accessed
652 2024-05-30).

653