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Figure 1: CLOVR is an easy-to-use tool with an interface that can be used to collect VR interaction data from any OpenVR based
application combined with an easy to use GUI for experienced or novice users.

ABSTRACT

Due to the growing popularity of consumer virtual reality (VR)
systems and applications, researchers have been investigating how
tracking and interaction data from VR applications can be used for a
wide variety of purposes, including user authentication, predicting
cybersickness, and estimating cognitive processing capabilities. In
many cases, researchers have to develop their own VR applications
to collect such data. In some cases, prior researchers have provided
open datasets from their own custom VR applications. In this paper,
we present CLOVR, a tool for Capturing and Logging OpenVR data
from any VR application built with the OpenVR API, including
closed-source consumer VR games and experiences. CLOVR pro-
vides an easy-to-use interface for collecting interaction data from
OpenVR-based applications. It supports capturing and logging VR
device poses, VR actions, microphone audio, VR views, VR videos,
and in-VR questionnaires. To demonstrate CLOVR’s capabilities,
we also present six datasets of a single user experiencing six different
closed-source SteamVR applications.

Index Terms: Human-centered computing—Systems and tools for
interaction design; Human-centered computing—Interactive systems
and tools Computing methodologies—Virtual reality
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1 INTRODUCTION

Since the introduction of consumer virtual reality (VR) systems,
researchers have investigated how tracking and input data from VR
applications can be leveraged for a wide variety of purposes. Nu-
merous researchers have investigated using VR interaction data for
authenticating and identifying VR users [17, 26, 30, 32, 40] Sev-
eral researchers have also investigated using VR interaction data
to predict cybersickness [13–15]. Finally, some researchers have
investigated VR interaction data for predicting cognitive processes,
such as mental workload [41], knowledge acquisition [31], and skills
retention [33].

In most cases, researchers have had to develop their own VR
applications to collect the tracking and input data necessary for their
respective investigations. This approach is often time consuming,
due to developing the required underlying VR application and data
collection process [16]. A number of open-source tools have been
developed to help expedite the development process, particularly
the collection of VR interaction data [46, 49]. However, these tools
do not expedite the actual data collection process of conducting
participants through studies to collect the data.

In recent years, researchers have begun openly sharing datasets
of VR interactions to alleviate the time required to collect one’s
own dataset and to facilitate the generalization of knowledge across
multiple VR applications. Most of these datasets are collected from
custom VR applications and scenarios, such as viewing moving
targets [23], shooting an arrow [21], throwing a ball [28], and as-
sembling structures [30]. Some datasets have been collected from
viewing 360° images or videos [4, 8, 42]. Most recently, researchers
have collected and shared data from closed-source, consumer VR



applications, such as Beat Saber [35] and Half-Life: Alyx [39], by
leveraging open application programming interfaces (APIs), such as
Valve’s OpenVR API.

In this paper, we present CLOVR1—a tool for Capturing and Log-
ging OpenVR data from VR applications that utilize the SteamVR
plugin, including closed-source experiences like VRChat and Rec
Room. By facilitating the capture of VR interaction data from preex-
isting, closed-source applications, CLOVR helps researchers avoid
the time required to implement their own custom VR applications
while also providing critical data on consumer VR experiences.
CLOVR automatically records the positions and rotations of every
tracked VR device (even additional HTC Vive trackers), every input
action like button presses or headset doffing events, the binocular
images rendered to the VR headset, and even the VR headset’s
microphone. CLOVR also supports capturing high frame-rate, non-
distorted videos of the VR perspective by leveraging OBS Studio to
directly record the SteamVR window.

In addition to capturing VR interaction data from any OpenVR-
based application, CLOVR also supports the administration of ques-
tionnaires directly within the VR experience, even closed-source
experiences like Beat Saber and Half-Life: Alyx. In-VR question-
naires have been demonstrated to collect comparable results to their
out-of-VR counterparts and to be more enjoyable [1]. With CLOVR,
researchers can now administer questionnaires like the Simulator
Sickness Questionnaire (SSQ) [19], the Game Engagement Question-
naire (GEQ) [3], the Spatial Presence Experience Scale (SPES) [11],
or the Preliminary Embodiment Short Questionnaire (pESQ) [7]
directly in VR for any OpenVR-based application. In addition to
administering standardized questionnaires like the SSQ and GEQ,
researchers can also administer their own questionnaires by using
CLOVR’s XML questionnaire format.

After discussing the design and capabilities of CLOVR, we also
present six datasets of a single user experiencing six different closed-
source, OpenVR-based applications2, including The Lab, VRChat,
Rec Room, Beat Saber, Half-Life: Alyx, and Boneworks. These
datasets demonstrate the broad range of consumer VR applications
that interaction data can be captured from with CLOVR. Further-
more, these single-user datasets are expected to help advance the
state of the art with regard to identifying individual VR users across
applications, which has been underexplored.

2 RELATED WORK

In this section, we discuss existing tools for capturing VR interaction
data, currently available VR datasets, and their prior applications.

2.1 Existing VR Recording Tools
OpenVR Recorder [2] is a proprietary and close-source tool used
to record the VR equipment poses from any connected device. It’s
only use is to collect motion data and does not record button presses
or interactions with the controller. Virtual Reality Scientific Toolkit
(VRSTK) [12] presents questionnaires to the user, however it has
to be incorporated directly into the source code of a Unity appli-
cation, and does not incorporate video or pictorial data capture.
VRHook [48] is another more direct approach to capturing VR mo-
tion data, which offers the ability to hook into a VR application
using dynamic hooking to interface with a runtime application and
capture poses, images from the HMD, and interaction actions of
controllers. However, it has to directly inject its code into runtime
memory to acquire the information it has to record. This presents
an issue with VR applications that use anti-cheating software that
prevent memory access.

RealityCheck is another project that utilized the OpenVR API to
inject data into the HMD in order to pass-through and overlay picture

1https://github.com/xrtlab/clovr
2https://doi.org/10.17605/OSF.IO/GUF7X

Dataset Name Year Published Public?
Behavioral Biometrics [37] 2019 No

TTI [27] 2020 Upon request
Body Normalization [22] 2021 Yes

Obfuscation [32] 2021 No
Body Sway [5] 2021 Yes

You Can’t Hide [45] 2022 No
Motion Matching [38] 2022 Yes

Personal Identifiability [26] 2023 Upon request
Who is Alyx? [39] 2023 Yes
BOXRR-23 [35] 2023 Yes

VR.Net [47] 2023 Yes
Table 1: Table of current open-source datasets.

data from real world cameras [10]. Finally, DreamStream [44]
was an evolution of this interface and improved the scene injection
by being able to collect the graphical qualities of an active VR
scenario such as RGB, depth, and also injecting Kinect depth/camera
data. Neither RealityCheck or DreamStream have publicly available
releases for use.

2.2 Current VR Datasets
Several VR datasets exist as public-domain and machine learning
ready to be used for training, ground truth, or identification purposes.
Table 1 shows a selection of VR-related datasets.

As seen in table 1, there is a diverse application to the use of
the collected datasets and also how they are being applied. These
range from subject identification [26, 27, 32, 37, 38, 45], general
datasets [35,39], and environmental effect studies in VR [5]. Subject
identification is the process of precisely identifying a subject based
on multiple characteristics of the individual, which can include mo-
tion patterns [38], behavioural biometrics [37], skeletal poses, and/or
the approaches of individuals to tasks [45]. Individual characteristics
that can be identified from this data include sex, age, and personally
identifiable behaviors.

General motion capture datasets include Who is Alyx? [39], which
observes users interacting in two 50 minute scenarios of the popular
video game Half-Life Alyx. Another dataset [35] BOXRR-23, was
collected from the popular video games Beat Saber and Tilt Brush,
and includes 100000 participants with a diverse span of personal
characteristics. VR.net [47] is a dataset collected using VRHook [48]
compromising data from 10 video games, which includes RGB data,
motion flow images, depth output, pose, interaction, scene, camera,
lights information, and self-reported user surveys.

2.3 Applications of VR Datasets
Researchers have multiple applications for VR datasets, particularly
for applications such as gesture recognition [28], virtual experience
exposure [17], tracking-based ML learning [31], or motion-based
identification [40]. More data-heavy applications may be utilized for
applications such as artificially generating animations from genera-
tive adversarial networks [20] or GAN-enhanced autoencoders [29].
As presented in one paper, video game avatars can be produced with
generative AI models [50], showing one potential avenue for demand
of VR motion capture data. The impact of latency and cybersickness
is also of concern, as shown in Stauffert et al. [43], where latency
can lead to individuals to suffer cybersickness.

VR pose data can be used to identify users as detailed in one
paper [32], where users can be identified and authenticated using
velocity pose records. A survey paper by Lin & Latoschik [24]
describes how VR data could be a vector to expose user’s identities
and privacy and demonstrates how this is being addressed in the
current literature. Another paper detailed the use of pose data in
order to predict learning gains from a learning session [33]. Another



paper [9] highlighted the use of VR hand motion to predict hand
trajectories to predict ballistic hand motions in VR. Other notable
machine learning techniques include DeepGRU [25], embedded
GRU models [40], or convolutional neural networks [18].

3 CLOVR: AN OPEN-SOURCE DATA COLLECTION TOOL

CLOVR is an easy-to-use tool and interface (see Figure 1) for col-
lecting VR interaction data from any OpenVR-based VR application,
including close-source games like Beat Saber and Half-Life: Alyx.
OpenVR is Valve’s API for developing VR applications for SteamVR.
We developed CLOVR using the Unity game engine (2021.3.30f)
and open sourced the tool to enable other researchers to easily cap-
ture and record data directly from OpenVR-based consumer games
and experiences. Below, we discuss the system architecture of
CLOVR and its key features.

3.1 CLOVR System Architecture
Figure 2 depicts the interaction of the different components that com-
promise CLOVR, including the interaction of external applications
such as OBS and OpenVR. It also describes how data is collected,
where source information is being drawn from in OpenVR, and how
is CLOVR interfaces with them. The details of each key feature are
described in the following sections.

3.2 Capturing and Logging Pose Data of VR Devices
As discussed, the poses (i.e., positional and rotational data) of
tracked VR devices can be leveraged for a wide variety of purposes,
including the authentication and identification of users [17, 30, 40],
the prediction of cybersickness [13, 14], and the prediction of cogni-
tive processes [31, 33, 41].

CLOVR uses the GetDeviceToAbsoluteTrackingPose func-
tion of OpenVR to obtain positional and rotational data for each
connected VR device, such as headsets, controllers, base stations,
and additional devices like Vive trackers. For each device, CLOVR
captures the device type (e.g., “HMD 0”, “Controller LeftHand”,
“TrackingReference 1”), its absolute position as a 3D vector, its ab-
solute rotation as a 4D quaternion, its linear velocity as a 3D vector,
and its angular velocity as a 3D vector. This pose data is collected at
the refresh rate of the headset or at a default, user adjustable, rate
of 72 frames per second (fps) if the headset does not specify a re-
fresh rate. Furthermore, CLOVR currently assumes the captured VR
application uses a standing tracking space, but are planning to add
support for seated tracking in the near future and support whichever
environment the SteamVR runtime is set to.

Temporal synchronisation between CLOVR’s own pose and in-
teraction data is guaranteed since the OpenVR data is originating
from the SteamVR runtime. However, we cannot guarantee tempo-
ral synchronization between CLOVR and a target application since
CLOVR cannot directly obtain poses and interactions from the target
application.

CLOVR logs the captured pose data of the VR devices to a
file named Poses and Interactions yyyy-mm-dd-hh-mm-ss-ms.csv,
where yyyy-mm-dd-hh-mm-ss-ms represents the exact time that the
recording began. This naming convention avoids the potential over-
writing of data and facilitates researchers in determining when a VR
experience was captured. We chose to use a comma-separated value
(CSV) file format, as opposed to recent alternatives (e.g., the XR
Open Recording format [35]), because many statistical and machine
learning packages support importing CSV data. Additionally, the
CSV file format is human-readable, which makes it easy to work
with. For each tracked VR device, CLOVR appends a new set of
columns to the CSV file corresponding to the captured properties of
that device, including “Device”, “Position X”, “Position Y”, “Posi-
tion X”, “Rotation X”, “Rotation Y”, “Rotation Z”, “Rotation W”,
“Velocity X”, “Velocity Y”, “Velocity Z”, “Ang. Velocity X”, “Ang.
Velocity Y”, and “Ang. Velocity Z”.

3.3 Capturing and Logging VR Actions
In general, most researchers have focused on leveraging VR poses
for their purposes. Hence, VR actions, such as controller button
presses, are an underutilized set of features. However, research by
Nair et al. [34] demonstrated that contextual features, such as the
slashing of specific Beat Saber blocks, can be used as input features
to improve machine learning models.

Given an OpenVR JSON action manifest file (e.g.,
default bindings), CLOVR binds the provided list of ac-
tions to actual VR input components and uses OpenVR’s
UpdateActionState function to capture the current state of all the
actions. CLOVR then uses OpenVR’s GetDigitalActionData
function to read the states of boolean actions (e.g., a button) and the
GetAnalogActionData function to read the states of vector-based
actions (e.g., a trigger, a joystick).

CLOVR logs the captured VR actions to the same file as the
VR pose data (i.e., Poses and Interactions yyyy-mm-dd-hh-mm-ss-
ms.csv). For each VR action, CLOVR appends a new set of columns
to the CSV file corresponding to the captured state of the action. For
boolean actions (e.g., a button), these columns include the name of
the action, the input source (e.g., the left or right controller), what its
current state is, and whether its state has changed. For vector-based
actions (e.g., a trigger, a joystick), these columns also include the
name of the action and the input source, but also include “X”, “Y”,
“Z” values and their deltas (i.e., “dX”, “dY”, “dZ”).

3.4 Capturing and Recording Microphone Audio
VR users may talk about or verbally respond to their experiences
when immersed, particularly during moments of extreme emotions
like excitement or fear. In some cases, researchers may explicitly
ask VR participants to think aloud [36] or emote aloud [6] to reveal
insights about their cognitive and affective states, respectively. In
short, recording the speech and utterances of VR users may be
extremely useful to researchers.

CLOVR uses Unity’s Microphone class to capture audio clips
from an available device. Captured audio clips are then exported
as Waveform Audio File (WAV) files using the naming convention
Audio Recording yyyy-mm-dd-hh-mm-ss-ms.wav. By default, the
system’s default microphone will be recorded, but the CLOVR in-
terface allows the researcher to specify which microphone to record
from to ensure the VR headset’s microphone is selected. Temporal
synchronization is achieved as this system is integrated directly into
CLOVR and records alongside pose and interactions.

3.5 Capturing and Recording VR Views
The user’s view of the VR experience is another underutilized feature
in prior work. However, what the user is seeing obviously can have
significant effects of the user’s VR experience. Some researchers
have considered the user’s VR view [13], but this rich perceptual
data should be investigated more in the near future.

CLOVR utilizes OpenVR’s GetMirrorTextureD3D11 function
to obtain a native pointer to the texture rendered to each eye and
then uses the AsyncGPUReadback function to read in the current
texture (i.e., the current VR view), display it within the interface
(see Figure 1), and save the texture data for both the left and
right eyes. By default, CLOVR saves the 2D texture data in JPG
files by leveraging Unity’s ImageConversion.EncodeToJPG func-
tion. However, researchers that desire lossless images can choose
to save the texture data in PNG files, which leverages Unity’s
ImageConversion.EncodeToPNG function. By default, CLOVR
records these VR views for both the left and right eyes once per
second (i.e., 1 fps) due to the substantial computations required to
encode and write the images to disk.

Images obtained from OpenVR are HMD-corrected, which means
they are vertically mirrored (i.e., the top left of the view appears at
the bottom right) and the picture brightness is lowered. To correct
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Figure 2: System architecture of CLOVR.

this inversion problem, we provide a “Picture Fixer” utility built
into CLOVR. This utility takes in all of the pictures that were gen-
erated for a prior recording session or in a location provided by the
researcher and inverts them by first linearly inverting the picture
vertically and then linearly inverting the picture horizontally. This
process is slow and recommended to be applied after a recording
session has been completed. Researchers have the option to “Open
Picture Fixer” via the CLOVR interface (see Figure 1). We expect
to fix the HMD-corrected image problem in a future update.

3.6 Capturing and Recording VR Videos

While CLOVR can directly capture and record VR views from the
OpenVR API, we found this process too computationally expensive
to record videos of VR interactions. In particular, converting the raw
textures from OpenVR to JPG or PNG file format introduces a sub-
stantial amount of computation. As a result, CLOVR is not capable
of capturing VR views at the same frame rate as the headset’s refresh
rate. Furthermore, we were unable to find an open-source solution
for capturing in-game audio, particularly from closed-source VR
applications and games.

In order to seamlessly record videos with in-game audio from
closed-source VR applications, we incorporated the ability to call
the Open Broadcast Software (OBS) Studio from CLOVR. OBS
Studio is a free, open-source application for video recording and live
streaming screens and other applications3. In addition to optimized
screen recordings, OBS Studio supports several custom settings,
such as selecting which application or scene to capture, what input
sources to record, how to mix the system and microphone audio
channels, and other settings like the video codec, audio bitrate, and
multipass mode to use.

In order to call OBS Studio from CLOVR, we developed a cus-
tom dynamic-link library (DLL) called Unity Process Passthrough
(UPP), which can launch external applications and remove their
processes when requested by the Unity application. This library is
used to start and destroy the OBS Studio executable when CLOVR
respectively starts and stops recording. This ensures that OBS Studio
can cleanly start and stop when requested by CLOVR, avoiding the
potential of a rogue process indefinitely recording in the background,
which we have observed when attempting to use the OBS API in-
stead of calling OBS Studio. Note, UPP’s source code is available
along with CLOVR.

3https://obsproject.com

When OBS is enabled within CLOVR and an experimenter starts
recording, UPP is used to call OBS Studio with a desired application
and recording profile. By default, CLOVR will attempt to change the
recording profile of OBS to record the SteamVR application. The
name of the recorded video will be yyyy-mm-dd-hh-mm-ss-ms.mkv.
Videos will only be as long as the start and stop of the recording
session. Experimenters can adjust the recorded view through OBS if
they are choosing to record through SteamVR’s VR View, Oculus’s
Oculus Mirror VR viewer, or a custom application that they desire to
record. This change may be necessary in certain situations where a
Meta headset is used and SteamVR’s VR View does not display a mir-
rored view. Temporal synchronization is approximately guaranteed
between CLOVR and OBS by connecting a websocket connection
between the two applications and starting the OBS recording only
after the connection is successful and closed. A delay between the
two applications in the magnitude of microseconds can be expected.

3.7 Administering and Logging In-VR Questionnaires

Questionnaires have long been used to gather information about VR
experiences and compare them [16]. Recent research indicates that
questionnaires administered within VR (i.e., in-VR questionnaires)
are comparable to traditional questionnaires administered outside of
VR but are more enjoyable [1]. Hence, the capability of administer-
ing in-VR questionnaires, especially validated and standard ones, is
valuable to the VR research community.

CLOVR provides the capability to dynamically start a selected
questionnaire from its interface (see Figure 1) to display within the
VR experience as an OpenVR overlay (see Figure 3). For a selected
questionnaire, each question and its anchors are displayed one at a
time. As an OpenVR overlay, the VR user is able to use a virtual
pointer to select choices for each question. Temporal synchroniza-
tion is not guaranteed in our current questionnaire system at this
time, however all questionnaires will be stored to their respective
recording session.

CLOVR automatically captures and logs selected ques-
tionnaire responses to a CSV file named <questionnaire
name> yyyy-mm-dd-hh-mm-ss-ms.csv. Questionnaires are ex-
ported using the list of responses as the header and selected responses
are appended below the header. Questionnaires can be exported at
the end of each recording session or manually to a desired location.

Questionnaires to select from within the CLOVR interface are
loaded through XML formatted files. By default, CLOVR comes
with four preloaded questionnaires. These are standard, validated



Figure 3: Left image: A typical question panel. Right top image: A
panel to demonstrate end-of-questionnaire. Right bottom image: A
panel to show the start of the questionnaire.

questionnaires and include the Simulator Sickness Questionnaire
(SSQ) [19], the Game Engagement Questionnaire (GEQ) [3], the
Spatial Presence Experience Scale (SPES) [11], and the Preliminary
Embodiment Short Questionnaire (pESQ) [7] Additional question-
naires can be added by adding XML files for each questionnaire.

3.8 Project Properties File
This file documents the runtime configuration of OpenVR when
the researcher performed a recording. The data is sourced
from here includes OpenVR details fround from calling the fol-
lowing functions: OpenVR.Chaperone.GetPlayAreaRect,
OpenVR.Chaperone.GetPlayAreaSize,
OpenVR.Applications.GetApplicationCount, and
CVRSystem.GetRuntimeVersion.

3.9 Extensions to CLOVR
CLOVR is designed to be easily be extended by a third party de-
veloper or researcher. Extensions can be implemented to the open-
source Unity project, such as the Tobii Eyetracking API. Other
extensions can be incorporated for future headsets support differ-
ent sensors such as electrocardiogram (ECG) meters, different eye-
tracking software, brain-computer interfaces (BCI), or custom-made
sensors. These extensions will benefit of the temporal synchroniza-
tion between OpenVR and CLOVR.

4 PRELIMINARY RESULTS

To validate the functionality of CLOVR, we collected six datasets
from six distinct close source applications from a single individual.
The targeted applications were commercially available VR applica-
tions that are popular at the time of this paper, which include the
following: The Lab, VRChat, Rec Room, Boneworks, Half-Life Alyx,
and Beat Saber. These games were chosen in part because they
were popular applications, are close source, and provide a diverse
set of environments to record and interact with. To demonstrate our
recording capability without direct application injections, VRChat
uses Easy Anti-Cheat to prevent memory hacks.

4.1 Single-Shot Dataset
We collected a dataset with per-application datasets to demonstrate
the capabilities of CLOVR in collecting OpenVR data as well as
OBS video and audio. All of the targeted applications were collected
on a computer with i9-10850k CPU with 128GB of DDR4 RAM
and a RTX 2080 using the Oculus Quest 3 and the applications were
installed locally on a 1TB Samsung 860 EVO SSD. Figure 4 shows
preview captures of in-game footage from the collected applications.
Figure 5 shows previews of the traced positions from each game
and their respective patterns collected from the user’s HMD and
controllers.

4.1.1 The Lab
This free application involves the use of interacting with different
environments in a demo-like experience of VR to a novice user. The
application involves the use of seven experiences in VR with an
additional one being the hub area where the user can access the dif-
ferent locations. This hub area contains items that are placed around
a central table that are unlocked as the user explores the different
locations. The collected dataset contains a detailed recording of the
table, one demo scene, an exploration of the hub area, and using
action items on top of the table.

4.1.2 VRChat
VRChat is a social interaction application where users are allowed
to use unique avatars and personas to interact with other users. This
game by default logs you into a hub area where the user can se-
lect a unique avatar and walk through portals to different virtual
environments. During data collection, we avoided exposing private
information of users by restricting our records to the hub area of
VRChat.

4.1.3 Rec Room
Rec Room is similar to VRChat in the aspect of being a social
interaction VR game. Users explore different virtual environments
by navigating a user menu and teleporting there. The game begins
with a tutorial environment that demonstrates what users can do in
Rec Room. We recorded this tutorial environment and recorded a
few demo locations including a paintball environment and a dune
buggy virtual environment.

4.1.4 Boneworks
Boneworks is a roleplaying game and shooter game where the user
explores a virtual environment filled with different entities and in-
teractable elements. The game starts at an introductory location
where the user is taught the basics of interaction with the different
aspects of the game. These include a parkour location, a climbing
demo, and a demo location to interact with different objects in the
environment such as picking up objects and interacting with ma-
chines. The recording focused primarily on the introductory tutorial
environment.

4.1.5 Half-Life Alyx
Half-Life Alyx is a VR RPG game where users are put into a first-
person experience in a story. We primarily focused to cover two
chapters of the game, Chapters 1 and 3. This was done to provide a
comparison point between the dataset generated using CLOVR and
the Who is Alyx? [39] paper dataset.

4.1.6 Beat Saber
Beat Saber is a VR rhythm game where players swing light sabers
at directional boxes in VR space to destroy them at the rhythm of a
beat. Players play maps, or rhythm-adjusted patterns of these boxes
and attempt to complete the map. The dataset generated from this
game was of seven maps played with varying levels of success.

5 DISCUSSION

We provide six individual datasets from different applications and
record them utilizing the all of CLOVR’s recording features. These
datasets can serve different purposes, from user identification, mo-
tion studies, and pose and interaction capture. From the trials we
ran, CLOVR did not have a direct impact on the runtime render of
the applications, avoiding cybersickness on the trialed applications.
We believe that CLOVR can serve as a free and complete alternative
to current implementations as a tool for collecting pose, interaction,
and questionnaires. We are also releasing the project open source
and documented in order to foster interest in the research community
for a tool that can be utilized for rapid data collection.



Figure 4: OpenVR image data from applications displayed from top left corner to bottom right corner: The Lab, VR Chat, Rec Room, Half-Life
Alyx, Beat Saber, and Boneworks (All images as seen from the perspective of the left eye)

Figure 5: Motion traces from recorded applications displayed from top left corner to bottom right corner: The Lab, VR Chat, Rec Room, Half-Life
Alyx, Beat Saber, and Boneworks (All images as seen from the perspective of the left eye)



5.1 Current Limitations
The provided dataset is limited to the results of one participant,
limiting its applicability to general user cases. Additional limitations
include the lack of guaranteed temporal synchronization between
different CLOVR recording components, OpenVR as a platform
becoming outdated, and the need of installing OBS onto a platform
for recording video and audio. An important note is that despite
the lack of temporal synchronization guarantees, CLOVR is still a
useful tool for collecting OpenVR related data. CLOVR data has
use cases, such as simultaneous localization and mapping (SLAM),
pose estimations, gesture recognition, and general survey capturing.

5.2 Benefits of CLOVR
CLOVR offers simultaneous recording of different information
sources and removes the requirement of the researcher having to
create specialised tools for collecting and organizing the information.
By having a graphical interface, researchers can also configure and
observe the current status of the recording, present questionnaires,
and configure settings related to the recording. Since CLOVR is tap-
ping into the pose stream presented by the SteamVR and OpenVR
API, data will be the same as presented to the application.

5.3 Replicability and Reproducability
A common issue in the realm of VR datasets is that not all are
public due to privacy statements or clauses that prevent a public
release. Additionally, the data may not be easy to use for outside
the intended researcher’s applications. CLOVR addresses this by
creating a platform from which VR researchers can record datasets
consistently for general VR data. Researchers can also share the
standardized XML files for the questionnaires that they use.

6 FUTURE WORKS

We plan to extend the capabilities of CLOVR by including additional
data available such as the predicitve or realtime skeleton hand infor-
mation provided by OpenVR. Additionally, we also are extending
the recording capabilities through more recording options such as
refresh rate, reference world frame (standing, sitting, or raw and un-
calibrated), a websocket service to stream OpenVR data, and the use
of default SteamVR bindings. We are also working on improving
the recording capability of HMD referenced images so as to mitigate
the bottlenecks currently in the frame capture system.

7 CONCLUSION

We present CLOVR, an open-source tool for directly collecting pose
and image data from OpenVR. The tool can additionally collect
video and audio data from OBS through a built-in DLL that can
enable and disable OBS recording. Because of OBS, users can
select the stream of information that is being collected, weather that
be directly from SteamVR VR View or Oculus Mirror VR view.
Data is automatically sorted into different folders depending on the
type of collected information, compartmentalizing the data to be
machine learning ready. Finally, we present six different datasets
collected from different applications using CLOVR.
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D. Wenig, R. Malaka, and J. D. Smeddinck. Examining design choices

of questionnaires in vr user studies. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI ’20, p. 1–21.

Association for Computing Machinery, 2020. doi: 10.1145/3313831.

3376260

[2] J. Brekelmans. Motion capture using vive/oculus/meta & other vr

devices, 2024. Accessed on 2024-1-5.

[3] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom, K. M.

Burkhart, and J. N. Pidruzny. The development of the game engage-

ment questionnaire: A measure of engagement in video game-playing.

Journal of Experimental Social Psychology, 45(4):624–634, 2009. doi:

10.1016/j.jesp.2009.02.016

[4] B. David-John, D. Hosfelt, K. Butler, and E. Jain. A privacy-preserving

approach to streaming eye-tracking data. IEEE Transactions on Visu-
alization and Computer Graphics, 27(5):2555–2565, 2021. doi: 10.

1109/TVCG.2021.3067787

[5] S. Dent, K. Burger, S. Stevens, B. D. Smith, and J. W. Streepey. The ef-

fect of music on body sway when standing in a moving virtual environ-

ment. PLOS ONE, 16(9):e0258000, Sept. 2021. doi: 10.1371/journal.

pone.0258000

[6] S. D’Mello and R. A. Calvo. Beyond the basic emotions: What should

affective computing compute? In CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, p. 2287–2294.

Association for Computing Machinery, 2013. doi: 10.1145/2468356.

2468751

[7] J. C. Eubanks, A. G. Moore, P. A. Fishwick, and R. P. McMahan.

A preliminary embodiment short questionnaire. Frontiers in Virtual
Reality, 2, 2021.

[8] S. Fremerey, A. Singla, K. Meseberg, and A. Raake. Avtrack360: An

open dataset and software recording people’s head rotations watching

360° videos on an hmd. In Proceedings of the 9th ACM Multimedia Sys-
tems Conference, MMSys ’18, p. 403–408. Association for Computing

Machinery, 2018. doi: 10.1145/3204949.3208134

[9] N. M. Gamage, D. Ishtaweera, M. Weigel, and A. Withana. So pre-

dictable! continuous 3d hand trajectory prediction in virtual reality.

In The 34th Annual ACM Symposium on User Interface Software and
Technology, p. 332–343. ACM, Oct. 2021. doi: 10.1145/3472749.

3474753

[10] J. Hartmann, C. Holz, E. Ofek, and A. D. Wilson. Realitycheck: Blend-

ing virtual environments with situated physical reality. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,

p. 1–12. ACM, May 2019. doi: 10.1145/3290605.3300577

[11] T. Hartmann, W. Wirth, H. Schramm, C. Klimmt, P. Vorderer, A. Gys-
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