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ABSTRACT

Levees are built to safeguard human lives, essential infras-

tructure, and farmland. However, failure of levees can have

catastrophic impacts due to a fast rate of inundation in areas pro-

tected by levees. Earthen levees are prone to failure due to exces-

sive moisture content that reduces the shear strength of the soil.

The use of levee monitoring systems has demonstrated the ability

to reduce the likelihood of failure by creating maps that depict the

saturation levels of the surface of the levee, both in terms of space

and time. By utilizing extensive sensor networks to continuously

monitor these geo-infrastructure systems, the structural deterio-

ration attributed to changing climate can be studied. Measuring

environmental parameters surrounding such structures provides

insight into the potential stressors that cause structural failure.

Steps can then be taken to mitigate those effects on the levees and

maintain structural integrity. However, the massive scale of lev-

ees makes it difficult to monitor with conventional wired sensors.

This paper presents a preliminary investigation into the develop-

ment and validation of UAV-deployable smart sensing spikes for

soil conductivity levels in levees, which is a measurement modal-

ity for determining soil saturation levels. For this work, Gaussian

process regression (also known as kriging) is used to model the

soil saturation levels between sensing spikes obtaining a contin-

uous moisture map of the levees. The expanded data is then cate-

gorized using a clustering-based machine learning approach with

conductivity data from sensing spikes as model inputs. The ma-

chine learning model output is sorted into three categories: dry,

partially saturated, and saturated soil. The findings of a labo-

ratory study are presented, and the implications of the raw and

expanded data are discussed. This work will aid in predicting

potential levee failure risks and maintenance requirements based

on the analysis of the soil conditions using a network of smart

sensing spikes.

INTRODUCTION

Infrastructure degradation and failure are influenced by ex-

treme weather and natural catastrophes. Heavy rainfall and earth-

quakes are shown to have the greatest impact on water-holding

infrastructure like dams and levees [1]. Sensors are installed to

periodically monitor such structures, send out early alerts for

evacuation, and implement preventative measures [2, 3]. Hard-

wired large-footprint sensing is pervasively expensive and time-

consuming since it requires specialized tools and trained person-

nel. The introduction of compact, drone-deployable sensors has

made a rapid assessment of these structures possible and more

cost-effective [4, 5].

When a levee’s structural integrity is undermined by water,

seepage, earthquakes, or other factors, levee failure occurs [6–8].

Overtopping, a kind of levee collapse brought on by flooding,

occurs when the levee’s waterside rises higher than the levee’s

crest, producing external erosion [9]. As the levee seeps, the

FIGURE 1. Cross-sectional model of an earthen levee with the key

layers annotated along with possible failure points.

water flushes out soil particles, creating interior channels, and

sand boils. Internal erosion, also known as pipe erosion, is a

phenomenon that weakens the structural integrity of levees over

time. Subterranean dead roots and wild animals that dig under

the levee are considered the main contributors to gaps that water

seeps through which eventually leads to failure [7]. Figure 1

shows a detailed layout of a levee structure.

Information on soil quality is essential for site assessment,

resource management, and planning of land use [10]. There are

several techniques, including inverse distance weighting (IDW)

and ordinary kriging (OK), for interpolating the geographical

distribution of variables such as soil quality and moisture con-

tent [11] [12]. Regression kriging (RK), a technique that com-

bines regression with spatial interpolation, has been proposed

by researchers in recent years to map the distribution of soil at-

tributes spatially [13]. Due to the simplicity of ordinary krig-

ing and availability in many Geographic Information Systems

(GIS), it has been frequently employed as an interpolation tech-

nique [14].

Finding the cluster structure in a data set with the most simi-

larity within the same cluster and the highest dissimilarity across

clusters can be accomplished via clustering [15]. The k-means

algorithm is acknowledged as the most established and widely

used partitioning technique [16]. Several cluster validity indices,

such as the Akaike information criterion (AIC) [17], Davies-

Bouldin index (DB) [18], extended Dunn’s index (DNg) [19] are

approaches presented in the literature for the k-means clustering

technique.

As an initial investigation, this work presents the develop-

ment and validation of UAV deployable smart sensor spikes for

soil conductivity levels in levees, a method of detecting soil sat-

uration levels. To obtain continuous conductivity maps of the

surface soil in levees for this work, Gaussian process regression,

also known as kriging, is utilized to estimate the mapping of

soil saturation between sensing spikes. Using a clustering-based

machine learning approach and conductivity data from sensing
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FIGURE 2. The UAV deployable sensor package.

spikes as model inputs; the expanded data is then categorized.

The output of the machine learning model is divided into three

groups: dry, partially saturated, and saturated soil. The results of

a lab experiment are reviewed, along with the implications of the

raw and interpolated data. The investigation of the soil condi-

tions utilizing a network of smart sensing spikes in this work can

help identify levee seepage that has the potential to lead to main-

tenance or levee failures. The contributions of this work are: 1)

The expandment of experimental data using kriging, and 2) The

categorization of soil saturation using a network of smart sensing

spikes.

HARDWARE DEVELOPMENT

The hardware development phase of this work consists of

two steps: 1) developing the sensing spikes, and 2) experimental

setup.

SENSING NODE: With the goal of measuring underground

moisture while ensuring durability during UAV deployment, the

sensing node was developed to be resilient yet lightweight to

minimize payload. Field deployments of the sensing spike uti-

lized a helical fetching design 3D printed in PLA, which pro-

tected the delicate electronics and provided rotational stability

to ensure that the probe points downwards during free fall (see

figure 2). Solar cells were also added to aid in load sharing dur-

ing sunny conditions, extending battery life. For the purpose of

simplifying the network of sensing node configuration, this study

focused solely on the conductivity measuring aspect of the node.

The sensing node has an instrumented spike, depicted in figure 3.

The sensing spike has conducting surfaces - an outer tube and an

inner rod - separated by an insulating ABS plastic tube. This de-

sign allows for the integration of a conductivity module into the

tip of the spike, enabling the spike to also function as an under-

ground moisture probe.

EXPERIMENTAL SETUP: In this work, a simplified config-

uration of just the sensing spikes is used to demonstrate the ca-

FIGURE 3. The sensing spike construction.

pability of the sensing node for monitoring and mapping spatial

conductivity. Figure 4 (a) displays the experimental setup used

to develop data for this work. For testing, a container of 10.8 x

12.4 inches is used. Sand is then filled to a height of 1.5 inches.

Five sensing spikes are placed in the sand as shown in figure 4

(b).

A potential difference of 5 V was provided by a DC power

supply to the spikes. Voltage is then measured via an independent

analog to digital converters onboard the microcontroller simulta-

neously to be logged into memory. The coordinate of the five

spikes is shown in table 1. A breakdown of the electrical circuit

is depicted in figure 5. The spikes of the moisture-sensing net-

work are set in parallel concerning power and ground (shown as F

and G respectively). Each spike (R1-R5), modeled as a variable

resistor in the schematic, is configured as an independent volt-

age divider using a constant 3.9 kΩ resistor. Potential points A

through E are then measured using an analog to digital converter

onboard a microcontroller as V = [v1, v2, · · · ,v5]. In this con-

figuration, the voltage drop measured and point A for instance

will be directly proportional to the moisture level measured by

the spike (R1).

TABLE 1. Five-spike moisture test position coordinates.

spikes
notation of fixed resistor

with respect to the spike

x-coordinate

(inch)

y-coordinate

(inch)

z-coordinate

(inch)

1 v1 2.5 9.3 1.69

2 v2 8.3 9.3 1.69

3 v3 5.4 6.4 1.69

4 v4 2.5 2.5 1.69

5 v5 8.3 2.5 1.69

METHODOLOGY: Figure 6 presents a flowchart from exper-

imentation to the moisture classification procedure. Five sensor

spikes are inserted in the sand-filled box during the experiment.

Voltage measurements are taken before introducing water flow

to acquire a baseline measurement of the dry sand. Water is
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FIGURE 4. Experimental setup of the soil classification moisture test using a network of sensing spikes with key components annotated, showing:

(a) table-top test, and; (b) layout of the five sensing spikes used in this work.

FIGURE 5. Electrical circuit of the network of sensing spikes.

then added to the corner of the container, and moisture spreads

throughout the sand. After gathering data from sensor spikes, the

dataset is fed into a mapping algorithm as five simultaneous mea-

surements, where the data is interpolated to cover the entire test

area using the kriging model. By applying k-means clustering,

the data is then classified into the three categories of moisture

levels.

DATA INTERPOLATION: To interpolate the data for all the

spatial points, ordinary kriging is adopted. Where the spikes’

locations are S = [s1,s2, · · · ,s5] with their coordinates [X ,Y ] =
[(x1,y2),(x2,y2), · · · ,(x5,y5)]. The voltage measurements are

given as V = [v1,v2, · · · ,v5]. Provided the five observations at the

discretized locations, the kriging model attempts to accurately

map a continuous vk at all possible sk where sk = (xk,yk). The

desired prediction is given in the form,

vk = µ + ε(sk) (1)

FIGURE 6. A flowchart from the experiment and the soil condition

analysis process.

where µ is the true mean of the entire dataset. As the true mean

value µ is undetermined, the estimation is performed by ordinary

kriging and ε(·) is the error (small scale variation) at s. The

estimation v̂k can be presented as:

v̂k =
n

∑
i=1

λivi (2)

4 Copyright © 2023 by ASME



where λ is the interpolation weight. Here assuming λ1 + λ2 +
λ3 + λ4 + λ5 = 1 to make the unbiased result. For ordinary

kriging, three conditions need to be satisfied [20]. 1) Linearity

(v̂k =∑
n
i=1 λivi) 2) Unbiasedness (∑

n
i=1 λi = 1), and 3) Minimized

error: the selection of the most appropriate values for the coeffi-

cients λn and the Lagrange multiplicator 2m. E is the estimated

function. Therefore, the loss function for the problem becomes:

Lkrging = E

(

vk −
n

∑
i=1

λivi

)

−2m

(

n

∑
i=1

λi −1

)

(3)

PyKrige library is utilized to do the ordinary kriging model.

The [X, Y, V] is used to train the Gaussian variogram models.

After that, the trained model is used to estimate the values for

the overall setup (10 x 10) with a resolution of 0.01 inches on

each axis.

CLUSTERING

This work classifies moisture levels in earthen levees into

three clusters, namely ’dry’, ’partially saturated’, and ’saturated’.

The data obtained by the interpolation process is fed into a k-

means clustering algorithm to be classified into one of the three

categories. To measure the similarity between different points,

for instance, sp and sq, the squared Euclidean distance is used

with Voltage(v) being the sole feature considered. So, the simi-

larity is shown as:

||sp − sq||
2
2 = (vp − vq)

2 (4)

Based on the Euclidean distance metric the k-means algo-

rithm can be considered a simple optimization problem. The it-

erative approach is followed to minimize the within-cluster sum

of squared error (SSE) or cluster inertia. The objective would be:

LSSE =
n

∑
i=1

m

∑
j=1

w(i, j)||vi − c j||
2
2 (5)

where, c j is the centroid for cluster j and w(i, j) = 1 if the sample

vi is in cluster j or 0 otherwise. As three clusters are being used

here, m=3.

RESULTS AND DISCUSSION

This study’s findings are divided into two categories: kriging

and clustering.

During kriging, only a single timestamp of measurements is

considered for moisture mapping of the whole experimental area.

From table 2, spike 4 voltage measurement is shown to be higher

FIGURE 7. The experimental setup showing the positions of the five

spikes during moisture propagating.

TABLE 2. Five spikes voltages for a single time stamp.

spikes spike 1 spike 2 spike 3 spikes 4 spike 5

voltage (V) 0.014 0.014 0.024 1.549 0.078

TABLE 3. Threshold and centroid values for k-mean clustering.

minimum v

(V)

maximum v

(V)

centroid v

(V)
categories

-0.168 0.324 0.019 dry

0.324 1.000 0.629 partially saturated

1.000 1.635 1.372 saturated

compared to the other four spikes while spikes 1 and 2 show

the lowest voltage reading. So the area surrounding spike 4 is

considered to have the highest level of moisture. Figure 7 shows

the experimental setup after introducing water flow to the corner

of the test area, which correlates to the moisture map produced

by the kriging algorithm shown in Figure 8 (a).

Spatial kriging outcomes from the moisture test are shown

in figure 8 (a). From moisture mapping, the voltage range shows

around 0 to 1.5 V. Moisture mapping by spatial kriging shows

similar outcomes to the experimental outcomes as figure 7. The

bottom left corner has the largest voltage meaning more moisture

compared to the top right corner of the mapping which is around

1.5 V.

Utilizing data from moisture mapping to classify the soil

conditions. Figure 8 (b) displays three clusters labeled dry, par-

tially saturated, and saturated based on k-mean clustering. The

green-colored cluster is the saturated area which matches the

ground truth shown in Figure 7. The orange color cluster is the

partially saturated area and finally, the cyan color cluster indi-

cates dry sand.
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FIGURE 8. Outcomes from the moisture test showing: (a) spatial

kriging outcomes; and (b) categorizing soil conditions by clustering.

Table 3, shows the threshold of each cluster in voltage and

centroid value for each cluster. This voltage is directly propor-

tional to the soil moisture. The highest voltage of the centroid is

1.372 V at the threshold between 1.0 to 1.635 V. This centroid

value is close to the spike 4 value 1.549 V values from table 2

and considered this cluster as a saturated one. Moisture at spike

4 is greater than at other spikes.

The centroid value of 0.629 V is considered partially satu-

rated as this threshold 0.324 to 1.000 V is close to spike 5, 3

values from table 2. The lowest value of the centroid is 0.019

V and ranges between -0.168 to 0.324 V whose location is the

right side of the experimental setup figure 7. Ordinary kriging

produces a negative value as a measurement. When nearby data

eliminate outlying data, ordinary kriging (OK) encounters nega-

tive weights. This cluster is categorized as dry.

Dry, partially saturated, and saturated soil is properly cate-

gorized as such in the soil condition analysis from the moisture

propagation stage from experimental figure 7, moisture mapping

figure 8 (a), and finally clustering figure 8 (b).

CONCLUSION

This paper presents a preliminary experiment on the devel-

opment and validation of UAV-deployable smart sensing spikes

for soil conductivity levels in levees, a measurement method for

estimating soil saturation levels. For this investigation, Gaus-

sian process regression, widely known as kriging, is utilized to

estimate the mapping of soil saturation between sensing spikes

to get continuous conductivity maps of the surface soil in lev-

ees. The expanded data is then classified using a clustering-based

machine learning approach, with conductivity data from sensor

spikes contributing as model inputs. The measured voltage is ex-

actly proportional to the soil moisture as it is inversely related to

soil resistance. The threshold for the saturated condition is cho-

sen by clustering and ranges from 1.00 to 1.635 V with a centroid

value of 1.372 V. The centroid value for the dry state is 0.019 V,

with a threshold of -0.168 to 0.324 V. Using a threshold of 0.324

to 1.000 V and a centroid of 0.629 V, the partially saturated state

that lies between dry and saturated conditions is also character-

ized. To identify possible levee failure concerns and maintenance

needs, this work evaluates soil conditions utilizing a network of

smart sensing sensor spikes.
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