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Abstract

The growth in cloud-based computing platforms and open data repositories is enabling new
workflows, standardization of analyses, and synthesis projects across many domains, including
hydrologic science. Here, we established an open-source tool and database for Stream Solute
Tracers, leveraging community resources including both HydroShare (for data storage, curation,
and analysis) and HydroLearn (linking our tool to disciplinary educational resources). This
framework provides users cloud access to a standardized toolbox for analysis of experimental
data producing an standardized analysis for individual experiments. Individual experimental
results are presented in the context of all studies in the database, providing context for
interpretation of results. Both the input and output are aggregated within a PostgreSQL
database providing a queryable, single database for stream tracer experiments. Standardization
of the analysis of these experimental results will ensure reproducibility for future research, and
this is built on a discipline-specific platform to reduce barriers to entry for users.

1.0 Introduction

The data deluge (Bell, Hey, and Szalay 2009) has driven a revolution in our approach to
science, with data-driven analysis now complementing the traditional scientific method across a
host of disciplines (e.g.,(A. Ward et al. 2022) ). While a range of flexible, powerful data science
techniques have emerged to augment traditional modes, the successful application of data
science to disciplinary approaches ultimately relies upon high-quality, organized data sets for
analysis. To unlock the potential gains from these approaches, datasets must be sufficiently
large and with complete metadata such that a model can derive meaningful underlying
relationships. In many areas of research, data synthesis is an insurmountable step because
underlying data have not been organized nor reported with sufficient metadata to enable
synthesis, ultimately hindering additional science from taking place. Efficient and effective data
documentation, synthesis, and storage has long plagued scientists and researchers. Over the
last 50 years we have transitioned from bound notebooks and paper records stored in individual
offices to digital, open, cloud hosted data. This has created organization by individual projects
and data types (e.g., StreamPULSE), research neworks (e.g., LTERNet, Ameriflux), non-profits
(e.g., GLEON, CUAHSI), and agency-specific databases (e.g., ESS-DIVE). As the infrastructure



for data collection has grown, researchers have been able to break away from a ‘one data set
for one location’ paradigm and can now analyze data that span several locations,
measurements, and scales (“NEON” 2022, “GLEON” 2022, “LTER” 2016, “AmeriFlux” 2022).
With data collection networks established, researchers’ focus shifted to the next requisite steps:
data discovery and interoperability (e.g., ESS-DIVE, and Hydroshare). The combination of
established data collection networks and services for storage and discovery of these data
enables synthesis efforts and scientific discovery that was heretofore impossible.

Data collection networks have expanded to serve increasingly narrow domains, enabled by the
rapid rise in computing power and decrease in storage costs. For example, the StreamPulse
project aimed to take the ‘pulse’ of a river or steam by collecting and analyzing in-stream
dissolved oxygen data, providing a standardized approach to estimate whole-stream respiration
and simultaneously building a database of more than 500 million data points spanning more
than 700 sites (“StreamPULSE” 2022). This approach provides clear benefits to the community,
with standardization of data collection and analysis enabling intercomparisons. Moreover, the
aggregated data in StreamPULSE enables synthesis, which is already generating insights not
possible without the underlying database and analytical tools (Ulseth et al. 2019; Savoy et al.
2019; Bernhardt et al. 2018; Appling et al. 2018). Despite being a relatively niche application
(whole stream respiration), the use of shared protocols for data collection and analysis has clear
scientific benefits. With widespread access to computing power, similar applications could be
implemented to standardize, organize, and enable systems of specific data types or
experimental approaches. Indeed, this approach is being actively employed in several synthesis
efforts including the 100 Plastic Rivers project (“100 Plastic Rivers - a Global Investigation”
2022), the 1000 intermittent rivers project (Thibault Datry et al. 2016; T. Datry et al. 2018;
Shumilova et al. 2019; Schiller et al. 2019), the Cellulose Decomposition Experimental
(CELLDEX; (Tiegs et al. 2019), WHONDRS (Stegen and Goldman 2018)), and countless similar
initiatives. One similar area that is lacking a standardized approach for data storage and
analysis is stream solute tracer studies.

Stream solute tracers have been a popular tool to study transport and transformation of solutes
through streams and their connected river corridors for decades (e.g., (Thackston Edward L.
and Schnelle Karl B. 1970; Fischer et al. 1979; Stream Solute Workshop 1990; Bencala and
Walters 1983). While a host of approaches exist to collect and analyze these data, the
community presently lacks any standardization, making intercomparison challenging. From an
initial focus on travel times (e.g., “time of passage” studies) and advection-dispersion modeling
(e.g., (Fischer et al. 1979)), the toolkit for interpretation of these data has grown substantially.
Current, popular techniques include advection-dispersion modeling [ibid], interpretation of
holdback (Danckwerts 1953), temporal moments (Harvey and Gorelick 1995; Gupta and
Cvetkovic 2000), channel water balance (Payn et al. 2009) , separation of mass involved in
transient storage (Wlostowski et al. 2017) , and StorAge Selection frameworks (Ciaran J.
Harman 2015; C. J. Harman, Ward, and Ball 2016; A. S. Ward, Kurz, et al. 2019). Moreover,
several models exist to interpret findings using an inverse modeling approach, including the
popular Transient Storage Model (Runkel, McKnight, and Andrews 1998; Bencala and Walters
1983), STAMMT-L [Haggerty and Reeves, 2002], and several additional model formulations
e.g., (Wérman et al. 2002; Boano et al. 2007). Here, we develop and demonstrate a
standardized workflow for data analysis, integrating the approach with a grassroots training
effort that provides support to researchers (“Stream Solute Tracers” n.d.). Providing this
framework for the analysis will ensure reproducibility, which is currently a well documented
challenge in scientific research (Fidler and Wilcox 2021). The establishment and function of a
database for stream solute tracers that automates and standardizes analyses for individual



researchers, aggregates a sufficiently large and complete data set to enable future synthesis,
and we demonstrate one application of this approach.

To support an open-source, accessible tool and maximize accessibility, we design our tool on a
cloud-based platform. Cloud platforms have become a staple across the scientific community
with many domain specific fields creating designated platforms. In the hydrologic sciences,
HydroShare (“Find, Analyze and Share Water Data” 2022) provides a platform for cloud based
data-analysis and storage. Cloud based tools are popular because they standardize the data
management required by funding agencies, enable repeatable analysis of data sets, and
provide universal access for discovery and analysis of data sets. In short, such tools underpin
FAIR data and software, a cornerstone of modern scientific best practices (Stall et al. 2019;
Enabling FAIR Data Community 2018). Furthermore, hosting solute tracer analysis on
HydroShare will also enable the aggregation and storage of experimental data across suites of
sites and the accompanied analysis. Making these data openly available will promote additional
science and collaboration. Just as the StreamPulse network is informing our understanding of
whole-stream respiration, so too will a mature stream solute tracer data set support scientific
inquiry and synthesis spanning a variety of temporal and spatial stream scales.

Our objective in this study is to document the development and deployment of an open-source,
cloud-based framework to standardize the processing and interpretation of stream solute tracer
data. Our deployment includes standardization of metadata and building of an open, accessible
database to enable aggregation of data sets for future synthesis. This tool will promote
reproducible and sharable science openly available. With reproducibility and openly available
data we can develop and provide training that is transferable for use across a variety of courses.
We are motivated by a recent HydroLearn module detailing experimental and analysis methods,
integrating our database and analysis tool with a scaffolding of educational material.
Standardizing the workflow for data storage and analysis to follow state-of-the-science
instruction will enable researchers to confidently and consistently execute and interpret solute
tracer studies, and build toward future synthesis.

2.0 Methods

2.1 Field Methods & Time Series Analysis

This tool is built upon the established reach-scale solute tracer studies presented in the Stream
Solute Tracers HydroLearn Module (“Stream Solute Tracers” 2020). These methods follow
those implemented in several studies (e.g., (A. S. Ward, Wondzell, et al. 2019; A. S. Ward,
Zarnetske, et al. 2019; Payn et al. 2009; A. S. Ward et al. 2013)). Briefly, the approach uses a
series of two conservative solute tracer tracer releases. The first release is at the downstream
end of the study reach and used for dilution gauging. The second release is at the upstream end
of the study reach, used for dilution gauging at the upstream end of the study reach and also
observed at the downstream location to assess short- and long-term storage within the reach.
The key data generated from this approach are three time-series (s) of background-corrected
solute tracer concentration (g/m?), which are the key input data to subsequent analysis.
Additional input data for each experiment, which support analyses and assembly of a
comprehensive database, including time of year, stream order, and geospatial location. Input file



examples and templates are provided for users to easily format their own data sets in the
HydroShare entry associated with this tool(“Data_example_resource” 2021).

Analysis of solute tracer data follows exactly the methods outlined in the associated HydroShare
course. These are standard analyses in the field, and are well-documented in the studies cited
below. Briefly, time series are analyzed to calculate mass recovery and channel water balance
(Payn et al. 2009), holdback (Danckwerts 1953), temporal moments (Schmid 1995) , StoraAge
Selection (C. J. Harman, Ward, and Ball 2016), and the partitioning of recovered mass between
transient storage and advection-dispersion (Wlostowski et al. 2017; Runkel 2002).
Implementation of each analysis is detailed in the Jupyter Notebook documented here
(“SoluteTracerTool” 2021), and explained in detail in the associated HydroLearn course(“Stream
Solute Tracers” 2020).

2.2 Implementation on HydroShare

HydroShare provides the conduit for researchers that perform stream tracer solute experiments
to access tools for their analysis and storage of their results. Instead of needing their own code,
we have provided standardized script for the user to perform their own analyses. Our code is
deployed using an interactive, python-based tool that is accessible through HydroShare and
usable as a jupyter notebook. The notebook format allows line by line execution of code on the
users’ data, providing two key benefits. First, the line by line execution enables a workflow for
researchers to check each step while analyzing their own data. Second, this allows for
integration of rich text and links to the associated HydroLearn modules, providing a scaffolding
for users that documents what is happening in each section of the code.

This framework was built with the assumption that the experiment was a slug injection and the
user has the values associated with this procedure (e.g., tracer masses), consistent with several
recent studies (A. S. Ward, Wondzell, et al. 2019; A. S. Ward, Zarnetske, et al. 2019; Payn et al.
2009) and following the protocols prescribed in the associated HydroLearn course. This tool
requires three time-series of concentrations associated with the upstream and downstream
injection sites. The users are required to have these three files post-processed and formatted in
two column vectors per file representing the time in seconds from injection in the first column
and concentration of tracer above background in (g/m®) in the second column. These three files
are uploaded to HydroShare by users with an accessible resource ID, which is supplied to the
tool. The resource ID can be used within the existing hsclient package on HydroShare, enabling
rapid information passing using RESTful services to pass the user data to the tool. The results
of the analysis are passed back to the location of that resource ID and stored in a collection as
part of an ongoing compilation of results.

Using hsclient and the users resource ID, the users files are sent to the container running the
jupyter notebook. The files are imported as *.zip files and with the module shutil are unzipped
within the container. The data from the files is then extracted and formatted using pandas. The
tool then plots and displays the time-series of the users data. The tool then proceeds to analyze
the data in a series of steps, which include:



1. Estimating advective timescale and the modal velocity of the solute tracer and by
estimating longitudinal dispersion using two methods

2. Discharges at the up- and downstream end of the study reach are estimated by dilution
gauging and using trapezoidal integration via numpy. Mass recoveries are also
calculated for each tracer release, as well as net and gross changes in discharge along
the study reach.

3. Short term storage calculations are computed using the scipy.integrate method with the
second downstream injection concentration and time data (datafile_name). From this we
can determine the maximum timescale of the observation (e.g., {99 (Mason, McGlynn,
and Poole 2012)). This eliminates some subjectivity when determining the time at which
the tracer is no longer present, since trailing can be challenging to observe with field
probes (Schmadel 2011). The temporal moments, coefficient of variation, skewness,
holdback function and apparent dispertivity and dispersion are computed using the
timescale determined from the short term storage calculations. Using the scipy class
interpolate.interp1d linear interpolations for 5,10,25,50, 75, 90 and 95 time percentiles
are computed in addition to t99.

4. Given a stream reach (known volume) the ranked storage selection function (rSAS)
provides a way to account for the age of infinitesimal segments of water within the
volume provided the discharges are known. The rSAS theory can provide a way to
characterize the hydrochemistry of varying types of flow systems relevant to hydrology
and biogeochemistry (Rinaldo et al. 2015).

With computations complete, the results of the analysis are stored in a database that will
aggregate and make accessible solute tracer data. We constructed a relational database for a
body of previously published and novel observations using a popular, open source database
PostgreSQL (“PostgreSQL” 2022) selected for its reliability and robustness. Using a database
will provide features not possible though traditional file storage like querying data based on the
metadata for each experiment. Additionally the build out of this database with new data will be
more efficient than compiling and storing excess csv or similar file types.

2.3 Enabling contextual interpretation of results

2.3.1 Displaying results in context

Upon completion of the analysis and storage of the results, we next display the results in the
context of a larger database of stream solute tracer studies that is aggregated from users of the
tool, (FIG 5). The database itself is housed within a collection on HydroShare and openly
available (Balson 2022). After the user supplies their resource ID, their files are automatically
transferred to a community-accessible collection for incorporation to a stream-tracer database
hosted on HydroShare. This transfer and updating of a database enables a contextual
component to this analysis previously not possible. The user now has the capability to see their
experimental results in the context of all prior solute tracer studies that have been analyzed. For
example, code is provided to display the experiment being analyzed in context of the database
using boxplots and cumulative distributions. This enables users to assess - for example - if their



site has low, average, or high turnover or skewness, which may frame their interpretation of
results. Additionally this provides the user additional data checks. One example of a data check
is that users can determine if their experiment appears an outlier relative to existing data. This
may cause users to critically reflect on whether this is expected or indicate that data processing
leading up to HydroShare may warrant further scrutiny, providing a ‘soft’ QA/QC to the
researcher.

2.3.2 Building a database for future analysis

In addition to providing context for individual users, the database itself will grow and persist to
enable future synthesis efforts. Future use cases might include analysis of studies from a
particular region of interest, based on stream order, as a function of discharge, or any host of
other combinations of factors. As data are added to this database, future work in filtering and
classifying results is supported by the standard database-agnostic querying supported by
PostgreSQL. In addition to simple searches of the database, the tool might also enable more
advanced analyses. For example supervised learning techniques for classification (e.g., K
nearest neighbor) could be used in order to evaluate if streams can be classified from their
stream-tracer results and available metadata. Likewise, unsupervised learning techniques could
be deployed on the data to see how the data can be separated based only on the
characteristics within the dataset. These provide useful information whether they can or cannot
be effectively classified because the underlying why can still be evaluated further, and perhaps
to assess when and where new studies are needed to resolve trends discovered via such
analyses.

3.0 Case Study: Stream solute tracers at the H.J.
Andrews Experimental Forest

3.1 Experimental Information

We populated the database with 120 solute tracer experiments presented in (A. S. Ward,
Zarnetske, et al. 2019), each of which was collected in accordance with the protocols outlined in
(“Stream Solute Tracers” 2020). Tracer studies span 1% to 5" order reaches in the H.J. Andrews
Experimental Forest (Western Cascades, Oregon, USA). All injections used NaCl as a
conservative tracer, recording specific conductance and using a site-specific calibration curve to
convert the time series into background-corrected concentrations. We used this previously
published data set to confirm that our implementation here was consistent with individual
analyses of the timeseries, and because it provides a large set of data for analysis.

In addition to the pre-populated database, we selected one additional solute tracer study to act
as a demonstration of how a user can analyze new data and compare it to the pre-existing
database. For this, we used the first injection documented in (A. S. Ward et al. 2013), conducted
in the lower 50-m of WS01 at the HJ Andrews Experimental Forest. The release and
documentation followed the same protocols as the synoptic data set and our standard
methodology (“Stream Solute Tracers” 2020). While previously published, this experiment has



never been compared to those in our database, so comparing this result to the basin-wide
synoptic study is a useful exercise in assessing the repeatability of solute tracer studies.

3.2 Results

3.2.1 Analysis of the individual BTC
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Fig 1: File structure in Hydroshare. Users upload three background-corrected concentration
timeseries as an input to the workflow documented here.

The three required input files are prepared in a format required (column 1 as time elapsed in
seconds, column 2 as tracer concentration in g/m* above background) and uploaded to the
users HydroShare space as a resource (see, Fig. 1), a process that will create a unique
resource ID. The default naming scheme of the files are DS_INJ1, US_INJ2 and DS_INJ2, with
both .csv and .xIsx formats accepted and templates provided. The resource ID associated with
the three files is entered on line 4 of the ‘User Input’ section along with the users HydroShare
credentials (see Fig. 2). This section creates a connection between the user's HydroShare
space (i.e., the location of the uploaded files) to the notebook using the hsclient python
package. If the user has specific naming conventions tied to their files that need to be retained,
the user does have the ability to change the names of their files within the ‘File Names’ cell on
lines 13,16 and 19 of the notebook (see Fig. 3).



1 # We will need some things to get started we will first sign the user in with #*.sign_inf)\
2 # We will then request the resource ID of the location where the three required files are stored
3

4 resIdentifier = "fideBbaflf82456e9605221deeflabSh’ # This is a resource with only the three files
1 # This is for when we are not already running on hydroshare

3 from hsclient import HydroShare

4 username = 'username’

5 password = 'user password'

hs = HydrofShare(username, password)

from hsclient import HydroShare
hs = HydroShare()
hs.sign_in()

WOk

# Get an existing resource using its identifier from the user where the data is stored
existing_resource = hs.resource(resldentifier)
existing_resource.dnwnload[] # this will download to the container runnin the notebook

SR

5 print{'Just retrieved the resource with ID: ' + resIdentifier)
Just retrieved the resource with ID: fdéd4ef8bafl6B2456e59605221deeflabSh

Fig 2: User credentials of resource ID.

File names

Please enter the names of your files to the correct location below.

# The three required files location

# These need/should be automagically handled by the notebook given a user--users hydroaccount space

# When we wrap this into a function determine if there should be optional arguments for filenames or just make
# them have to be like they are below.

#Injection at downstream location

S E R

8 # now lets construct the path
10 path = resIdentifier + '/data/contents/'

12 #dslfile = 'fdd4eBbafl682456e9605221deef3ab5b/data/contents /DS INJ1-tbbtest.xlsx'
13 dslfile = path + 'DS_INJ1-tbbtest.xlsx'

15 #Injection at upstream location
16 us2file = path + 'US_INJ2-tbbtest.xlsx'

18 #Upstream injection at downstream location
19 ds2file = path + 'DS_INJ2-tbbtest.xlsx’

Fig 3: File naming conventions can be customized, as in the above with ‘-tbbtest’ appended to
the default filenames.

After the user has entered their resource ID, credentials and ensured the proper naming
conventions were used the breakthrough curves from the experimental data are plotted. This
provides a first opportunity for the user to confirm their data quality and visually inspect the
inputs being analyzed. These plots are then automatically saved to the user's HydroShare
resource alongside the uploaded files. Once the user is satisfied their raw data appears as
expected the remainder of the analysis can proceed. A results summary file is automatically
generated as a .csv file and stored in the same HydroShare resource as the three files and the
breakthrough curves (see Tab. 1, Fig. 4).
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Fig 4: Break through curves

The length L in meters is 53
Start date and time 2016-08-01 14:55:00
End date and time 2016-08-01 15:13:00
mass1 in grams 622
mass2 in grams 1221.4
Q_us (m3/s) 0.011
Q_ds (m3/s) 0.011
dQ (m3/s) 0.000
Qlossmin (m3/s) -0.002
Qgainmin (m3/s) 0.002
Qlossmax (m3/s) -0.003
Qgainmax (m3/s) 0.002




mloss (g) -235.769
mrec (g) 985.631
V (m/s) 0.033
M1 256591237.099
M1 Normalized (hr) 0.773
M2 6.07E+21
M2 Normalized (hr*2) 0.172
M3 -1.56E+30
M3 Normalized (hr*3) 0.137
skewness (unitless) -0.003
skewness norm (unitless) 1.906
CV (m) 0.537
appdispersivity (m2/hr) 4.571
appdispersion 313.241
Holdback 0.654
t05 (hr) 1366.139
t10 (hr) 1495.491
t25 (hr) 1791.489
t50 (hr) 2305.189
t75 (hr) 1366.139
t90 (hr) 4737.588
t95 (hr) 6057.90
t05 norm (hr) 0.379
t10 norm (hr) 1495.491
t25 norm (hr) 1791.489
t50 norm (hr) 2305.189
t75 norm (hr) 1366.139
t90 norm (hr) 4737.587
t95 norm (hr) 6057.9
tpeak (hr) 1770
cpeak (g/m3) 49.065




cpeak Normalized 1.916

Table 1: Output results from a representative experiment using the Stream Tracer Tool

3.2.2 Analysis of the BTC in context of the pre-existing database

Once the user has the results of their own experiment, we proceed to display the result in
context of the database. For example, while calculation for individual data would confirm our
analysis that the coefficient of variation (CV; a measure of symmetrical spreading associated
with longitudinal dispersion) of our test case is 0.54, this provides little context. To provide
additional understanding, results for the analyzed data set are displayed for the user alongside
histograms built from the aggregated database (Fig. 5). Visual inspection confirms the CV value
of our test case appears to be central to the distribution of the CV’s stored in the database.
While we have discussed CV, plots are automatically generated in the notebook to visualize
results of individual studies across a host of parameter values. For example, the temporal and
central moments (first row Fig. 5), our test value is in the highest frequency bin, which is the
leftmost bar. Values for the holdback functions, CV and skewness are central to the distributions
(bottom row, Fig. X5).

Results in Context
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Fig 5: Results for the new data set being analyzed (vertical dashed line in each panel)
compared to distributions built from the aggregated database of results. Note this is one of
several figures that can be produced in the notebook to enable rapid inspection of results in
comparison to those previously analyzed.

3.3 Searchable Database



As tracer studies are aggregated and the database expands, they are aggregated in an SQL-
style database, providing the additional capability of query searches. Researchers accessing
the database have the ability to extract all information on a given set of experiments. For
example if a user is interested in evaluating all streams with an experimental reach length
between 50 and 100 meters, these data can easily be extracted with a query. Examples of
common SQL searches will be available to the user via the documentation in HydroShare, the
python function (get_meta) built to extract the metadata is shown as one example ( Fig. 6).
Additionally the extendability of SQL will allow users to customize their queries and tailor them
for their exact needs. This flexibility will promote the inclusion of additional analysis to be
performed ad-hoc to the current analysis.

import pandas as pd
import psycopg2

def get meta(sitename):

conn = psycopg2.connect(
database="streamtracer"”,
user='postgres’,
password='password',
host='localhost’,
port='5432

)

sql = "SELECT meta tag, meta vals FROM %s;"
data = pd.read sql query((sql,sitename), conn)
return data

Fig 6: Example of common SQL searches for the database

3.4 Classification Techniques

To demonstrate the usefulness of this framework we incorporated a non-supervised
classification technique (k-means clustering). This analysis extends the SQL function of the
database (Section 3.3) for use within a function. This function can extract the entire database or
subsets of data from a search criteria. As an example we performed k-means clustering on the
data. We followed standard techniques to reduce the number of features and determine the
appropriate number of clusters for the k-means model. Application of unsupervised learning
techniques as a characterization method has become a useful approach across a host of
applications (Ayustyana, Wibisono, and Sihombing 2021; Ishitsuka et al. 2022; Yang et al.
2019).

A first step in model building is data preprocessing and visualization, we used a pairplot from
the seaborn package to visualize the dataset ( Fig 7). From inspection, we identify what appear
to be separable data (e.g., velocity and skewness columns). For demonstrative purposes, we
built a model with a reduced feature set to showcase all model steps. Before reducing the
features the data was first standardized using the built in StandardScaler function. To reduce
the number of features principal component analysis (PCA) was used. A common strategy is to
select the number of features that preserves 80-90% of the variance. The results, presented
here by the cumulative explained variance (Fig. 7), show that using five (5) features accounts
for 86.8% of the explained variance.



Once the number of components was determined we feed the dimensionally reduced input data
to our k-means algorithm. To determine the number of clusters to use with the k-means
algorithm we applied the elbow method to the within-cluster sum of squares (WCSS, Fig. 7).
The selection of two (2) or six (6) clusters would be reasonable (Fig. 7), and to complete the
demonstration we selected six clusters. To visualize the potential for these data to be separable
the second and third components were plotted against each other. The data appear to have
significant overlap using six clusters (Fig. 7) and plotting the same two components against
each other using two clusters shows better separation. Again, we underscore our objective here
is to spark ideas about what these data enable for users, not draw conclusions from this sample
analysis.

K-means with Stream Tracer Database Results
Explained Variance by Components K-means with PCA Clustering Clusters by PCA Components
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Fig 7: Results of the classification using unsupervised learning.

4.0 Conclusion

We deployed a cloud based tool that performs analysis of a user's experimental stream tracer
data. These data are then added to a database that we have initially populated with one large
study set (A. S. Ward, Wondzell, et al. 2019) to establish a community-accessible database that
is openly available and will grow with each unique user dataset. In addition to being openly
accessible, this database and the associated workflow have associated DOIs, making them
increasingly discoverable and citable. The analysis performed creates standardized outputs that
facilitate data sharing and easy comparison across experiments, including repeatable analyses
for this common stream study technique. In addition to the database, the user data and results
are automatically stored under a resource ID within HydroShare that allows these data to be
citable and discoverable in individual researchers' entries. The existence of this tool will allow
researchers to focus on experimental design, and the results of their study versus what analysis
should be performed, where data should be stored and how to cite their own data.



One important contribution of this framework is that researchers can now evaluate their data
against all other experimental data that have been aggregated. This contextual component was
not possible without an openly available datasource. Having these data organized and
accessible will enable comparisons across sites, approaches, and synthesis that has heretofore
not been possible. We anticipate that compiling these data and enabling intercomparison will
inevitably lead to new hypotheses to be tested, which could be compared against previous
experiments on the same stream segments.

Additionally, this database readily enables data science approaches that may prove fruitful. For
example, researchers may use these data to build supervised classification models based on
reported metadata (e.g., stream order), or extend the unsupervised classification methods we
presented on subsets of data (e.g., stratified by stream order, latitude, geologic setting, or a host
of other bases). Enabling data to be used across suites of analysis from domain specific (e.g.,
hydrology) to the forefront of deep learning will provide new perspectives on traditional results
previously not possible.

Lastly the development of this tool follows precisely the structure taught through the HydroLearn
modules(“Stream Solute Tracers” 2020) . As a result, consistency in training new researchers to
conduct and analyze results parallels the tools we provide. Previously, researchers were left to
create workflows for analyses, limiting repeatability by others and allowing the potential for
different implementations across the field. . Now there is one streamlined tool for analysis and
training. This ensures consistent training which will enable these analysis and data to be
leveraged for decades.
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