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Abstract

Deep neural networks may be susceptible to learning spurious correlations that hold on average but not in atypical test
samples. As with the recent emergence of vision transformer (ViT) models, it remains unexplored how spurious correlations
are manifested in such architectures. In this paper, we systematically investigate the robustness of different transformer
architectures to spurious correlations on three challenging benchmark datasets. Our study reveals that for transformers, larger
models and more pre-training data significantly improve robustness to spurious correlations. Key to their success is the ability
to generalize better from the examples where spurious correlations do not hold. Further, we perform extensive ablations
and experiments to understand the role of the self-attention mechanism in providing robustness under spuriously correlated
environments. We hope that our work will inspire future research on further understanding the robustness of ViT models to

spurious correlations.
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1 Introduction

A key challenge in building robust image classification mod-
els is the existence of spurious correlations: misleading
heuristics imbibed within the training dataset that are cor-
related with majority examples but do not hold in general.
The study by Beery et al. (2018) was one of the initial works
to observe that vision algorithms suffer from poor general-
ization and rely mostly on memorizing patterns. Prior works
have also shown that convolutional neural networks (CNNSs)
can rely on spurious features to achieve high average test
accuracy. Yet, such models lead to low accuracy on rare and
untypical test samples lacking those heuristics (Sagawa et al.,
2020; Geirhos et al., 2019; Goel et al., 2021; Tu et al., 2020).
In Fig. 1, we illustrate an example where a model exploits
the spurious correlation between thewater background
and label wa t erbi rd for prediction. Consequently, amodel
that relies on spurious features can perform poorly on test
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samples where the correlation no longer holds, such as
waterbirdon land background.

As with the paradigm shift to attention-based architec-
tures, it becomes increasingly critical to understand their
behavior under ill-conditioned data. This study is essen-
tial since, without properly understanding the safety risks of
these transformer architectures, fine-tuning on downstream
tasks can exacerbate safety concerns. Hence, in this paper,
we provide a first study on the following question: Are Vision
Transformers robust to spurious correlations? Although the
behavior of ViTs against occlusions, perturbations, and distri-
butional shifts have been extensively studied in the literature
(Bhojanapalli etal., 2021; Bai et al., 2021; Zhang et al., 2022;
Paul & Chen, 2022; Park & Kim, 2022), it remains unex-
plored how spurious correlation is manifested in the recent
development of vision transformers. Unlike prior works, we
specifically focus on robustness performance on challenging
datasets designed to expose spurious correlations learned by
the model. The learning task is challenging as the model is
more likely to learn those spurious associations while training
to achieve high training accuracy and fail on those samples
where the spurious associations do not hold at test time. In
contrast, previous works on ViT robustness did not consider
this problem and focused on robustness to perturbations and
data shifts during inference. Thus, the nature of the “robust-
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ness” problem studied in our paper is fundamentally different
from the prior art.

Motivated by the question, we systematically investigate
how and when transformer-based models exhibit robust-
ness to spurious correlations on challenging benchmarks.
We base our findings after studying a variety of trans-
former architectures including ViT (Dosovitskiy et al., 2021),
Swin transfomer (Liu et al., 2021), Pyramid Vision Trans-
former (Wang et al., 2021) and recently proposed Robust
Vision Transformer (RVT) (Shi et al., 2022). Our find-
ings reveal that: (1) For transformers, larger models and
more pre-training data yield a significant improvement in
robustness to spurious correlations. On the other hand, when
pre-trained on a relatively smaller dataset such as ImageNet-
1k, transformer-based models have a higher propensity of
memorizing training samples and are less robust to spuri-
ous correlations compared to the ImageNet-21k counterpart.
(2) Interestingly, our linear probing experiment shows that
the improvement in robustness does not simply stem from
strong pre-trained features. (3) The key reason for success
can be attributed to the ability to generalize better from
those examples where spurious correlations do not hold while
fine-tuning. However, despite better generalization capabil-
ity, ViT models suffer high errors on challenging benchmarks
when these counterexamples are scarce in the training set.
(4) Finally, our study also reveals that, under the small pre-
training regime, modern transformer architectures (Mao et
al., 2022) despite being designed to be robust against com-
mon corruptions, out-of-distribution and adversarial attacks
perform poorly when fine-tuned on datasets containing spu-
rious associations further highlighting the importance of this
study.

Going beyond, we perform extensive ablations to under-
stand the role of the self-attention mechanism in providing
robustness to ViT models. Our findings reveal that the self-
attention mechanism in ViTs plays a crucial role in guiding
the model to focus on spatial locations in an image which are
essential for accurately predicting the target label. To the best
of our knowledge, we provide a first systematic study on the
robustness of Vision Transformers when learned on datasets
containing spurious correlations. Different from prior works
investigating spurious correlations, our study provides new
insights highlighting the role of large-scale pre-training on
model robustness to spurious associations.

Our key contributions are summarized below:

1. Our work sheds light on the impact of the pre-training
dataset and model capacity on ViT’s robustness to spuri-
ous correlations. We observe that larger models and more
pre-training data improve model robustness to spurious
correlations.
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2. We perform extensive experiments and ablations to
understand the impact of linear probing, longer fine-
tuning, data imbalance, fine-tuning on small datasets
etc., on model robustness. These ablations lead to previ-
ously unknown findings on ViT’s robustness to spurious
correlations.

3. We provide insights on ViT’s robustness by analyzing
the attention matrix, which encapsulates essential infor-
mation about the interaction among image patches.

We hope our work will inspire future research on further
understanding the robustness of ViT models when fine-tuned
on datasets containing spurious correlations.

2 Related Works

Pre-training and robustness. Recently, there has been an
increasing amount of interest in studying the effect of pre-
training (Kolesnikov et al., 2020; Devlin et al., 2019; Radford
et al., 2021; Liu et al., 2019; Shi et al., 2022). Specifi-
cally, when the target dataset is small, generalization can
be significantly improved through pre-training and then fine-
tuning (Zeiler & Fergus, 2014). Findings of Hendrycks et al.
(2019) reveal that pre-training provides significant improve-
ment to model robustness against label corruption, class
imbalance, adversarial examples, out-of-distribution detec-
tion, and confidence calibration. Recent work (Liu et al.,
2021) has also shown that self-supervised learning makes
CNNs more immune to dataset imbalance in pre-training
datasets. The study by Taori et al. (2019) showed that in
pre-trained models there exists a linear relationship between
the in-distribution and out-of-distribution performance.

In this work, we focus distinctly on robustness to spurious
correlation, and how it can be improved through large-scale
pre-training. To the best of our knowledge, this problem has
not been investigated in prior literature on pre-training.

Vision transformer. Since the introduction of transformers
by Vaswani et al. (2017) in 2017, there has been a deluge of
studies adopting the attention-based transformer architecture
for solving various problems in natural language process-
ing (Radford et al., 2019; Yang et al., 2019; Dai et al., 2019).
In the domain of computer vision, Dosovitskiy et al. (2021)
first introduced the concept of Vision Transformers (ViT) by
adapting the transformer architecture in Vaswani et al. (2017)
for image classification tasks. Subsequent studies (Doso-
vitskiy et al., 2021; Steiner et al., 2021) have shown that
when pre-trained on sufficiently large datasets, ViT achieves
superior performance on downstream tasks, and outperforms
state-of-art CNNs such as residual networks (ResNets) (He
et al., 2016) of comparable sizes. Since coming to the lime-
light, multiple variants of ViT models have been proposed.
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Fig. 1 Representative examples. We visualize samples from Water-
birds (Sagawa et al., 2020) and CelebA (Liu et al., 2015) dataset. The
label y is spuriously correlated with environment e in the majority of

Touvron et al. (2021) showed that it is possible to achieve
comparable performance in small pre-training data regimes
using extensive data augmentation and a novel distillation
strategy. Further improvements on ViT include enhancement
in tokenization module (Yuan et al., 2021), efficient param-
eterization for scalability (Touvron et al., 2021; Xue et al.,
2021; Zhai et al., 2021) and building multi-resolution fea-
ture maps on transformers (Liu et al., 2021; Wang et al.,
2021). Recent studies (Zhou et al., 2022; Mao et al., 2022)
propose enhanced ViT architectures to provide additional
robustness against adversarial attacks (Mao et al., 2022) and
image occlusion/corruptions (Mao et al., 2022; Zhou et al.,
2022) during inference. Specifically, Zhou et al. (2022) pro-
posed Fully Attentional Networks (FANs) based on novel
attentional channel processing design leading to robust rep-
resentations. While we also consider these architectures, our
focus significantly differs from prior works—we provide a
first systematic study on the robustness of vision transformers
when the training data itself contains inherent biases.

Robustness of transformers. Study by Naseer et al. (2021)
provides a comprehensive understanding of the working prin-
ciple of ViT architecture through extensive experimentation.
Some notable findings in Naseer et al. (2021) reveal that
transformers are highly robust to severe occlusions, pertur-
bations, and distributional shifts. Recently, the performance
of ViT models in the wild has been extensively studied (Bho-
janapalli et al., 2021; Zhang et al., 2022; Paul & Chen,
2022; Bai et al., 2021; Tian et al.,, 2002; Park & Kim,
2022), using a set of robustness generalization benchmarks,

training samples. The frequency of each group in training data is denoted
by (%). Figure is adapted from Sagawa et al. (2020)

e.g., ImageNet-C (Hendrycks & Dietterich, 2019), Stylized-
ImageNet (Geirhos et al., 2019), ImageNet-A (Hendrycks
et al.,, 2021), etc. Different from prior works, we focus
on robustness performance on challenging datasets, which
are designed to expose spurious correlations learned by the
model. Our analysis reveals that: (1) Robustness against
occlusions, perturbations, and distribution shifts does not
necessarily guarantee robustness against spurious correla-
tions. (2) Large-scale pre-training helps to mitigate this
problem by better generalizing on examples from under-
represented groups. Our findings are also complementary to
robustness studies (Tu et al., 2020; He et al., 2019; McCoy
et al., 2019) in the domain of natural language processing,
which reported that transformer-based BERT (Devlin et al.,
2019) models improve robustness to spurious correlations.

3 Preliminaries
3.1 Spurious Correlations

Spurious features refer to statistically informative features
that work for the majority of training examples but do not
capture essential cues related to the labels (Sagawa et al.,
2020; Geirhos et al., 2019; Goel et al., 2021; Tu et al., 2020;
Beery et al., 2018). We illustrate a few examples in Fig. 1. In
waterbird vs landbird classification problem, major-
ity of the training images have the target label (waterbird
or landbird) spuriously correlated with the background
features (water or land background). Sagawa et al. (2020)
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Table 1 Average and worst-group accuracies over train and test set for different models when finetuned on Waterbirds

Model Params (M) Train Test
Average acc. ‘Worst-group acc. Average acc. Worst-group acc.

ViT-B/16 86.1 100 100 96.75+0.05 89.30+1.95
ViT-S/16 21.8 100 100 96.30+0.51 85.4541.16
ViT-Ti/16 5.6 95.7 81.6 89.5040.05 71.65+0.16
BiT-M-R50x3 211 100 100 94.90+0.05 80.5141.02
BiT-M-R101x1 42.5 100 100 94.05+0.07 77.50+0.50
BiT-M-R50x1 23.5 100 100 92.05+0.05 75.1040.62

Both ViT-B/16 and ViT-S/16 attain better test worst-group accuracy as compared to BiT models. All models are pre-trained on ImageNet-21k.
Results (mean and std) are estimated over 3 runs for each setting
Best results are marked in bold

ViT-B/16
ViT-S/16

ViT-Ti/16

Fig.2 Consistency measure. In Waterbirds dataset, y € {waterbird,
landbird} iscorrelated with environment e € {water, land}. Left:
Visual illustration of the experimental setup for measuring model con-
sistency. Ideally, changing the spurious features (z¢) should have no

showed that deep neural networks can rely on these statisti-
cally informative yet spurious features to achieve high test
accuracy on average, but fail significantly in groups where
such correlations do not hold such as waterbirdon land
background.

Formally, we consider a training set, plrain consisting of
N training samples: {x;, yi}lN: |» Where samples are drawn
independently from a probability distribution: Py y. Here,
X € X is a random variable defined in the pixel space,
and Y € Y = {1,..., K} represents its label. We further
assume that the data is sampled from a set of E environ-
ments £ = {ey, e, ..., eg}. The training data has spurious
correlations, if the input x; is generated by a combination
of invariant features z%nv IS Rdim, which provides essential
cues for accurate classification, and environmental features

@ Springer

BiT-M-R50x3

BiT-M-R101x1

BiT-M-R50x1

Consistency Measure

impact on model prediction. Right: Evaluation results quantifying con-
sistency for models of different architectures and varying capacities.
All the models are pre-trained on ImageNet-21k

z; € R¥ dependent on environment e:
inv _e
xi = p(z™. z).

Here p represents a function transformation from the fea-
ture space [z}“v, zl.e]T to the pixel space X. Considering the
example of waterbird versus landbird classification,
invariant features zﬁ“v would refer to signals which are essen-
tial for classifying x; as y;, such as the feather color, presence
of webbed feet, and fur texture of birds, to mention a few.
Environmental features zf, on the other hand, are cues not
essential but correlated with target label y;. For example,
many waterbird images are taken in water habitats, so water
scenes can be considered as zf. Under the data model, we
form groups g = (v, €) € ) x & that are jointly determined
by the label y and environment e. For this study, we con-
sider the binary setting where £ = {1, —1}and Y = {1, —1},
resulting in four groups. The concrete meaning for each envi-
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ronment and label will be instantiated in corresponding tasks,
which we describe in Sect. 4.

3.2 Transformers

Similar to the Transformer architecture in Vaswani et al.
(2017), ViT model expects the input as a 1D sequence
of token embeddings. An input image is first partitioned
into non-overlapping fixed-size square patches of resolution
P x P, resulting in a sequence of flattened 2D patches.
Following Devlin et al. (2019), ViT prepends a learnable
embedding (class token) to the sequence of embedded
patches, and this class token is used as image represen-
tation at the output of the transformer. To imbibe relative
positional information of patches, position embeddings are
further added to the patch embeddings.

The core architecture of ViT mainly consists of multiple
stacked encoder blocks, where each block primarily con-
sists of: (1) multi-headed self-attention layers, which learn
and aggregate information across various spatial locations of
an image by processing interactions between different patch
embeddings in a sequence; and (2) a feed-forward layer. See
an expansive discussion in related work (Sect. 2).

3.3 Model Zoo

In this study, we aim to understand the robustness of
transformer-based models when trained on a dataset con-
taining spurious correlations. We base our investigation on
the most popular variant of vision transformers, namely
ViT (Dosovitskiy et al., 2021). For completeness, we also
provide additional ablations on other state-of-the-art archi-
tectures including DeiT-III (Touvron et al., 2022), Swin
transformer (Liu et al., 2021), Robust Vision Transformer
(RVT) (Mao et al., 2022), Pyramid Vision Transformer
(PVT) (Wang et al., 2021), and ConvNeXt (Liu et al., 2022)
models.

Specifically, we use model variants pre-trained on both
ImageNet-1k (IN-1k) (Russakovsky et al., 2015) and on
ImageNet-21k (IN-21k) (Deng et al., 2009) datasets.

Notation: To indicate input patch size in ViT models, we
append “/x” to model names. We prepend -B, -S, -Ti to indi-
cate Base, Small and Tiny versions of the corresponding
architecture. For instance: ViT-B/16 implies the Base vari-
ant with an input patch resolution of 16 x 16. In this paper, we
use a 16 x 16 input patch size for computational simplicity.

4 Robustness to Spurious Correlation

In this section, we systematically measure the robustness
performance of ViT models when fine-tuned on datasets

containing spurious correlations, and compare how their
robustness fares against popular CNNs. In particular, we con-
trast ViT with Big Transfer (BiT) models (Kolesnikov et al.,
2020) that are primarily based on the ResNet-v2 architecture.
For both ViT and BiT models, we consider different vari-
ants that differ in model capacity and pre-training dataset.
For both ViTs and CNNs, we fine-tune on datasets start-
ing from ImageNet-21k pre-trained models. For evaluation
benchmarks, we adopt the same setting as in Sagawa et al.
(2020). Specifically, we consider the following three classi-
fication datasets to study the robustness of ViT models in
a spurious correlated environment: Waterbirds (Sect.4.1),
CelebA (Sect.4.2), and ColorMNIST. Refer to Appendix,
for results on ColorMNIST.

4.1 Waterbirds

Introduced in Sagawa et al. (2020), this dataset contains
spurious correlation between the background features and
target label y € {waterbird, landbird}. The dataset is
constructed by selecting bird photographs from the Caltech-
UCSD Birds-200-2011 (CUB) (Wah et al., 2011) dataset and
then superimposing on either of ¢ € £ = {water, land}
background selected from the Places dataset (Zhou et
al., 2017). The spurious correlation is injected by pairing
waterbirds on water background and 1andbirds on
land background more frequently, as compared to other
combinations. The dataset consists of n = 4795 training
examples, with the smallest group size of 56 (i.e., waterbird
on the land background).

Results and insights on generalization performance. Table 1
compares worst-group accuracies of different models when
fine-tuned on Waterbirds (Sagawa et al., 2020) using empiri-
cal risk minimization. Note that all the compared models are
pre-trained on ImageNet-21k. This allows us to isolate the
effect of model architectures, in particular, ViT versus BiT
models. The worst-group test accuracy reflects the model’s
generalization performance for groups where the correla-
tion between the label y and environment e does not hold.
A high worst-group accuracy is indicative of less reliance
on the spurious correlation in training. Our results suggest
that: (1) ViT-B/16 attains a significantly higher worst-group
test accuracy (89.3%) than BiT-M-R50x3 despite having
a considerably smaller capacity (86.1M vs. 211 M). (2)
Furthermore, these results reveal a correlation between gen-
eralization performance and model capacity. With an increase
in model capacity, both ViTs and BiTs tend to generalize
better, measured by both average accuracy and worst-group
accuracy. The relatively poor performance of ViT-Ti/16 can
be attributed to its failure to learn the intricacies within the
dataset due to its compact capacity.

@ Springer
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Table 2 Average and worst-group accuracies over train and test set for different models when finetuned on CelebA

Model Params (M) Train Test
Average acc. ‘Worst-group acc. Average acc. Worst-group acc.

ViT-B/16 86.1 100 100 97.40+0.42 94.10-+0.51
ViT-S/16 21.8 100 100 96.2640.66 91.50+1.56
ViT-Ti/16 5.6 97.9 93.3 96.714+0.18 88.6043.92
BiT-M-R50x3 211 100 100 97.31+0.05 89.80+0.42
BiT-M-R101x1 42.5 100 100 97.2010.08 89.33.10.78
BiT-M-R50x1 23.5 100 100 96.8241.20 87.724156

Both ViT-B/16 and ViT-S/16 attain better worst-group accuracy as compared to BiT models. All models are pre-trained on ImageNet-21k. Results

(mean and std) are estimated over 3 runs for each setting
Best results are marked in bold

Results and insights on robustness performance. We now
delve deeper into the robustness of ViT models. In particu-
lar, we investigate the robustness of model prediction under
varying background features. Our key idea is to compare the
predictions of image pairs (X;, X;) with the same foreground
object yet different background features (i.e., water ver-
sus 1land background). We define Consistency Measure of
S I )=F Glf (xi) =i
YL I (=)
target label. Among samples with correct predictions, this

metric measures the fraction of samples with consistent pre-
dictions. To generate the image pairs (X;, X;), we first take a
foreground bird photograph using the pixel-level segmenta-
tion masks from the CUB dataset (Wah et al., 2011). We then
place it on the top of water and 1and background images
from the Places dataset (Zhou et al., 2017). We generate mul-
tiple such pairs to form the evaluation dataset {(x;, ’_‘i)}zN= |
and use this dataset to quantify the robustness performance.
For this study, the evaluation dataset consists of N = 11788
paired samples.

Figure 2 provides a visual illustration of the experimen-
tal setup (left), along with the evaluation results (right). Our
operating hypothesis is that a robust model should predict the
same class label f (x;) and f (x;) for a given pair (X;, X;), as
they share exactly the same foreground object (i.e., invariant
feature). Our results in Fig. 2 show that ViT models achieve
overall higher consistency measures than BiT counterparts.
For example, the best model ViT-B/16 obtains consistent
predictions for 93.9% of image pairs. Overall, using ViT pre-
trained models yields strong generalization and robustness
performance on Waterbirds.

a model as:

}, where y; denotes the

4.2 CelebA

Beyond background spurious features, we further vali-
date our findings on a different type of spurious fea-
ture based on gender attributes. Here, we investigate the
behavior of machine learning models when learned on
training samples with spurious associations between tar-

@ Springer

get labels and demographic information such as gender.
Following Ming et al. (2022), we use the CelebA dataset,
consisting of celebrity images with each image annotated
using 40 binary attributes. We have the label space J =
{ogray hair,nongray hair} and gender as the spu-
rious feature, £ = {male, female}. The training data
consists of 4010 images with label grey hair, out of
which 3208 are male, resulting in a spurious association
between gender attribute male and label gray hair. For-
mally, P(e = gray hair | y = male) = Ple =
nongray hair |y = female) ~ 0.8.

Results. We see from Table 2 that ViT models achieve higher
test accuracy (both average and worst-group) as opposed to
BiTs. In particular, ViT-B/16 achieves +4.3% higher worst-
group test accuracy than BiT-M-R50x3, despite having a
considerably smaller capacity (86.1M vs. 211 M). These
findings along with our observations in Sect. 4.1 demonstrate
that ViTs are not only more robust when there are strong asso-
ciations between the label and background features, but also
avoid learning spurious correlations between demographic
features and target labels.

5 Discussion: A Closer Look at ViT Under
Spurious Correlation

In this section, we perform extensive ablations to understand
the role of transformer models under spurious correlations.
For consistency, we present the analyses below based on the
Waterbirds dataset.

5.1 How Does the Size of the Pre-training Dataset
Affect Robustness to Spurious Correlations?

In this section, we aim to understand the role of large-scale
pre-training on the model’s robustness to spurious correla-
tions. Specifically, we compare pre-trained models of differ-
ent capacities, architectures, and sizes of pre-training data.
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Table 3 Investigating effect of large-scale pre-training on model robustness to spurious correlations

Model Params (M) FLOPs Train accuracy Test accuracy
Average Worst-group Average Worst-group
Transformer models
IN-21k DeiT-11I-Base 85.8 17.5G 100 100 95.7 82.5
DeiT-1II-Medium 38.3 7.5G 100 100 94.2 80.8
DeiT-11I-Small 21.8 4.6G 100 100 93.6 76.2
IN-1k DeiT-11I-Base 85.8 17.5G 100 100 91.6 69.6
DeiT-1II-Medium 38.3 7.5G 100 100 93.2 69.8
DeiT-11I-Small 21.8 4.6G 100 100 90.6 65.1
IN-21k Swin-Base 86.7 15.4G 100 100 95.7 87.5
Swin-Small 48.8 8.7G 100 100 94.8 83.2
Swin-Tiny 27.5 4.5G 100 100 93.9 78.5
IN-1k Swin-Base 86.7 15.4G 100 100 92.3 61.7
Swin-Small 48.8 8.7G 100 100 93.1 62.5
Swin-Tiny 27.5 4.5G 100 100 91.3 50.7
Convolutional models
IN-21k BiT-M-R50x3 211 1.4M 100 100 94.9 80.5
BiT-M-R101x1 42.5 0.5M 100 100 94.1 71.5
BiT-M-R50x1 23.5 0.4M 100 100 92.1 75.1
IN-1k BiT-S-R50x3 211 1.4M 100 100 87.0 60.3
BiT-S-R101x1 42.5 0.5M 100 100 87.3 64.9
BiT-S-R50x1 23.5 0.4M 100 100 86.3 63.5
IN-21k ConvNeXt-B 87.5 15.4G 100 100 93.1 76.7
ConvNeXt-S 49.5 8.7G 100 100 92.5 74.2
ConvNeXt-T 27.9 4.5G 100 100 90.3 69.6
IN-1k ConvNeXt-B 87.5 154G 100 100 87.3 66.1
ConvNeXt-S 49.5 8.7G 100 100 86.4 67.6
ConvNeXt-T 27.9 4.5G 100 100 85.1 63.2

All models are fine-tuned on Waterbirds. Pre-training on ImageNet-21k (IN-21k) provides better performance

To understand the importance of the pre-training dataset, we
compare models pre-trained on ImageNet-1k (1.3 million
images) and ImageNet-21k (12.8 million images). We report
results for different transformer- and convolution-based mod-
els in Table 3. Specifically, we report for DeiT-III (Touvron
et al., 2022) & Swin (Liu et al., 2021) models from the
transformer family and BiT (Kolesnikov et al., 2020) & Con-
vNeXt (Liu et al., 2022) architectures based on convolutions.
For detailed ablation results on other transformer architec-
tures: RVT (Mao et al., 2022) and PVT (Wang et al., 2021),
readers can refer to Table 10 (Appendix). Based on the results
in Table 3, we highlight the following observations:

1. First, large-scale pre-training improves the performance
of the models on challenging benchmarks. For trans-
formers, larger models (base and medium) and more
pre-training data (ImageNet-21k) yield a significant
improvement in all reported metrics. Hence, larger pre-
training data and increasing model size play a crucial role

in improving model robustness to spurious correlations.
We also see a similar trend in the convolution-based
model family: BiT (Kolesnikov et al., 2020) and Con-
vNeXt (Liu et al., 2022) models.

2. Second, when pre-trained on a relatively smaller dataset

such as ImageNet-1k, both vision transformers and
convolution-based models have a higher propensity of
memorizing training samples and are less robust to
spurious correlations compared to the ImageNet-21k
counterpart. In particular, previous work (Sagawa et
al., 2020) theoretically showed that overparameteriza-
tion in CNNs—increasing model size well beyond the
point of zero training error—can hurt test error in minor-
ity groups. Our study further provides new insights by
showing that this trend of memorizing training samples
can be alleviated using large-scale pre-training data. In
the extreme case without any pre-training, we show in
Appendix H that both transformer and CNN models
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severely overfit the training dataset to attain 100% train-
ing accuracy and significantly fail on test samples.

5.2 Is Linear Probing Sufficient for Robustness to
Spurious Correlation?

One may hypothesize that the robustness to spurious corre-
lation can benefit from the strong pre-trained features. To
verify this, we conduct the “linear probing” experiments
by freezing all the learned parameters from pre-training,
and only training a linear classifier on top. Note that this
preserves the information entirely from pre-training. From
Table 4, we observe that the model fails to learn the essential
cues necessary for accurate classification on the Water-
birds (Sagawa et al., 2020) dataset. This is evident from both
poor training and test accuracy over the worst-group sam-
ples (where spurious correlations do not hold). Interestingly,
simply preserving the pre-training distribution does not suf-
ficiently provide ViT’s robustness to spurious correlation.
Further, Table 10 (Appendix) summarizes the robustness of
RVT (Mao et al., 2022) models when fine-tuned on Water-
birds. Note, RVT architecture is specifically modified to
provide additional robustness against adversarial attacks,
common corruptions, and out-of-distribution inputs. Our
results indicate that despite these additional architectural
modifications, ImageNet-1k pre-trained RVT models per-
form poorly when fine-tuned on Waterbirds, indicating a lack
of robustness to spurious correlations. We believe our work
will trigger a new round of thinking in the community about
the problem of spurious correlations and ways to mitigate it,
from an architectural design perspective.

5.3 Understanding Role of Self-Attention
Mechanism for Improved Robustness in ViT
Models

Given the results above, a natural question arises: what makes
ViT particularly robust in the presence of spurious correla-
tions? In this section, we aim to understand the role of ViT
by looking into the self-attention mechanism. The attention
matrix in ViT models encapsulates crucial information about
the interaction between different image patches.

Latent pattern in attention matrix. To gain insights, we start
by analyzing the attention matrix, where each element in the
matrix a; ; represents attention values with which an image
patch i focuses on another patch j. For example: consider
an input image of size 384 x 384 and patch resolution of
16 x 16, then we have a 576 x 576 attention matrix (excluding
the class token). To compute the final attention matrix,
we use Attention Rollout (Abnar & Zuidema, 2020) which
recursively multiplies attention weight matrices in all layers
below. Our analysis here is based on the ViT-B/16 model
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fine-tuned on Waterbirds. Intriguingly, we observe that each
image patch, irrespective of its spatial location, provides
maximum attention to the patches representing essential cues
for accurately identifying the foreground object.

Figure 3 exhibits this interesting pattern, where we mark
(in red) the top N = {1, 5, 10} patches being attended by
every image patch. To do so, for every image patch i, where
i e {l,...,576}, we find the top N patches receiving the
highest attention values and mark (in red) on the original
input image. This would give us 576 x N patches, which we
overlay on the original image. Note that different patches may
share the same top patches, hence we observe a sparse pattern.
In Fig.3, we can see that the patches receiving the highest
attention represent important signals such as the shape of
the beak, claw, and fur color—all of which are essential for
the classification task waterbird versus landbird. Itis
particularly interesting to note the last row in Fig. 3, which
is an example from the minority group (waterbird on
land background). This is a challenging case where the
spurious correlations between y and e do not hold. A non-
robust model would utilize the background environmental
features for predictions. In contrast, we notice that each patch
in the image correctly attends to the foreground patches.

We also provide observations for ViT-Ti/16 model in
Appendix F. Specifically, for ViT-Ti/16, we notice: (1) The
model correctly attends to patches responsible for accurate
classification in images belonging to the majority groups,
i.e., waterbird on water background and landbird
on land background. (2) For images belonging to minor-
ity groups such as waterbird on land background, the
model provides maximum attention to the environmental fea-
tures, exhibiting a lack of robustness to spurious correlations.
These experiments further help us observe a direct correla-
tion between model robustness and patches being attended.

5.4 Investigating Model Performance Under Data
Imbalance

Recall that model robustness to spurious correlations is corre-
lated with its ability to generalize from the training examples
where spurious correlations do not hold. We hypothesize that
this generalization ability varies depending on inherent data
imbalance. In this section, we investigate the effect of data
imbalance. In an extreme case, the model only observes 5
samples from the underrepresented group.

Setup. Considering the problem of waterbird versus
landbird classification, these examples correspond to
those in the groups: waterbird on land background and
landbird on water background. We refer to these exam-
ples that do not include spurious associations with label as
minority samples. For this study, we remove varying fractions
of minority samples from the smallest group (waterbird
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Table 4 Investigating the effect

. . . Model Params (M) Train accuracy Test accuracy
of linear probing pre-trained
models on Waterbirds (Sagawa Average Worst-group Average Worst-group
et al., 2020)
IN-21k
ViT-B/16 86.1 98.6 80.3 89.5 68.3
ViT-S/16 21.8 95.6 39.3 86.2 359
ViT-Ti/16 5.6 88.5 13.2 823 0.1
IN-21k
BiT-M-R50x3 211 100 100 90.5 68.3
BiT-M-R101x1 42.5 99.9 98.2 88.5 64.9
BiT-M-R50x1 235 99.8 98.0 88.6 62.1
Input Image
y : landbird
e:land
background
y : waterbird
e : water
background
y : waterbird
e:land
background

Fig. 3 Visualization of the top N patches receiving the highest atten-
tion (marked in red). Investigating the attention matrix, we find that
all image patches—irrespective of spatial location—provide maximum
attention to the patches representing essential cues for accurately iden-

tifying the foreground object such as claw, beak, and fur color. See text
for details. See the Appendix for visualizations of other datasets and

models (Color figure online)

Table 5 Description of dataset

. Subsampling ratio () Total samples Land bird Water bird
generated by subsampling the _ _
Waterbirds (Sagawa et al., 2020) Land Water Land Water

1 (Original) 4795 3498 184 56 1057
0.25 1199 874 47 13 265
0.10 480 352 20 5 103

Under-represented groups are marked in bold
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Fig. 4 Data imbalance. We investigate the effect of data imbalance on different model architectures. Our findings reveal that both ViT and BiT
models suffer from spurious correlations when minority samples are scarce in the fine-tuning dataset
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Fig. 5 Longer fine-tuning. We study the effect of longer fine-tuning
on the performance of ViT models. We report loss and accuracy for
ViT-S/16 model finetuned on Waterbirds (Sagawa et al., 2020) at each

on land background), while fine-tuning. We measure the
effect based on the worst-group test accuracy and model con-
sistency defined in Sect.4.1.

Takeaways. In Fig. 4, we report results for ViT-S/16 and BiT-

M-R50x 1 model when finetuned on Waterbirds dataset (Sagawa

et al., 2020). We find that as more minority samples are
removed, there is a graceful degradation in the generalization
capability of both ViT and BiT models. However, the decline
is more prominent in BiTs with the model performance reach-
ing near-random when we remove 90% of minority samples.
From this experiment, we observe that for a fixed fraction of
minority samples, ViT-S/16 attains higher worst-group accu-
racy than BiT-M-R50x1 model. Thus, we conclude that the
additional robustness of ViT models to spurious associations
stems from their better generalization capability from minor-
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epoch of fine-tuning. Investigating further we observe that although
fine-tuning for more epochs provides no additional gain in average test
accuracy, it improves model performance on minority samples

ity samples. However, both ViTs and BiTs still suffer from
spurious correlations when minority examples are scarce.

5.5 Does Longer Fine-Tuning in ViT Improve
Robustness to Spurious Correlations?

Recent studies in the domain of natural language processing
(Tu et al., 2020; Zhang et al., 2020) have shown that the
performance of BERT (Devlin et al., 2019) models on smaller
datasets can be significantly improved through longer fine-
tuning. In this section, we investigate if longer fine-tuning
also plays a positive role in the performance of ViT models
in spuriously correlated environments.

Takeaways Figure 5 reports the loss (left) and accuracy (right)
at each epoch for ViT-S/16 model fine-tuned on Waterbirds
dataset (Sagawa et al., 2020). To better understand the effect
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Table 6 Investigating the effect of reducing sample size on model robustness to spurious correlations

Subsampling ratio Model Params (M) Train accuracy Test accuracy
Average ‘Worst-group Average Worst-group

r=1

IN-21k DeiT-11I-base 85.8 100 100 95.7 82.5
DeiT-1II-medium 38.3 100 100 94.2 80.8
DeiT-11I-small 21.8 100 100 93.6 76.2

IN-21k BiT-M-R50x3 211 100 100 94.9 80.5
BiT-M-R101x1 42.5 100 100 94.1 77.5
BiT-M-R50x1 23.5 100 100 92.1 75.1

r=0.25

IN-21k DeiT-11I-base 85.8 100 100 87.6 71.7
DeiT-1II-medium 38.3 100 100 87.9 67.2
DeiT-11I-small 21.8 100 100 90.1 63.7

IN-21k BiT-M-R50x3 211 100 100 91.0 62.1
BiT-M-R101x1 42.5 100 100 90.5 65.2
BiT-M-R50x1 23.5 100 100 89.1 63.1

r=0.10

IN-21k DeiT-1II-base 85.8 100 100 86.0 60.6
DeiT-III-medium 383 100 100 84.8 58.3
DeiT-III-small 21.8 100 100 88.0 54.9

IN-21k BiT-M-R50x3 211 100 100 85.8 522
BiT-M-R101x1 42.5 100 100 85.7 534
BiT-M-R50x1 23.5 100 100 82.8 49.3

We fine-tune DeiT-1II (Touvron et al., 2022) and BiT (Kolesnikov et al., 2020) models on subsampled Waterbirds (Sagawa et al., 2020) dataset

of longer fine-tuning on worst-group accuracy, we separately
plot the model loss and accuracy on all examples and minor-
ity samples. From the loss curve, we observe that the training
loss for minority examples decreases at a much slower rate
as compared to the average loss. Specifically, the average
train loss takes 20 epochs of fine-tuning to reach near-zero
values, while training loss on minority group plateaus after
40 epochs. Similarly, we see that although the average test
accuracy of the model stops increasing after 30 epochs, the
accuracy of minority samples reaches a stationary state after
50 epochs of fine-tuning. These results reveal two key obser-
vations: (1) While longer fine-tuning does not benefit the
average test accuracy, it plays a positive role in improving
model performance on minority samples, and (2) ViT mod-
els do not overfit with longer fine-tuning.

5.6 Effect of Transferring to Smaller Datasets on
Spurious Correlations

In this section, we investigate the impact of fine-tuning
models on datasets of relatively smaller sample sizes. Specif-
ically, we reduce dataset size by subsampling the Waterbirds
dataset (Sagawa et al., 2020) with a ratio of » = 0.25 and

r = 0.10. In Table 5, we report the number of samples per
group for each subsampled dataset.

In Table 6, we report the results of finetuning DeiT-
III (Touvron et al., 2022) and BiT (Kolesnikov et al., 2020)
models on subsampled Waterbirds dataset under the different
pretraining regime. We observe that: (1) Decreasing train-
ing set sample size significantly reduces model robustness to
spurious correlations. Specifically, reducing the subsampling
ratio from 0.25 to 0.10 results in 7.3% and 14.2% reduction in
worst-group accuracy for DeiT-III and BiT-S-R50x1 respec-
tively. (2) Large-scale pre-training improves the performance
of both transformer and CNN models.

6 Conclusion

In this paper, we investigate the robustness of ViT models
when learned on datasets containing spurious associations
between target labels and environmental features. Our study
leads to a series of new findings, including that (1) Larger
pre-training dataset and increasing model capacity improves
robustness to spurious correlations. However, when the pre-
training dataset is relatively small, both vision transformers
and CNNs display limited robustness to spurious correlation;
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(2) Under spurious correlation, the self-attention mechanism
in ViTs plays a crucial role in guiding the model to focus on
spatial locations in an image which are essential for accu-
rately predicting the target label. (3) Improved robustness of
ViT models can be attributed to better generalization capa-
bility from the counterexamples where spurious correlations
do not hold. However, when such samples become scarce
ViT models tend to overfit to spurious associations. We hope
that our work will inspire future research on understanding
the robustness of ViT models in the presence of spurious
correlation.
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Appendix A Implementation Details

1. Transformers. For ViT models, we obtain the pre-trained
checkpoints from the timm library.! For downstream
fine-tuning on the Waterbirds and CelebA dataset, we
scale up the resolution to 384 x 384 by adopting 2D
interpolation of the pre-trained position embeddings pro-
posed in Dosovitskiy et al. (2021). Note, for CMNIST
we keep the resolution as 224 x 224 during fine-tuning.
We fine-tune models using SGD with a momentum of
0.9 with an initial learning rate of 3e-2. As described in
(Steiner et al., 2021), we use a fixed batch size of 512,
gradient clipping at global norm 1, and a cosine decay
learning rate schedule with a linear warmup.

2. BiT. We obtain the pre-trained checkpoints from the offi-
cial repository.> For downstream fine-tuning, we use
SGD with an initial learning rate of 0.003, momentum
0.9, and batch size 512. We fine-tune models with var-

! https://github.com/rwightman/pytorch-image-models/tree/master/

timm

2 https://github.com/google-research/big_transfer.
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Table 7 Different hyper-parameters used for data augmentation
approaches in Sect. 1

Hyper-parameter used

Mixup (Zhang et al., 2018) alpha 0.8
CutMix (Yun et al., 2019) alpha 1.0
Rand Augment (Cubuk et al., 2020) 9/0.5
Colorlitter 0.3
Horizontal flip prob. 0.5
Erasing prob. 0.25
Label smoothing 0.1

ious capacities for 500 steps, including BiT-M-R50x1,
BiT-M-R50x3, and BiT-M-R101x1.

3. Data Augmentation Schemes. For applying different data
augmentations and regularization approaches in Sect. 1,
we use the helper functions provided with t imm library.
We report different hyper-parameters used in Table 7.

Appendix B Extension: How Does the Size
of Pre-training Dataset Affect Robustness to
Spurious Correlations?

In this section, to further validate our findings on the impor-
tance of large-scale pre-training dataset, we show results on
CelebA (Liu et al., 2015) dataset. We report our findings in
Table 8. We also observe a similar trend for this setup that
larger model capacity and more pre-training data yield a sig-
nificant improvement in worst-group accuracy. Further, when
pre-trained on a relatively smaller dataset such as ImageNet-
1k, the performance of both transformer and CNN models
are poor as compared to the ImageNet-21k counterpart.

Also, compared to BiT models, the robustness of trans-
former models benefits more with a large pre-training
dataset. For example, compared to ImageNet-1k, fine-tuning
DeiT-11I-Base pre-trained on ImageNet-21k improves the
worst-group accuracy by 6.5%. On the other hand, for
BiT models, fine-tuning with a larger pre-trained dataset
yields marginal improvement. Specifically, BiT-M-R50x3
only improves the worst-group accuracy by 1.5% with
ImageNet-21k.

Appendix C Spurious Out-of-Distribution
Detection

In this section, we study the performance of ViT models in
out-of-distribution setting. Introduced in Ming et al. (2022),
spurious out-of-distribution (OOD) data is defined as sam-


https://github.com/deeplearning-wisc/vit-spurious-robustness
https://github.com/deeplearning-wisc/vit-spurious-robustness
https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/rwightman/pytorch-image-models/tree/master/timm
https://github.com/google-research/big_transfer
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Table 8 Investigating the effect
of large-scale pre-training on
model robustness to spurious

Model

Test accuracy

Average acc. Worst-group acc.

correlations when finetuned on

CelebA (Liu et al., 2015) ImageNet-21k DeiT-1lI-base 971 93.7
DeiT-1II-medium 96.5 90.9
DeiT-1II-small 96.2 88.7
ImageNet-1k DeiT-1II-Base 95.8 87.2
DeiT-1II-medium 95.1 86.7
DeiT-11I-small 94.8 85.8
ImageNet-21k BiT-M-R50x3 97.3 89.8
BiT-M-R101x1 97.2 89.8
BiT-M-R50x1 96.8 87.7
ImageNet-1k BiT-S-R50x3 96.4 88.3
BiT-S-R101x1 96.5 84.9
BiT-S-R50x1 96.3 83.1
Best results are marked in bold
Zs:llja?ioi.purious 00D Model Waterbirds CelebA CMNIST
FPRO5{ AUROC% FPRO5| AUROC%H FPR95| AUROC%H
ViT-B/16 56.8 91.0 60.5 88.4 74 98.8
ViT-S/16 62.2 87.0 61.3 86.7 8.7 97.7
ViT-Ti/16 79.5 71.6 94.3 72.7 16.4 96.7
BiT-M-R50x3 96.0 59.0 63.8 85.3 459 84.1
BiT-M-R101x1 95.5 59.5 70.3 85.6 44.5 814
BiT-M-R50x1 95.1 63.4 69.7 85.7 30.0 88.4

OOD detection performance of ViT and BiT models when finetuned on Waterbirds (Sagawa et al., 2020),
CelebA (Liu et al., 2015) & CMNIST. We use energy score (Liu et al., 202) for calculating AUROC and
FPRO9S5. We observe that ViT models are more robust to spurious OOD examples as compared to BiTs

Best results are marked in bold
ples that do not contain the invariant features z™ essential
for accurate classification, but contain the spurious features
z°. Hence, these samples are denoted as Xyoq = ,o(z)_’ ,Z°)
where y is an out-of-class label, such that y ¢ ). In the
problem of waterbird vs landbird classification, an
image of a person standing in forest would be an example
of spurious OOD, since it contains different semantic class
person ¢ {waterbird, landbird}, yet has the envi-
ronmental features of land background. A non-robust model
relying on the background feature may classify such OOD
data as an in-distribution class with high confidence. Hence,
we aim to understand if self-attention based ViT models can
mitigate this problem and if so, to what extent.

To investigate the performance of different models against
spurious OOD examples, we use the setup introduced in Ming
et al. (2022). Specifically, for Waterbirds (Sagawa et al.,
2020) we test on subset of images of land and water sam-
pled from the Places dataset (Zhou et al., 2017). Considering,
CelebA (Liuetal., 2015) as in-distribution, our test suite con-
sists of images of bald male as spurious OOD, since they
contain environmental features (gender) without invariant

features (hair). For CMNIST, the in-distribution data con-
tains digits ) = {0, 1} and the background colors, £ = {red,
green, purple, pink}. We use digits {5, 6, 7, 8§, 9}
with background color red and green as test OOD sam-
ples. We report our findings in Table 9. Clearly, ViT models
achieve better OOD evaluation metrics as compared to BiTs.
Specifically, ViT-B/16 achieves +32% higher AUROC than
BiT-M-R50x3, considering Waterbirds (Sagawa et al., 2020)
as in-distribution.

Appendix D Extension: Color Spurious Corre-
lation

To further validate our findings beyond natural background
and gender as spurious (i.e. environmental) features, we
provide additional experimental results with the ColorM-
NIST dataset, where the digits are superimposed on colored
backgrounds. Specifically, it contains a spurious correlation
between the target label and the background color. Simi-
lar to the setup in Ming et al. (2022), we fix the classes )}
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= {0, 1} and the background colors, £ = {red, green,
purple, pink}. For this study, label y = 0 is spuri-
ously correlated with background color {red, purple}, and
similarly, label y = 1 has spurious associations with back-
ground color {green, pink}. Formally, we have P(e =
red | y =0) = Ple = purple | y = 0) = P(e =
green | y = 1) = P(e = pink | y = 1) = 0.45 and
Ple = green | y = 0) = Ple = pink | y = 0) =
Ple =red|y=1) =P(e = purple |y =1) =0.05.
Note that, while fine-tuning the models, we fix the foreground
color of digits as white.

Results and insights on robustness performance. We com-
pare model predictions on samples with the same class label
but different background & foreground colors. Given a data
point (X;, y;), we modify the background and foreground
color of x; randomly to generate a new test image X; with
the constraint of having the same semantic label. In evalua-
tion, the background color is chosen uniform-randomly from
the set of colors: {#ecf02b, #£f06007, #0ff5f1,
#573115, #857d0f, #015c24, #ab0067, #fbb7fa,
#dled95, #0026£ff} andtheforegroundcolorisselected
randomly from the set {black, white}. For evaluation,
we form a dataset consisting of 2100 samples. The results
reported are averaged over 50 random runs. Figure 6 depicts
the distribution of training samples in the CMNIST dataset
(left) and some representative examples after transformation
(right).

We report our findings in Fig.7. Our operating hypothe-
sis is that a robust model should predict the same class label
f (x;) and f (x;) fora given pair (x;, X; ), as they share exactly
the same target label (i.e., the invariant feature is approxi-
mately the same). We can observe from Fig.7 that the best
model ViT-B/16 obtains consistent predictions for 100% of
image pairs. After extensive experimentation over all combi-
nations, we find that setting the foreground color as black
and the background as whi te caused the models to be most
vulnerable. We see a significant decline in model consistency
when the foreground color is set as black and the back-
ground as white (indicated as BW) as compared to random
setup.

Appendix E Visualization
E.1 Attention Map

In Fig.8, we visualize attention maps obtained from ViT-
B/16 model for some samples in Waterbirds (Sagawa et
al., 2020) and CMNIST dataset. We use Attention Roll-
out (Abnar & Zuidema, 2020) to obtain the attention matrix.
We can observe that the model successfully attends spatial

@ Springer

locations representing invariant features while making pre-
dictions.

E.2 The Attention Matrix of CMNIST

In the main text, we provide visualizations in which each
image patch, irrespective of its spatial location, provides
maximum attention to the patches representing essential cues
for accurately identifying the foreground object. In Fig. 9, we
show visualizations for ViT-B/16 fine-tuned on the CMNIST
dataset to further validate our findings.

Appendix F Extension: Pattern in Attention
Matrix

In this section, we provide visualizations for top N patches
receiving the highest attention values for ViT-Ti/16 (Fig. 10)
fine-tuned on Waterbirds dataset (Sagawa et al., 2020) on
various test images.

Takeaways. Figure 10 shows the top N patches receiving the
highest attention values for ViT-Ti/16 model fine-tuned on
the Waterbirds dataset. We observe: (1) The model correctly
attends to patches responsible for accurate classification in
images belonging to the majority groups, i.e, waterbird
on water background and landbird on land back-
ground. (2) For images belonging to minority groups (3rd
and 4th row in Fig.10) such as waterbird on land
background, the model provides maximum attention to the
environmental features, exhibiting lack of robustness to spu-
rious correlations.

Appendix G Extension: Results Highlighting
the Importance of Pre-training Dataset on
Additional Architectures

In this section, to further validate our findings on the impor-
tance of large-scale pre-training dataset we show results for
additional transformer architectures: RVT (Mao et al., 2022)
and PVT (Wang et al., 2021).

Takeaways: We report the results of finetuning different
model architectures on Waterbirds (Sagawa et al., 2020)
dataset in Table 10. Note, RVT architecture is specifically
modified to provide additional robustness against adversarial
attacks, common corruptions, and out-of-distribution inputs.
Despite these modifications, RVT models when pre-trained
on ImageNet-1k perform poorly when fine-tuned on Water-
birds indicating a lack of robustness to spurious correlations.
However, we do notice that RVT displays stronger robust-
ness to spurious correlation than ViT when pre-trained on
ImageNet-1k.
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45%  45% 5%

Fig.6 CMNIST. Distribution of
training samples in CMNIST
dataset (left) and few
representative examples after
transformation (right) as defined
in Section D

45% 45% 5%
Training Examples Transformed Samples

Random BW

ViT-B/16 ViT-B/16

ViT-5/16 ViT-5/16

ViT-Ti/16 ViT-Ti/16
BiT-M-R50x3

BiT-M-R50x3

BiT-M-R101x1 BiT-M-R101x1

BiT-M-R50x1 BiT-M-R50x1
0 20 40 60 80 100 0 20 40 60 80 100
Consistency Measure Consistency Measure
Fig. 7 Consistency Measure. Evaluation results quantifying consis- background as white using BW (right). Random represents setting

tency for models of different architectures and varying capacities. We both the foreground and background color randomly (left)
indicate the setup when the foreground color is set as black and the

Attention Mask Attention Map Original Image Attention Mask Attention Map

Original Image

Fig.8 Attention map. Visual illustration of attention map obtained from ViT-B/16 model for few representative images
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Fig.9 Visualization of the top
N patches receiving the highest
attention (marked in black) for
ViT-B/16 fine-tuned on
CMNIST. Investigating the
attention matrix, we find that all
image patches-irrespective of
spatial location-provide
maximum attention to the
patches representing essential
cues

Table 10 Investigating the
effect of large scale pre-training
on model robustness to spurious
correlations when finetuned on
Waterbirds (Sagawa et al., 2020)
dataset

Table 11 Investigating the
effect of training models on
Waterbirds (Sagawa et al., 2020)
dataset from scratch without any
pre-training

@ Springer

Input Image

N=1

y:0

e:red

y:1

e:green

y:1

e:red
Model Params (M) Train accuracy Test accuracy

Average Worst-group Average Worst-group

IN-1k
RVT-base 85.5 100 100 92.7 66.5
RVT-small 21.8 100 100 90.2 67.8
RVT-tiny 8.9 100 100 87.8 48.2
IN-1k
PVT-Large 60.9 100 100 89.9 56.9
PVT-medium 43.7 100 100 89.3 57.5
PVT-small 239 100 100 88.8 49.2
PVT-tiny 12.7 100 100 85.1 34.5

We indicate the pre-training datasets ImageNet-1k and ImageNet-21k as IN-1k and IN-21K respectively

Model Params (M) Train accuracy Test accuracy
Average Worst-group Average Worst-group

IN-21k

ViT-B/16 86.1 100 100 72.9 0.1
ViT-S/16 21.8 100 100 63.9 0.02
ViT-Ti/16 5.6 100 100 63.3 0.01

IN-21k

BiT-M-R50x3 211 100 100 58.6 0.09
BiT-M-R101x1 42.5 100 100 58.4 0.03
BiT-M-R50x1 235 100 100 54.2 0.01

We indicate the pre-training datasets ImageNet-1k and ImageNet-21k as IN-1k and IN-21K respectively
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Fig. 10 Visualization of the top
N patches receiving the highest
attention (marked in red) for
ViT-Ti/16 model finetuned on
Waterbirds (Sagawa et al., 2020)
dataset (Color figure online)

Table 13 Ablations on using different configurations for fine-tuning BiT-R50x1 model on Waterbirds dataset (Sagawa et al., 2020)

y : landbird

e:land
background

y : waterbird

e : water
background

y : waterbird

e:land
background

y : waterbird

e:land
background

y : waterbird

e : water
background

Input Image

Mixup CutMix Auto augment  Rand augment  Erasing BiT-M-R50x1 BiT-S-R50x1
Average Worst-group Average Worst-group

X X X X X 92.10 75.10 86.37 63.56 (Default)
v X X X X 91.36 62.77 82.79 42.79

X 4 X X X 85.36 40.80 76.28 20.72

v v X X X 87.80 52.10 78.90 31.60

X X 4 X X 93.30 78.81 86.89 65.42

X X X 4 X 93.87 78.66 87.19 64.33

X X X X v 93.57 75.85 86.98 62.90

The top row corresponds to the default setting used. The symbols v andX represent the corresponding setting being applied or not respectively.
Best performing results are marked in bold

Appendix H Experiments on training models

from scratch

In Table 11, we train ViT and BiT models from scratch on
Waterbirds(Sagawa et al., 2020) dataset. We observe that

overfit the training dataset to attain 100% training accu-

racy and significantly fail on test samples. This observation
indicates that without pre-training, both transformers and

without any pre-training, both ViT and BiT models severely

@ Springer

CNNSs have a high propensity of memorizing training sam-
ples (along with their inherent bias).
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y : landbird
e : land background

y : waterbird
e : land background

y : waterbird
e : water background

Fig. 11 GradCAM visualizations for few images sampled from Water-
birds dataset (Sagawa et al., 2020). The model used is BiT-S-R50x]1.
We use GradCAM (Selvaraju et al., 2016) to visualize the “salient”
observed features used to classify images

Appendix | How Does Different Training Con-
figuration Affect Robustness to Spurious Cor-
relations?

In this section, we aim to disentangle the effect of different
training configurations on robustness to spurious correlations
for DeiT-III (Touvron et al., 2022) models. Unlike ViT (Doso-
vitskiy et al., 2021), DeiT-III models are pre-trained using
strong data augmentations. Further, for ImageNet (Deng et
al., 2009) training, Touvron et al. (2021) have shown the posi-
tive impact of different data augmentation and regularization
approaches on model accuracy. Motivated by the findings, we
aim to verify if applying different training schemes during
fine-tuning can further improve model robustness to spurious
correlations.

Table 12 reports results for fine-tuning on Waterbirds
(Sagawa et al., 2020) using different configurations.> For
this experiment, we use the DeiT-III-Small architecture
pre-trained on ImageNet-21k. The top row in Table 12 corre-
sponds to the standard fine-tuning setting we use throughout
the paper for consistency and fair evaluation between differ-
ent architectures. Considering data augmentation schemes,
we observe that Mixup (Zhang et al., 2018), CutMix (Yun
et al., 2019), and Rand Augment (Cubuk et al., 2020) pro-
vide the most significant improvement in model robustness.
Specifically, using Rand Augment (Cubuk et al., 2020) dur-
ing fine-tuning leads to 4.98% improvement in worst-group
accuracy. Surprisingly, we also observe that simultaneously

3 Refer Table 7 (Appendix) for hyper-parameters used in different train-
ing schemes.

applying too many data augmentation schemes can instead
hamper the worst-group accuracy. Among regularization
schemes, we observe that reducing the weight decay penalty
can also provide some improvement in worst-group accuracy.
Next, we investigate the impact of different training
schemes on the robustness of convolutional nets to spurious
correlations. Precisely, we fine-tune the BiT-R50x1 model
on the Waterbirds dataset using different data augmenta-
tion approaches. We report results in Table 13. We observe
that, irrespective of the pre-training dataset, using Auto Aug-
ment (Cubuk et al., 2019) and Rand Augment (Cubuk et al.,
2020) improves model robustness to spurious correlations.

Appendix J GradCAM Visualizations

InFig. 11, we show GradCAM (Selvaraju et al., 2016) visual-
izations of a few representative examples from the Waterbirds
(Sagawa et al., 2020) dataset for a BiT-S-R50x1 model. For
each input image, we show saliency maps where warmer
colors depict higher saliency. We observe that the model
correctly attends to features responsible for accurate clas-
sification in images belonging to the majority groups, i.e.,
waterbird on water background and landbird on
land background. However, for the image belonging to the
minority group, i.e., waterbird on land background, the
model provides maximum attention to the environmental fea-
tures, exhibiting a lack of robustness to spurious correlations.
This visualization directly corroborates our empirical find-
ings in Table 3.

Appendix K Software and Hardware

We run all experiments with Python 3.7.4 and PyTorch 1.9.0
using Nvidia Quadro RTX 5000 GPU.
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