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Abstract. Runge--Kutta (RK) methods may exhibit order reduction when applied to stiff prob-
lems. For linear problems with time-independent operators, order reduction can be avoided if the
method satisfies certain weak stage order (WSO) conditions, which are less restrictive than tradi-
tional stage order conditions. This paper outlines the first algebraic theory of WSO, and establishes
general order barriers that relate the WSO of a RK scheme to its order and number of stages for
both fully-implicit and DIRK schemes. It is shown in several scenarios that the constructed bounds
are sharp. The theory characterizes WSO in terms of orthogonal invariant subspaces and associated
minimal polynomials. The resulting necessary conditions on the structure of RK methods with WSO
are then shown to be of practical use for the construction of such schemes.
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1. Introduction. Runge--Kutta (RK) methods may exhibit a convergence rate
lower than the (classical) order of the scheme. This order reduction phenomenon
often occurs when integrating stiff ODEs, stiff PDEs, or initial-boundary value prob-
lems (IBVPs) with time-dependent boundary conditions [9, 13, 39, 42, 27, 24, 29].
In the worst case, the observed convergence rate is governed by the stage order
of the method [32, 17]. Unfortunately, RK methods with high stage order must
be fully implicit; diagonally implicit RK (DIRK) schemes cannot have stage order
above 2.

By considering a restricted class of problems, one can obtain conditions weaker
than stage order that are sufficient to ensure high-order convergence. For instance,
in some cases where order reduction stems from time-dependent PDE boundary con-
ditions, it can be avoided by various problem- and method-dependent modifications
[12, 1, 2, 11, 3]. A set of conditions ensuring high-order convergence for linear prob-
lems has been developed [27, 19, 8, 40] and recently referred to by the term weak stage
order (WSO) [37, 21]. The conditions for WSO are, as the name suggests, weaker than
those for stage order; notably, DIRK methods can have high WSO. The conditions
are closely related to the classical order conditions for RK methods. In this work we
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 49

establish the algebraic structure of WSO and use it to prove rigorous relationships
between the achievable order, the WSO, and the number of stages of a method.

1.1. The WSO conditions. We consider the initial value problem

u\prime (t) = f(t, u(t)), u(0) = u0; u\in \BbbR m, f :\BbbR \times \BbbR m \rightarrow \BbbR m,(1.1)

and its numerical approximation un \approx u(tn), where tn = n\Delta t, via an s-stage RK
scheme, where the one-step update rule

gi = un +\Delta t

s\sum 
j=1

aijf(tn + cj\Delta t, gj) , i= 1,2, . . . , s ,(1.2a)

un+1 = un +\Delta t

s\sum 
j=1

bjf(tn + cj\Delta t, gj) ,(1.2b)

is concisely represented via the Butcher tableau

\vec{}c A
\vec{}bT

, whereA= (aij)
s
i,j=1,

\vec{}b= (b1, . . . , bs)
T , \vec{}c= (c1, . . . , cs)

T .

Method (1.2) is said to be of classical order p if the one-step error [16] is of \scrO (\Delta tp+1)
as \Delta t\rightarrow 0. This requires that the coefficients of the method satisfy certain algebraic
relations known as order conditions, which are derived under the assumption that f
has Lipschitz constant \lambda , and that \Delta t\lambda \ll 1.

If one does not assume that \Delta t\lambda is small (i.e., in the study of stiff problems), a
careful expansion of the numerical error leads to additional algebraic conditions on
the scheme's coefficients. A necessary condition for convergence of order \xi for general
stiff ODEs (cf. [17, Theorem 15.3]) is that

\vec{}\tau (k) :=A\vec{}ck - 1  - 1

k
\vec{}ck =

\biggl( 
ACk - 1  - 1

k
Ck

\biggr) 
\vec{}e= 0 for 1\leq k\leq \xi .(1.3)

Here \vec{}ck :=
\bigl( 
ck1 , c

k
2 , . . . , c

k
s

\bigr) T
denotes componentwise exponentiation, the vector \vec{}e =

(1, . . . ,1)T \in \BbbR s, and the diagonal matrix C = diag(c1, c2, . . . , cs) so that \vec{}c = C\vec{}e.
Throughout this paper we assume that \vec{}c=A\vec{}e, which implies that \tau (1) = 0. We refer
to the vectors \vec{}\tau (k) as stage order residuals.

If one assumes that f is a linear (possibly time-dependent) operator, then in the
convergence analysis for stiff problems one can replace the stage order with the largest
integer \xi such that

S(\xi ) : \vec{}bTAj\vec{}\tau (k) = 0 for all 0\leq j \leq s - 1, 1\leq k\leq \xi .(1.4)

Definition 1.1 (WSO). The WSO q of an s-stage RK scheme (A,\vec{}b) is the largest
integer such that condition S(q) in (1.4) holds. If S(\xi ) holds for every \xi \geq 1, then
q=\infty .

Conditions (1.4) were first introduced in the context of Rosenbrock W- (ROW)
methods, and referred to as parabolic order conditions [27, 28]; see section 2.4. In
section 2, we review the derivation of condition (1.4) as well as what is known about
the class of problems for which this condition ensures convergence of order q. We also
provide a review of the literature relating to WSO and similar conditions.
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50 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

1.2. Contribution of this work. While much is known about RK order condi-
tions, less is known about the solvability of the WSO conditions, and more generally,
the simultaneous solution of both sets of order conditions. Since high stage order
methods must be fully implicit, the solvability of the WSO and order conditions for
DIRK schemes is of particular interest.

Previous attempts at constructing DIRK schemes with WSO [37, 21] relied upon
the simplifying assumption that the vectors \tau (k) in (1.4) be eigenvectors of A. For
instance, DIRK schemes up to order 4 and WSO 3 have been provided in [21]. This
simplifying ``eigenvector criterion"" limits the construction of WSO schemes for DIRKs
(with invertible A) to q\leq 3, as shown below. A key motivating factor for the present
work is the need to construct DIRK schemes with high WSO q > 3; in order to enable
this, herein the vectors \vec{}\tau (k) are not assumed to be eigenvectors of A. Although we
are particularly interested in DIRK schemes, some of the main results herein apply
to general RK schemes.

This paper provides the first known bounds relating a RK scheme's WSO q to the
order p and number of stages s. After reviewing the background on WSO (section 2),
we recast WSO in terms of orthogonal invariant subspaces related to the matrix A
(section 3). From there we establish general bounds on s, q, p for both fully implicit
RK schemes and refinements for DIRKs. In section 4 we introduce minimal polyno-
mials corresponding to the orthogonal invariant subspaces. The minimal polynomials
are then combined with a family of polynomials (orthogonal with respect to a linear
functional) to yield new formulas (section 5) for the stability function, relevant for
schemes with high WSO. The study also reveals necessary conditions for WSO q > 3
(section 6), which provides the theoretical foundation for devising new schemes in
the companion paper [7]. We conclude with examples (section 7) demonstrating the
sharpness of the bounds.

2. Relevance of WSO. This section provides background information relevant
for this work: mathematical notation and fundamentals (section 2.1), the manifes-
tations of order reduction and error formulas (section 2.2), and a literature review
of prior work related to WSO (section 2.3). While the expert reader familiar with
the literature may skip this section, it provides a motivation for the relevance of this
paper.

2.1. Fundamentals and notation. The following definitions and notation about
RK schemes are used in this manuscript.

Given a RK method, we let nc denote the number of distinct abscissas cj , e.g., if
c1 = \cdot \cdot \cdot = cs, then nc = 1; in turn, if all cj are distinct (i.e., the scheme is nonconfluent),
then nc = s.

Schemes for which A is lower-triangular (aij = 0 for j > i) are called diago-
nally implicit Runge--Kutta (DIRK) methods. If, furthermore, all diagonal entries are
equal, i.e., aii = \gamma for i= 1, . . . , s, then the scheme is called singly diagonally implicit
(SDIRK). We refer to DIRK methods with a11 = 0 as EDIRKs. Implicit schemes that
are not diagonally implicit are referred to as fully implicit.

The following definition generalizes the concept of an EDIRK, and will be useful
in providing some results below (such as Theorem 3.2) that are less strict for certain
schemes with an explicit stage.

Definition 2.1 (GEDIRK). We call a DIRK scheme a generalized EDIRK (or
GEDIRK) if \vec{}c contains at least one zero and a\ell \ell = 0, where \ell =min\{ j | cj = 0\} is the
index of the first zero in \vec{}c.
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 51

When a RK scheme is applied to the scalar ODE u\prime (t) = \lambda u, it results in the
iteration un+1 =R(z)un, where z := \lambda \Delta t, and

R(z) := 1+ z\vec{}bT (I  - zA) - 1\vec{}e=
det(I  - zA+ z\vec{}e\vec{}bT )

det(I  - zA)
(2.1)

is the stability function of the scheme.
A RK scheme is called stiffly accurate [32] if the last row of A equals \vec{}bT , i.e.,

asj = bj for j = 1, . . . , s. When A is invertible, stiff accuracy implies \vec{}bTA - 1\vec{}e= 1, and
hence the desirable property limz\rightarrow \infty R(z) = 0 results.

The (classical) order p of a RK scheme (see section 1.1) imposes the well-known
order conditions on the Butcher coefficients [16]. We will also make use of the condi-
tions

B(\xi ) : \vec{}bT\vec{}ck - 1 =
1

k
for k= 1,2, . . . , \xi ,(2.2)

C(\xi ) : \vec{}\tau (k) = 0 for k= 1,2, . . . , \xi ,(2.3)

which determine the accuracy of the quadrature and subquadrature rules, respectively,
on which the RK method is based [10].

A RK scheme is said to have stage order \~q := min\{ q1, q2\} where q1, q2 are the
largest integers such that B(q1) and C(q2) hold. Stage order \~q guarantees that each
RK stage is accurate to order \~q, and that the method itself has order at least \~q.

2.2. Order reduction and the role of WSO. As the name suggests, the
conditions for WSO q are a relaxation of those for stage order \~q, i.e., \~q \leq q holds
for any method. The relevance of WSO in the context of order reduction can be
understood by examining the error for the (stiff) Prothero--Robinson problem [32, 17],

u\prime = \lambda (u - \phi (t)) + \phi \prime (t), u(0) = \phi (0), with Re(\lambda )< 0 ,(2.4)

with solution u(t) = \phi (t). For solutions starting from a different initial value, the
difference u(t) - \phi (t) decays exponentially to zero with time. Problem (2.4) can be
made arbitrarily stiff by choosing | \lambda | large. As in [17, eq. (15.9), Chap. IV.15], one
can derive exact formulas for the RK scheme's global error (with equal time-steps):

un+1  - \phi (tn+1) = (R(z))n+1(u0  - \phi (0)) +

n\sum 
j=0

(R(z))n - j\vec{}\delta \Delta t(tj) .

Here z = \lambda \Delta t and R(z) are defined as in (2.1). The local error \vec{}\delta \Delta t(tn) has, for a pth
order method, the form

\vec{}\delta \Delta t(tn) = - 
\sum 
k\geq 1

(\Delta t)k

(k - 1)!
Wk(z)\phi 

(k)(tn) +\scrO (\Delta tp+1) ,(2.5)

where \phi (k)(tn) is the kth derivative of \phi at tn and Wk(z) is the function

Wk(z) := z\vec{}bT (I  - zA) - 1\vec{}\tau (k) for k\geq 1 .

In the classical RK convergence theory one examines the nonstiff limit where both the
time scale 1/| \lambda | and the solution \phi (t) are fully resolved. If one assumes that \Delta t\rightarrow 0
with z =\scrO (\Delta t), then one can show that the local error \vec{}\delta \Delta t(tn) =\scrO (\Delta tp+1) by using
a Neumann series for (I  - zA) - 1 and applying the order conditions.
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52 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

In a stiff problem setting, one fully resolves the slow time scale defined by the
solution \phi (t) (i.e., \Delta t| \phi \prime (t)| \ll 1) but under-resolves the fast time scale 1/| \lambda | (i.e.,
| z| = \Delta t| \lambda | > \scrO (1)). One can then investigate the local error \vec{}\delta \Delta t(tn) uniformly in
z. As a special case this, in particular, covers the stiff limit given by \Delta t \rightarrow 0 while
simultaneously \lambda \rightarrow  - \infty such that z \rightarrow  - \infty . Then the local error \vec{}\delta \Delta t(tn) is at least
order \~q+1 because \vec{}\tau (k) = 0 for k\leq \~q, but, in general, it will fail to be of order p+1.
The algebraic condition of WSO ensures that the functions Wk(z) vanish, yielding a
local error \vec{}\delta \Delta t(tn) = \scrO (\Delta tq+1). WSO is the least restrictive condition to guarantee
Wk(z) = 0 for k\leq q [21, Thm. 2].

While the Prothero--Robinson problem (2.4) provides an intuitive example where
the convergence of the local truncation error is facilitated by WSO, both the order
reduction phenomenon and its remedy via WSO apply much more generally.

A general class of problems for which WSO improves the convergence order are
effectively established by the results in [4]: consider any linear PDE

ut =\scrL u+ f(t) , with boundary data \scrB u= g(t) ,(2.6)

and suitable initial data, where (\scrL ,\scrB ) generate a C0-semigroup. While the theorems
in [4] are stated assuming that the RK scheme used to approximate (2.6) has stage
order q, the proofs, in fact only, use the conditions for WSO q. Hence, WSO is of
potential relevance for any PDE problem generated by a C0-semigroup. The results
in [4] build on previous work that focused on analytic semigroups [27, 28], extending
their applicability to a broader class of PDEs---notably wave equations.

For PDE problems, order reduction and WSO may manifest in interesting ways
that are not encountered in the ODE problem (2.4). For instance, the convergence
order is controlled by the WSO of the method, plus a correction that may be fractional
depending on the details of the PDE [27]. The fractional convergence can also be
understood through the creation of spatial boundary layers in the RK error [37].
While WSO guarantees the remedy of order reduction only for linear problems, it is
also observed numerically that WSO can improve the convergence order for certain
nonlinear PDEs where the highest derivatives are linear [21].

2.3. Prior work on avoiding order reduction. The prior section highlights
that for certain classes of stiff problems the order of the local error may be reduced,
in the worst case, to the WSO of the method.

Ostermann and Roche [27] showed that, for linear problems, time-stepping schemes
that satisfy

\~Wk(z) :=
k\vec{}bT (I  - zA) - 1\vec{}\tau (k)

R(z) - 1
\equiv 0 for k= 1,2, . . . , q ,(2.7)

along with other technical assumptions, avoid order reduction when applied to linear
parabolic PDEs (see [27] for RK methods and [28] for the related ROW methods).
The analysis considers PDE problems (2.6) where \scrL defines an analytic semigroup
[28] or has a point spectrum in the left half plane with a basis of eigenfunctions [27].
The resulting error convergence rate is min\{ p, q + 2 + \=\nu \} , where \=\nu depends on the
PDE; see [27, Thm. 2].

Hundsdorfer showed that a generalization of (2.7) implies a convergence rate
of O(\Delta tq+1) for linear-implicit RK schemes applied to linear ODEs [19, Thm. 3.3].1

1See also [8, Thm. 3.3] which used \~Wk(z) to achieve improved convergence estimates.
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 53

Montijano showed that a necessary condition for convergence at order q on the problem
(2.4) is bTA - 1cj = 1 for 0\leq j \leq q [25, 14].

Because (2.7) contains the variable z, it is somewhat impractical as a means to
design RK schemes. Scholz [40] converted (2.7) into direct ``order conditions"" on
the scheme coefficients. By expanding terms like z\vec{}bT (I  - zA)\vec{}\tau (k) in the variable
H = z/(1  - z\gamma ) (which is possible only for SDIRK methods), Scholz developed B-
convergence order barriers (up to order 4) for ROW methods and demonstrated that
the weaker conditions are compatible with ROW (SDIRK) structures by constructing
schemes with up to p= q= 4 in (2.7). The complexity of Scholz's conditions for ROW
methods were subsequently simplified by Ostermann and Roche [28, eq. (3.12')] to
(effectively) the conditions (1.4), where the A and \vec{}\tau (k) in (1.4) are ROW analogues
of the corresponding RK scheme quantities. For further discussion of order reduction
in the context of stiff problems we refer to [6, Chapter 4], [14, Chapter 7], and [17,
Chapter IV.15] and references therein.

Although originally derived only for SDIRK methods, the ``order conditions""
(1.4) are, in fact, necessary conditions for any RK scheme to avoid order reduction in
(2.4); see section 2.2 and [33, eqs. (20)--(21)], [34, Thm. 3], [41], and also [37, 21]. A
geometric interpretation of (1.4) is provided in [37]. Recently, [35, Chap. 6] and [36]
extended (1.4) to generalized-structure additively partitioned Runge--Kutta (GARK)
methods.

3. Bounds on WSO via \bfitA -invariant subspaces. We now state the main
results of this paper.

Theorem 3.1 (main result). An RK scheme with s stages, nc distinct abscissas,
order p, and WSO q satisfies the following:

1. If the abscissa values are all nonzero (cj \not = 0), then q\leq 2nc  - 1.
2. If some of the abscissa values are zero (cj = 0), then either (i) q \leq 2nc  - 2,

or (ii) q=\infty in which case p= 1.
3. If q\leq 2nc  - 1, then

q+

\biggl\lfloor 
p+ 1+ \sigma 

2

\biggr\rfloor 
\leq s+ nc ,

where \sigma = 1 for stiffly accurate methods with invertible A, and \sigma = 0 other-
wise.

A stricter bound can be obtained for DIRK schemes.

Theorem 3.2 (main result for DIRK). Let a DIRK scheme be given with s stages,
nc distinct abscissas, order p, and WSO q\leq 2nc  - 1. Then\biggl\lfloor 

q+ \kappa 

2

\biggr\rfloor 
 - \kappa + p\leq s+ 1 - \sigma ,

where \sigma = 1 if A is invertible and the scheme is stiffly accurate, and \sigma = 0 otherwise,
and \kappa = 1 if A is a GEDIRK scheme, and \kappa = 0 otherwise.

Here \lfloor x\rfloor is the standard floor function for the real number x. Note that Theorem
3.1 still applies when q\geq 2nc  - 1.

Remark 3.3 (order barriers). When p= s+1 - \sigma , Theorem 3.2 implies that DIRK
schemes are limited to WSO q\leq 3, with the exception of GEDIRK schemes which are
limited to WSO q\leq 4. For a fixed s, decreasing p by 1 increases the upper bound on
q by 2. There exist schemes that satisfy these barriers sharply (see section 7).
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54 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

In fact, the main results appearing here can be viewed as improvements to the
classical bounds on the RK order p via the number of stages s. For instance, the
classical bound p\leq s+1 for DIRK methods can be recovered by setting q= 0 (\kappa = 0)
in Theorem 3.2. Moreover, the main results show that the maximum WSO q is
controlled by the difference in the classical bound (e.g., s+ 1 - p for DIRKs).

3.1. A pair of orthogonal \bfitA -invariant subspaces. The WSO conditions
(1.4) can be written equivalently in terms of orthogonal subspaces. Given an s-stage
RK method, let

Km := span
\Bigl\{ 
\vec{}\tau (1),A\vec{}\tau (1), . . . ,As - 1\vec{}\tau (1),\vec{}\tau (2),A\vec{}\tau (2), . . . ,As - 1\vec{}\tau (m)

\Bigr\} 
(m\geq 1) ,(3.1)

Y := span
\Bigl\{ 
\vec{}b,AT\vec{}b, . . . , (AT )s - 1\vec{}b

\Bigr\} 
.(3.2)

Note that due to the Cayley--Hamilton theorem, Km is an A-invariant subspace, while
Y is left A-invariant, i.e., A\vec{}v \in Km for any \vec{}v \in Km and AT\vec{}v \in Y for all \vec{}v \in Y . In
fact, Km and Y are the smallest A-invariant spaces containing the \vec{}\tau (j) (j \leq m) and \vec{}b,
respectively. This allows for the natural generalization to m=\infty in (3.1) by defining
K\infty as the smallest A-invariant space containing \tau (k) for all k\geq 1.

Then (1.4) is equivalent to the condition that \vec{}v T \vec{}w = 0 for every \vec{}v \in Y and
\vec{}w \in Kq. Since Km and Y are subspaces of \BbbR s, we have the following lemma.

Lemma 3.4. Given an RK scheme defined by A,\vec{}b, let q \geq 1 be an integer or \infty ,
and let Kq and Y be the subspaces (3.1) and (3.2) of \BbbR s. Then the scheme has WSO
of at least q if and only if Y and Kq are orthogonal, in which case

dim(Y ) + dim(Kq)\leq s .(3.3)

RK methods with (classical) stage order q have dim(Kq)=0 and dim(Kq+1)>0.
Except for schemes that were specifically designed with high WSO, almost all irreduc-
ible schemes in the literature have dim(Y ) = s, so Lemma 3.4 implies that their WSO
is no greater than their stage order. However, some existing schemes have dim(Y )< s;
for example, explicit methods with one or more entries on the first subdiagonal equal
to zero. These include the 8th order method of Prince and Dormand [31], as well as
some of the fifth-order SSP methods of Ruuth and Spiteri [38].

Remark 3.5. In the proof of Theorem 3.2 (to follow) the bound (3.7) for DIRK
schemes is used. However, if p = 1, (3.6) for fully implicit schemes gives dimY \geq 1
which is tighter than the DIRK bound (3.7) (dimY \geq 0) and yields a slight improve-
ment to Theorem 3.2.

Remark 3.6. For simplicity we have written ``order p"" in Theorems 3.1 and 3.2;
however, both results hold under the weaker condition that R(z) = ez +\scrO (zp+1) is a
pth order approximation as z\rightarrow 0.

The proof of the main results follows from the inequality (3.3) along with lower
bounds on the dimensions of Y and Kq. The proof can be divided into three steps.
Step 1 (section 3.2) bounds the dimension of Y for both fully implicit and DIRK
schemes. Step 2 (section 3.3) bounds the dimension of Km for fully implicit schemes
which is then refined in Step 3 (section 3.4) for DIRK schemes.

3.2. (Step 1) A lower bound on the dimension of the subspace \bfitY . Here
we show that the degrees of the numerator and the denominator of the RK stability
function are bound by the dimension of the subspace Y . When combined with classical
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 55

results on rational approximations to ez, we obtain a lower bound on dimY in terms
of p.

Throughout, we denote a rational function that approximates ez to order p as

N(z)/D(z) = ez +\scrO (zp+1) , as z\rightarrow 0 ,(3.4)

where N and D are polynomials with no common factors.

Theorem 3.7 (rational approximations of ez, [17, Thms. IV.3.11, and IV.4.18],
[26, Thm. 2.1]). Let polynomials N(z),D(z) satisfy (3.4). Then p \leq degN + degD.
If, further, N/D has only real poles, then p\leq degN + 1.

For an s-stage RK method, the stability function is a rational approximation of
ez with numerator and denominator of degree at most s. In fact, we can replace s in
this statement with dimY .

Theorem 3.8. Let an RK method (A,b) be given, with Y defined as in (3.2).
Then the stability function of the method is R(z) =N(z)/D(z), where degN \leq dimY
and degD\leq dimY .

Proof. Define an orthogonal matrix L = (U | V ) \in \BbbR s\times s, where the columns of
U \in \BbbR s\times d, with d := dimY , are a basis of Y and the columns of V are a basis of its
orthogonal complement. Then \vec{}bTV =\vec{}0 and \vec{}bT (I  - zA) - 1V =\vec{}0.

So the stability function (2.1) is

R(z) = 1+ z\vec{}bTLLT (I  - zA) - 1LLT\vec{}e= 1+ z\vec{}bTUMUT\vec{}e ,(3.5)

where \vec{}bTU = \vec{}bTU \in \BbbR d and M = UT (I  - zA) - 1U \in \BbbR d\times d. Using this and Cramer's
rule it can be shown that the numerator and denominator of R(z) are given by de-
terminants of d\times d matrices whose entries are linear functions of z. Thus R(z) is a
rational function with numerator and denominator of degree at most d.

For stiffly accurate schemes withA invertible, R(z) is further constrained to satisfy
limz\rightarrow \infty R(z) = limz\rightarrow \infty N(z)/D(z) = 0, so that degN \leq degD  - 1 \leq dimY  - 1. For
DIRK schemes, the stability function R(z) has real poles since the eigenvalues of A
are confined to the diagonal entries---which are real. Combining these observations
with Theorems 3.7 and 3.8, we have proved the following theorem.

Theorem 3.9. Let an RK scheme (A,b) be given with Y defined as in (3.2) and
stability function R(z) = ez +\scrO (zp+1), as z\rightarrow 0. Then\biggl\lfloor 

p+ 1+ \sigma 

2

\biggr\rfloor 
\leq dimY .(3.6)

If the scheme is diagonally implicit, (3.6), we have the stronger bound

p\leq dim(Y ) + 1 - \sigma .(3.7)

where \sigma = 1 if the scheme is stiffly accurate and A is invertible, and \sigma = 0, otherwise.

3.3. (Step 2) A lower bound on the dimension of the subspace \bfitK \bfitm for
general RK schemes. Here we provide a lower bound on dim(Km) in terms of m
and the number of distinct abscissas nc. The key idea is that Km contains linear
combinations of the vectors \vec{}\tau (k), and for large enough m the addition of each new
vector increases the dimension of the space Km.
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56 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

We first denote the column space of the Vandermonde matrix with columns \vec{}c

V :=

\biggl\{ 
span\{ \vec{}e,\vec{}c, . . . ,\vec{}cnc - 1\} if all cj \not = 0 ,
span\{ \vec{}c,\vec{}c2, . . . ,\vec{}cnc - 1\} if at least one cj = 0.

Now define subspaces of V for values of m\geq nc + 1 as follows:

Wm :=

\biggl\{ 
w(C)\vec{}e

\bigm| \bigm| for allw(x) = \int x

0

\alpha (x)PC(x) dx and \alpha (x)\in \Pi m - 1 - nc

\biggr\} 
,

\Pi d =
\bigl\{ 
\alpha 0 + \cdot \cdot \cdot + \alpha dx

d | \alpha j \in \BbbR for j = 0, . . . , d
\bigr\} 
.

Here PC(x) is the minimal polynomial for the matrix C (so that PC(C) = 0) and \Pi d

is the space of polynomials of degree at most d. By construction Wm \subseteq Wm+1.
We denote the smallest A-invariant subspace containing a vector space X by

\scrK (X); namely \scrK (X) can be constructed explicitly by taking the span of all the A-
Krylov subspaces of the basis vectors of X (similar to (3.1)). In particular, \scrK (V ) and
\scrK (Wm) are the smallest A-invariant spaces containing V and Wm, respectively. With
these notations, we now have the following lemma.

Lemma 3.10 (the Km sandwich). For any m\geq nc + 1 (or m=\infty ) it holds that

Wm \subseteq \scrK (Wm)\subseteq Km \subseteq \scrK (V ) .

Proof. The fact that Km \subseteq \scrK (V ) follows from the observation that every \vec{}\tau (k),
for arbitrary k, is a linear combination of A\vec{}ck \in \scrK (V ) and \vec{}ck+1 \in \scrK (V ).

Next, we show that Km contains the subspace Wm. Due to the fact that \scrK (Wm)
and Km are both A-invariant, this implies \scrK (Wm)\subseteq Km.

Let w\prime (x) =wm - 1x
m - 1+wm - 2x

m - 2+ \cdot \cdot \cdot +w0 denote an arbitrary (real) polyno-
mial and let w(x) :=

\int x

0
w\prime (s) ds. The space Km then contains the linear combination

m\sum 
j=1

wj - 1\vec{}\tau 
(j) =

\left(  m\sum 
j=1

Awj - 1C
j - 1  - 1

j
wj - 1C

j

\right)  \vec{}e, using (1.3) ,

=
\bigl( 
Aw\prime (C) - w(C)

\bigr) 
\vec{}e\in Km .(3.8)

Since C is diagonal, its minimal polynomial PC(x) has simple roots (one for each
distinct entry of \vec{}c) and so degPC = nc. Thus, for m \geq nc + 1, we can set w\prime (x) =
\alpha (x)PC(x) in (3.8) (so that w\prime (C) = 0), showing that w(C)\vec{}e \in Km. Hence Km

contains the subspace Wm.

The next theorem follows directly from properties of Wm.

Theorem 3.11 (properties of Km). Consider an RK scheme with nc distinct
abscissas and the space Km defined in (3.1). Then we have the following:

(a) If m\leq 2nc  - 1, then dimKm \geq max\{ m - nc,0\} .
(b) If m \geq 2nc and all cj \not = 0 (i.e., PC(0) \not = 0), then Km = \scrK (V ); in particular,

\vec{}e\in Km and dimKm \geq nc.
(c) If m \geq 2nc  - 1 and cj = 0 for at least one value of j (i.e., PC(0) = 0), then

Km =\scrK (V ); in particular, \vec{}c\in Km and dimKm \geq nc  - 1.

Proof. For (a), we compute dimWm which bounds dimKm from below. First,
note that vectors of the form w(C)\vec{}e (for any polynomial w(x)) are in one-to-one
correspondence with their associated polynomial remainders2 w(x) mod PC(x)

2Here w(x) mod P\mathrm{C}(x) is the remainder of w(x) when divided by P\mathrm{C}(x); the set of all such
remainders can be identified with the vector space \Pi nc - 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
24

 to
 1

73
.7

0.
15

5.
40

 b
y 

D
av

id
 S

hi
ro

ko
ff

 (
da

vi
d.

g.
sh

ir
ok

of
f@

nj
it.

ed
u)

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 57

(i.e., as vector spaces they are isomorphic).3 Thus, Wm has the same dimension as
the range of I : \Pi m - 1 - nc \rightarrow \Pi nc - 1 defined by

I[\alpha ] :=

\biggl( \int x

0

\alpha (x)PC(x) dx

\biggr) 
mod PC(x) ,

where I[\cdot ] is the linear (integral) operator that maps \Pi m - 1 - nc
(which has dimension

m  - nc) into polynomials modulo PC(x) (which has dimension nc). We now claim
that I[\cdot ] has a trivial null space whenever m\leq 2nc  - 1. Suppose not---then there are
polynomials \alpha (x) \not = 0 (deg\alpha \leq nc  - 2) and \beta (x) (deg\beta \leq nc  - 1) such that\int x

0

\alpha (x)PC(x)dx = \beta (x)PC(x) .

Differentiating both sides yields

(\alpha (x) - \beta \prime (x))PC(x) = \beta (x)P \prime 
C(x) .(3.9)

The minimal polynomial PC(x) contains nc \geq 1 distinct roots, and hence P \prime 
C(x) has

no common root with PC(x) (i.e., PC(x) and P \prime 
C(x) are relatively prime). Thus, (3.9)

requires that P \prime 
C(x) divide (\alpha (x) - \beta \prime (x)) and PC(x) divide \beta (x), which is impossible

in light of the degrees of \alpha (x), \beta (x). Thus no \alpha (x) exists, and whenever nc+1\leq m\leq 
2nc  - 1 one has the following dimension:

dimWm =dim\Pi m - 1 - nc
= (m - nc)\leq dimKm .(3.10)

Combining (3.10) with the trivial dimKm \geq 0 when m<nc + 1 proves (a).
For (b), when m= 2nc, (3.9) has the (unique) family of solutions

\beta (x) = \gamma PC(x) and \alpha (x) = 2\gamma P \prime 
C(x) (\gamma \in \BbbR ) .

Substituting this value of \alpha (x) into

I[\alpha ] = \gamma PC(x)
2  - \gamma PC(0)

2 = - \gamma PC(0)
2 mod PC(x) ,

shows that \gamma = 0 is still the only solution to I[\alpha ] = 0. Hence, I[\cdot ] has a trivial null
space, Wm contains the vector \vec{}e (e.g., take \gamma = - PC(0)

 - 2), and dimWm = nc. Thus,
Wm has the same dimension as V which forces Wm = V showing that Km = \scrK (V ).
For m\geq 2nc, Km =\scrK (V ) holds trivially since Km \subseteq Km+1.

For (c), if PC(0) = 0, then every w(x) appearing in Wm is divisible by x2 so
that w(x) and PC(x) share a common factor of x. Thus x divides the remainder w(x)
mod PC(x) as well as every polynomial in the range of I[\cdot ], i.e., for every \alpha \in \Pi m - 1 - nc ,
I[\alpha ] = xr(x) for some r(x) with deg r \leq nc  - 2. When m = 2nc  - 1 the range of I[\cdot ]
has dimension nc - 1 and includes all monomials xj for 1\leq j \leq nc - 1. Hence Wm = V
showing that Km =\scrK (V ).

The vector \vec{}c has an explicitly construction: since PC(x) and P \prime 
C(x) are relatively

prime, polynomials \beta (x) (deg\beta \leq nc - 1) and \gamma (x) (deg\gamma (x)\leq nc - 2) exist such that

\gamma (x)PC(x) = \beta (x)P \prime 
C(x) + 1 .

3For any polynomial w(x) mod P\mathrm{C}(x), the identification of w(x) \mapsto \rightarrow w(C)\vec{}e is surjective and
preserves the operations of the vector space. It is also injective: since w(C) is a diagonal matrix,
the vector w(C)\vec{}e= 0 if and only if w(C) = 0, and w(C) = 0 if and only if w(x) is divisible by P\mathrm{C}(x).
Hence, the vectors w1(C)\vec{}e = w2(C)\vec{}e if and only if w1(x) - w2(x) = \alpha (x)P\mathrm{C}(x) for some \alpha (x), i.e.,
w1(x)\equiv w2(x) mod P\mathrm{C}(x).
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58 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

Set \alpha (x) := \gamma (x) - \beta \prime (x) (deg\alpha \leq nc  - 2), so that \alpha (x)PC(x) =
d
dx (\beta (x)PC(x)) + 1.

Since PC(0) = 0, integrating both sides shows that I[\alpha ] = x and hence: \vec{}c\in Wm.

By combining the lower bounds, we obtain a proof of the main result.

Proof of the main result, Theorem 3.2. Parts (1) and (2) of Theorem 3.2 follow
from Theorem 3.11(b) and (c), respectively, with the fact that the order conditions
\vec{}bT\vec{}e = 1 (for p = 1) and \vec{}bT\vec{}c = 1/2 (for p = 2) are incompatible with the WSO
requirement that \vec{}b\bot Km whenever \vec{}e\in Km or \vec{}c\in Km.

Theorem 3.1(3) follows from combining the inequality (3.3); the lower bound for
dimY from Theorem 3.9 for fully implicit schemes; and the lower bound for dimKm

in Theorem 3.11(a).

3.4. (Step 3) A lower bound on the dimension of the subspace \bfitK \bfitm for
DIRK schemes. We now turn to obtaining lower bounds on the dimension of Km

in the more restrictive setting when A is DIRK. The results in this section build on
Theorem 3.11. The difference of 1 (dimension) in parts (b) and (c) in Theorem 3.11
creates a somewhat bothersome issue for directly obtaining the lower bound in this
section. However, this difference of 1 can be avoided for DIRK schemes that do not
admit a GEDIRK structure.

Lemma 3.12 (extra dimension in Km when cj = 0). For a DIRK scheme that
is not a GEDIRK scheme, if m \geq 2nc, then dimKm \geq nc (where the space Km is
defined in (3.1)).

Proof. If \vec{}c has no zero, then Theorem 3.11(b) applies and we are done. Let \ell 
be the first occurrence of c\ell = 0 in \vec{}c (i.e., cj \not = 0 for j < \ell ). Note that \ell > 1 since
c1 = a11 \not = 0 (because A is not a GEDIRK). Theorem 3.11(c) shows that Wm \subseteq Km

has dimension nc  - 1, that the vector \vec{}c \in Km, and that Wm is orthogonal to \vec{}e\ell , i.e.,
\vec{}eT
\ell \vec{}u= 0 for all \vec{}u\in Wm. In addition, Wm contains a vector of the form (since \ell is the
first occurrence of 0)

\vec{}y := (1, . . . ,1,0,  \star )\in Wm ,

where the first \ell  - 1 entries of \vec{}y are 1 and  \star is unimportant. Since Km is A-invariant,
we have \vec{}c - A\vec{}y \in Km; however, \vec{}eT

\ell (\vec{}c - A\vec{}y) = a\ell \ell \not = 0 (where a\ell \ell \not = 0 since A is not a
GEDIRK), showing that dimKm \geq nc.

To expedite the remaining proofs below, we define a truncation map [\cdot ]j which

acts on matrices as [\cdot ]j :\BbbR s\times s \rightarrow \BbbR j\times j to isolate the upper j \times j block of A, and acts

on vectors as [\cdot ]j :\BbbR s \rightarrow \BbbR j to isolate the top s components of \vec{}c:

[A]j :=

\left(      
a11 a12 \cdot \cdot \cdot a1j

a21
. . .

...
...

aj1 aj2 \cdot \cdot \cdot ajj

\right)      and [\vec{}c]j :=

\left(     
c1
c2
...
cj

\right)     .

For a lower-triangular matrix A, the first j (\leq s) components of the vectors \vec{}\tau (k) and
\vec{}c are functions of the upper j \times j sub-block of the matrix A\in \BbbR s\times s only. Moreover,

[An]j =
\Bigl( 
[A]j

\Bigr) n
and [\vec{}cn]j =

\Bigl( 
[\vec{}c]j

\Bigr) n
.(3.11)
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We will also refer to the vectors \vec{}\tau (k) that arise when A is replaced by [A]j in (1.3):

\vec{}\tau (k)([A]j) := [A]j
\bigl[ 
\vec{}ck - 1

\bigr] 
j
 - 1

k

\bigl[ 
\vec{}ck
\bigr] 
j

for k\geq 1 ,(3.12)

which commute with the map in the sense that for every 1\leq j \leq s, n\geq 0, and k\geq 1,\Bigl[ 
\vec{}\tau (k)(A)

\Bigr] 
j
= \vec{}\tau (k)([A]j) ,

\Bigl[ 
An\vec{}\tau (k)(A)

\Bigr] 
j
= [A]

n
j \vec{}\tau 

(k)([A]j) .(3.13)

We also extend [\cdot ] to vector subspaces U \subseteq \BbbR s as [U ]j := span\{ [\vec{}u]j | \vec{}u \in U\} , which
implies dimU \geq dim [U ]j .

Lemma 3.13 (dimension of Km for a DIRK scheme). Consider a DIRK scheme
with nc distinct abscissas, and the corresponding space Km defined in (3.1). Then

dimKm \geq min

\biggl\{ \biggl\lfloor 
m+ \kappa 

2

\biggr\rfloor 
, nc

\biggr\} 
 - \kappa ,(3.14)

where \kappa = 1 if A is a GEDIRK scheme, and \kappa = 0, otherwise.

The main idea in the proof is that the commutation property (3.13) implies
that the matrix [A]j and vectors \vec{}\tau (k)([A]j) define an [A]j-invariant space. Specif-

ically, [Km]j is exactly the smallest [A]j-invariant space containing \vec{}\tau (k)([A]j) for

k= 2, . . . ,m. Hence, Theorem 3.11 and Lemma 3.12 apply4 to [A]j for each 1\leq j \leq s,
where nc is replaced with the number of distinct values in \{ c1, . . . , cj\} . The dimension
of the associated [A]j-invariant space (for any j) bounds is dimKm \geq dim [Km]j . We
then pick the ``worst case"" j. For simplicity, let

T (j) :=max\{ r | \#\{ c1, . . . , cr\} = j\} ,

where \# denotes the number of distinct values in a set. Then T (\cdot ) is strictly increasing,
T (1)\geq 1, T (nc) = s, and the set \{ c1, . . . , cT (j)\} contains j distinct values.

Proof of Lemma 3.13. Assume m> 1 (it holds trivially for m= 1). If A is not a
GEDIRK, set r :=min\{ \lfloor m

2 \rfloor , nc\} . Apply Lemma 3.12 to [A]T (r), which has r distinct
\vec{}c values, to obtain dimKm \geq r (which is (3.14) when \kappa = 0).

If A is a GEDIRK, we use the more general bound Theorem 3.11(a)--(c) applied
to a DIRK matrix [A]T (r\prime ) with r\prime (\leq m) distinct abscissas values:

dimKm \geq min\{ r\prime  - 1,m - r\prime \} .(3.15)

Set r\prime :=min\{ m
2 , nc\} if m is even and r\prime :=min\{ m+1

2 , nc\} if m is odd. Applying (3.15),
and observing that (in all four cases) min\{ r\prime  - 1,m - r\prime \} = r\prime  - 1 yields (3.14) with
\kappa = 1.

We conclude this section with a proof of the main result for DIRKs.

Proof of the main result for DIRKs, Theorem 3.2. When q\geq 2nc - 1, Lemma 3.13
gives a lower bound on dimKm of \lfloor m+\kappa 

2 \rfloor  - \kappa . Substituting this and the lower bound
on dimY in Theorem 3.9 for DIRKs into (3.3) yields the result.

4The new space Wm as well as the definition I[\cdot ] must use the minimal polynomial of [C]j .
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4. Minimal polynomials for the spaces \bfitY and \bfitK \bfitq . Our results in the next
two sections will be based on the linear algebra of orthogonal left and right invariant
subspaces applied to Y and Km. We therefore first review and establish key results
(e.g., eigenspace, eigenvalue, and minimal polynomials) pertaining to the action of a
matrix on its orthogonal invariant subspaces. We employ the standard terminology:
a monic polynomial p(x) is defined as having a leading (i.e., highest degree term)
coefficient of one; the characteristic polynomial of a matrix is defined as the (monic)
polynomial charA(x) := det(xI  - A); the minimal polynomial p(x) of a matrix A is
the monic polynomial of smallest degree for which p(A) = 0. While it is often the case
that (for instance, when the eigenvalues of A are distinct) the minimal polynomial is
the characteristic polynomial, i.e., p(x) = charA(x). In general, p(x) is of lower degree
than charA(x) when A has repeated eigenvalues.

For a real matrix A [5, Chaps. 8 and 9A], the minimal polynomial p(x) of A is (i)
unique; (ii) has real coefficients;5 (iii) divides the characteristic polynomial of A (thus
every root of p(x) is an eigenvalue of A and the deg p \leq deg charA(x)); moreover,
(iv) every eigenvalue of A (not including multiplicity) is a root of p(x); and (v) every
polynomial \~p(x) satisfying \~p(A) = 0 is divisible by p(x). The following two theorems
concern minimal polynomials for matrices restricted to invariant subspaces and will
be employed in our study of WSO.

Theorem 4.1 (A-invariant subspaces). Let A \in \BbbR s\times s, and let U \subseteq \BbbR s be an A-
invariant subspace with dimension d := dim(U) (d= 0 is possible). Then there exists
a unique monic polynomial p(x) of minimal degree and coefficients in \BbbR , such that

p(A)\vec{}u= 0 \forall \vec{}u\in U .(4.1)

This polynomial has the following properties:
(a) p(x) divides the characteristic polynomial charA(x);
(b) every root of p(x) is an eigenvalue of A; and
(c) deg p\leq dim(U).

If, in addition, U has the form U = span\{ \vec{}v,A\vec{}v, . . . ,Ad - 1\vec{}v\} (or U = \{ 0\} when
dim(U) = 0) where Aj\vec{}v are linearly independent for j = 0, . . . , d - 1, then

(d) deg p=dim(U).
(e) Condition (4.1) is equivalent to p(A)\vec{}v= 0.

We include a proof of Theorem 4.1 in Appendix A, using straightforward gen-
eralizations of textbook arguments: p(x) is the minimal polynomial for A restricted
to the subspace U (from which properties (a)--(e) follow). Theorem 4.1 can then be
extended to the case when A has both a left and right orthogonal invariant subspace.

Theorem 4.2 (left and right orthogonal A-invariant subspaces). Let A \in \BbbR s\times s

be a real matrix, and let U \subseteq \BbbR s and V \subseteq \BbbR s be orthogonal subspaces, where U is
A-invariant and V is AT -invariant. Denote the minimal polynomials in (4.1) from
Theorem 4.1 as p(x) for U and q(x) for V , i.e., p(A)\vec{}u = 0 \forall \vec{}u \in U and q(AT )\vec{}v =
0 \forall \vec{}v \in V . Then the product p(x)q(x) divides the characteristic polynomial charA(x).

Again, a proof of Theorem 4.2 is included in Appendix A for completeness. These
results have a direct consequence for RK schemes with high WSO.

5More precisely, when A is real with pr(x) the minimal polynomial with coefficients in \BbbR , and
pc(x) is the minimal polynomial with coefficients over \BbbC , then pr(x) = pc(x).
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 61

Example 4.3. To highlight Theorems 4.1 and 4.2, consider

A=

\left(    
1 0 0 0
1 1 0 0
2  - 1 1 0

 - 2 0 1 2

\right)    , U =

\left(    
1 0 1
0 1  - 1
0 1 1
1 0  - 1

\right)    , \vec{}v=

\left(    
1
1

 - 1
 - 1

\right)    .

The matrix A has an A-invariant subspace spanned by the columns of U , and an
orthogonal AT -invariant space spanned by \vec{}v. The associated minimal polynomials
are p(x) = (x - 1)3, s.t. p(A)U = 0, and q(x) = (x - 2), s.t. \vec{}v T q(A) = 0. The product
p(x)q(x) = (x  - 1)3(x  - 2) = charA(x) equals, and thus divides, the characteristic
polynomial. The example here will also be used to illustrate the lemmas in section 6.

Lemma 4.4. Let (A,\vec{}b) be an RK method. Then there exists a unique (nonzero,
real coefficient) monic polynomial Q(x) of minimal degree such that

\vec{}bTQ(A) = 0 .(4.2)

The polynomial Q(x) has degQ=dimY and divides charA(x).
If, in addition, the RK method has WSO q \geq 2, then there exists a unique

(nonzero, real coefficient) monic polynomial P (x) of minimal degree, such that

P (A)\vec{}\tau (k) = 0 for k= 2, . . . , q .(4.3)

Moreover, degP \leq dimKq, and the product P (x)Q(x) divides charA(x).

In (4.2)--(4.3), Kq and Y are the subspaces defined by (3.1) and (3.2); and \vec{}\tau (k)

are the stage order residuals. We refer to Q(x) and P (x) in Lemma 4.4 as the minimal
polynomials for Y and Kq, respectively.

Proof. For the existence of Q and its properties, set U = Y and apply Theorem
4.1(d)--(e). For the existence of P and its properties, set U = Kq and V = Y and
apply Theorem 4.2, where we denote the polynomials p(x), q(x) in Theorem 4.2 as
P (x), Q(x), respectively. The only point to prove is that the condition

P (A)\vec{}v= 0 \forall \vec{}v \in Kq ,(4.4)

from Theorem 4.2 is equivalent to (4.3) where \vec{}v is restricted to be the stage order
residuals \vec{}\tau (k) for k = 1, . . . , q. Clearly, (4.4) implies (4.3) since Kq trivially includes
\vec{}\tau (k) for k = 1, . . . , q. Conversely, (4.3) implies that every basis vector in Kq, i.e.,
Aj\vec{}\tau (k), satisfies P (A)Aj\vec{}\tau (k) = 0. Hence, (4.3) may be used in lieu of (4.4) to define
the minimal polynomial P (x).

Combined with (3.3) and Theorem 3.9, Lemma 4.4 implies the following corollary.

Corollary 4.5. For an s-stage RK scheme with order p\geq 1 and WSO q (with
Kq and P (x) defined in (3.1) and (4.3)), one has

deg(P )\leq dim(Kq)\leq 
\biggl\{ 

s - 
\bigl\lfloor 
p+1+\sigma 

2

\bigr\rfloor 
for fully implicit schemes,

s - p - 1 + \sigma for diagonally implicit schemes,

where \sigma = 1 if A is invertible and the method is stiffly accurate, and \sigma = 0, otherwise.

Remark 4.6 (eigenvalues of A). A consequence of Lemma 4.4 is that the ei-
genvalues of A (including multiplicity) for a RK scheme can be partitioned into
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62 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

three sets: the roots of P (x), the roots of Q(x), and the roots of N(x), where
charA(x) = P (x)Q(x)N(x).

Remark 4.7. For an SDIRK with diagonal entries of \gamma in A, the polynomials P,Q
have the form Q(x) = (x - \gamma )d (d=dimY ), and P (x) = (x - \gamma )\mu (\mu \leq dimKq).

Broadly speaking, the polynomials Q(x) and P (x) are algebraic objects associated
with the corresponding geometric (orthogonal) spaces Kq and Y . In the next sections,
we use the polynomial P (x) to obtain an expression for the stability function of RK
schemes (particularly useful for schemes with WSO), and use Q(x) to obtain necessary
conditions for high WSO schemes (useful in the construction of WSO schemes).

5. Stability function in a basis for \bfitY . In general, the RK stability function
has a restricted form when p is close to (the optimal) 2s, and also when p \geq s (e.g.,
see [17, Chap. IV.3, p. 47]). In this section, we extend this constrained structure for
R(z) to the more general setting p\geq dimY and to when p is close to 2dimY (which
is a setting applicable for WSO). The key idea is to write Q(x), and Y , in a basis of
orthogonal polynomials related to the (tall-tree) pth order conditions

\vec{}bTAj\vec{}e=
1

(j + 1)!
, 0\leq j \leq p - 1 .(5.1)

Specifically, define the linear functional \scrL (\cdot ) on the space of monomials xn with mo-
ments (\mu n)n\geq 0 as

\scrL (xn) := \mu n, where \mu n :=
1

(n+ 1)!
for n\geq 0 .(5.2)

Associated to \scrL are the Hankel moment matrices Hn = (\mu i+j - 2)
n
i,j=1. Appendix B

shows that detHn \not = 0 for all n\geq 0, which is a sufficient condition to construct a basis
of polynomials (Qj)j\geq 0 satisfying the orthogonality relation

\scrL (QiQj) = \zeta i\delta ij , where \zeta 0 = 1, and \zeta i =
det(\bfitH i+1)

det(\bfitH i)
if i\geq 1 .

Here \delta ij is the Kronecker delta. For the moments in (5.2), the first two orthogonal
polynomials are Q0(x) = 1 and Q1(x) = x - 1/2; subsequent polynomials Qj(x) satisfy
the three term recursion relation given by (see Appendix B for details):

Qn+1(x) = xQn(x) + \xi 2nQn - 1(x), \xi 2n =
1

4(4n2  - 1)
for n\geq 1 .(5.3)

For instance, the next two polynomials are

Q2(x) = x2  - 1

2
x+

1

12
and Q3(x) = x3  - 1

2
x2 +

1

10
x - 1

120
.

Any degree d polynomial can then be written in terms of the basis \{ Q1, . . . ,Qd\} . We
use \alpha j to denote the coefficients of the minimal polynomial for Y in this basis:

Q(x) =Qd(x) + \alpha d - 1Qd - 1(x) + \cdot \cdot \cdot + \alpha 0Q0(x), where d := dimY .(5.4)

The order conditions then constrain (5.4) as follows.

Lemma 5.1 (Q is ``orthogonal"" to Qj). Consider an RK method with coefficients

(A,\vec{}b), and let Q be the minimal polynomial for the subspace Y , as defined in (3.2),
written in the form (5.4). If the method's stability function is R(z) = ez +\scrO (zp+1) as
z\rightarrow 0, then \alpha j = 0 for j \leq p - d - 1.
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 63

Proof. Set N := p - d - 1\geq 0 (if N < 0 there is nothing to prove). The pth order
conditions (5.1) imply \vec{}bTQ(A)A\ell \vec{}e=\scrL (x\ell Q(x)) for all 0\leq \ell \leq N . On the other hand,
\vec{}bTQ(A) = 0. Hence, \scrL (Q\ell Q) = \zeta \ell \alpha \ell = 0 for all 0\leq \ell \leq N , so \alpha j = 0 for j \leq N (since
\zeta j \not = 0). If N \geq d, this would imply \scrL (QQd) = \zeta d = 0, which is a contradiction. Note
that p\leq 2d or \lfloor p+1

2 \rfloor \leq dim(Y ) when p\geq 1 and d\geq 0 are integers.

Utilizing the the basis (Qj)j\geq 0, we now work out an expression for the stabil-

ity function R(z). We first expand \vec{}bT (I  - zA) - 1 in the Krylov basis \vec{}bTQ0(A),. . .,
\vec{}bTQd - 1(A) with (to be determined) coefficients \beta j = \beta j(z) functions of z:

\vec{}bT (I  - zA) - 1 =\vec{}bT
\bigl( 
\beta d - 1Qd - 1(A) + \beta d - 2Qd - 2(A) + \cdot \cdot \cdot + \beta 0Q0(A)

\bigr) 
.(5.5)

Right-multiplying (5.5) by I  - zA and using the fact that \vec{}bTQ(A) = 0, leads to the
algebraic equation for the coefficients:

(1 - zx)
\bigl( 
\beta d - 1Qd - 1(x) + \beta d - 2Qd - 2(x) + \cdot \cdot \cdot + \beta 0Q0(x)

\bigr) 
\equiv 1 mod Q(x) .(5.6)

To solve for \vec{}\beta = (\beta 0, \beta 1, . . . , \beta d - 1)
T
, write \vec{}Q(x) = (Q0(x),Q1(x), . . . ,Qd - 1(x))

T
. Us-

ing relation (5.3), multiplication x\vec{}Q can be written as a matrix multiplication S \vec{}Q:

x\vec{}Q=

\left(      
Q1 +

1

2
Q0

Q2  - \xi 21Q0

...
Qd  - \xi 2d - 1Qd - 2

\right)      = S \vec{}Q, where S :=

\left(        

1
2 1 0 \cdot \cdot \cdot 0

 - \xi 21 0 1
...

0  - \xi 22 0
...

. . . 1
0 \cdot \cdot \cdot  - \xi 2d - 1 0

\right)         - \vec{}ed\vec{}\alpha 
T .

Here \vec{}ej is the jth unit vector and \vec{}\alpha = (\alpha 0, . . . , \alpha d - 1)
T are the coefficients of Q(x) in

(5.4). Using these notations and relations, (5.6) becomes

(1 - zx)\vec{}\beta T \vec{}Q\equiv 1 mod Q(x) ,\Bigl( \bigl( 
I  - zST

\bigr) 
\vec{}\beta  - \vec{}e1

\Bigr) T
\vec{}Q\equiv 0 mod Q(x) .

The vector \vec{}\beta then has the solution

\bigl( 
I  - zST

\bigr) 
\vec{}\beta = \vec{}e1, and via Cramer's rule: \beta j - 1(z) =

det
\bigl( 
(I  - zST )j

\bigr) 
det(I  - zS)

,(5.7)

where (I  - zST )j is the matrix I  - zST with column j replaced by \vec{}e1. Substituting

the expression for \vec{}bT (I  - zA) - 1 into R(z) yields

R(z) = 1+

d - 1\sum 
j=0

\Bigl( 
\vec{}bTQj(A)\vec{}e

\Bigr) 
z\beta j(z) .(5.8)

Finally, the orthogonality property Lemma 5.1 implies that \vec{}bTQj(A)\vec{}e agrees with
\scrL (Qj) = \delta 0j for all j \leq p - 1. This (significantly) simplifies the summation in (5.8).

Lemma 5.2 (stability function when p\geq dimY ). If R(z) = ez +\scrO (zp+1) is a pth
order approximation as z\rightarrow 0 and p\geq dimY , then

R(z) = 1+ z\beta 0(z) ,(5.9)
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64 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

where \beta 0(z) is given by (5.7) and depends only on the expansion of Q(x) from (5.4),
i.e., R(z) is a function of \alpha j (for j = p - dimY, . . . ,dimY  - 1).

To the best of the authors' knowledge, the orthogonal polynomials (Qj)j\geq 0 have
not previously been introduced in the context of RK schemes. However, they are con-
nected with existing ideas in the (extensive) literature on RK methods. For instance,
the values \xi j defined in (5.3) appear in theW -transform and in recurrence relations for
the shifted Legendre polynomials [17, Chap. IV.5] commonly used in the construction
of high stage order schemes. Lemma 5.1 is also similar in spirit to the orthogonality
relation Lemma 5.15 in [17, Chap. IV.5] which expands the characteristic polynomial
of C (when nc = s) in the shifted Legendre polynomial basis.

Remark 5.3 (orthogonal polynomials with respect to a linear functional). In the
(semi)classical theory of orthogonal polynomials, the Hankel (moment) matrices are
positive definite and \scrL (\cdot ) defines an inner product as an integral with respect to a
(nonnegative) measure [15, 20]. In contrast, for the matrices Hd considered here, both
detHd \not = 0 and \zeta i \not = 0. However, \zeta i < 0 for some values of i, so \scrL (\cdot ) does not have an
inner product representation. While much of the (semi)classical theory of orthogonal
polynomials still holds [15] (e.g., the three-term recurrence), some properties do not.
For instance, the basis polynomials Qj(x) have complex roots, whereas in the classical
theory of orthogonal polynomials the roots are real and simple.

Remark 5.4 (moment-generating function of \scrL ). The moments (\mu n)n\geq 0 do not
arise by accident; their generator function is G(z) = (ez  - 1)/z =

\sum 
n\geq 0 \mu nz

n, whose
Taylor expansion agrees up to a suitable order with (R(z)  - 1)/z. The Hankel de-
terminants, or coefficients of the recurrence relation (5.3) appear in the J-fraction
(continued fraction) of the generating function. For G(z), this continued fraction ap-
pears in the RK literature through Pad\'e approximations of ez (see, e.g., Exercise 4 in
Chap. IV.3 or Theorem 5.18 of [17]).

Remark 5.5 (stiff accuracy). Equation (5.9) can be extended to incorporate the
structure imposed by stiff accuracy (for invertible A) using an alternative polynomial
basis ( \~Q)n\geq 0. Specifically, let \~\mu 0 = 1, \~\mu n+1 := \mu n for n \geq 0 and \~\scrL (xn) := \~\mu n. The
Hankel matrices with moments \~\mu n are shown in (B.1) to have nonzero determinants
and define a basis orthogonal with respect to \~\scrL , i.e., \~Q0(x) = 1, \~Q1(x) = x - 1, etc.
The stability function (having one less degree of freedom) for stiffly accurate schemes
can then be obtained in this basis.

6. Necessary conditions on \bfitP (\bfitx ) for DIRK schemes. Theorem 3.2 pro-
vides a bound on theWSO for a method with order p and number of stages s. However,
the theorem does not explain how one might go about constructing schemes with high
WSO. In this section we examine the solvability of the equations P (A)\vec{}\tau (k) = 0 for
the matrices [A]j . The results impose necessary conditions on P (x) (e.g., constraints
on the roots) for the construction of high WSO schemes. The necessary conditions
also restrict how the spectrum of A is partitioned into the minimal polynomials Q(x),
P (x). We focus in this section on schemes that are not GEDIRK schemes.

Here we write pj(x) to denote the minimal polynomial of [A]j when j \geq 1 (we
have pj(x) = 1 if j = 0). The main result is that pr must divide P (x) when the first r
abscissas are distinct.

Lemma 6.1 (necessary condition on P (x) for a DIRK). Let a DIRK scheme that
is not a GEDIRK be given with WSO q\geq 2. If the abscissas \{ c1, c2, . . . , cr\} are distinct
for r\leq \lfloor q

2\rfloor , then pr(x) divides P (x).
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 65

Proof. Apply the map [\cdot ]r to (4.3) and use (3.11) to obtain

P ([A]r) \tau 
(k)([A]r) = 0 for k= 2, . . . , q .(6.1)

By Lemma 3.12 we have that [Kq]r = \BbbR r, which when combined with (6.1) implies
P ([A]r) = 0. Thus pr(x) divides P (x).

Corollary 6.2. For any nonconfluent DIRK scheme (that is not a GEDIRK
scheme), pr(x) divides P (x) where r= \lfloor q

2\rfloor .
Example 4.3 demonstrates that the assumption of distinct abscissas in Lemma

6.1 is necessary. It provides a confluent scheme (\vec{}c= (1,2,2,1)T ) that is S-irreducible
and for which the minimal polynomial of A (i.e., p4(x) = (x - 1)3(x - 2)) is equal to
the characteristic polynomial and does not divide P (x) = (x - 1)3.

One might wonder (I) whether the assumption of distinct abscissas in Lemma 6.1
can be relaxed; and (II) whether pj(x) must ever be the characteristic polynomial of
[A]j . In general, the answer to both questions is no (see Example 4.3). However, due
to the small number of variables in the top block of [A]j the answer to both questions
is yes when j \leq 3 in (I) and j \leq 2 in (II), provided that the scheme is S-irreducible.

Definition 6.3 (S-reducible, Def. 12.17 in [17]). An RK method is S-reducible
if for some partition (S1, . . . , S\~r) of \{ 1, . . . , s\} (\~r < s) the indicator vectors6 \vec{}S(m) =\sum 

j\in Sm
\vec{}ej satisfy for all \ell , m

(\vec{}ei  - \vec{}ej)
TA\vec{}S(m) = 0 if i, j \in S\ell .(6.2)

An S-reducible scheme is equivalent to a smaller \~r-stage RK scheme (A\ast ,\vec{}b\ast ) where
each partition Sj is replaced by a single stage (see eq. (12.24) of [17, Chapt. IV.12];
the smaller scheme generates the same stage solutions gi in (1.2a)). For S-reducible
DIRKs, the new scheme can also be made a DIRK.7

Remark 6.4 (a simple S-reducibility observation). Any DIRK scheme with c1 =
c2 is S-reducible: apply Def. 12.17 in [17], where the partition of equivalent stages
(i.e., partition of the integers \{ 1, . . . , s\} ) is taken as S1 = \{ 1,2\} and S2 = \{ 3\} , . . .,
Ss - 1 = \{ s\} . Then [18, Thm. 2.2] implies that the first two stages of A yield the same
intermediate stage value solutions and can be replaced by a single stage.

Lemma 6.5 (a general necessary condition on P (x)). Let an S-irreducible DIRK
scheme (that is not a GEDIRK) be given with coefficient matrix A and WSO q, such
that [A]3 is invertible.

(a) If q > 1, then degP \geq 1 and a11 is a root of P .
(b) If q > 3, then degP \geq 2, and a11, a22 are roots of P .
(c) If q > 5, then P (x) = p3(x) \~P (x) where p3(x) is the minimal polynomial of

[A]3 and is divisible by (x - a11)(x - a22).

Proof. (a) Since the set \{ c1\} contains one distinct element (trivially), we can
apply Lemma 6.1 with r= 1 when q > 1, so that p1(x) = (x - a11) divides P (x).

For (b), Remark 6.4 implies that c1 \not = c2 for any S-irreducible method. Applying
Lemma 6.1 with r= 2 when q > 3 implies that p2(x) divides P (x). If p2(x) = (x - a11)

6In a slight abuse of notation we use \vec{}Sj to denote both the set and the indicator vector. The

notation \vec{}Sj is nonstandard---the definition typically writes (6.2) as a summation.
7Formally, if we order the partitions so that min\{ x\in Si\} <min\{ y \in Sj\} whenever i < j, then for

1\leq i\leq \~r define the new scheme (which is a DIRK) as a\ast ij =
\sum 

k\in Sj
aij , b

\ast 
j =

\sum 
k\in Sj

bj .
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66 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

has only one root (which must be a11 by (a)), then p2([A]2) = 0 implies [A]2 = a11I,
whence c1 = c2 = a11 (which is a contradiction). Thus, p2(x) = (x - a11)(x - a22) is
the characteristic polynomial of [A]2.

For (c), suppose by way of contradiction that p3(x) does not divide P (x), so by
(b), p2(x) is the minimal polynomial of [A]3 restricted to [Kq]3. When q > 5, we claim
that

[Kq]3 = span\{ [\vec{}e]3 , [\vec{}c]3\} ,(6.3)

where either c1 = c3 \not = c2 or c2 = c3 \not = c1. The reasons are as follows: (i) Lemma 6.1
implies that \vec{}c is confluent (with c1 \not = c2) so nc = 2 and (by the same argument in the
proof) dim [Kq]3 \leq 2; (ii) if cj = 0, (6.3) follows immediately from Theorem 3.11(b);
(iii) if cj = 0, the construction in Lemma 3.12 implies [Kq]3 = span\{ [\vec{}c]3 , [A\vec{}c]3\} which

is (6.3) when [A]3 is invertible (i.e., multiply by [A]
 - 1
3 ). For [Kq]3 to be A-invariant

requires

A=

\left(  a11 0 0
a21 a22 0

a11 - a33 0 a33

\right)  if c1=c3, A=

\left(  a11 0 0
a21 a22 0
a21 a22 - a33 a33

\right)  if c2=c3 .(6.4)

In both cases A is S-reducible with partitions S1 = \{ 1,3\} , S2 = \{ 2\} (c1 = c3) or
S1 = \{ 1\} , S2 = \{ 2,3\} (c2 = c3). Hence p2(x) divides p3(x) which divides P (x).

While this section has focused entirely on P (x), the final remark concerns a
similar-in-spirit result for Q(x).

Remark 6.6 (ass is a root of Q(x)). A DJ-irreducible DIRK scheme has \vec{}eT
s
\vec{}b \not =0;

otherwise, the scheme is independent of the last stage. Since 0 = \vec{}bTQ(A)\vec{}es =
Q(ass)\vec{}b

T\vec{}es, the entry ass must be a root of Q, i.e., Q(x) = (x - ass) \~Q(x).

7. Examples. This section provides some concrete examples that highlight how
the theory established above can be used to reduce the number of degrees of freedom
when constructing RK schemes with high WSO. In Examples 7.1 and 7.2 we param-
eterize DIRK schemes with invertible A and WSO q = 3. Based on Remark 4.6 and
Lemma 6.1, we can determine that certain diagonal entries of A (those closest to the
top left) are roots of P (x), while those near the bottom right are roots of Q(x).

Example 7.1. The theory enables a complete characterization of DIRK schemes
with (s, p, q) = (2,2,3). Theorem 3.9 and Lemma 3.13 require the following: dimY =
1, dimKq = 1. Via Lemma 6.1 the associated polynomials are P (x) = x  - a11 and
Q(x) = x  - a22. For a p = 2 method, the orthogonality property from Lemma 5.1
implies that Q(x) =Q1(x) = x - 1

2 , so a22 =
1
2 . The first row of equation P (A)\vec{}\tau (k) = 0

for k= 2,3 is automatically satisfied; the second row yields two equations, the solution
of which determines A. The last order condition \vec{}bT\vec{}e = 1 determines \vec{}b, resulting in
two schemes:

A=

\Biggl( 
1\mp 

\surd 
2
2 0

1
2 \pm 

\surd 
2
2

1
2

\Biggr) 
, \vec{}b=

\Biggl( 
1
2 \pm 

\surd 
2
4

1
2 \mp 

\surd 
2
4

\Biggr) 
, R(z) =

1+ z
2

1 - z
2

.(7.1)

Either choice of signs leads to a (2,2,3) scheme. In both cases, \vec{}bTA = 1
2
\vec{}bT is a left

eigenvector of A and K3 = span\{ 2\vec{}c - \vec{}e\} =W3.

Example 7.2 (DIRK schemes with (s, p, q) = (3,3,3)). The chosen values of (s, p, q)
satisfy Theorem 3.2 sharply and require that dimY = 2 and degP =dimKq = 1 with
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ALGEBRAIC STRUCTURE OF WEAK STAGE ORDER 67

P (x) = x  - a11, Q(x) = (x  - a22)(x  - a33). Since [A]2 satisfies (6.1) it must be a
scalar multiple (call the ratio a) of the Butcher matrix in (7.1). The polynomial
Q(x) = Q2(x) + \alpha 1Q1(x) then has a22 = a/2 as a root so that \alpha 1 =  - Q2(

a
2 )/Q1(

a
2 ),

which uniquely determines (i) a33 as the second root of Q(x); and (ii) the stability
function in terms of a. The matrix A and R(z) are constrained to be

A=

\left(    
(1\mp 

\surd 
2
2 )a 0 0

( 12 \pm 
\surd 
2
2 )a 1

2a 0

a31 a32
3a - 2
6(a - 1)

\right)    , R(z) =
(1 + 6\alpha 1)z

2 + (6+ 12\alpha 1)z + 12

(1 - 6\alpha 1)z2 + (12\alpha 1  - 6)z + 12
.

The values (a31, a32) can be parameterized in terms of a via the 3rd row equations of
P (A)\vec{}\tau (j) = 0 for j = 2,3. For each choice of \pm in A, we have the following. There are
three solution branches for (a31, a32), two of which yield S-reducible schemes with the
structures given in (6.4). The one irreducible solution branch has that \vec{}\tau (2) and \vec{}\tau (3)

are parallel. The vector \vec{}b is determined via \vec{}bT (\vec{}e,\vec{}c,\vec{}\tau (2)) = (1, 12 ,0). By construction,
\vec{}bTQ(A) = 0 so that \vec{}bT\vec{}e = 1 and \vec{}bT\vec{}c = 1

2 ensure \vec{}bTA2\vec{}e = 1
6 . Finally, combining

\vec{}bT (A\vec{}\tau (1) + \vec{}\tau (2)) = 0 with \vec{}bTA2\vec{}e= 1
6 yields \vec{}bT\vec{}c2 = 1

3 .
As expected, with s = 3 there is no choice of a that satisfies the additional

conditions imposed by order p= 4 or q= 4. Finally, 0<a< 2
3 or a> 1 is required for

A to have positive eigenvalues and R(z) to have all its poles in the right half plane.

Example 7.3. The bound in Theorem 3.1 can be sharp for both stiffly accurate
schemes and EDIRKs. Specifically, stiffly accurate DIRK schemes with (s, p, q) =
(4,3,3) were constructed in an ad-hoc fashion in [21], where a posteriorily s is observed
to be sharp. Setting dimKq = 0 in Lemma 3.13, the fact \~q \leq q recovers the known
result that stage order is limited to \~q= 2 for EDIRKs and \~q= 1 for DIRKs.

Example 7.4 (schemes with high stage order). The Gauss--Legendre RK methods
satisfy the bound in Theorem 3.1 sharply since p = 2s, q = p (so that dim(Kq) = 0)
and nc = s (and are not stiffly accurate). As an example of Corollary 4.5, we obtain
the bound p\leq 2s, well known already from the theory of numerical quadrature.

Remark 7.5 (guide to constructing DIRK schemes with high WSO). For schemes
with q = p, one can take r = \lfloor q/2\rfloor , set P (x) = (x - a11) \cdot \cdot \cdot (x - arr) and then solve
(4.3) as a sufficient condition (and use Theorem 3.2 to guide the number of stages).

8. Conclusions and outlook. Weak stage order can be viewed as a geometric
condition that, when satisfied, can remove order reduction in RK schemes applied
to linear problems with time-independent operators. The general theory of WSO
provided here relates geometric objects (WSO invariant subspaces) to associated al-
gebraic objects (minimal polynomials). This relationship allows us to establish order
barriers for WSO that generalize the well-known bounds on the RK order p in terms
of s (both for general RK schemes and DIRKs). Along the way, we also provide new
formulas for the RK stability function in terms of a family of polynomials which are
``orthogonal"" with respect to a linear functional. The new necessary conditions show
how one needs to split the spectrum of A into the roots of P (x) and Q(x)---which is
of practical use when constructing high WSO schemes (i.e., beyond 3). Indeed, the
necessary conditions were used in the companion work [7] in the construction of new
DIRK schemes with WSO 4 and 5 (and satisfy the full set of order conditions).

Since SDIRK methods are a subset of DIRK methods, and ERK methods are a
subset of GEDIRK methods, the bounds in Theorem 3.2 apply to these classes as well.
It is natural to ask whether stricter bounds can be found for these smaller classes.
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68 BISWAS, KETCHESON, SEIBOLD, AND SHIROKOFF

Based on Theorem 3.7, it seems that no further improvement can be obtained in the
bounds on dim(Y ) for SDIRK methods compared to DIRK methods, but it might be
possible to obtain tighter bounds by further exploiting the structure of Kq. Stricter
bounds on ERK methods are an area of current research.

The results presented here give rise to several research directions. First, is
Theorem 3.2 sharp for all p, q, s? And, is it further constrained by the nontall tree
order conditions? There is also the related (practical) issue of constructing DIRK
schemes with q = p (or q = p - 1) and the fewest stages s \sim 2

3p satisfying Theorem
3.2 (or better yet, analytically parameterizing such schemes). While the main results
in this work do apply to all (E)DIRKs, DIRKs with additional constraints such as
SDIRKs or ERKs are expected to further impact the bounds in Theorem 3.2.

Appendix A. Proofs of Theorems 4.1 and 4.2. We collect the linear algebra
proofs here, which are adapted from various materials (e.g., [30, Chap. 2.6]).

Proof of Theorem 4.1, A-invariant subspaces. Let U \in \BbbR s\times d form an orthogonal
basis for U . Since U is A-invariant, there is a square matrix AUU :=UTAU \in \BbbR d\times d

such that (each column of U is mapped back into the column space of U)

AU=UAUU ,(A.1)

For any polynomial p(x), (A.1) then implies that p(A)U =Up(AUU ). Thus, p(x) in
(4.1) is the minimal polynomial of AUU (which has real coefficients since AUU is real)
because it satisfies p(A)U= 0 and any other smaller degree polynomial fails to satisfy
p(A)U=Up(AUU ) \not = 0.

For (a), p(x) divides the characteristic polynomial ofAUU , which divides charA(x);
(c) also follows since deg p\leq deg charAUU

(x) = dim(U).
For (b), every root \lambda of p(x) is an eigenvalue of AUU and hence of A.
For (d), set \ell = deg p. The condition p(A)\vec{}v = 0 (where \vec{}v is the vector defining

U) implies that A\ell \vec{}v is a linear combination of \vec{}v, . . . ,A\ell  - 1\vec{}v, which is only possible if
dim(U)\leq deg p. Combined with part (c), this shows dimU =deg p.

For (e), when U = \{ \vec{}v,A\vec{}v, . . . ,Ad - 1\vec{}v\} , condition (4.1) implies that p(A)\vec{}v= 0 since
\vec{}v \in U . Conversely, any element \vec{}u\in U is a linear combination of Aj\vec{}v for j = 0, . . . , d - 1.
But then, p(A)\vec{}v = 0 implies (since Aj and p(A) commute) that p(A)Aj\vec{}v = 0 for any
j, and hence p(A)\vec{}u= 0 for any \vec{}u\in U .

Proof of Theorem 4.2, left and right orthogonal A-invariant subspaces. Similar to
the proof of Theorem 4.1, introduce the orthogonal matrix O= (U | W | V)\in \BbbR s\times s,
where the columns ofU\in \BbbR s\times du andV \in \BbbR s\times dv form an orthogonal basis for U and V ,
respectively (the columns of W span the remaining space). Now A block-diagonalizes
as

OTAO=

\left(  AUU AUW AUV

0 AWW AWV

0 0 AV V

\right)  ,

where A\Sigma \Theta =\Sigma TA\Theta where \Sigma ,\Theta \in \{ U,V,W\} . Hence,

charA(x) = charAUU
(x) charAWW

(x) charAV V
(x) .(A.2)

Via Theorem 4.1 the polynomial p(x) is the minimal polynomial of AUU . Theorem
4.1 applies to AT with space V, so that q(x) is the minimal polynomial of AT

V V

(and is the same as the minimal polynomial of AV V ). Hence, p(x)q(x) divides
charAWW

(x)charAV V
(x), which, from (A.2), divides charA(x).

It is generally not true that p(x)q(x) divides the minimal polynomial of A.
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Appendix B. Proofs of Hankel matrix determinant and orthogonal
polynomial recurrence relation. Here we provide details for the determinant com-
putation (m\in \BbbZ \geq 0) of

Hn(m) =

\left(       
1
m!

1
(m+1)! \cdot \cdot \cdot 1

(m+n - 1)!

1
(m+1)!

. . . 1
(m+n)!

...
. . .

...
1

(m+n - 1)! \cdot \cdot \cdot \cdot \cdot \cdot 1
(m+2n - 2)!

\right)       \in \BbbR n\times n.(B.1)

Let Mn(m) := det(Hn(m)). A formula (without proof) for Mn(m) is given in [23]:

Mn(m) = \sigma (n)
c(n)c(m+ n - 1)

c(m+ 2n - 1)
, where c(n) :=\Pi n - 1

i=1 i! ,(B.2)

and \sigma (n) :=

\biggl\{ 
1 if r= 0 or 1,

 - 1 if r= 2 or 3,
where n\equiv r mod 4 .

Since we could not find a proof of (B.2) in the literature, we provide a brief one here.
Following the approach in [22, Method 2 in section 4], for any square matrix A, a
determinant formula due to Jacobi reads

detA \cdot detA1,n
1,n =detA1

1 \cdot detAn
n  - detAn

1 \cdot detA1
n ,(B.3)

where Aj
i denotes the submatrix of A with row i and column j removed. Applying

(B.3) to the matrix Mn(m) and using the symmetry of the Hankel matrix yields the
recursion:

Mn(m)Mn - 2(m+ 2) =Mn - 1(m+ 2)Mn - 1(m) - Mn - 1(m+ 1)2 .(B.4)

Formula (B.4) relates Mn(m) to matrices of size n - 1 and n - 2, and can be used to
prove (B.2) via induction. Note that for M1(m) = 1/m! and M2(m) = - [(m+1)!(m+
2)!] - 1, formula (B.2) is readily verified (and holds \forall m \geq 0). Assume (B.2) holds for
1 \leq k < n. We can then divide (B.4) through by Mn - 1(m+ 1)Mn - 2(m+ 2) (which
are nonzero by assumption) to obtain

Mn(m)

Mn - 1(m+ 1)
=

Mn - 1(m+ 2)Mn - 1(m)

Mn - 2(m+ 2)Mn - 1(m+ 1)
 - Mn - 1(m+ 1)

Mn - 2(m+ 2)
.(B.5)

It is then a matter of substituting the formulas from (B.2) into (B.5) to verify (after
several lines of factorial cancellations) that the following holds:8

(n - 1)!

(m+ 2n - 2)!
= - 

\biggl( 
(n - 2)!(m+ n - 1)!(m+ 2n - 3)!

(m+ 2n - 2)!(m+ 2n - 3)!(m+ n - 2)!
 - (n - 2)!

(m+ 2n - 3)!

\biggr) 
.

Since (for every n) the Hankel matrix determinants Mn(m) do not vanish, the
entries of Hn(m) define a quasi-definite linear functional which then have associated
orthogonal polynomials. Monic orthogonal polynomials (always) satisfy a three term
linear recurrence of the general form

Qn+1(x) = (x+ \gamma n)Qn(x) + \beta nQn - 1(x) ,(B.6)

8Note that \sigma (n)/\sigma (n - 1) always has opposite sign to \sigma (n - 1)/\sigma (n - 2).
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where Hn(m) is initialized via Q0(x) = 1, Q1(x) = x  - 1/(m + 1). We now obtain
formulas for \beta n, \gamma n via determinant computations. From [22, Thm. 29] we have

\beta n(m) = - Mn - 1(m)

Mn(m)
\cdot Mn+1(m)

Mn(m)
=

n(m+ n - 1)

(m+ 2n)(m+ 2n - 1)2(m+ 2n - 2)
,

When m= 1 : \beta n =
1

4(4n2  - 1)
.

The \gamma n depend only on the second leading term \lambda n(m) of Qn(x) = xn+\lambda n(m)xn - 1+
low order terms. That is, evaluating the coefficient of xn in (B.6) yields \gamma n(m) =
\lambda n+1(m) - \lambda n(m).

Orthogonality of Qj(x) demands that the coefficients \vec{}\lambda = (\lambda 0(m), . . . , \lambda n(m))T

satisfy Hn(m)\vec{}\lambda =\vec{}hn with \vec{}hn = - (1/(m+ n)!, . . .1/(m+ 2n+ 1)!)T . Using Cramer's
rule for \lambda n(m) and (B.3), one obtains the two term recursion for \lambda n(m)

\lambda n(m)Mn(m)Mn - 2(m+ 2) = \lambda n - 1(m+ 2)Mn - 1(m+ 2)Mn - 1(m)

 - \lambda n - 1(m+ 1)Mn - 1(m+ 1)2 ,

which simplifies to

\lambda n(m) =
(m+ 2n - 2)

(n - 1)
\lambda n - 1(m+ 1) - (m+ n - 1)

(n - 1)
\lambda n - 1(m+ 2) .

Induction then shows that

\lambda n(m) = - n

m+ 2n - 1
\forall n\geq 1,m\geq 0 .

The orthogonal polynomials in this paper use the values m = 0,1. In the case when
m= 1, the coefficient \lambda n(1) = - 1

2 is constant, in which case \gamma n(1) = 0 \forall n\geq 1.
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