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Abstract—This note provides a significantly simpler and
shorter proof of our sample complexity guarantee for solving
the low rank column-wise sensing problem using the Alternating
Gradient Descent (GD) and Minimization (AltGDmin) algorithm.
AltGDmin was developed and analyzed for solving this problem
in our recent work. We also provide an improved guarantee.

Index Terms— Low rank column-wise sensing (LRCS), feder-
ated learning, multi-task representation learning.

I. INTRODUCTION

E STUDY the low rank column-wise sensing (LRCS)
Wproblem which involves recovering a low rank matrix
from independent compressive measurements of each of its
columns. This problem occurs in dynamic MRI [1] and in
multi-task linear representation learning for few-shot learning
[2]. The alternating gradient descent (GD) and minimization
(AltGDmin) algorithm for solving it in a fast, communication-
efficient and private fashion was developed and analyzed in
our recent work [3]. This short paper provides a significantly
simpler and shorter proof of our sample complexity guarantee
for AltGDmin. In fact, it also improves the sample complexity
needed by the AltGDmin iterations by a factor of r.

II. PROBLEM STATEMENT, NOTATION, AND ALGORITHM
A. Problem Statement and Assumption and Notation

The goal is to recover an n X ¢ rank-r matrix X* =
[}, x5, ..., x;] from m linear projections (sketches) of each
of its ¢ columns, i.e. from

Yy, = Arx, k€ [q] (1)

where each vy, is an m-length vector, [¢] := {1,2,...,q},
and the measurement/sketching matrices Ay are mutually
independent and known. The setting of interest is low-rank
(LR), » < min(n, q), and undersampled measurements, m <
n. Each Ay is assumed to be random-Gaussian: each entry of
it is independent and identically distributed (i.i.d.) standard

Gaussian. Let X* "X U*S*V* .= U*B* denote its
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reduced (rank r) SVD, and k := o}, /0%, the condition
number of X*. We let B* := X*V™.

Since no measurement y,,; is a global function of the entire
matrix, X *, we need the following assumption, borrowed from
LR matrix completion literature, to make our problem well-
posed (allow for correct interpolation across columns).

Assumption 1 (Incoherence of Right Singular Vectors):
Assume that ||b}||? < p?ro7,. 2 /q for a numerical constant /.

In our discussion of communication complexity and privacy,
we assume a vertically federated setting: different subsets of
Yy, A are available at different nodes.

1) Notation: We use ||.||r to denote the Frobenius norm,
||.|| without a subscript for the (induced) I norm, ' to denote
matrix or vector transpose, e to denote the k-th canonical
basis vector (k-th column of I),and M := (M "M)~'M".
For two nxr matrices U1, U 5 that have orthonormal columns,
we use

SDy(U,,Us) == ||(I — U U U,

as the Subspace Distance (SD) measure. In our previous work
[3], we used the Frobenius norm SD,

SDp(U1,Us) = (I - U U )Us|lp.

Clearly, SDp(U,,U3) < /rSDy(U;,Us). We reuse the
letters ¢, C' to denote different numerical constants in each
use with the convention that ¢ < 1 and C' > 1. We use ), L as
a shortcut for the summation over k = 1to g and ), for the
summation over ¢ = 1 to m and k = 1 to q. We use whp to
refer to “with high probability” and this means that the claim
holds with probability (w.p.) at least 1 — n~1°,

B. Review of AltGDmin Algorithm [3]

AltGDmin, summarized in Algorithm 1, imposes the LR
constraint by factorizing the unknown matrix X as X =UB
with U being an n X r matrix and B an r X ¢ matrix. It
minimizes f(U, B) := >_{_, |ly, — Ubg|* as follows:

1) Truncated spectral initialization: Initialize U (see

below).

2) At each iteration, update B and U as follows:

a) Minimization for B: keeping U fixed, update B
by solving ming f(U, B). Due to the form of the
LRCS model, this minimization decouples across
columns, making it a cheap least squares problem
of recovering ¢ different r length vectors. It is
solved as by = (A,U)ty, for each k € [q].
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b) Projected-GD for U: keeping B fixed, update U
by a GD step, followed by orthonormalizing its
columns: UT = QR(U — nVy f(U, B))). Here
QR(.) orthonormalizes the columns of its input.

We initialize U by computing the top r singular vectors of

.f T T .f
X = ZAk YetrneCk > Yk trne = trunc(yy, )
k

Here a := C'Y", ||lys|?/mq with C := 9x22. The function
trunc truncates (zeroes out) all entries of y, with magnitude
greater than +/a, ie., for all j € [n], trunc(y,a); =
(y) illy, < J/a)» with 1 being the indicator function.

Sample-splitting is assumed, i.e., each new update of U
and B uses a new independent set of measurements and
measurement matrices, y;,, Ag.

The use of minimization to update B at each iteration is
what helps ensure that we can show exponential error decay
with a constant step size. At the same time, due to the column-
wise decoupled nature of LRCS, the time complexity for this
step is only as much as that of computing one gradient w.r.t.
U. Both steps need time! of order mqgnr. This is only 7 times
more than “linear time” (time needed to read the algorithm
inputs, here y;,, Ax’s). To our knowledge, r-times linear-time
is the best known time complexity for any algorithm for any
LR matrix recovery problem. Moreover, due to the use of the
X = UB factorization, AltGDmin is also communication-
efficient. Each node needs to only send nr scalars (gradients
w.r.t U) at each iteration.

III. NEW GUARANTEE

Let mgo denote the total number of samples per column
needed for initialization and let m; denote this number for
each GDmin iteration. Then, the total sample complexity per
column is m = mgo+m17T. Our guarantee given next provides
the required minimum value of m.

Theorem 2.' Assume that Assumption 1 holds. Set n =
0.4/mot, 2 and T = Ck2log(1/e). If

X

mq > Ck*p? (n+ q)r(r*r +log(1/e€))

and m > C' max(logn,log g, r)log(1/¢), then, with probabil-

ity (w.p.) at least 1 —n =10,

SDo(U,U*) < € and ||z, — x| < €||zj| for all k € [q].

The time complexity is mgnr - T = mqnr - k?log(1/e€). The
communication complexity is nr - T = nr - k?log(1/e) per
node.

Proof: We prove the three results needed for proving this
in Sections IV-B, IV-D, and V below. We use these to prove
the above result in Appendix A. O

IThe LS step time is max(q - mnr, g - mr2) = mgnr (maximum of the
time needed for computing AU for all k, and that for obtaining by, for all
k) while the GD step time is max(q-mnr, nr?) = mgnr (maximum of the
time needed for computing the gradient w.r.t. U, and time for the QR step).
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Algorithm 1 The AltGD-Min Algorithm

1: Input: y,, Ay, k € [q]

2: Sample-split: Partition the measurements and measure-
ment matrices into 27" 4 2 equal-sized disjoint sets: two
sets for initialization and 27" sets for the iterations. Denote
these by 3\, A+ =00,0,1,...2T.

Initialization

Using y;, = yk 00) , Ayg A]ioo)’

set a C('rnq Zkz ‘yk’i’Q’

Using y,, = yéo), A = Agco)’

set yk,trunc(a) — yk,t'r‘nc = trunc(yk’ Oé),
set Xo — (1/m) > ALY trunc()ef,

kelq]
9: set Uy « top-r-singular-vectors of X

10: GDmin iterations:

11: fort =1to T do

12: Let U «— U,;_;.

13: Using y;, = y,(f), A = A,(:),

14 set by, «— (AxU)Ty,, =1, «— Uby, for all k € [q]
15: Using y,, = y (T+t) JA = A(T+ compute
16: set VUf(U B) Zk Ak (AkUbk — yk)bk
17 set U — U — (n/m)Vuf(U, By).

18: compute U L uUtRrt.

19: Set U, —« U™.

20: end for

® Nk

A. Discussion

We use a 2 b to mean that a > Cy; ,b where C,; ,, includes
terms dependent on x, . Most of our discussion treats s,
as numerical constants that do not grow with n,q,r. This
assumption is borrowed from the rich past literature on various
other LR matrix recovery problems, e.g., see [4] and [5]. Also,
below, whp means w.p. at least 1 — n =19,

In this work (as well as in other works that use matrix fac-
torization to solve LR recovery problems), the goal is to obtain
a bound of the form SDy(U,U™) < e. If a bound on SDp is
needed, one can use SDp(U,U™) < /rSDy(U,U*) < /re.
Using Lemma 3 given below and triangle inequality, the bound
on SD, helps get the bound ||z — x%|| S €l|zf]|-

Our older result from [3] used SDr(U,U™) in its analysis
and showed that, to guarantee SD (U, U™) < ¢ whp, we need

mq > Cr*p®(n + q)r® (v + log(1/e))

Since SDy(U,U™) < SDp(U,U™), this implies that we need
this same complexity also to guarantee SDo(U,U™) < €. Our
new result needs mq > Cr*p?(n + ¢)r(k*r + log(1/€)) to
guarantee SDo(U,U™) < e. Thus, this new result improves
the dependence on r,¢ from order 72log(1/e) to order
rmax(r,log(1/¢)). This is an improvement over the old result
by a factor of min(r,log(1/¢)). This improvement is obtained
because our new guarantee for the GD step (Theorem 6) only
needs mq 2 nr at each iteration. On the other hand, the older
result needed mq > nr?. Both guarantees need mq > nr? for
initialization, see Theorem 13.

We are able to improve our result because we now use a
simpler proof technique that works for the LRCS problem, but
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not for its LR phase retrieval (LRPR) generalization. LRPR
involves recovering X* from zj; = |y.|,k € [q]. In [3],
we were attempting to solve both problems. There are two
differences in our new proof compared with that of [3]: (i)
we use the 2-norm subspace distance SDo (U, U™) instead of
SDr(U,U™), and (ii) we do not use the fundamental theorem
of calculus [6], [7] for analyzing the GD step, but instead use
a much simpler direct approach. If we only use (ii) but not
(1), we will still get a simpler proof, but we will not get the
sample complexity gain. In [3], we used the Frobenius norm
SD because it helped obtain the desired nr3 guarantee for
LRPR.2 Also, in hindsight, the use of the fundamental theorem
of calculus was unnecessary. It has been used in earlier work
[7] for analyzing a GD based algorithm for standard PR and
for LR matrix completion and that originally motivated us to
adapt the same approach for LRCS and LRPR.

Both the current result and our old one have the same
dependence on x. After initialization, the sample complexity
grows roughly as x*. A similar dependence on & also exists in
all past sample complexity guarantees for iterative — AIMin or
GD - algorithms for LR matrix sensing, LR matrix completion
or robust PCA, e.g., see [4] and [5]; and also for our older work
on AltMin for a generalization of LRCS, LR phase retrieval
[8]. One way to improve this dependence is to develop a stage-
wise algorithm similar to that introduced in [4] and [9] for LR
matrix sensing and completion respectively. Developing this
for the current LRCS problem is an open future work question.
A second option is to use the convex relaxation approaches
which usually depend on lower powers of x. However, these
need a much higher iteration complexity, making them much
slower.

IV. NEW PROOF: GDMIN ITERATIONS
A. Definitions and Preliminaries
Let U be the estimate at the ¢-th iteration. Define
g9, =U'z} kelg, and G:=U"X*,
P=I1-UU"T,
GradU := Vy f(U,B) = Y A} (AUby, —y,)by,

k
= Z(y;ﬂ —ay; 'Uby)agby '
ki
For an n; X mg matrix, Z, omin(Z) = amin(ZT) =

Omin(ni,nz)(Z). Thus, if A is tall, then opin(A) =

\/Amin(A T A). Using this, it follows that, if A = BC and A
and B are tall (or square), then opin (A) > Omin (B)omin (C).

B. Minimization Step

Assume SDo(U,U™) < §; with §; < 0.02.

We use the following lemma from [3].

Lemma 3 [3]: Let g; := UTQ?Z. Then, w.p. at least
1 —exp(log g + r — cem), for all k € [q],

lgi = bill < 1.2¢| (I, - UUT) U*b|

2Qur older guarantee for LRPR [3] needed mq > nr?(r+log(1/e)). If we
use the new approach developed here, it will need mq > nr(r3 +log(1/¢)).
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Proof: We provide a proof of this lemma in Appendix B
to emphasise a slightly more general version of this lemma.
In particular, our proof shows that we can replace 0.4 in the
previous version of this lemma by any € > 0, and the bound
holds w.p. at least 1 — exp(log ¢ + r — cem). O

By Lemma 3 with ¢ = 0.3, if m = max(logq,logn,r),
then, whp, for all k € [q],

Ibr — gl < 04](1 —-UU U b;|

Using SDo(U,U™) < &, this directly implies that

D (1B — gl < 0.46 bz |

2) [|brll < llgll + 0.4 - 0.02[|b || < 1.1]|by||

3) |l — i < 146,16
(to obtain the last bound, we need to add and subtract Ug,,
and then use triangle inequality). Using these bounds,

IB ~ Gl <045, |3 IBEIP = 045,17
k

and we can get a similar bound on || X — X*||r. Thus,

1) |B — G| < 0.48,||B*||r < 0.4y/76:0%,...
2) | X - X*||p < 14/ro,07

max

Furthermore,
Omin(B) 2 omin(G) — | B = G|| 2 omin(G) — [|B - G| r
To lower bound o, (G), observe that

Umin(G) = Umin(GT) > U:ninamin(U*TU)

and

Omin(U*TU) = /1 - |[PU|2 > /1 - 2.

This follows using 02, (U*TU) = )\min(UTU*U*TU) =
)\min(UT(I - P)U) = >\min(I - UTPU) = )\min(I -
U'P?U) =1-  ux (U P?U) =1 - |PU|2.

Combining the above three bounds and using the bound on
IB — G||F, if 6; < 0.02//Tk, then

Omin(B) > /1 — 6200, — 0.4/rd0k . > 0905,
and

Tmax(B) < |G| + 0.4v/rd;0%,, < 1.107

max

since |G| < [[BY| = 07
following claim:

Theorem 4: Assume that SDo(U,U*) < §&. If 6, <
0.02/+/rk, and if m 2 max(log q,logn,r), then whp,

D) [lbr — gp [l < 0.46,|bg]|

2) |[bell < llgpll +0.4-0.02]]b; || < 1.1][bg|
3) |B=Glr < 046,|B* |l < 0.4/F810%
4) Nz — apl| < 145 [b |

5) ||X - X*”F < 1'4\/F5t01’;1ax
6) Omin(B) > 0.90%

7) Omax(B) < 1.1o%

max

Thus, we have proved the

(only the last two bounds require the upper bound on d;).
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C. New Bounds on the Expected Gradient and Deviation
From it

Using independence of Ay and {U,b} (due to sample
splitting),

E[GradU] = Zm (x, — x3)b kT
Using bounds on |B]| and || X* —
if 5)5 \/»H
IE[GradU]|| = || Y m(ax—ai)by " [|[=m|(X-X")B"||
k

X || from Theorem 4,

<m|X - X"||-[|B]|
<m|X — X*|p - | B|| < 1.1mé/ro?

max °

w.p. 1 —exp(logq +r — cm).

Next, we bound ||GradU — E[GradU]| =
maXHwH:LHZH:lw (Zkz aklakl(a:k — :EZ)bZ — E[])Z
This also uses independence of Ay and {U, by }.

We bound the above for fixed unit norm w, z using sub-
exponential Bernstein inequality (Theorem 2.8.1 of [10]). We
extend the bound to all unit norm w, z by using a standard
epsilon-net argument. For fixed unit norm w, z, consider

SO (W an) b 2)af (z — =7) — E[1)
k %

Observe that the summands are independent, zero mean, sub-
exponential r.v.s with sub-exponential norm Kj; < C|lw|| -
|27y -, — @f]| = Clz" byl - |2y — @]l We apply the
sub-exponential Bernstein inequality, Theorem 2.8.1 of [10],

with t = €,6,;mao%,;, . We have
t2 > 6%5t2m20';(nin4
Sk KR T m Yy ek — wzH?(szkV
52m :
mln

~ mmaxy H:ck - wkH Yop(zTby)?

2 4
5 m1n

mmaxy, ||z, — ;%27 BJ?

6%5152 Omin 4
- 1-42mM2527“0§m2HB||2
252 O min q E%mq
- L 42mlu’252ro—max21 ]'Umax 54/127'
t €16:mol, e1mq
maxy; Ki; — maxy ||by || maxy, ||z — 5| = w2pu?r

In the above, we used (i) >, (z"bx)? = ||z BJ|]? < | B|?
since z is unit norm, (ii) Theorem 4 to bound ||B]|

1.10}, .+, and (iii) Theorem 4 followed by Assumption 1 (right
incoherence) to bound ||z — x| < & - pof./r/q and

2 Tbk| < [[bg|| < LAbI < 11pofay/T/a-
For ¢; < 1, the first term above is smaller (since 1/ K<

N : t2 ¢ _ .cmg
1/k%), ie., mm(zh K7 masn; KM) = Cphz,- Thus, by
" X
sub-exponential Bernstein, w.p. at least 1 — exp(—c.z) —

exp(logq +r — c¢m), for a given w, z,

w' (GradU — E[GradU])z < e;86;mo7;, >

5165

Using a standard epsilon-net argument to bound the max-
imum of the above over all unit norm w,z, e.g., using
[3, Proposition 4.7], we can conclude that
|GradU — E[GradU]|| < 1.1e;6;mo%,;,>

w.p. at least 1 —exp(C'(n+r)— :i::;qr) —exp(log g+r—cm).
The factor of exp(C'(n+ 1)) is due to the epsilon-net over w
and that over z: w is an n-length unit norm vector while z is
an r-length unit norm vector. The smallest epsilon net covering
the hyper-sphere of all ws is of size (14 2/€pe:)™ = C™ with
€net = ¢ While that for z is of size C”. Union bounding over
both thus gives a factor of C™*". By replacing €; by €;/1.1,
our bound becomes simpler (and 1/1.12 gets incorporated into
the factor ¢). We have thus proved the following.

Lemma 5: Assume that SDo(U,U™) < ¢;. The following
hold:

1) E[GradU] = m(X — X*)BT

2) ||E[GradU]H < 1.1méy/ros

m(UBB" - X*B")

max

3) If 6 < ﬁn’ then, w.p. at least
2
1—exp(C(n+r)— ;;:’;’T) —exp(log g+ r — em),

|GradU — E[GradU]|| < e;6,mo};, >

min

The above lemma is an improvement over the bounds given
in [3] because d; is now the bound on the 2-norm SD, and
still it only needs mgq = nr/e3.

D. GD Step

Assume that SDo(U,U™) < §; with §; < 0.02.
Recall the Projected GD step for U

U =U—-7CGradU and U L U+R*

Since Ut = INJ+(R+)_1 and since |(RT)7Y| =
1/0min(RY) = 1/omn(U ), thus, SDo(UT,U¥)
|PUT|| can be bounded as

~ ~
o - IPU | |PU_|

SD,(UT,U*) < — < (2)

gmin(U+) Omin(U) — nf|GradU]|

Consider the numerator. Adding/subtracting E[GradU], left
multiplying both sides by P, and using Lemma 5 (first part),

U =U- nE[GradU] 4+ n(E[GradU] — GradU), thus,
PU" = PU — ymPUBB" + nP(E[GradU] — GradU)
The last row used PX* = 0. Thus,
|PU"| < |PU||I-ymBB||+4||E[GradU] - GradU|
3)

Using Theorem 4, we get

Amin (I — ntBT) =1- anBH2 >1-1. 277mamax2

Thus, if n < 0.5/ mamdx , then the above matrix is p.s.d. This
along with Theorem 4 then implies that

[T —ymBB"|| = Apax (I —ymBBT) <1 —0.99mot;,”
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Using the above, (3), and the bound on |E[GradU] —
GradU|| from Lemma 5, we conclude the following: If n <

0.5/mo?,,.2, and §; < ¢/\/k, then
|PU | < |PU||T-ymBB |+ 14|[E[GradU] - GradU|
<&:(1-0.9 nma;;inQ) + nmeléta;ﬂiﬁ 4

2
e1mgq

w.p. at least 1 —exp(C(n+r) —c ) —exp(log g+r—cm).
This probability is at least 1 — n =10 if mq > k*u?nr/e? and
m 2 max(logn,logq,r).

Next we use (4) with e; = 0.1 and Lemma 5 to bound the
right hand side of (2). Set n = cn/mor‘;laxQ. If ¢, < 0.5, if
§; < ¢//TK?, and lower bounds on m from above hold, (2)

implies that, whp,

SD,(U,U™)

< 1P

Omin(U )

|PT|
= omin(U) — n||GradU]||
_ IPUIT - nmBB " || 4+ n||E[GradU] — GradU]|
~ 1 —n|E[GradU]|| — n||GradU — E[GradU]
6:(1 — nmot,, 2(0.9 — 0.1))
~ 1 —n||E[GradU]|| — n||GradU — E[GradU]||
5i(1 = 0.8ymoys,”)

T 1m0t (14 + 3 2)

G (1 — 0-877m‘7r*nin2>
= 1 — 1.5ngmd/rok,.2
< 0y(1— 0.8ymot,>) (1 + 1.5gmé\/rok,.>)
< 6:(1 = 0.8ymot,” + 1.5nmo /o)
= 6,(1 — nmor, 2 (0.8 — 1.50,v/7k2))
< 8:(1 — npmot, 2 (0.8 — 0.15))

< 8:(1 = 0.6nmot,.>/x%) = 6,(1 — 0.6¢,/K?)

In the above we used k21 > 1, (1 —z)7! < (1 +x) if
|z| < 1, and 6; < 0.1/+/7x? (used in second-last inequality).
Thus, we have proved the following result.

Theorem 6: Assume that Assumption 1 holds and
SDL(U,U*) < 6. If § < 0.02/\/rk%, if n =
Cn/MOlay” With ¢, < 0.5, and if mqg > s*u?nr and

m = max(logn,log g, r), then, whp

SDQ(U+7 U*) S 5t+1 = 5t(1 - 0.66,7/:“&2)

V. NEW PROOF: INITIALIZATION

We need a new result for the initialization step because we
need a tight bound on SDo(U,, U™).

A. Results Taken From [3]

Recall from Algorithm 1 that o uses a different set of
measurements that is independent of those used for X . We
use the following four results from [3].
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Lemma 7 [3]: Conditioned on o, we have the following
conclusions. Let ¢ be a scalar standard Gaussian r.v.. Define

Br(@) = E[C* L {jjag 2c2 <ay]-
Then,
E[Xo|a] = X*D(a),
where D(a) := diagonal (B(a), k € [q])

i.e. D(«) is a diagonal matrix of size ¢ x ¢ with diagonal
entries Oy defined above.
Fact 8 [3]: Let

. X2 . X2
£ = {C(l — Gl)w S « S C(l + GI)HL]HF} .
Pr(a € £) > 1 — exp(—émge?). Here ¢ = ¢/C = ¢/k212.
Fact 9 [3]: For an €1 < 0.1,
ming E | (21

> 0.92.
AL =
K< e F}

Lemma 10 [3]: Fix 0 < €1 < 1. Then, w.p. at least 1 —
exp [(n + q) — cetmq/p?K?], conditioned on o, foran a € &,

[ X0 = E[Xola]]| < L1ey[| X7

Facts 8 and 9 together imply that, w.p. at least 1 —
exp(—cmqe?),

. . 2
mklnﬁk(a) kaln]E ¢ ]l{‘C‘S@mHX*”F} >0.92. (5

Vallwg

The first inequality is an immediate consequence of Fact 8
(a € &) and the second follows by Fact 9.

By setting €; = €p/1.14/7x in Lemma 10, and using Fact 8,
we get the following corollary.

Corollary 11: Fix 0 < €; < 1. Then, w.p. at least 1 —

exp {(n +q)—c¢ g

e — exp(—cmgqe? [k p?),
[ X0 — E[Xo|o]|| < eooy,

min

with E[X o|a] being as given on Lemma 7.

B. Obtaining the SD Error Bound for Initialization

By Lemma 7, E[X|a] = X*D(«) with D(«) as defined
there. Clearly, its rank is r or less. To obtain the bound, we
apply Wedin’s sin @ theorem [11] for SDy with M = X,
M* = E[Xy|la] = X*D. Recall that Uy is the matrix of
top r singular vectors of X . Also, the span of top r singular
vectors of E[Xo|la] = X ™D equals the column span of U™.
Thus applying Wedin will help us bound SDy(Ug, U™). To
do this, we need to define the SVD of E[X|a]. Let

E[Xolo] = X*D(a) *Y” (U*Q)S*V

where @ is a r X r unitary matrix, S*isanr xr diagonal
matrix with non-negative entries (singular values) and V is an
r X q matrix with orthonormal rows, i.e. VV =1 Observe
also that 0,1 (E[X g|a]) = 0 since it is a rank r matrix. Also,
from above,

‘77'(]E[X0|O‘]) :Urnin(j*) > O hinOmin(D) = iy mkin Br ()
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This follows since ¥* = QTB*DVT and so amin(i*) >
Urnin(B*DVT) Z O'min(B*D) -1 Z Urnin(DB*T) Z
Omin(D) - 0%, and omin (D) = ming Bi. The last equality

follows since D is diagonal with entries ). Thus,

Fact 12: 0. (E[Xola]) > ok, ming Bk(a), or41
(E[Xola]) = 0.
Applying Wedin’s sinf theorem, and then using

Corollary 11, Fact 12 and (5), we get
SDy (U, U™)

max(|[(Xo — E[Xo|a]) "U*||, [[(Xo — E[Xo|a])V]])
= \/5 Uélin ming ﬂk(O&) -0- ||X0 - E[X0|a]||

€00E €0
< V2 min <V22 <16
~ \[0.920:““1 —eqor Vagg < 16a

if €0 < 0.02 and mq > (n + q)r/e2. In the above we used
(X0 — E[Xola)) U] < [ Xo — E[Xola]||- 1 and [|(Xo —
E[Xola))V] < || X0 —E[Xo|a]| - 1. Setting eg = 0.50¢ with
0o < 0.02, we obtain our desired result.

Theorem 13: Assume that Assumption 1 holds. Pick a §p <
0.02. If mq = k*u*(n + q)r/8% then whp

SDy (U, U™) < 0o

APPENDIX A
PROOF OF THEOREM 2

Theorem 13 tells us that SDo(Ug, U*) < §p whp if moq 2,
(n + q)r/63. Theorem 6 tells us that if 6, < 0.02/\/7r2,
and if myq 2 nr, then, whp, §; reduces by a factor of (1 —
0.6¢,/ k?) at each iteration. In particular, this implies that §; <
do. Thus, in order to apply Theorem 6, it suffices to require
So = 0.02//rK>.

Combining both results, we have shown that if mgq >
CKJ8,U2(7’L + q)r2 and if miqg > Ck*mu’nr and m; >
C'max(r,logn,logr), and if n = ¢,/(Mmok..") with ¢, <
0.5, then, whp, at each ¢t > 0,

c c 0.02
* < = — U. —n t = — U. —n t
SDy (U, U™) < 64 (1 06/<;2) do=(1 Oﬁmz) NG

and all bounds of Theorem 4 hold with §; as above.
Thus, to guarantee SDo (U, U™) < ¢, we need

(2
T >C—1log(1/e)
Cn

This follows by using log(1 —z) < —z for |z| < 1 and using
k?y/r > 1. Thus, setting ¢, = 0.4, our sample complexity
m = mo-+m1T becomes mq > Crk®u?(n+q)r(1+log(1/e)),
and m > C max(r,log q,logn)log(1/e).

APPENDIX B
PROOF OF LEMMA 3

Using the expression for by and simplifying it,
bp,—g,=M U Al A, (I -UU"U*b}
with M :=U" A} A,U.
Clearly,
E[M]=mU'"'U=mI,, EU" A} A,(I-UU "U*b}]=0

5167

Thus, using the standard technique (sub-expo Bern ineq fol-
lowed by an epsilon-net argument), one can show that

1) w.p. at least 1 — exp(r — eam),
|M —I,.|| <1lleam

This implies of course that o7, (M) > (1 — 1.1ea)m
and thus |[M ™| < 1/((1 — L.1ex)m).
2) w.p. at least 1 — exp(r — esm),

IUT AL AT -UU U b
< Llegm|(I - UU U byl

Thus, setting ez = 0.1, and taking union bound over all ¢
vectors, w.p. at least 1 — gexp(r — egm),

lbr — g || < 1.263]|(I — UU ")U*b}|| for all k € [q]
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