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Efficient Federated Low Rank Matrix Recovery
via Alternating GD and Minimization:

A Simple Proof
Namrata Vaswani , Fellow, IEEE

Abstract— This note provides a significantly simpler and
shorter proof of our sample complexity guarantee for solving
the low rank column-wise sensing problem using the Alternating
Gradient Descent (GD) and Minimization (AltGDmin) algorithm.
AltGDmin was developed and analyzed for solving this problem
in our recent work. We also provide an improved guarantee.

Index Terms— Low rank column-wise sensing (LRCS), feder-
ated learning, multi-task representation learning.

I. INTRODUCTION

WE STUDY the low rank column-wise sensing (LRCS)
problem which involves recovering a low rank matrix

from independent compressive measurements of each of its
columns. This problem occurs in dynamic MRI [1] and in
multi-task linear representation learning for few-shot learning
[2]. The alternating gradient descent (GD) and minimization
(AltGDmin) algorithm for solving it in a fast, communication-
efficient and private fashion was developed and analyzed in
our recent work [3]. This short paper provides a significantly
simpler and shorter proof of our sample complexity guarantee
for AltGDmin. In fact, it also improves the sample complexity
needed by the AltGDmin iterations by a factor of r.

II. PROBLEM STATEMENT, NOTATION, AND ALGORITHM

A. Problem Statement and Assumption and Notation

The goal is to recover an n × q rank-r matrix X⋆ =
[x⋆

1, x
⋆
2, . . . , x

⋆
q ] from m linear projections (sketches) of each

of its q columns, i.e. from

yk := Akx⋆
k, k ∈ [q] (1)

where each yk is an m-length vector, [q] := {1, 2, . . . , q},
and the measurement/sketching matrices Ak are mutually
independent and known. The setting of interest is low-rank
(LR), r ≪ min(n, q), and undersampled measurements, m <
n. Each Ak is assumed to be random-Gaussian: each entry of
it is independent and identically distributed (i.i.d.) standard
Gaussian. Let X⋆ SVD= U⋆Σ∗V ⋆ := U⋆B⋆ denote its
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reduced (rank r) SVD, and κ := σ⋆
max/σ⋆

min the condition
number of Σ∗. We let B⋆ := Σ∗V ⋆.

Since no measurement yki is a global function of the entire
matrix, X⋆, we need the following assumption, borrowed from
LR matrix completion literature, to make our problem well-
posed (allow for correct interpolation across columns).

Assumption 1 (Incoherence of Right Singular Vectors):
Assume that ∥b⋆

k∥2 ≤ µ2rσ⋆
max

2/q for a numerical constant µ.
In our discussion of communication complexity and privacy,

we assume a vertically federated setting: different subsets of
yk, Ak are available at different nodes.

1) Notation: We use ∥.∥F to denote the Frobenius norm,
∥.∥ without a subscript for the (induced) l2 norm, ⊤ to denote
matrix or vector transpose, ek to denote the k-th canonical
basis vector (k-th column of I), and M † := (M⊤M)−1M⊤.
For two n×r matrices U1, U2 that have orthonormal columns,
we use

SD2(U1, U2) := ∥(I −U1U
⊤
1 )U2∥

as the Subspace Distance (SD) measure. In our previous work
[3], we used the Frobenius norm SD,

SDF (U1, U2) := ∥(I −U1U
⊤
1 )U2∥F .

Clearly, SDF (U1, U2) ≤
√

rSD2(U1, U2). We reuse the
letters c, C to denote different numerical constants in each
use with the convention that c < 1 and C ≥ 1. We use

∑
k as

a shortcut for the summation over k = 1 to q and
∑

ki for the
summation over i = 1 to m and k = 1 to q. We use whp to
refer to “with high probability” and this means that the claim
holds with probability (w.p.) at least 1− n−10.

B. Review of AltGDmin Algorithm [3]

AltGDmin, summarized in Algorithm 1, imposes the LR
constraint by factorizing the unknown matrix X as X = UB
with U being an n × r matrix and B an r × q matrix. It
minimizes f(U , B) :=

∑q
k=1 ∥yk −Ubk∥2 as follows:

1) Truncated spectral initialization: Initialize U (see
below).

2) At each iteration, update B and U as follows:
a) Minimization for B: keeping U fixed, update B

by solving minB f(U , B). Due to the form of the
LRCS model, this minimization decouples across
columns, making it a cheap least squares problem
of recovering q different r length vectors. It is
solved as bk = (AkU)†yk for each k ∈ [q].
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b) Projected-GD for U : keeping B fixed, update U
by a GD step, followed by orthonormalizing its
columns: U+ = QR(U − η∇Uf(U , B))). Here
QR(.) orthonormalizes the columns of its input.

We initialize U by computing the top r singular vectors of

X0 :=
∑

k

A⊤
k yk,trnce

⊤
k , yk,trnc := trunc(yk, α)

Here α := C̃
∑

k ∥yk∥2/mq with C̃ := 9κ2µ2. The function
trunc truncates (zeroes out) all entries of yk with magnitude
greater than

√
α, i.e., for all j ∈ [n], trunc(y, α)j =

(y)j1|yj |≤
√

α), with 1 being the indicator function.
Sample-splitting is assumed, i.e., each new update of U

and B uses a new independent set of measurements and
measurement matrices, yk, Ak.

The use of minimization to update B at each iteration is
what helps ensure that we can show exponential error decay
with a constant step size. At the same time, due to the column-
wise decoupled nature of LRCS, the time complexity for this
step is only as much as that of computing one gradient w.r.t.
U . Both steps need time1 of order mqnr. This is only r times
more than “linear time” (time needed to read the algorithm
inputs, here yk, Ak’s). To our knowledge, r-times linear-time
is the best known time complexity for any algorithm for any
LR matrix recovery problem. Moreover, due to the use of the
X = UB factorization, AltGDmin is also communication-
efficient. Each node needs to only send nr scalars (gradients
w.r.t U ) at each iteration.

III. NEW GUARANTEE

Let m0 denote the total number of samples per column
needed for initialization and let m1 denote this number for
each GDmin iteration. Then, the total sample complexity per
column is m = m0+m1T . Our guarantee given next provides
the required minimum value of m.

Theorem 2: Assume that Assumption 1 holds. Set η =
0.4/mσ⋆

max
2 and T = Cκ2 log(1/ϵ). If

mq ≥ Cκ4µ2(n + q)r(κ4r + log(1/ϵ))

and m ≥ C max(log n, log q, r) log(1/ϵ), then, with probabil-
ity (w.p.) at least 1− n−10,

SD2(U , U⋆) ≤ ϵ and ∥xk − x⋆
k∥ ≤ ϵ∥x⋆

k∥ for all k ∈ [q].

The time complexity is mqnr · T = mqnr · κ2 log(1/ϵ). The
communication complexity is nr · T = nr · κ2 log(1/ϵ) per
node.

Proof: We prove the three results needed for proving this
in Sections IV-B, IV-D, and V below. We use these to prove
the above result in Appendix A. □

1The LS step time is max(q · mnr, q · mr2) = mqnr (maximum of the
time needed for computing AkU for all k, and that for obtaining bk for all
k) while the GD step time is max(q ·mnr, nr2) = mqnr (maximum of the
time needed for computing the gradient w.r.t. U , and time for the QR step).

Algorithm 1 The AltGD-Min Algorithm
1: Input: yk, Ak, k ∈ [q]
2: Sample-split: Partition the measurements and measure-

ment matrices into 2T + 2 equal-sized disjoint sets: two
sets for initialization and 2T sets for the iterations. Denote
these by y

(τ)
k , A

(τ)
k , τ = 00, 0, 1, . . . 2T .

3: Initialization:
4: Using yk ≡ y

(00)
k , Ak ≡ A

(00)
k ,

5: set α← C̃ 1
mq

∑
ki

∣∣yki

∣∣2,

6: Using yk ≡ y
(0)
k , Ak ≡ A

(0)
k ,

7: set yk,trunc(α)← yk,trnc := trunc(yk, α),
8: set X0 ← (1/m)

∑
k∈[q]

A⊤
k yk,trunc(α)e⊤

k

9: set U0 ← top-r-singular-vectors of X0

10: GDmin iterations:
11: for t = 1 to T do
12: Let U ← U t−1.
13: Using yk ≡ y

(t)
k , Ak ≡ A

(t)
k ,

14: set bk ← (AkU)†yk, xk ← Ubk for all k ∈ [q]
15: Using yk ≡ y

(T+t)
k , Ak ≡ A

(T+t)
k , compute

16: set ∇Uf(U , B) =
∑

k A⊤
k (AkUbk − yk)b⊤

k

17: set Û
+
← U − (η/m)∇Uf(U , Bt).

18: compute Û
+ QR

= U+R+.
19: Set U t ← U+.
20: end for

A. Discussion

We use a ≳ b to mean that a ≥ Cκ,µb where Cκ,µ includes
terms dependent on κ, µ. Most of our discussion treats κ, µ
as numerical constants that do not grow with n, q, r. This
assumption is borrowed from the rich past literature on various
other LR matrix recovery problems, e.g., see [4] and [5]. Also,
below, whp means w.p. at least 1− n−10.

In this work (as well as in other works that use matrix fac-
torization to solve LR recovery problems), the goal is to obtain
a bound of the form SD2(U , U⋆) ≤ ϵ. If a bound on SDF is
needed, one can use SDF (U , U⋆) ≤

√
rSD2(U , U⋆) ≤

√
rϵ.

Using Lemma 3 given below and triangle inequality, the bound
on SD2 helps get the bound ∥xk − x⋆

k∥ ≲ ϵ∥x⋆
k∥.

Our older result from [3] used SDF (U , U⋆) in its analysis
and showed that, to guarantee SDF (U , U⋆) ≤ ϵ whp, we need

mq ≥ Cκ4µ2(n + q)r2(κ4 + log(1/ϵ))

Since SD2(U , U⋆) ≤ SDF (U , U⋆), this implies that we need
this same complexity also to guarantee SD2(U , U⋆) ≤ ϵ. Our
new result needs mq ≥ Cκ4µ2(n + q)r(κ4r + log(1/ϵ)) to
guarantee SD2(U , U⋆) ≤ ϵ. Thus, this new result improves
the dependence on r, ϵ from order r2 log(1/ϵ) to order
r max(r, log(1/ϵ)). This is an improvement over the old result
by a factor of min(r, log(1/ϵ)). This improvement is obtained
because our new guarantee for the GD step (Theorem 6) only
needs mq ≳ nr at each iteration. On the other hand, the older
result needed mq ≳ nr2. Both guarantees need mq ≳ nr2 for
initialization, see Theorem 13.

We are able to improve our result because we now use a
simpler proof technique that works for the LRCS problem, but
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not for its LR phase retrieval (LRPR) generalization. LRPR
involves recovering X⋆ from zk := |yk|, k ∈ [q]. In [3],
we were attempting to solve both problems. There are two
differences in our new proof compared with that of [3]: (i)
we use the 2-norm subspace distance SD2(U , U⋆) instead of
SDF (U , U⋆), and (ii) we do not use the fundamental theorem
of calculus [6], [7] for analyzing the GD step, but instead use
a much simpler direct approach. If we only use (ii) but not
(i), we will still get a simpler proof, but we will not get the
sample complexity gain. In [3], we used the Frobenius norm
SD because it helped obtain the desired nr3 guarantee for
LRPR.2 Also, in hindsight, the use of the fundamental theorem
of calculus was unnecessary. It has been used in earlier work
[7] for analyzing a GD based algorithm for standard PR and
for LR matrix completion and that originally motivated us to
adapt the same approach for LRCS and LRPR.

Both the current result and our old one have the same
dependence on κ. After initialization, the sample complexity
grows roughly as κ4. A similar dependence on κ also exists in
all past sample complexity guarantees for iterative – AlMin or
GD – algorithms for LR matrix sensing, LR matrix completion
or robust PCA, e.g., see [4] and [5]; and also for our older work
on AltMin for a generalization of LRCS, LR phase retrieval
[8]. One way to improve this dependence is to develop a stage-
wise algorithm similar to that introduced in [4] and [9] for LR
matrix sensing and completion respectively. Developing this
for the current LRCS problem is an open future work question.
A second option is to use the convex relaxation approaches
which usually depend on lower powers of κ. However, these
need a much higher iteration complexity, making them much
slower.

IV. NEW PROOF: GDMIN ITERATIONS

A. Definitions and Preliminaries

Let U be the estimate at the t-th iteration. Define

gk := U⊤x⋆
k, k ∈ [q], and G := U⊤X⋆,

P := I −U⋆U⋆⊤,

GradU := ∇Uf(U , B) =
∑

k

A⊤
k (AkUbk − yk)b⊤

k

=
∑
ki

(yki − aki
⊤Ubk)akibk

⊤

For an n1 × n2 matrix, Z, σmin(Z) = σmin(Z⊤) =
σmin(n1,n2)(Z). Thus, if A is tall, then σmin(A) =√

λmin(A⊤A). Using this, it follows that, if A = BC and A

and B are tall (or square), then σmin(A) ≥ σmin(B)σmin(C).

B. Minimization Step

Assume SD2(U , U⋆) ≤ δt with δt < 0.02.
We use the following lemma from [3].
Lemma 3 [3]: Let gk := U⊤x⋆

k. Then, w.p. at least
1− exp(log q + r − cϵm), for all k ∈ [q],

∥gk − bk∥ ≤ 1.2ϵ∥
(
In −UU⊤

)
U⋆b⋆

k∥

2Our older guarantee for LRPR [3] needed mq ≳ nr2(r+log(1/ϵ)). If we
use the new approach developed here, it will need mq ≳ nr(r3 +log(1/ϵ)).

Proof: We provide a proof of this lemma in Appendix B
to emphasise a slightly more general version of this lemma.
In particular, our proof shows that we can replace 0.4 in the
previous version of this lemma by any ϵ > 0, and the bound
holds w.p. at least 1− exp(log q + r − cϵm). □

By Lemma 3 with ϵ = 0.3, if m ≳ max(log q, log n, r),
then, whp, for all k ∈ [q],

∥bk − gk∥ ≤ 0.4∥(I −UU⊤)U⋆b⋆
k∥

Using SD2(U , U⋆) ≤ δt, this directly implies that
1) ∥bk − gk∥ ≤ 0.4δt∥b⋆

k∥
2) ∥bk∥ ≤ ∥gk∥+ 0.4 · 0.02∥b⋆

k∥ ≤ 1.1∥b⋆
k∥

3) ∥xk − x⋆
k∥ ≤ 1.4δt∥b⋆

k∥
(to obtain the last bound, we need to add and subtract Ugk

and then use triangle inequality). Using these bounds,

∥B −G∥F ≤ 0.4δt

√∑
k

∥b⋆
k∥2 = 0.4δt

√
rσ⋆

max

and we can get a similar bound on ∥X −X⋆∥F . Thus,
1) ∥B −G∥F ≤ 0.4δt∥B⋆∥F ≤ 0.4

√
rδtσ

⋆
max

2) ∥X −X⋆∥F ≤ 1.4
√

rδtσ
⋆
max

Furthermore,

σmin(B) ≥ σmin(G)− ∥B −G∥ ≥ σmin(G)− ∥B −G∥F

To lower bound σmin(G), observe that

σmin(G) = σmin(G⊤) ≥ σ⋆
minσmin(U⋆⊤U)

and

σmin(U⋆⊤U) =
√

1− ∥PU∥2 ≥
√

1− δ2
t .

This follows using σ2
min(U⋆⊤U) = λmin(U⊤U⋆U⋆⊤U) =

λmin(U⊤(I − P )U) = λmin(I − U⊤PU) = λmin(I −
U⊤P 2U) = 1− λmax(U⊤P 2U) = 1− ∥PU∥2.

Combining the above three bounds and using the bound on
∥B −G∥F , if δt < 0.02/

√
rκ, then

σmin(B) ≥
√

1− δ2
t σ⋆

min − 0.4
√

rδtσ
⋆
max ≥ 0.9σ⋆

min

and

σmax(B) ≤ ∥G∥+ 0.4
√

rδtσ
⋆
max ≤ 1.1σ⋆

max

since ∥G∥ ≤ ∥B⋆∥ = σ⋆
max. Thus, we have proved the

following claim:
Theorem 4: Assume that SD2(U , U⋆) ≤ δt. If δt ≤

0.02/
√

rκ, and if m ≳ max(log q, log n, r), then whp,
1) ∥bk − gk∥ ≤ 0.4δt∥b⋆

k∥
2) ∥bk∥ ≤ ∥gk∥+ 0.4 · 0.02∥b⋆

k∥ ≤ 1.1∥b⋆
k∥

3) ∥B −G∥F ≤ 0.4δt∥B⋆∥F ≤ 0.4
√

rδtσ
⋆
max

4) ∥xk − x⋆
k∥ ≤ 1.4δt∥b⋆

k∥
5) ∥X −X⋆∥F ≤ 1.4

√
rδtσ

⋆
max

6) σmin(B) ≥ 0.9σ⋆
min

7) σmax(B) ≤ 1.1σ⋆
max

(only the last two bounds require the upper bound on δt).
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C. New Bounds on the Expected Gradient and Deviation
From it

Using independence of Ak and {U , bk} (due to sample
splitting),

E[GradU] =
∑

k

m(xk − x⋆
k)bk

⊤

Using bounds on ∥B∥ and ∥X⋆ −X∥F from Theorem 4,
if δt < c√

rκ
,

∥E[GradU]∥ = ∥
∑

k

m(xk−x⋆
k)bk

⊤∥=m∥(X−X⋆)B⊤∥

≤ m∥X −X⋆∥ · ∥B∥
≤ m∥X −X⋆∥F · ∥B∥ ≤ 1.1mδt

√
rσ⋆

max
2.

w.p. 1− exp(log q + r − cm).
Next, we bound ∥GradU − E[GradU]∥ =

max∥w∥=1,∥z∥=1 w⊤(
∑

k

∑
i akia

⊤
ki(xk − x⋆

k)b⊤
k − E[·])z.

This also uses independence of Ak and {U , bk}.
We bound the above for fixed unit norm w, z using sub-

exponential Bernstein inequality (Theorem 2.8.1 of [10]). We
extend the bound to all unit norm w, z by using a standard
epsilon-net argument. For fixed unit norm w, z, consider∑

k

∑
i

(
(w⊤aki)(b⊤

k z)a⊤
ki(xk − x⋆

k)− E[·]
)

Observe that the summands are independent, zero mean, sub-
exponential r.v.s with sub-exponential norm Kki ≤ C∥w∥ ·
|z⊤bk| · ∥xk − x⋆

k∥ = C|z⊤bk| · ∥xk − x⋆
k∥. We apply the

sub-exponential Bernstein inequality, Theorem 2.8.1 of [10],
with t = ϵ1δtmσ⋆

min
2. We have

t2∑
ki K2

ki

≥ ϵ21δ
2
t m2σ⋆

min
4

m
∑

k ∥xk − x⋆
k∥2(z⊤bk)2

≥ ϵ21δ
2
t m2σ⋆

min
4

m maxk ∥xk − x⋆
k∥2

∑
k(z⊤bk)2

=
ϵ21δ

2
t m2σ⋆

min
4

m maxk ∥xk − x⋆
k∥2∥z⊤B∥2

≥ ϵ21δ
2
t m2σ⋆

min
4q

1.42mµ2δ2
t rσ⋆

max
2∥B∥2

≥ ϵ21δ
2
t m2σ⋆

min
4q

1.42mµ2δ2
t rσ⋆

max
21.1σ⋆

max
2 = c

ϵ21mq

κ4µ2r

t

maxki Kki
≥ ϵ1δtmσ⋆

min
2

maxk ∥bk∥maxk ∥xk − x⋆
k∥
≥ c

ϵ1mq

κ2µ2r

In the above, we used (i)
∑

k(z⊤bk)2 = ∥z⊤B∥2 ≤ ∥B∥2
since z is unit norm, (ii) Theorem 4 to bound ∥B∥ ≤
1.1σ⋆

max, and (iii) Theorem 4 followed by Assumption 1 (right
incoherence) to bound ∥xk − x⋆

k∥ ≤ δt · µσ⋆
max

√
r/q and

|z⊤bk| ≤ ∥bk∥ ≤ 1.1∥b⋆
k∥ ≤ 1.1µσ⋆

max

√
r/q.

For ϵ1 < 1, the first term above is smaller (since 1/κ4 ≤
1/κ2), i.e., min( t2∑

ki K2
ki

, t
maxki Kki

) = c
ϵ21mq
κ4µ2r . Thus, by

sub-exponential Bernstein, w.p. at least 1 − exp(−c
ϵ21mq
κ4µ2r ) −

exp(log q + r − cm), for a given w, z,

w⊤(GradU− E[GradU])z ≤ ϵ1δtmσ⋆
min

2

Using a standard epsilon-net argument to bound the max-
imum of the above over all unit norm w, z, e.g., using
[3, Proposition 4.7], we can conclude that

∥GradU− E[GradU]∥ ≤ 1.1ϵ1δtmσ⋆
min

2

w.p. at least 1−exp(C(n+r)−c
ϵ21mq
κ4µ2r )−exp(log q+r−cm).

The factor of exp(C(n + r)) is due to the epsilon-net over w
and that over z: w is an n-length unit norm vector while z is
an r-length unit norm vector. The smallest epsilon net covering
the hyper-sphere of all ws is of size (1+2/ϵnet)n = Cn with
ϵnet = c while that for z is of size Cr. Union bounding over
both thus gives a factor of Cn+r. By replacing ϵ1 by ϵ1/1.1,
our bound becomes simpler (and 1/1.12 gets incorporated into
the factor c). We have thus proved the following.

Lemma 5: Assume that SD2(U , U⋆) ≤ δt. The following
hold:

1) E[GradU] = m(X−X⋆)B⊤ = m(UBB⊤−X⋆B⊤)
2) ∥E[GradU]∥ ≤ 1.1mδt

√
rσ⋆

max
2

3) If δt < c√
rκ

, then, w.p. at least

1− exp(C(n + r)− c
ϵ21mq
κ4µ2r )− exp(log q + r − cm),

∥GradU− E[GradU]∥ ≤ ϵ1δtmσ⋆
min

2

The above lemma is an improvement over the bounds given
in [3] because δt is now the bound on the 2-norm SD, and
still it only needs mq ≳ nr/ϵ21.

D. GD Step

Assume that SD2(U , U⋆) ≤ δt with δt < 0.02.
Recall the Projected GD step for U :

Ũ
+

= U − ηGradU and Ũ
+ QR

= U+R+

Since U+ = Ũ
+
(R+)−1 and since ∥(R+)−1∥ =

1/σmin(R+) = 1/σmin(Ũ
+
), thus, SD2(U+, U⋆) =

∥PU+∥ can be bounded as

SD2(U+, U⋆) ≤ ∥PŨ
+
∥

σmin(Ũ
+
)
≤ ∥PŨ

+
∥

σmin(U)− η∥GradU∥
(2)

Consider the numerator. Adding/subtracting E[GradU], left
multiplying both sides by P , and using Lemma 5 (first part),

Ũ
+

= U − ηE[GradU] + η(E[GradU]−GradU), thus,

PŨ
+

= PU − ηmPUBB⊤ + ηP (E[GradU]−GradU)

The last row used PX⋆ = 0. Thus,

∥PŨ
+
∥ ≤ ∥PU∥∥I−ηmBB⊤∥+η∥E[GradU]−GradU∥

(3)

Using Theorem 4, we get

λmin(I − ηmBB⊤) = 1− ηm∥B∥2 ≥ 1− 1.2ηmσ⋆
max

2

Thus, if η < 0.5/mσ⋆
max

2, then the above matrix is p.s.d. This
along with Theorem 4 then implies that

∥I − ηmBB⊤∥ = λmax(I − ηmBB⊤) ≤ 1− 0.9ηmσ⋆
min

2
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Using the above, (3), and the bound on ∥E[GradU] −
GradU∥ from Lemma 5, we conclude the following: If η ≤
0.5/mσ⋆

max
2, and δt ≤ c/

√
rκ, then

∥PŨ
+∥ ≤ ∥PU∥∥I−ηmBB⊤∥+ !η∥E[GradU]−GradU∥
≤ δt(1− 0.9 ηmσ⋆

min
2) + ηmϵ1δtσ

⋆
min

2 (4)

w.p. at least 1−exp(C(n+r)−c
ϵ21mq
κ4µ2r )−exp(log q+r−cm).

This probability is at least 1− n−10 if mq ≳ κ4µ2nr/ϵ21 and
m ≳ max(log n, log q, r).

Next we use (4) with ϵ1 = 0.1 and Lemma 5 to bound the
right hand side of (2). Set η = cη/mσ⋆

max
2. If cη ≤ 0.5, if

δt ≤ c/
√

rκ2, and lower bounds on m from above hold, (2)
implies that, whp,

SD2(U+, U⋆)

≤ ∥PŨ
+
∥

σmin(Ũ
+
)

≤ ∥PŨ
+
∥

σmin(U)− η∥GradU∥

≤ ∥PU∥∥I − ηmBB⊤∥+ η∥E[GradU]−GradU∥
1− η∥E[GradU]∥ − η∥GradU− E[GradU]

≤ δt(1− ηmσ⋆
min

2(0.9− 0.1))
1− η∥E[GradU]∥ − η∥GradU− E[GradU]∥

≤ δt(1− 0.8ηmσ⋆
min

2)
1− ηmδt

√
rσ⋆

max
2(1.4 + 0.1

κ2
√

r
)

≤ δt(1− 0.8ηmσ⋆
min

2)
1− 1.5ηmδt

√
rσ⋆

max
2

≤ δt(1− 0.8ηmσ⋆
min

2)(1 + 1.5ηmδt

√
rσ⋆

max
2)

≤ δt(1− 0.8ηmσ⋆
min

2 + 1.5ηmδt

√
rσ⋆

max
2)

= δt(1− ηmσ⋆
min

2(0.8− 1.5δt

√
rκ2))

≤ δt(1− ηmσ⋆
min

2(0.8− 0.15))

≤ δt(1− 0.6ηmσ⋆
max

2/κ2) = δt(1− 0.6cη/κ2)

In the above we used κ2
√

r > 1, (1 − x)−1 < (1 + x) if
|x| < 1, and δt < 0.1/

√
rκ2 (used in second-last inequality).

Thus, we have proved the following result.
Theorem 6: Assume that Assumption 1 holds and

SD2(U , U⋆) ≤ δt. If δt ≤ 0.02/
√

rκ2, if η =
cη/mσ⋆

max
2 with cη ≤ 0.5, and if mq ≳ κ4µ2nr and

m ≳ max(log n, log q, r), then, whp

SD2(U+, U⋆) ≤ δt+1 := δt(1− 0.6cη/κ2)

V. NEW PROOF: INITIALIZATION

We need a new result for the initialization step because we
need a tight bound on SD2(U0, U

⋆).

A. Results Taken From [3]

Recall from Algorithm 1 that α uses a different set of
measurements that is independent of those used for X0. We
use the following four results from [3].

Lemma 7 [3]: Conditioned on α, we have the following
conclusions. Let ζ be a scalar standard Gaussian r.v.. Define

βk(α) := E[ζ2
1{∥x⋆

k∥2ζ2≤α}].

Then,

E[X0|α] = X⋆D(α),
where D(α) := diagonal(βk(α), k ∈ [q])

i.e. D(α) is a diagonal matrix of size q × q with diagonal
entries βk defined above.

Fact 8 [3]: Let

E :=
{

C̃(1− ϵ1)
∥X⋆∥2F

q
≤ α ≤ C̃(1 + ϵ1)

∥X⋆∥2F
q

}
.

Pr(α ∈ E) ≥ 1− exp(−c̃mqϵ21). Here c̃ = c/C̃ = c/κ2µ2.
Fact 9 [3]: For any ϵ1 ≤ 0.1,

mink E

[
ζ2
1{

|ζ|≤C̃

√
1−ϵ1∥X⋆∥F√

q∥x⋆
k
∥

}
]
≥ 0.92.

Lemma 10 [3]: Fix 0 < ϵ1 < 1. Then, w.p. at least 1 −
exp

[
(n + q)− cϵ21mq/µ2κ2

]
, conditioned on α, for an α ∈ E ,

∥X0 − E[X0|α]∥ ≤ 1.1ϵ1∥X⋆∥F

Facts 8 and 9 together imply that, w.p. at least 1 −
exp(−c̃mqϵ21),

min
k

βk(α) ≥ min
k

E

[
ζ2
1
{|ζ|≤C̃

√
1−ϵ1∥X⋆∥F√

q∥x⋆
k
∥ }

]
≥ 0.92. (5)

The first inequality is an immediate consequence of Fact 8
(α ∈ E) and the second follows by Fact 9.

By setting ϵ1 = ϵ0/1.1
√

rκ in Lemma 10, and using Fact 8,
we get the following corollary.

Corollary 11: Fix 0 < ϵ1 < 1. Then, w.p. at least 1 −
exp

[
(n + q)− c

ϵ20mq
µ2κ4r

]
− exp(−cmqϵ21/κ2µ2),

∥X0 − E[X0|α]∥ ≤ ϵ0σ
⋆
min

with E[X0|α] being as given on Lemma 7.

B. Obtaining the SD Error Bound for Initialization

By Lemma 7, E[X0|α] = X⋆D(α) with D(α) as defined
there. Clearly, its rank is r or less. To obtain the bound, we
apply Wedin’s sin θ theorem [11] for SD2 with M = X0,
M∗ = E[X0|α] = X⋆D. Recall that U0 is the matrix of
top r singular vectors of X0. Also, the span of top r singular
vectors of E[X0|α] = X⋆D equals the column span of U⋆.
Thus applying Wedin will help us bound SD2(U0, U

⋆). To
do this, we need to define the SVD of E[X0|α]. Let

E[X0|α] = X⋆D(α) SVD= (U⋆Q)Σ̌∗V̌

where Q is a r × r unitary matrix, Σ̌∗ is an r × r diagonal
matrix with non-negative entries (singular values) and V̌ is an
r× q matrix with orthonormal rows, i.e. V̌ V̌

⊤
= I . Observe

also that σr+1(E[X0|α]) = 0 since it is a rank r matrix. Also,
from above,

σr(E[X0|α])=σmin(Σ̌∗) ≥ σ⋆
minσmin(D) = σ⋆

min min
k

βk(α)
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This follows since Σ̌∗ = Q⊤B⋆DV̌
⊤

and so σmin(Σ̌∗) ≥
σmin(B⋆DV̌

⊤
) ≥ σmin(B⋆D) · 1 ≥ σmin(DB⋆⊤) ≥

σmin(D) · σ⋆
min and σmin(D) = mink βk. The last equality

follows since D is diagonal with entries βk. Thus,
Fact 12: σr(E[X0|α]) ≥ σ⋆

min mink βk(α), σr+1

(E[X0|α]) = 0.
Applying Wedin’s sin θ theorem, and then using

Corollary 11, Fact 12 and (5), we get

SD2(U0, U
⋆)

≤
√

2
max(∥(X0 − E[X0|α])⊤U⋆∥, ∥(X0 − E[X0|α])V̌ ∥)

σ⋆
min mink βk(α)− 0− ∥X0 − E[X0|α]∥

≲
√

2
ϵ0σ

⋆
min

0.92σ⋆
min − ϵ0σ⋆

min

≲
√

2
ϵ0
0.9

< 1.6ϵ0

if ϵ0 < 0.02 and mq ≳ (n + q)r/ϵ20. In the above we used
∥(X0 − E[X0|α])⊤U⋆∥ ≤ ∥X0 − E[X0|α]∥ · 1 and ∥(X0 −
E[X0|α])V̌ ∥ ≤ ∥X0 −E[X0|α]∥ · 1. Setting ϵ0 = 0.5δ0 with
δ0 < 0.02, we obtain our desired result.

Theorem 13: Assume that Assumption 1 holds. Pick a δ0 ≤
0.02. If mq ≳ κ4µ2(n + q)r/δ2

0 then whp

SD2(U0, U
⋆) ≤ δ0

APPENDIX A
PROOF OF THEOREM 2

Theorem 13 tells us that SD2(U0, U
⋆) ≤ δ0 whp if m0q ≳

(n + q)r/δ2
0 . Theorem 6 tells us that if δt ≤ 0.02/

√
rκ2,

and if m1q ≳ nr, then, whp, δt reduces by a factor of (1 −
0.6cη/κ2) at each iteration. In particular, this implies that δt ≤
δ0. Thus, in order to apply Theorem 6, it suffices to require
δ0 = 0.02/

√
rκ2.

Combining both results, we have shown that if m0q ≥
Cκ8µ2(n + q)r2 and if m1q ≥ Cκ4mu2nr and m1 ≥
C max(r, log n, log r), and if η = cη/(mσ⋆

max
2) with cη <

0.5, then, whp, at each t ≥ 0,

SD2(U t, U
⋆) ≤ δt := (1− 0.6

cη

κ2
)tδ0 = (1− 0.6

cη

κ2
)t 0.02√

rκ2

and all bounds of Theorem 4 hold with δt as above.
Thus, to guarantee SD2(UT , U⋆) ≤ ϵ, we need

T ≥ C
κ2

cη
log(1/ϵ)

This follows by using log(1− x) < −x for |x| < 1 and using
κ2
√

r ≥ 1. Thus, setting cη = 0.4, our sample complexity
m = m0+m1T becomes mq ≥ Cκ8µ2(n+q)r(1+log(1/ϵ)),
and m ≥ C max(r, log q, log n) log(1/ϵ).

APPENDIX B
PROOF OF LEMMA 3

Using the expression for bk and simplifying it,

bk − gk = M−1U⊤A⊤
k Ak(I −UU⊤)U⋆b⋆

k

with M := U⊤A⊤
k AkU .

Clearly,

E[M ]=mU⊤U =mIr, E[U⊤A⊤
k Ak(I−UU⊤)U⋆b⋆

k]=0

Thus, using the standard technique (sub-expo Bern ineq fol-
lowed by an epsilon-net argument), one can show that

1) w.p. at least 1− exp(r − ϵ2m),

∥M − Ir∥ ≤ 1.1ϵ2m

This implies of course that σ⋆
min(M) ≥ (1 − 1.1ϵ2)m

and thus ∥M−1∥ ≤ 1/((1− 1.1ϵ2)m).
2) w.p. at least 1− exp(r − ϵ3m),

∥U⊤A⊤
k Ak(I −UU⊤)U⋆b⋆

k∥
≤ 1.1ϵ3m∥(I −UU⊤)U⋆b⋆

k∥

Thus, setting ϵ2 = 0.1, and taking union bound over all q
vectors, w.p. at least 1− q exp(r − ϵ3m),

∥bk − gk∥ ≤ 1.2ϵ3∥(I −UU⊤)U⋆b⋆
k∥ for all k ∈ [q]
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