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ABSTRACT

In recent work , we developed a fast, memory-efficient, and sample-
efficient solution to the Low Rank column-wise Compressive Sens-
ing (LRcCS) problem: recover an n X ¢ LR matrix from m under-
sampled linear projections of each of its columns. Here, undersam-
pled means m < n, q. The matrix LR model and the corresponding
algorithms have two important limitations. First, for real image se-
quences, the required memory complexity is prohibitive. Secondly,
for image or volume image sequences, it requires vectorizing the im-
age or volume as one column of a matrix and this ignores the inherent
2D or 3D structure of the images or volumes. To address these limi-
tations, in this work, we explore the use of a tensor LR model on the
image sequence along with developing a fast and memory-efficient
gradient descent (GD) based recovery algorithm and evaluating it
experimentally.

1. INTRODUCTION

In recent work [1, 2], we developed a solution for the Low Rank
column-wise Compressive Sensing (LRcCS) problem that is fast,
memory-efficient, and sample-efficient when compared to other al-
gorithms from the MRI literature as well as those from signal pro-
cessing literature. The LRcCS problem is to recover an n X ¢ LR ma-
trix from m undersampled linear projections of each of its columns.
Here, undersampled means m < n,q. This matrix LR model has
two important limitations. First, for the recovery of Large-sized im-
age sequences, consider any n; X ng image, where n = ni - na.
For simplicity, suppose that n1 > no. In these cases, the matrix ver-
sion of our method (our older work) has time complexity that grows
linearly with n = ny - no. If n is very large, this is not fast enough.

Secondly, for image or volume image sequences, it requires vec-
torizing the image or volume as one column of a matrix and this ig-
nores the inherent 2D or 3D structure of the images or volumes. To
address these limitations, we explore the use of a tensor LR model
on the image sequence along with developing a fast and memory-
efficient gradient descent (GD) based recovery algorithm and eval-
uating it experimentally. Such a model has an obvious extension to
volume imaging which will be explored in future work.

The above problems occur in undersampled LR based dynamic
MRI [3, 2] and in federated sketching of long video sequences [4, 5].
Large scale usage of smartphones results in large amounts of geo-
graphically distributed data, e.g., images or videos. There is a need
to compress/sketch this data before storing it. Sketch refers to a
compression approach where the compression end is low complex-
ity, usually random linear projections [4, 5, 1]. Sketching typically
involves multiplying each vectorized image by a broad random ma-
trix (matrix with fewer rows than columns), in order to compress it
[4, 5, 1]. It can also involve left and right multiplying each image
matrix by random matrices so that the resulting sketch is of lower
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dimensions than the original image. We use this latter model in the
current work.

1.1. Existing work

CS theory for multidimensional data has become an emerging re-
search area. Early work in the area attempts to find the best rank-R
tensor approximation as a recovery of the original data tensor as in
[6]. In [7], multi-way compressed sensing (MWCS) for sparse and
low-rank tensors suggests a two-step recovery process: fitting a low-
rank model in compressed domain, followed by per-mode decom-
pression. However, the performance of MWCS relies highly on the
estimation of the tensor rank, which is an NP-hard problem. [8] uses
Kronecker product matrices in CS to act as sparsifying bases that
jointly model the structure present in all of the signal dimensions as
well as to represent the measurement protocols used in distributed
settings. However, the recovery procedure, due to the vectoriza-
tion of multidimensional signals, is rather time consuming and not
applicable in practice. [9] propose Generalized Tensor Compres-
sive Sensing (GTCS) with two reconstruction procedures, a serial
method (GTCS-S) and a parallelizable method (GTCS-P). However,
these methods assume that the underlying tensor is sparse and do not
address the low-rank recovery problem.

One particular application where low-rank tensor recovery from
compressed measurements has been encountered is dynamic MRI
images. The problem of recovering dynamic MRI images from
much smaller k-space measurements has been traditionally ad-
dressed by vectorizing each image in the sequence and enforcing
low rank constraints on the resulting matrix. However, this vec-
torization leads to loss of inherent information such as spatial and
temporal relationships and structures present in tensors. In [10, 11],
the dynamic MRI data was reconstructed as a low-rank tensor, while
in [12] the authors used a local low rank structure instead. Similarly,
[13] proposes an accelerated imaging using Low-Rank Tensor with
“Explicit Subspace” (LRTES) which represents high-dimensional
image functions using an explicit low-rank tensor model. This
model requires the acquisition of two complementary data sets: a
navigator dataset for estimating the tensor subspace structure, and
a sparse dataset for image reconstruction. More recently, low rank
plus sparse assumption has been used to characterize dynamic MRI
data [14].

1.2. Contribution

In this work, we assume a tensor LR model on the image sequence.
This is specified in (2). We design an alternating gradient descent
(GD) and minimization (altGDmin) algorithm for recovering this LR
tensor from its sketches. Moreover, we enhance our basic tensor-
altGDmin algorithm to also include the two key steps that signifi-
cantly improved recovery performance for dynamic MRI in the ma-
trix setting in our previous work [2]: initial mean image compu-
tation, and a final model error correction step. Our proposed so-
lution for the tensor case method is motivated by our older work.
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Time Memory Communic.

Matrix n%m%r%q n:-ms nars
(Sketch)

Tensor nimiriq ny - mi niry
(Sketch)

Matrix ni(logni)riq max(niri,riq) nir;
(MRI)

Tensor ni(logni)rig  max(niri,7iq) nir
(MRI)

Table 1: We compare the per iteration time, memory, and com-
munication complexity of the matrix and tensor models. Assum-
ing wlo.g. that mi = max(mi,mz2), n1 = max(ni,n2),
r1 = max(ry,72) so that O(ny.n2) = O(nf) etc.

However, the tensor case models the images as being 2D low-rank
which is a very different and usually more appropriate model for
image-sequences/videos. The algorithm design for this case is not
a straightforward extension but requires significant modifications in
the initialization step and in the parameter setting approaches. Our
tensor-altGDmin algorithm is significantly faster, and significantly
more memory-efficient compared with its matrix counterpart. In a
distributed setting, its communication complexity will also be much
lower. We provide a comparison of its memory, communication, and
time complexity per iteration in Table 1. This table provides the
complexities for both the sketching and the MRI applications; in the
latter case, the measurement matrices do not need to be explicitly
stored, and one can use the fast fourier transform (FFT) algorithm,
so all complexities are lower. However, still the tensor case is more
efficient than the matrix one. As noted in our earlier works [1, 2],
the matrix-based altGDmin algorithm already has the best speed and
memory and communication complexities compared with existing
approaches and hence our current tensor approach is significantly
more efficient also than most other existing methods.

We use extensive experiments on real video sequences sketched
using two types of random matrices to show the power of our devel-
oped tensor-altGDmin algorithm. We demonstrate that our algorithm
(with one fixed set of parameter settings, no parameter tuning) can
accurately recover many real video sequences from undersampled
Gaussian and sub-exponential measurements.

2. PROPOSED DATA MODEL AND ALGORITHM
We give the data model first, then the algorithm.

2.1. Data model
We wish to recover a third-order tensor X of size n; X n2 X g from
the available third-order tensor measurements Y of size mi1 X ma X q
that are obtained as follows. We use X, to denote the k-th frontal
slice of X, i.e. X : X (:,:, k). Similarly for ). We have
Y., = Xk X1 P xXo Wy, forall k € [q] (D)

Here x; denotes the j-mode product of a tensor [15]. In this
particular setting, it can be understood more simply as Y, =
&, X, ¥/ forall k € [g]. The measurement matrices ®; are
of size m1 X n1 and Wy of size ma X ng with m; < ng and
ma < no respectively.

We assume the following 2D low rank (LR) model on X, with
ranks 71, 72:

X:gX1U><2V (2)

where Gisary X ra2 X g coretensor, U is ny X 71, and V' is ng X ra.
This can also be rewritten also as X, = UG,V " forall k € [q].

Algorithm 1 altGDmin-Tensor

1: Input: Y, ®, ¥ k € [q]

2: Parameters: GD step size 11 and 72, Number of iterations 7',
Set rank 7 and 72 as mentioned in Section 2.3

3: Initialization: A

Define the init tensor X as follows:

(Xo)r = @4 YiWs, k € [q]

Set U < top 71 singular vectors of (i’o)(l).

ke

Set V' < top 3 singular vectors of (X) 2 .
fort =1to 1" do
Update G :
G = (&, )Y, (P, V)T, forall k € [q]
9:  Compute gradient w.r.t U :
VuL=Y1_® (Vi - ®.UG,V ¥ )T, VG]
10:  Compute gradient w.r.t V' :
VvL=3%1_ 9 (Y- ®.UG,V ¥]) &.UGx
11:  Update U, V by projected GD:
Let QR(M) be the  of QR decomp of M.
SetU + QR(U — mVuL)
SetV < QR(V —n2Vv L)
12: end for
13: Output: X where X (:,:,k) = X, = UG,V '

2.2. The Tensor altGDmin algorithm

Using the 2D LR model specified above, our goal is to minimize the
cost function

q
LU, V,G)=> |[Yi— ®UGV ¥}

k=1

over U,V ,G. We use the alternating GD and minimization (alt-
GDmin) approach to do this, since it provides the best speed and
memory/communication complexity tradeoff. By modifying ideas
from matrix LR literature, we start with a carefully designed spec-
tral initialization to initialize U and V. After this we alternatively
update G and {U, V'} as follows.

1. Given {U, V'}, update G by minimizing the above cost func-
tion over it. Due to the form of our cost function, this de-
couples into a matrix-wise minimization for each r1 X 72
frontal slice matrix G, individually. Under the LR assump-
tion, 71, 72 are small, and thus this step consists of ¢ very in-
expensive least squares (LS) problems. These can be solved
in closed form. See line 8 of Algorithm 1.

2. Given G, we update {U, V'} using projected GD: one GD
step, followed by projecting the output onto the space of ma-
trices with orthonormal columns. This is done using the QR
decomposition. This projection helps ensure that the norms
of both {U,V'} and of G remain bounded: the former re-
main unit norm. Without this projection step, the norm of
one of U, V, G could keep increasing while that of the other
keeps decreasing. The QR decomposition is very cheap, it is
of order n1 7} and nar3 respectively.

For spectral initialization, we use a modification of our matrix case
idea. We first define the initialization tensor X as follows: we set
its k-th frontal slices as (Xo)x = ®} Y ¥4, k € [g]. We initialize
U as the top r; singular vectors of the unfolded matrix (X¢)q): this
means unfold (X)) along the first dimension to get a matrix of size
n1 X ngq. Similarly, we initialize V' as the top r2 singular vectors
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of the unfolded matrix (X¢)(2): this means unfold (X) along the
second dimension to get a matrix of size na X niq.
The complete algorithm is specified in Algorithm 1

Time, Memory, and Communication complexity. For com-
puting the complexities, assume that n1 = max(ni,n2), miy =
max(m1, ms), and 71 = max(r1,72) so that O(ny - ng) = O(n?),
etc. With simple calculations, it is easy to see that the time
complexity per iteration is O((nimimar1 + namimara)q) =
O(nimjiriq). The memory complexity is governed by the memory
needed to store the measurement matrices. Thus it is O(n1 - m1).
For communication complexity, notice that in a distributed setting,
the updates of G s will be done locally while the gradients will need
to be shared across the different nodes. The gradients are matrices
of size n1 X 71 and na X ro. Thus the communication complexity
is O(n1r1). We summarize this information in Table 1. In the MRI
setting, due to use of the FFT operator, one only needs to store the
sampled indices (which is much cheaper) and the time needed is
also much lesser in both cases. However, still, the tensor case time
and memory requirements are much lower. These are also given in
the table.

Algorithm 2 altGDmin-Tensor-Video

Input: Y, @, ¥y, k € [q]
Parameters: GD step size n =
tions T = 70, €erit = 0.01

1. Mean Image estimate:
(a) Solve mingz >, ||Yi — ®,Z%¥/ ||%; denote solu-
tion by Z.

___ 1 i -
Mo OB Number of itera

2. AltGDmin on measurements’ residual:
(a) Compute Y. =Y. — ®,ZW] forallk € [q]-

(b) Give Yy, ®1, ¥y, k € [q], 71,72 as the input of Al-
gorithm 1 and run it. Denote its output by X.

3. MEC on measurements’ residual: For each k € ¢,
(a) compute Yy, := Yy — ®, 2, — &, X, ¥,

(b) run 3 iterations of GD to solve ming | Yy —
&, E, ¥/ ||%. Denote the output by £.

Output: Zwith Z(:, :,k) = Zk = E—FXk +Ek

3. TENSOR-ALTGDMIN FOR REAL VIDEOS

We enhance our basic tensor altGDmin with two extra steps ex-
plained below. Next we explain how we set parameters. These are
set once and used for all our experiments.

3.1. Realistic image modeling and algorithm

Most real video sequences have a certain baseline component that
is roughly constant across the entire sequence. We refer to this as
the “mean” image. Secondly, most real image sequences are only
approximately LR, i.e., the residual after subtracting the LR compo-
nent is not zero, but has a small magnitude. Thus the following is a
more appropriate model for a real image sequence:

Z(:,:,k‘) =7y = Z-i—Xk + Ej, forall ke [q]

where Z(:, :, k) is the k-th image in the image sequence, Z is the
mean image (this is typically the background image), the X,’s forms

—— Sart Guass,

— Guass

1010 F

10151

1020
0

Fig. 1: Error versus number of iterations for simulated data.

a 2D LR tensor X (this is the slow moving component), Ej, is
the modeling error in this modeling. We also assume ||Z||r >
[| Xk||F > ||Ek||r for all k. This is modeled as being unstructured
and small magnitude. We recover the mean image using an LS step
that involves all measurements. See step 1 of Algorithm 2. We use
the mean estimate to compute the measurement residuals as in step
2a of the algorithm and use these as input the tensor-altGDmin algo-
rithm (step 2b). Finally, we recover the model errors Ej, for each k
individually by running a few steps of GD on the new measurement
residuals (see step 3a and 3b). We refer to this step as model error
correction (MEC).

3.2. Setting parameters automatically

One way to choose r1 and 73 is to use the "b% energy threshold” on
the singular values of the initialization matrices X (1) and X (). In
addition, r1 needs to be sufficiently small compared min(n1,n2q)
for the algorithm to take advantage of the LR assumption. Similarly
ro < min(niq,n2). Also, for the LS step to update G';’s to work
well, we need 71 < my and ro < ma. Thus, we let 71 4y =
min(ni, n2, ¢, m1)/20 and 72 iy = min(ni, ne, g, m2)/20. We
then compute 7 as the smallest integer so that the squared sum of
the first r; singular values of X' (1) is at least 85% of the squared
sum of the first 1 3;4. Similarly for 5.
Using ideas from [2], we choose the GD step size as 1 =
L 1 where the

5Vo (L@0,60,voy 2 5[V (L(U,60, V)]
U° V° G° are the initial estimates. The maximum number of
iterations, 7', is set to 70 and also we stop the GD loop when
Error(X™*,X) < 0.001. For mean image computation, we use the
CGLS code https://web.stanford.edu/group/SOL/
software/cgls/ with tolerance 107% and with maximum 10
iterations. For the MEC step, we run at most 10 iterations of CGLS
code with tolerance 1072,

4. EXPERIMENTS

In all our experiments, Error is computed as Error(X*, X) =

W% We experiment with two types of sketching

matrices P, ¥i: both are random Gaussian (each entry is i.i.d.
standard Gaussian) or both are what we call “square-root-Gaussian
(sqrtG)”. Each entry of a sqrtG matrix is the square root of the abso-
lute value of a standard Gaussian random variable (r.v.) multiplied
by the sign of this standard Gaussian r.v.. In the sqrtG case, it can
be argued that each entry of the sketched/measurement tensor Y
is an independent sub-Gaussian r.v., while in the Gaussian case,
each entry of Y is an independent sub-exponential r.v.. The latter
is known to be heavier tailed than the former and hence one would
expect slower algorithm convergence or larger final error or both.
In our first experiment, we simulated an exactly 2D-LR image se-
quence and its measurements using our data model. We generated
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AGM-Tensor Sqrt Gauss

AGM-Tensor Gauss

Fig. 2: Visual image quality comparison of the reconstruction using AGM-Tensor of Lake (Frame 70), Sleeping Dog (Frame 70) and Blooms

(Frame 1) Video. The yellow arrow shows the blurring

U™ and V'* by orthogonalizing standard Guassian matrix of dimen-
sion mq X r1 and ne X 72 respectively while G* is a tensor of size
r1 X r2 X g with each entry being i.i.d. standard Gaussian. Since
sub-exponential r.v.s are heavier tailed, the algorithm takes longer
to converge in the latter case. We show the plot in Fig 1. This used
n1 = 70, ng = 200, ¢ = 300, r1 = 3, r2 = 4, m1 = 60 and
mo = 120.

Next, we experiment with sketching of the following six differ-
ent real video sequences (only approximately LR) which are differ-
ent in terms of size and motion using sqrtG and Gaussian sketches:
Switch Light (n1=120, n2=160, ¢=770), Dog Sleeping (n1=180,

Dataset Sqrt Gauss  Gauss
Error 00565 0.0565

Lake, m1 = 0.4m SSIM  0.6770 0.6718
b o6 Error  0.0241 0.0241
08, M1 = 1.1 SSIM  0.9183 0.9206
. Error _ 0.0088 0.0117
SwitchLight, m1 = 0.9n1 gopnv (9883 0.9886
- Error  0.0364 0.0366

Lake, m1 = 0.9m1 SSIM  0.8237 0.8146
Error  0.0847 0.0850

Escalator, m1 = 0.9n1 SSIM  0.7862 0.7924
Persom e — 0.9 Error  0.1382 0.1386
1= U SSIM  0.5421 0.5459

Error  0.0144 0.0143

Lobby, m1 = 0.9 SSIM  0.9240 0.9200
Blooms. mr — 0.0 Error  0.0950 0.0951
ST = Hm SSIM  0.5149 0.5166

Table 2: Recovery Error and SSIM results for 7 ditferent image
sequences using both square-root Gaussian and Gaussian measure-
ments. The ratio ma/na = mai/ny in all cases. SSIM is a measure
of correlation, so higher is better.

n2=320, g=148), Lake (n1=72, n2=90, ¢=200), Escalator (n1=130,
n2=160, ¢=200), Person (n1=120, n2=160, ¢=200), Lobby(n=128,
n2=160, g=341). These were taken from https://github.
com/praneethmurthy/ReProCS/tree/master/Data
which obtained them from http://perception.i2r.a-star.
edu.sg/bk_model/bk_index.html (this link does not work
now), https://pixabay.com/videos/blooms—tree—
blossoms-spring-branch-113004/ was used to get the
bloom (n1=300, n2=500, g=600) video. We used m1/ni = ma/ns
ranging from 0.4 to 0.9. In each row we specify this ratio. We
sketched these using both sqrtG and Gaussian matrices. We display
the recovery errors and SSIM for all 14 cases in Table 2. We show
one recovered frame of three of these videos in Fig. 2. As can be
seen, the recovered image quality is worse when using Gaussian
sketches.

Finally, we would like to compare with our old altGDmin-matrix
algorithm [2], but we are unable to do this, due to the large mem-
ory requirement. The matrix case would use a measurement matrix
Ay = ®;, ® U/ . This is of size mima X nine. As an example for
the Dog-Sleeping sequence, if m1/n1 = ma/n2 = 0.6, the mem-
ory required to store just one such Ay is more than one gigabyte.
The time needed by one iteration of matrix altGDmin is 3.6 seconds
while the tensor version needs 0.06 seconds. The final errors are
0.09 (matrix) and 0.13 (tensor).

5. CONCLUSIONS

We explored the use of a tensor LR model for sketching long
and large-sized image sequences. We developed a very fast and
memory-efficient gradient descent (GD) based recovery algorithm,
called altGDmin-tensor and showed that it can successfully recover
both simulated and real video image sequences from their sketches.
Such a model has an obvious extension to dynamic volume imag-
ing which is routinely done in dynamic MRI. In future work we
will develop and evaluate our approach for this application. In
MRI, approaches that enable accurate reconstructions from highly
undersampled dynamic volume image sequences can be very useful.
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