
A Fast Algorithm for Low Rank + Sparse
column-wise Compressive Sensing

Silpa Babu, Namrata Vaswani
ECE dept, Iowa State University, USA

Abstract—This paper focuses studies the following low rank
+ sparse (LR+S) column-wise compressive sensing problem. We
aim to recover an n× q matrix, X∗ = [x∗1,x

∗
2, · · · ,x∗q] from m

independent linear projections of each of its q columns, given
by yk := Akx

∗
k, k ∈ [q]. Here, yk is an m-length vector with

m < n. We assume that the matrix X∗ can be decomposed as
X∗ = L∗ + S∗, where L∗ is a low rank matrix of rank r <<
min(n, q) and S∗ is a sparse matrix. Each column of S contains
ρ non-zero entries. The matrices Ak are known and mutually
independent for different k. To address this recovery problem, we
propose a novel fast GD-based solution called AltGDmin-LR+S,
which is memory and communication efficient. We numerically
evaluate its performance by conducting a detailed simulation-
based study.

I. INTRODUCTION

The modeling of an unknown matrix as the sum of a
low-rank (LR) matrix and a sparse matrix is widely em-
ployed in various dynamic imaging applications - foreground-
background separation from videos [1], [2], dynamic MRI
reconstruction [3], [4], and low-rank sketching [5] are three
important example applications. The design of recommenda-
tion systems with outliers is another one [1], [2]. The low-
rank component characterizes the static and slowly changing
background across the frames, while the sparse component
represents the sparse foreground – moving objects in the case
of videos, brain activation patterns in case of functional MRI,
and motion of the contrast agents across the organs in case of
contrast enhanced dynamic MRI.

A. Problem and Notation
We study the problem of recovering an n × q matrix X∗

from undersampled measurements of each of its columns, i.e.,
from

yk = Akx
∗
k, k ∈ [q]

Here, Ak is a known matrix of dimension m×n, with m < n.
The different Aks are i.i.d. and each is a dense matrix: either a
random Gaussian matrix (each entry i.i.d. standard Gaussian)
or a random Fourier matrix (a random subset of rows of the
discrete Fourier transform matrix). The vectors yk and x∗k
denote the k-th column of matrix Y and X∗, respectively.

We assume that X∗ = L∗ + S∗, where L∗ is a low rank
matrix and S∗ is a sparse matrix. The rank of matrix L∗ is
denoted by r, and we assume r � min(n, q) (low-rank). Each
column of S∗ has ρ non-zero entries. There is no bound on
the magnitude of the non-zero entries of matrix S∗. Therefore,
the undersampled Gaussian measurements can be expressed as

yk = Ak(l
∗
k + s∗k), k ∈ [q]

where l∗k and s∗k is the k-th column of matrix L∗ and S∗

respectively. The above problem occurs in dynamic MRI (Aks
are a subset of rows of the 2D-DFT matrix) or in sketching
(Ak’s are random Gaussian) [5]

The reduced (rank r) Singular Value Decomposition of
matrix L∗ can be represented as U∗Σ∗V ∗. The matrix L∗

can be written as
L∗ = U∗B∗

where U∗ is an n× r matrix with orthonormal columns, and
B∗ is an r × q matrix given by B∗ = Σ∗V ∗. Consequently,
each column of X∗ is given by x∗k = U∗b∗k + s∗k. Hence the
undersampled Gaussian measurements can be written as

yk = Ak(U
∗b∗k + s∗k), k ∈ [q]

We use ‖.‖ without a subscript denotes the l2 norm of a
vector or the induced l2 norm of a matrix, and we use ‖.‖F
to denote the matrix Frobenius norm. For a tall matrix M ,
M † := (M>M)−1M> denotes its Moore-Penrose pseudo-
inverse.

We studied the S∗ = 0 special case of the above problem
in our recent work [6], [7]. Recall that L∗ SV D

= U∗Σ∗V ∗ :=
U∗B∗ denote its reduced (rank r) SVD, and κ := σ∗max/σ

∗
min

the condition number of Σ∗. Notice that our problem is
asymmetric across rows and columns. Also, each measurement
yki is a global functions of column x∗k, but not of the entire
matrix. Hence, we need the following assumption, which is a
subset of the assumptions used in the LR matrix completion
literature.

Assumption 1.1. We assume that maxk ‖b∗k‖ ≤ µ
√
r/qσ∗max

2

for a constant µ ≥ 1.

B. Related Work

To our best knowledge, the above problem has only been
studied in the dynamic MRI setting [8], [9], [10], [11]. All
these algorithms are extremely slow and memory-inefficient
because they requires storing and processing the entire matrix
L (these do not factorize L as L = UB). Moreover, all these
works only focused on accurately recovering real MRI se-
quences from the available measurements. To our knowledge,
none of these do a careful simulation-based or theoretical study
of when the proposed algorithm converges and why. Another
related work from the MRI literature is [12]; this explored the
LR&S model for MRI datasets.

While the above problem has not been explored in the theo-
retical or signal processing literature, related LR+S problems

20
23

 5
9t

h
A

nn
ua

l A
lle

rto
n

C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

n,
 C

on
tro

l,
an

d
C

om
pu

tin
g

(A
lle

rto
n)

 |
97

9-
8-

35
03

-2
81

4-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
lle

rto
n5

81
77

.2
02

3.
10

31
34

78

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

have been extensively studied. The robust PCA problem is
the above problem with Ak = I , i.e. the goal is to separate
L∗ and S∗ from X∗ := L∗ + S∗. The robust LR matrix
completion (LRMC) problem, also sometimes referred to as
partially observed robust PCA, involves recovering L∗ from
a subset of the entries of X∗. This can be understood as the
above problem with Ak being a 1-0 matrix with exactly one
1 in each row. Provably correct convex [1], [13], alternating
minimization [14], and GD-based solutions to robust PCA
and robust LRMC [15], [16] have been developed in the
literature. The work of [15] factors L as L = UB and
uses an alternating GD (AltGD) algorithm that alternatively
updates U ,B,S. Since L = UB = URR−1B for any
r×r invertible matrix R (the decomposition is not unique), the
alternating GD algorithm requires adding a term to the cost
function that ensures the norms of U and B are balanced.
Thus, this work develops an AltGD algorithm that minimizes∑

k ‖yk −AkUbk −Aksk‖2 + ‖U>U −BB>‖F .
Another related problem is that of recovering X∗ := L∗ +

S∗ from dense linear projections of the entire matrix X∗,
i.e., from yj := Aj(X

∗), j = 1, 2, . . . , jmax (this can be
referred as low-rank plus sparse compressive sensing) [17].
Here Aj(X

∗) := 〈Aj ,X
∗〉 with Aj being random Gaussian.

Notice that this problem is different from ours where we have
dense linear projections of each column of X∗ but not of the
entire matrix.

In our recent work [6], [7], [18], we studied the LR column-
wise compressive sensing (LRCCS) problem which is the
above problem with S∗ = 0. This is also where we introduced
the alternating GD and minimization (AltGDmin) algorithm
idea. In [6], we provided theoretical sample complexity and
iteration complexity guarantees for it and extensive numerical
simulations. In [7], [18], we developed a practical modification
for fast accelerated dynamic MRI reconstruction. Via extensive
experiments on real MRI image sequences (with simulated
Cartesian and radial sampling) and on real scanner data, we
showed that AltGDmin-MRI is both significantly faster and
more accurate than many state-of-the-art approaches from MRI
literature.

C. Contributions

We develop a novel GD-based algorithm called Alternating
GD and minimization or AltGDmin for solving the above
LR+S column-wise compressive sensing problem (LR+S-
CCS) and argue why it is both fast and memory and
communication-efficient. The communication-efficiency claim
assumes a federated setting in which subsets of yk,Ak are
available at different distributed nodes. Using extensive sim-
ulation experiments, we also numerically evaluate the sample
complexity (value of m needed for a given n, q, r, ρ) to
guarantee algorithm convergence.

The AltGDmin algorithmic framework was first introduced
for solving the LRCCS problem in [6]. Its idea is to split the
unknown variables into two parts, Za,Zb and alternatively
update each of them using GD or projected GD for Za and
minimization for Zb. We let Zb be the subset of variables for

which the minimization can be “decoupled”, i.e., subsets of
Zb are functions of only a subset of Y . In problems such
as LRCCS or the above LR+S-CCS problem, the decoupling
is column-wise. Assume a factored representation of L, i.e.,
L = UB where U and B are matrices with r columns and
rows respectively. In our current problem, Zb ≡ {B,S} and
Za = U . Thus, our algorithm alternates between a projected
GD step for updating U and a minimization step for updating
B and S.

Because of the column-wise decoupling, the minimization
step is about as fast as the GD step. As we argue later, the
per-iteration time complexity is mqnr, memory complexity
is max(n, q) · max(r, ρ) and the communication complexity
is nr per node. Memory and communication cost wise our
algorithm is much better than projected GD. Time-wise it is
faster than AltMin which solves a minimization problem also
for updating U . This problem is coupled across all columns
and hence is a much more expensive problem to fully re-
solve at each algorithm iteration. Replacing this by a single
GD update is what makes AltGDmin much faster than AltMin.

To our knowledge, this work is the first to do a de-
tailed simulation-based study of the above LR+S column-wise
compressive sensing problem. As is well known from older
compressive sensing literature for sparse recovery problems,
as well as for LRCCS, algorithms developed originally for
the random Gaussian Ak setting also often work with simple
modifications for solving the MRI reconstruction problem,
e.g., [19], [20] and [21] for CS, and [6] and [22] for LRCCS.

II. ALTGDMIN FOR L+S COLUMN-WISE COMPRESSIVE
SENSING (L+S-CCS)

We are interested in developing a fast gradient descent (GD)
based algorithm to find matrices L and S that minimize the
cost function:

f(L,S) =

q∑
k=1

‖yk −Ak(lk + sk)‖2

subject to the constraints (i) matrix L has rank r or less, (ii)
each column of matrix S is ρ sparse. This means that the
number of non-zero entries in each column sk is at most ρ.
As previously mentioned, we can impose the rank constraint
implicitly by expressing the matrix L as L = UB where U
and B are n × r and r × q matrices. The cost function can
then be written as:

f(U ,B,S) =

q∑
k=1

‖yk −Ak(Ubk + sk)‖2

Our objective is to find matrices U , B, and S that minimize
the cost function f(U ,B,S) while satisfying the constraint
that each column of S is ρ sparse.

A. altGDmin-L+S iteration
The gradient of the cost function with respect to U is given

by ∇Uf(U ,B,S).

∇Uf(U ,B,S) =

q∑
k=1

A>k (Ak(Ubk + sk)− yk)b
>
k .

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

At each new iteration, the following steps are performed:
• The matrix U is updated using projected gradient descent.
• For a given U , the matrices S and B are updated by

using minimization, as explained in detail in Section II-B.
These steps iteratively update U , B, and S to minimize the
cost function and obtain better estimates. We summarize our
proposed algorithm altGDmin-L+S in Algorithm 1.

B. Minimization: Updating S and B for a given U

For a given U , we need to find sk and bk that minimize
f(U ,B,S) =

∑q
k=1 ‖yk − Ak(Ubk + sk)‖2. Observe that

sk, bk appear only in the k-th term. Thus,

min
B,S

f(U ,B,S) =

q∑
k=1

min
sk,bk

‖yk −Ak(Ubk + sk)‖2

This means that the minimization problem can be decoupled
across each columns, making it much faster. Moreover, notice
that, for a given sk, the recovery of bk is a standard least
squares (LS) problem with a closed-form solution that can be
written in terms of sk:

bk = (AkU)†(yk −Aksk) (1)

Recall here that M † = (M>M)−1M>. We can substitute
this for bk and hence get a minimization over only the sks,
i.e.,
q∑

k=1

min
sk,bk

‖yk −Ak(Ubk + sk)‖2 =

q∑
k=1

min
sk

‖zk −Mksk‖2

where zk := yk − AkU(AkU)†yk and Mk := Ak −
AkU(AkU)†Ak. In summary,

min
B,S

f(U ,B,S) =

q∑
k=1

min
sk

L(sk), L(sk) := ‖zk −Mksk‖2

with zk,Mk as given above. Thus, we have simplified the
min over B,S into a problem of solving q individual prob-
lems, each of which is a standard sparse recovery problem,
minsk

L(sk). Various algorithms can be used to solve the
sparse recovery problem. In this paper, we choose to use the
Iterative Hard Thresholding (IHT) algorithm provided in [23]
due to simplicity and efficiency. For a given U and S, the
matrix B can be updated using (1).

C. altGDmin-L+S initialization

Since the cost function f(U ,B,S) is non-convex, it needs
a careful initialization. As in all previous work on iterative
algorithms for the most related L+S problem, robust PCA,
we initialize S first while letting B = 0. The reason this
is done is there is no upper bound on entries of the sparse
matrix which usually models large magnitude, but infrequently
occurring, outlier entries. On the other hand, when we assume
that the condition number of L is a numerical constant, we
are implicitly assuming an upper bound on the entries of L.
Also, as noted earlier, the recovery of sk’s is decoupled across
columns.
Given an initialize estimate of S, we initialize U by a

Algorithm 1 altGDmin-L+S: Low Rank plus Sparse Model.
Let M † := (M>M)−1M>.

1: Input: yk,Ak, k ∈ [q].
2: Initialization: Set τ0max = 10.
3: sk=IHT(yk,Ak, ρ, τ0max,0), k ∈ [q]
4:

L0 := [A>1 (y1 −A1s1), ...,A
>
k (yk −Aksk), ...,A

>
q (yq −Aqsq)]

5: Set U0 ← top r left singular vectors of L0.
6: Let U ← U0.
7: bk ← (AkU)†(yk −Aksk) , k ∈ q.
8: GDmin iterations: Set Tmax = 120, τmax = 3, set
η = 0.14

‖∇Uf(U0,B1,S1)‖
9: for t = 1 to Tmax do

10: Compute: (zk)t = yk −AkU(AkU)†yk and
11: (Mk)t = Ak −AkU(AkU)†Ak, k ∈ [q]
12: (sk)t=IHT((zk)t, (Mk)t, ρ, τmax, (sk)t−1), k ∈ [q]
13: (bk)t ← (AkU)†(yk −Ak(sk)t) , k ∈ q.
14: Gradient compute:

∇Uf(U ,B,S)←
q∑

k=1

A>k (Ak(U(bk)t+(sk))t)−yk)(bk)
>
t

15: Projected GD step : U+ ← QR(U −η∇Uf(U ,B,S)).
16: Set U ← U+.
17: end for
18: Output: X := [x1,x2, . . . ,xq], where xk = U(bk)T +(sk)T .

standard spectral initialization approach: compute U as the
top r singular vectors of the matrix

L0 := [A>1 (y1−A1s1), ...,A
>
k (yk−Aksk), ...,A

>
q (yq−Aqsq)]

D. Iterative Hard Thresholding

At each iteration of IHT [23], a vector s is updated as
follows:
• Compute gradient of the cost function with respect to s.
• Compute the step size using the gradient.
• Update s using gradient descent.
• Perform Hard Thresholding on the updated s to keep only

the largest ρ entries of s in magnitude.
We summarize IHT algorithm in Algorithm 2. The computa-
tional time for updating a vector s using the IHT algorithm
in initialization mainly depends on the operator M and its
transpose M>. If these operators are general matrices, the
computational time requirement is O(mn) per iteration for
each column.

E. Time, Communication, and Memory Complexity

Time Complexity. The time complexity of the IHT algorithm
for recovering a vector s in the initialization is O(mn)
per iteration, as previously explained. Consequently, the time
complexity of the IHT algorithm for updating the entire matrix
S is O(τ0maxmnq). The initialization step requires a time
complexity of mqn for computing L0. The time needed for
computing the r-SVD of L0 is given by nqr×(number of
iterations of power method). Summing up the individual time

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 IHT

1: Input: z,M , ρ, τmax, s.
2: for t = 1 to τmax do
3: Gradient Compute ∇sL(s), which is the gradient of
L(s) = ‖Ms− z‖2 with respect to s.

4: Compute step size µ = ‖∇sL(s)‖
‖M∇sL(s)‖

5: GD step for (s)t ← s− µ∇sL(s)
6: s ← HardThreshold ((s)t, ρ), which keep only the

largest ρ entries of s in magnitude.
7: end for
8: Output: s.

complexities mentioned above, the time complexity of the
initialization step is given by O(τ0maxmqn + nqr×(number
of iterations of power method)+mqn). However, since the
dominant term in this expression is O(τ0maxmqn), the overall
time complexity of initialization is O(τ0maxmqn).

The computational time required for updating each column
of S using IHT is O(mn) per iteration (explained earlier).
The time complexity for S update using IHT algorithm is
O(τmaxmqn), where τmax is the maximum number of itera-
tions in the IHT algorithm. The update of columns of B by
LS also needs time O(mnqr). One gradient computation with
respect to U needs time O(mqnr). The QR decomposition
requires time nr2. We need to repeat these steps Tmax times.
Thus, the total time complexity of altGDmin-L+S iterations is
O((mnqr+nr2+mnqr+τmaxmqn)Tmax) = O(mnqrTmax).

Therefore, the total time complexity of the altGDmin-L+S
algorithm is O(mnqrTmax).
Communication Complexity. The communication complexity
per node per iteration in a distributed implementation (where
subsets of yks are processed at different distributed nodes) is
given as O(nr).
Memory Complexity. If each column of matrix S has only
ρ non-zero entries, then storing each column requires 2ρ
numbers. Since S has q columns, the total memory required
to store S is 2ρq. The memory required to store n× r matrix
U and r × q matrix B is nr and qr. In comparison, storing
the entire matrix X would require memory of nq. Therefore,
by storing S, U , and B instead of the full matrix X , the
algorithm can significantly reduce the memory requirements.
The memory complexity of storing U , B, and S is given by
max(nr, qr, qρ).

F. Settings parameters automatically

In real-world applications, the rank r of matrix L∗ and the
exact sparsity of each column in matrix S are unknown. To es-
timate a suitable value for r, the ”b% energy threshold” method
can be employed on the singular values of the initial estimate
of matrix L denoted as L0. Additionally, the estimated value
of r should be sufficiently less than the minimum of n and q
to ensure a low-rank property. To determine r, we perform the
”b% energy threshold” on the first min

(
n
10 ,

q
10 ,

m
10

)
singular

values. In our experiments, a 65% energy threshold was used.
In practical scenarios, the exact value of ρ (the sparsity level

per column) is often unknown. In many cases the maximum
possible nonzero entries (upper bound on ρ), denoted ρmax

is known. We assume this in our code and experiments. The
maximum number of iterations of the IHT algorithm in the
initialization τ0max is set to 10.

For the altGDmin-L+S Algorithm, the maximum number of
iterations Tmax is set to 200. The step size η for updating the
matrix U is set to 0.14

‖∇Uf(U0,B1,S1)‖ , where U0 is the initial
estimate, B1 and S1 are the estimates in the first AltGDmin-
L+S iteration. Assuming that the gradient norm decreases
over iterations, this implies that at any iteration t, we have
η∇Uf(Ut,Bt,St) < 1. The maximum number of iterations
for the IHT algorithm, denoted as τmax, used for updating S
is set to 3.

III. EXPERIMENTS

The matrix U∗ is generated by orthonormalizing an n× r
matrix with independent and identically distributed (i.i.d)
Gaussian entries. The matrix B∗ and Ak are matrices of
normally distributed random numbers of dimensions r×q and
m × n, respectively. The locations of ρ non zero entries of
each column of matrix S, is sampled uniformly at random,
without replacement, from the integers 1 to n. Each column
of S∗ contains exactly ρ non-zero entries. In each of the
100 Monte Carlo runs, the measurement matrices Ak consist
of i.i.d standard Gaussian entries. We obtained the Gaussian
measurements as yk = Ak(U

∗b∗k + s∗k), k ∈ [q]. The error
is computed as Error(X∗,X) = ‖X∗−X‖F

‖X∗‖F ,where ‖ · ‖F
denotes the Frobenius norm. For IHT implementation, we used
the modified version of code provided in [24].

For Fig. 1, the parameters were set as follows: Tmax = 200,
τ0max = 10, τmax = 3, and η = 0.14

‖∇Uf(U0,B1,S1)‖ . In this
experiment, we fixed the parameter values to n = 600, q =
600, m = 80, r = 4. Data was generated for different ρ values,
specifically ρ = 2, 5, 6 and 7. We considered ρmax = 7. The
values of each nonzero element of S∗ were drawn uniformly
from the interval [−α, α], where α was chosen to be 6. This
choice of values for the entries of S∗ ensures that certain
sparse components are smaller or larger than certain entries of
L, while some other components fall within the range of L.
This generation method for matrix S is referred to as S1 in this
paper to simplify the explanation. On the y-axis, we display
the empirical average of the error of matrix X using a semilog
scale, which is averaged over 100 Monte Carlo simulations.
Notably, from Fig. 1, it can be observed that error converges
to 10−15 in most cases. However, when ρ is sufficiently large,
our algorithm only converges to 10−3.

In Fig. 2, we used the same set of parameters as in Fig.
1. The data was generated using the following parameter
values: n = 600, q = 600, m = 80, r = 4, ρ = 2.
We considered ρmax = 5. In this experiment, the non-zero
entries of matrix S∗ were generated using two methods:
(1) S1, as explained earlier, and (2) we referred second
method as S2, where each nonzero element of S∗ was
randomly chosen from the set {−1,−10,−100, 1, 10, 100}.
In this experiment, our aim was to compare altGDmin-L+S

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

with the well-known L+S-Lin [9] algorithm in the MRI
literature, using two different methods (S1 and S2) for gen-
erating nonzero entries matrix S. To conduct this compar-
ison, we used the code provided by the authors for L+S-
Lin [9], which is available on GitHub at https://github.com/
JeffFessler/reproduce-l-s-dynamic-mri/tree/main; we used its
version developed for dynamic MRI of abdomen. This code
fails completely for our current simulated random Gaussian
measurements’ setting. In general too this algorothm needs
application specific parameter tuning. To make it work, we
made necessary modifications to the code to accommodate
Gaussian measurements instead of Fourier measurements; and
we provided it with our estimate of the rank of L (computed
as explained earlier) and the value of ρmax. We compare its
performance with our proposed algorithm, AltGDmin-L+S, in
Fig. 2. With these changes, the recovery error of L+S-Lin goes
down to about 0.0001 but the algorithm does not converge.
AltGDmin-L+S does converge.

Next we compared our proposed algorithm with both L+S-
Lin (its modified version explained above) [9] and with our
old algorithm altGDmin-LR [6] designed for LRCCS problem
for various values of m. We show the results in Table I.
The data was generated using the following parameter values:
n = 400, q = 400, r = 4, and ρ = 2. We considered
ρmax = 5 and used the same parameter settings as in Fig. 2,
except for Tmax, which was changed to 10. The matrix S was
generated using method S1, and Fourier measurements were
used, indicating that the matrices Ak were random Fourier
measurements. We compare the performance of the altGDmin-
L+S (proposed) algorithm with other two algorithms, L+S-Lin
[9] and altGDmin-LR [6], for different values of m. From
table, it is clear that the altGDmin-L+S algorithm performs
better than L+S-Lin and altGDmin-LR in Fourier settings.

Fig. 1: Random Gaussian Measurements: We compare altGDmin-
L+S performance for different values of ρ. Parameters used: n = 600,
q = 600, m = 80, r = 4, ρmax = 7, Tmax = 200.

Fig. 2: Random Gaussian Measurements: We compare the per-
formance of altGDmin-L+S and L+S-Lin [9] algorithm, using two
different methods (S1 and S2) for generating nonzero entries Sparse
matrix. Parameters used: n = 600, q = 600, m = 80, r = 4, ρ = 2,
ρmax = 5, Tmax = 200.

m AltGDmin L+S-Lin AltGDmin-L+S
40 1 0.6986 0.4299
60 1 0.5054 0.0366
80 1 0.3153 0.0093
100 1 0.1749 0.0037
150 1 0.0685 0.0005
200 0.9957 0.0739 0.0001
250 0.9824 0.0509 0.0000
300 0.9691 0.0281 0.0000

TABLE I: Random Fourier Measurements: We report Error for
algorithms AltGDmin [6], L+S-Lin [9] and AltGDmin-L+S algorithms
for different values of m. Parameters used: n = 400, q = 400, r = 4,
ρ = 2, ρmax = 5, Tmax = 10.

IV. CONCLUSIONS

We developed a fast, memory and communication-efficient
gradient descent (GD) based recovery algorithm, called
altGDmin-L+S for the LR+S-CCS problem. Through simula-
tions, we have shown that altGDmin-L+S achieves successful
recovery of simulated data from their sketches. In future work,
we plan to evaluate the performance of altGDmin-L+S in real-
time video applications.

REFERENCES

[1] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, 2011.

[2] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust pca, robust subspace tracking and robust
subspace recovery,” IEEE Signal Proc. Magazine, July 2018.

[3] Z.-P. Liang, “Spatiotemporal imaging with partially separable functions,”
in 4th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 2007, pp. 988–991.

[4] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated dynamic
mri exploiting sparsity and low-rank structure: kt slr,” IEEE Transactions
on Medical Imaging, vol. 30, no. 5, pp. 1042–1054, 2011.

[5] R. S. Srinivasa, K. Lee, M. Junge, and J. Romberg, “Decentralized
sketching of low rank matrices,” in Neur. Info. Proc. Sys. (NeurIPS),
2019, pp. 10 101–10 110.

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

[6] S. Nayer and N. Vaswani, “Fast and sample-efficient federated low rank
matrix recovery from column-wise linear and quadratic projections,”
IEEE Trans. Info. Th., Feb. 2023.

[7] S. Babu, S. Nayer, S. G. Lingala, and N. Vaswani, “Fast low rank
compressive sensing for accelerated dynamic mri,” in IEEE Intl. Conf.
Acoustics, Speech, Sig. Proc. (ICASSP), 2022.

[8] R. Otazo, E. Candes, and D. K. Sodickson, “Low-rank plus sparse
matrix decomposition for accelerated dynamic mri with separation of
background and dynamic components,” Magnetic resonance in medicine,
vol. 73, no. 3, pp. 1125–1136, 2015.

[9] C. Y. Lin and J. A. Fessler, “Efficient dynamic parallel mri reconstruction
for the low-rank plus sparse model,” IEEE transactions on computational
imaging, vol. 5, no. 1, pp. 17–26, 2018.

[10] B. Trémoulhéac, N. Dikaios, D. Atkinson, and S. R. Arridge, “Dynamic
mr image reconstruction–separation from undersampled (k, t)-space via
low-rank plus sparse prior,” IEEE Transactions on Medical Imaging,
vol. 33, no. 8, pp. 1689–1701, 2014.

[11] F. Xu, J. Han, Y. Wang, M. Chen, Y. Chen, G. He, and Y. Hu,
“Dynamic magnetic resonance imaging via nonconvex low-rank matrix
approximation,” IEEE Access, vol. 5, pp. 1958–1966, 2017.

[12] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob, “Accelerated dynamic
mri exploiting sparsity and low-rank structure: kt slr,” Medical Imaging,
IEEE Transactions on, vol. 30, no. 5, pp. 1042–1054, 2011.

[13] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM Journal
on Optimization, vol. 21, 2011.

[14] P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain,
“Non-convex robust pca,” in Neur. Info. Proc. Sys. (NeurIPS), 2014.

[15] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust
pca via gradient descent,” in Neur. Info. Proc. Sys. (NeurIPS), 2016.

[16] Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal robust matrix
completion,” ICML, 2016.

[17] J. Tanner and S. Vary, “Compressed sensing of low-rank plus sparse
matrices,” Applied and Computational Harmonic Analysis, vol. 64, pp.
254–293, 2023.

[18] S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank compressive
sensing for accelerated dynamic mri,” IEEE Trans. Comput. Imaging,
revised and resubmitted, 2022.

[19] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Info. Th., vol. 52(2), pp. 489–509, February 2006.

[20] D. Donoho, “Compressed sensing,” IEEE Trans. Info. Th., vol. 52(4),
pp. 1289–1306, April 2006.

[21] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application
of compressed sensing for rapid mr imaging,” Magnetic Resonance in
Medicine, vol. 58(6), pp. 1182–1195, December 2007.

[22] S. Babu, S. G. Lingala, and N. Vaswani, “Fast low rank column-wise
compressive sensing for accelerated dynamic mri,” IEEE transactions
on computational imaging, 2023.

[23] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and computational harmonic analysis,
vol. 27, no. 3, pp. 265–274, 2009.

[24] M. Jabbari, “Iterative hard thresholding,” https://www.mathworks.com/
matlabcentral/fileexchange/124415-iterative hard thresholding, 2023,
[Online;accessed July 10, 2023].

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:24 UTC from IEEE Xplore. Restrictions apply.

