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Abstract—For the low rank matrix completion problem, we
develop a fast, communication-efficient and private algorithm,
called Alternating Gradient Descent and Minimization (Alt-
GDMin). The communication-efficiency and privacy claims as-
sume a vertically federated setting in which each node observes
some entries of a different subset of columns of the unknown LR
matrix X∗. By extensive simulation experiments, we demonstrate
the superior communication efficiency of AltGDMin. We also
numerically evaluate the sample complexity and show competitive
performance compared to benchmark methods.

I. INTRODUCTION

We develop a fast, communication-efficient and private
algorithm, called Alternating gradient descent (GD) and min-
imization (AltGDMin), for solving the Low Rank Matrix
Completion (LRMC) problem. The communication-efficiency
and privacy claims assume a vertically federated setting in
which each node observes some entries of a different subset
of columns of the unknown LR matrix X∗. AltGDMin is a
novel algorithmic framework introduced in [1] for solving the
LR column-wise compressive sensing (LRCCS) problem. 1

1) Problem setup: We consider the problem of recovering
rank-r matrix X∗ ∈ Rn×q , where r ≪ min(n, q), from
partial observations. Specifically, entry i of column j, denoted
X∗

ij , is observed, independently of all other observations, with
probability p. The observed matrix Y ∈ Rn×q is

Yij =

{
X∗

ij with probability p,

0 otherwise.
(1)

As in all other works on LRMC, we assume µ-incoherence
for the left and right singular vectors of X∗. Let X∗ SVD

=
U∗Σ∗V∗. Then, we are assuming the following bounds on
each row-norm of U∗, ∥u∗⊺

i ∥2 ≤ µ
√
r/n, and column-norm

of V ∗, ∥v∗
k∥2 ≤ µ

√
r/q, ∀i ∈ [n], k ∈ [q].

2) Federation: Assume that there are a total of γ nodes
with γ ≤ q. Each node observes a subset of columns of Y
defined in (1). We use Sℓ to denote the subset of columns
of Y observed by node ℓ. The sets Sℓ are mutually disjoint
and ∪γℓ=1Sℓ = [q]. All nodes can communicate with a central
node or “center”. The algorithm needs to maintain privacy.
This means that the center should not be able reconstruct the
entire matrix X∗. Each node should only be able reconstruct
its own sub-matrix of X∗. This implicitly also means that the
nodes’ raw data cannot be shared with the center.

1This work was supported in part by NSF grant: 2213069.

3) Applications: An important application of the LRMC
problem is product recommendation systems. For example,
in the Netflix problem, the k-th column of X∗, denoted x∗

k

corresponds to ratings of all movies by user k. Of course, no
user will rate all the movies, in fact each user rates a very small
subset of all the movies. Thus, only a few entries of X∗ are
actually observed. The LR assumption is justified by the fact
that ratings of different users depend only a few factors such
as their age, ethinicity, location etc. When we assume that X∗

is rank r, we are claiming that the number of factors governing
the user ratings is at most r. A federated setting may involve
different nodes denoting users in different households.

4) Notation: Ω denotes the set of indices (i, j) of the ob-
served entries of X∗ ∈ Rn×q . Y = X∗

Ω is the matrix defined
in (1), with entries in Ω equal to the corresponding entries of
X∗ and zero elsewhere. x∗

k ∈ Rn denotes the k-th column of
X∗. x∗⊺

i ∈ R1×q denotes the i-th row of X∗. ∥X∗∥op denotes
the largest singular value of X∗. Ω:,k = {(i, k) | (i, k) ∈ Ω} is
the set of observed entries of x∗

k, column k of X∗. Similarly,
Ωi,: = {(i, j) | (i, j) ∈ Ω} denotes the set observed entries
of row i. ∥·∥2 denotes the vector ℓ2 norm. ∥·∥F denotes the
matrix Frobenius norm. M † ≜ (M⊺M)−1M⊺ denotes the
Moore-penrose pseudo-inverse. (·)⊺ denotes the transpose. For
matrices U1,U2 with orthonormal columns, we define the
subspace distance between their column spans as

SD(U1,U2) := ∥(I−U1U
⊺
1 )U2∥F . (2)

A. Related work

Starting with the seminal work of [5, 6] which introduced
a nuclear norm based convex relaxation, the LRMC problem
has been extensively studied in the last decade and a half
[2, 5, 6, 7, 8, 9, 10, 11, 12]. Two types of algorithms feature
prominently in this literature. Convex relaxations [5, 6, 8]
have optimal sample complexity, but these methods are slow.
For ϵ-accuracy, the required number of iterations typically
grows as 1/

√
ϵ . The first provably accurate Alternating

Minimization (AltMin) algorithm with a spectral initializa-
tion was proposed in [2]. AltMin converges geometrically
and requires a sample complexity of O(nr4.5 log(1/ϵ)), with
subsequent work [13] improving the sample complexity to
O(nr2.5 log(1/ϵ)). Later works proposed gradient descent
(GD) based algorithms such as Projected GD (ProjGD) [4]
and Alternating GD (AltGD) [3]. These methods need sample
complexity of O(nr2 log2 n log2 1/ϵ) samples and also con-
verge geometrically. Generally, per iteration, AltMin is slower
than GD. However, GD approaches need a step size of O(1/r)
or smaller. Consequently, their iteration complexity is higher.
The proposed AltGDMin algorithm is most closely related to
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Algorithm Time (node) Time (center) Comm. (node) Comm. (center) Iteration (T ) Private
per iter. per iter. per iter. per iter. Complexity

AltMin (Exact) [2] |Ω:,k|r2 |Ω|r2 r nr log
(
1
ϵ

)
no

AltMin (Private) [2] max(|Ω:,k|rκ log( 1
ϵ
), |Ω:,k|r2) 0 |Ω:,k|r log( 1ϵ ) nr log

(
1
ϵ

)
yes

AltGD [3] |Ω:,k|r nr2 + |Ω|r |Ω:,k| max(n, q)r µrκ log( 1
ϵ
) no

ProjGD [4] 0 |Ω|r2 |Ω:,k| |Ω| log
(n+q

ϵ

)
no

AltGDMin (Proposed) |Ω:,k|r2 nr2 |Ω:,k|r nr log( 1
ϵ
) (conjecture) yes

TABLE I: κ, µ denote the condition number and incoherence parameter of X∗ ∈ Rn×q , and |Ω:,k| denotes the number of measurements
observed in column k. Iteration complexity is the number of iterations needed for an ϵ-accurate solution ∥X − X∗∥F ≤ ϵ∥X∗∥F . The
time costs are calculated assuming zero cost for addition/subtraction operations. Since |Ω:,k| ≤ n and |Ω| ≥ nr, AltGDMin has the lowest
max(Time (center),Time (node)), while also being private.

the algorithmic framework introduced in [1] for solving the
LRCCS problem. We discuss this further in Sec. II.

B. Contributions

We develop a novel GD-based algorithm called Alternating
GD and Minimization (AltGDMin) for solving the LRMC
problem. The maximum time complexity of AltGDMin per
iteration is max(|Ω:,k|r2, nr2) = nr2 and the maximum
communication complexity per iteration is max(|Ω:,k|r, nr) =
nr, where the maximum is of either the node or center
complexity. As can be seen from Table I, both time-wise
and communication-wise, AltGDMin is the most efficient.
In addition, it is private, while the only other algorithm
that is also private is AltMin implemented using GD to
solve the LS problem for updating U ; we denote this by
AltMin (Prvt). As we show in Table I and explain in Sec III,
AltMin(Prvt) is slower than AltGDMin in a federated setting
because of its higher communication cost. Using extensive
simulation experiments, we also numerically compare the
sample/iteration complexity of AltGDMin. Our experiments
indicate that AltGDMin has lower sample/iteration complexity
than ProjGD and AltGD, and slightly higher complexity than
that of AltMin.

II. PROPOSED ALTGDMIN ALGORITHM

As in [1], we split the unknown variables into two parts,
Za,Zb and alternatively update them using (projected) GD
for Za and minimization for Zb. We let Zb be the subset of
variables for which the minimization can be “decoupled”, i.e.,
subsets of Zb are functions of only a subset of Y . Moreover, if
these subsets of Y are observed at different distributed nodes
(federated setting), this decoupling also implies that privacy is
guaranteed. For the LRMC problem, we can pick either of U
or B to be Zb (and let the other be Za) since the k-th column
of B only depends on the k-th column of Y , while the i-th
row of U only depends on the i-th row of Y . However, since
we are assuming vertical federation (different columns of Y
available at different nodes), we set Zb ≡ B and Za ≡ U .

Algorithm 1 AltGDMin

Require: partial observations Y , rank r, step size η, and
number of iterations T

1: Initialize U0 by top r singular vectors of Y
2: for i ∈ 1 · · ·T do
3: b

(t+1)
k ← U

(t)†

Ω:,k
yΩ:,k

∀ k ∈ [q]

4: U ← U (t) − η∇Uf(U (t),B(t+1))
5: U (t+1) ← QR(U)

6: Return U ,B

A. AltGDMin algorithm

Factorizing X = UB, where U ∈ Rn×r,B ∈ Rr×q ,
we propose to recover X∗ from its observed entries Y by
minimizing the following objective function

min
B,U : U⊺U=I

∥(Y −UB)Ω∥2F . (3)

The objective function in (3) was also considered in [2], but
without the constraint U⊺U = I. Different from that work
which proposes alternating exact minimization of U and B,
we optimize (3) by alternating exact minimization of B and
a single projected gradient step for U . This change makes
the resulting algorithm communication efficient and private,
as described in section II-B. For k ∈ [q],

b
(t+1)
k = argmin

b
∥yΩ:,k

−U
(t)
Ω:,k

b∥22 = U
(t)†
Ω:,k

yΩ:,k
, (4)

U (t+1) = QR(U (t) − η∇Uf(U ,B(t)), (5)

where f(U ,B) ≜ ∥(Y −UB)Ω∥2F is the objective function
from (3), yΩ:,k ∈ R|Ω:,k| denotes the sub-vector of entries
Ω:,k of column yk, and QR(A) maps matrix A ∈ Rn×r to
Q ∈ Rn×r such that A = QR is the QR decomposition of
A. The gradient is

∇Uf(U ,B(t)) = 2(UB(t) − Y )ΩB
(t)⊺, (6)

and step size η is set as discussed in Sec. IV. Since the opti-
mization problem in (3) is non-convex, a ‘good’ initialization
to (4), (5) is needed. Like [2, 3], we initialize U (0) to the left-
singular vectors of Y . An upper bound on the initialization
error SD(U (0),U∗) is given in Lemma 5.2 of [2].
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B. Time/Comm. Complexity and Privacy of AltGDMin

1) Communication Complexity: Each node performs two
operations: i) update of bk by the least-squares solution,
equation (4), and ii) computation of the partial gradient
[∇Uf(U ,B(t))]k = 2(Ubk − yk)Ω:,kb

⊺
k ∈ R|Ω:,k|×r. The

maximum upstream (node to center) communication complex-
ity is therefore maxk∈[q]|Ω:,k|r. Total node communication
complexity, for all q nodes, is

∑k=q
k=1|Ω:,k|r = |Ω|r. The center

communicates the updated U (t+1) (line 5, Algorithm 1) to
the nodes with a downstream (center to node) communication
complexity of nr.

2) Computational Complexity: For Algorithm 1, line 3:
the q least-squares problems can be solved with complexity
O(

∑k=q
k=1|Ω:,k|r2) = O(|Ω|r2). The complexity of least-

squares solution with design matrix of size a × b, where
a > b, is O(ab2), see equation 11.14 in [14]. Line 4: the
per-node gradient computation (Ubk−yk)Ω:,kb

⊺
k costs |Ωk|r,

with |Ω:,k|r being the complexity of computing z ≜ UΩ:,kbk
and the same for zb⊺k . The total node complexity for gradi-
ent computation is |Ω|r. Line 5: The QR decomposition of
U ∈ Rn×r is performed at the center and costs O(2nr2),
see equation 10.9 in [14]. It follows that the the per-iteration
complexity of Algorithm 1 is O(|Ω|r2), which follows from
noting that the dominating cost is that of solving the q least-
squares problems in line 3.

3) Privacy: The algorithm is private because, given only
the partial gradient terms [∇Uf(U ,B(t))]k = 2(Ubk −
yk)Ω:,kb

⊺
k and U , the center cannot recover the unknown

bk,yk.

III. TIME/COMMUNICATION COMPLEXITY OF
BENCHMARK METHODS

1) AltMin [2]: AltMin can be federated by solving the
U -update least squares (LS) problem using gradient descent.
While private, the federated implementation of AltMin has a
much higher communication complexity than AltGDMin, as
we discuss next. Note that the U -update decouples along the
rows of the matrix Y to form n least-squares problems

U
(t+1)
i = argmin

Ui∈Rr

i=n∑
i=1

∥B(t)⊺
Ωi,:

Ui − yΩi,:
∥22, (7)

where B
(t)
Ωi,:
∈ Rr×|Ωi,:| is the subset of matrix B(t) ∈ Rr×q ,

comprised of columns with indices in |Ωi,:|, Ui ∈ Rr repre-
sents the i-th row of the matrix U (represented as a column
vector), and yΩi,:

∈ R|Ωi,: are the observed entries of row i
of Y (represented as a column vector). The gradient of the
objective function in (7) is

∇Ui = BΩi,:︸ ︷︷ ︸
≜A

(
B⊺

Ωi,:
Ui − yΩi,:

)︸ ︷︷ ︸
≜z∈R|Ωi|

. (8)

The gradient, with notation defined in (8), is

∇Ui
=

∑
k∈Ωi,:

Akzk, (9)

where Ak is the k-th column of A, and zk is the k-
th entry of z. Each of the r-dimensional vectors in the

linear combination in (9) can be calculated locally at node
k. To compute the gradient once, node k communicates r-
dimensional vectors A(:, k)zk ∈ Rr (the elements of the
linear combination in (9)) a total of |Ω:,k| times. For an ϵ-
accurate solution to the LS problem, the gradient is transmitted
log(1/ϵ) times, with a per-node communication complexity of
|Ω:,k|r log(1/ϵ). The total node communication complexity is∑k=q

k=1|Ω:,k|r log(1/ϵ) = |Ω|r log(1/ϵ). The center sums the
partial gradient terms and communicates the updated U (t+1) to
the nodes with a downstream (center to node) communication
complexity of O(nr).

The per-iteration node computational cost of AltMin is at
least as high as that of AltGDMin, and will be higher if
|Ω:,k|rκLS log(

1
ϵ ) > |Ω:,k|r2, where |Ω:,k|rκLS log(

1
ϵ ) is the

cost of solving LS using gradient descent to ϵ accuracy. The
condition number κLS is κLS = O

(
κ), with high probability

under the assumed sample complexity (see Section VI-B).
Neglecting the cost of adding up partial gradient terms, AltMin
has zero computational cost at the center, compared to O(nr2)
cost of the QR decomposition for AltGDMin, but AltGDMin
has lower communication cost.

2) ProjGD [15]: Each iteration of Projected GD (ProjGD)
involves one step of GD w.r.t. the cost function to be mini-
mized, followed by projecting onto the constraint set which is
the set of rank r matrices [4, 10].

X(t+1) = Projr(X
(t) − η∇X(∥(X(t) −X∗)Ω∥2F )) (10)

The nodes transmit the partial gradient (y:,Ωk
− x

(t)
:,Ωk

) ∈
R|Ω:,k| to the center. The center transmits x

(t+1)
:,Ωk

to node k,
with total downstream communication complexity |Ω|. The
center also computes the SVD of X(t) − η∇X , see equation
(10). Using the fact that X(t) is rank-r, the SVD can be
computed in O(|Ω|r2) time. The method is not private because
the center knows estimate X(t).

3) Federated AltGD [3]: Alternating GD (AltGD) factor-
izes X = UB, and alternatively updates U and B using
one GD step for U keeping B fixed and vice versa, followed
by projecting each of them onto the set of matrices with
incoherent rows and columns respectively. The GD steps are
for the cost function f(U ,B)+∥U⊺U−BB⊺∥2F . The second
term is a norm balancing term that ensures the norm of U does
not keep increasing with iterations while that of B decreases
(or vice versa).

The gradients for U and B are ∇U = ∇MB⊺ and
∇B = U⊺∇M , where ∇M = UB − Y . Node k computes
and communicates the observed entries of the k-th column
of ∇M ∈ Rn×q , with a per node computation and commu-
nication cost of |Ω:,k|r and |Ω:,k|, respectively. The gradient
operations ∇U , ∇B and norm-balancing ∥U⊺U −BB⊺∥2F ,
with cost O(|Ω:,k|r), O(|Ω:,k|r), and O(nr2), respectively, are
carried out at the center. AltGD is not private because the
center has access to both U and V .

4) SVD Init: AltMin [2], AltGD [3] and AltGDMin (Pro-
posed) are initialized to the left-singular vectors of Y , which
are computed by the simultaneous power iteration method for
Y Y ⊺. Computing M ≜ Y (Y ⊺Z), where Z ∈ Rn×r, costs
O(|Ω|r). The QR decomposition of M ∈ Rn×r, performed at
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the center, costs O(nr2), see equation 10.9 in [14]. Combined,
total iteration cost is O(|Ω|r2), since |Ω| ≥ n. The upstream
per-node communication cost O(|Ω:,k|r) is that of transmit-
ting yΩ:,ky

⊺
Ω:,k

Z. The downstream communication cost is of
transmitting Z with O(nr). The method converges linearly
and for ϵsvd accuracy, log(1/ϵsvd) iterations are required.

IV. SIMULATION RESULTS

MATLAB code to reproduce the results in this paper is at the
first author’s github repository https://github.com/aabbas02.
For AltGD [3], we used the code provided by the authors
of that work.

Synthetic data generation. The entries of matrix X̃ ∈
Rn×q are sampled i.i.d. from the normal distribution. Rank-r
matrix X∗ is generated by truncating the r singular vectors
and singular values of X̃ . The resulting matrix has incoher-
ence µ(X∗) ≃ 1.

Parameter selection. The step size for both AltGDMin
and AltMin (Private) was set equal to η = p/∥Y ∥2op. In the
appendix (section VI), we show that our choice of η is based
on an estimated upper bound of the initial operator norm
∥EΩ[∇Uf(U ,B(0))]∥op.

For AltMin (Prvt.), η is an upper bound on the Lipschitz
constant of EΩi,: [∇Uif(Ui,B

(0))], as shown in section VI-B.
We also note that setting the step size as described showed
consistently fast convergence for both algorithms. For AltGD,
the step size was set ηAltGD = pc/∥Y ∥op, as also done in
the authors’ own implementation of their algorithm. Setting
c = 0.75 showed the fastest convergence for our simulations.
For ProjGD, the step size was set ηProjGD = 1/p, according to
[15].

Figures 1a, 1c. Figure plots the subspace distance
SD(U (t),U∗) against iteration number. We note that, while all
algorithms converge to U∗, AltMin requires the fewest number
of iterations for convergence, whereas ProjGD requires the
highest number of iterations. For AltMin (Prvt.), to ensure that
the the center does not have access to the nodes’ raw data,
the U -update least-squares problems are solved by gradient
descent, as discussed also in section III-1. The number of
gradient descent iterations was set to 10, which is sufficient as
the plot shows that the SD for AltMin (Prvt.) is identical to
that for AltMin (Exact). The least squares problems are solved
exactly by the closed form solution for AltMin (Exact). Figure
1c repeats the experiment in Figure 1a with rank r = 10.

Figures 1b, 1d. For the same simulation as in Fig. 1a, the
subspace distance is now plotted against run-time. We observe
that out of the two ‘private’ algorithms, AltMin (Prvt.) and
AltGDMin, the proposed AltGDMin is significantly faster. For
example, AltGDMin takes approximately 7 seconds to con-
verge to U∗, compared to nearly 15 seconds taken by AltMin
(Prvt.). AltGDMin also has a lower runtime than AltGD and
ProjGD, two methods which are centralized and not private.
We now describe the details of our distributed simulation
setup. For both AltMin and AltGDMin, we used the ‘parfor’
loop in MATLAB to distribute the U and V updates across
4 workers. The results show that, despite a small number
of GD iterations (10 iterations), the communication overhead

of transmitting the individual gradient terms in equation (9)
greatly increases the runtime of AltMin(Prvt.). Finally, we note
that the run-time for AltGDMin includes the cost of the QR
decomposition of U (t) performed at the center whereas, for
AltMin (Prvt.) , the cost of adding up the individual gradient
terms from the nodes was neglected. Figure 1d repeats the
experiment in Figure 1b with rank r = 10.

Figure 2. AltGDMin is compared with benchmark methods
based on sample complexity, that is, the number of observed
entries required for successful matrix completion. The results
show that AltGDMin has lower sample complexity than Pro-
jGD and AltGD, and slightly higher sample complexity than
that of AltMin. We emphasize, however, that AltGDMin is
faster in a distributed setting that AltMin.

V. CONCLUSION AND FUTURE WORK

We proposed the novel AltGDMin algorithm for low rank
matrix completion. The proposed algorithm is fast and private
in a federated setting. Numerical experiments confirm the
efficiency of the proposed algorithm. In future work, we will
bound the sample and iteration complexity of AltGDMin.
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VI. APPENDIX

A. Step size selection for AltMin and AltGDMin
Recall notation that partial observations Y = X∗

Ω and
that the indices Ω are sampled i.i.d. with probability p. For

AltGDMin, the expectation of the gradient is

EΩ[∇Uf(U (0),B(1))] = 2p(X(0) −X∗)B(1)⊺. (11)

where f(U ,B) ≜ ∥(Y −UB)Ω∥2F is the objective function
from (3). Substituting X(0) ≜ U (0)B(1) and X∗ = U∗B∗

and using the triangle inequality, the operator norm is upper
bounded as

∥2p(X(0) −X∗)B(1)⊺∥op ≤ 2p(∥B(1)B(1)⊺∥op + ∥B(1)B∗⊺∥op)
≲ 2p∥X∗∥2op, (12)

where we have used U (0)⊺U (0) = U∗⊺U∗ = I, that is
σmax(U

(0)) = σmax(U
∗) = 1, and substituted (22) for

t = 0. We note that (22), derived for iterates of the alternating
minimization (AltMin) algorithm in [2], also holds at t = 0
for AltGDMin. This is because the iterates U (0),B(1) for
AltGDMin are the same as the corresponding AltMin iterates.
Specifically, the iterates begin to differ with U (1) being

Authorized licensed use limited to: Iowa State University. Downloaded on July 24,2024 at 19:36:19 UTC from IEEE Xplore.  Restrictions apply. 



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Sampling probability p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r[
S
D

(U
(t

) ;
U
$
)
5

1
0!

1
0
]

n = 3000, q = 5000, r = 5.

AltMin
AltGDMin
AltGD
ProjGD

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
Sampling probability p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r[
S
D

(U
(t

) ;
U
$
)
5

1
0!

1
0
]

n = 3000, q = 5000, r = 10.

AltMin
AltGDMin
AltGD
ProjGD

Fig. 2: Sample complexity comparison of AltGDMin with benchmark methods.

updated by gradient descent for AltGDMin and least-squares
for AltMin. We set the step-size ηAltGDMin proportional to the
inverse of the operator norm, that is

ηAltGDMin =
p

∥Y ∥2op
, (13)

where we have estimated ∥X∗∥op ≃ ∥Y ∥op/p because
EΩ[Y ] = pX∗.

For AltMin, the expectation of the gradient with respect to
row Ui ∈ R1×r is 2p(X

(0)
i −X∗

i )B
(1)⊺. Since 2p(X

(0)
i −

X∗
i )B

(1)⊺ = 2p(U
(0)
i B(1)B(1)⊺ − X∗

i B
(1)⊺), note that

L = 2p∥(B(1))∥2op is the Lipschitz constant of the expectation
of the gradient. By (22), ∥B(t)∥op ≤ ∥X∗∥op(1 + 1

20r ).
Therefore, 2∥Y ∥2op/p is an estimated upper bound on L.

B. Derivation of κ upper bound for AltMin(GD)

All steps till (20) are a reproduction of the original work
in [2]. The rest is also a straightforward adaption of the proof
of Lemma 5.7 therein. The notation for this subsection is
the following: ∥M∥2 and σmax(M) both denote the largest
singular value of M and σmin denotes the minimum non-
zero singular value. σ∗

1 , σ∗
min denote singular values of X∗.

Following equation (18) in [2], let B̂(t+1) = B(t+1)R(t+1)

be the QR decomposition of the least squares solution B̂(t+1).
Then,

σmin(B̂
(t+1)) = σmin(B

(t+1)R(t+1))

= min
z,∥z∥2=1

∥B(t+1)R(t+1)z∥2

= ∥V ∗Σ∗U∗⊺U (t)z − F z∥2 (14)

≥ σ∗
minσmin(U

∗⊺U (t))− ∥F ∥op (15)

≥ σ∗
min

√
1− SD2

2(U
(t),U∗)− ∥F (Σ)−1Σ∗∥op

(16)

≥ σ∗
min

√
1− SD2

2(U
(t),U∗)− σ∗

1∥F (Σ)−1∥op.
(17)

where (14) follows from equation 19 in [2], and (16) fol-
lows from expanding 1 = σmin(U

(t)) = σmin(U
∗†U (t) +

U∗†
⊥ U (t)) ≤ σ2

min(U
∗†U (t)) + SD2

2(U
(t),U∗). Here, U∗†

denotes the projection matrix onto the space spanned by the
columns of U∗. For (16), express U (t) = U∗†U (t)+U∗†

⊥ U (t).
Then, expand the quadratic form

σ2
min(U

(t)) = min
∥z∥2=1

z(·)⊺(U∗†U (t) +U∗†
⊥ U (t))z ≤ (18)

σ2
min(U

∗†U (t)) + σ2
max(U

∗†
⊥ U (t)) = 1 + SD2

2(U
∗,U (t)).

Repeating the same arguments as above and observing for
(15) that σmax(U

∗⊺U (t)) ≤ σmax(U
∗⊺)σmax(U

(t)) = 1, we
bound σmax as

σmax(B̂
(t+1)) ≤ σ∗

max + σ∗
max∥F (Σ)−1∥op. (19)

Lemma 5.6 upper bounds the term σ∗
1∥F (Σ)−1∥op

∥F (Σ)−1∥op ≤
δ2k

1− δ2k
SD2(U

(t),U∗). (20)

Substituting SD2(U
(t),U∗) ≤ SD2(U

(0),U∗) ≤ 1
2 (Lemma

5.2 in [2]) and δ2k/(1 − δ2k) ≤ 1/(12rκ − 1) ≤ 1/(10rκ),
where δ2k ≤ 1/(12rκ) (page 17 of [2]) in (17) and (19),

σmin(B̂
(t+1)) ≥

√
3

2
σ∗
min −

1

20rκ
σ∗
max = σ∗

min(

√
3

2
− 1

20r
),

(21)

σmax(B̂
(t+1)) ≤ σ∗

max(1+
1

20rκ
) = σ∗

max+
σ∗
min

20r
≤ σ∗

max(1+
1

20r
).

(22)
From (21), (22), for large r,

κ(B̂) =
σmax(B̂

(t))

σmin(B̂(t))
= O(κ). (23)
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