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ABSTRACT. From an open set of initial data, we construct a family of classical
solutions to the 1D nonisentropic compressible Euler equations which form
CY%Y cusps as a first singularity, for any v € [%, 1). For this range of v, this
is the first result demonstrating the stable formation of such C%¥ cusp-type
singularities, also known as pre-shocks. The proof uses a new formulation of
the differentiated Euler equations along the fast acoustic characteristic, and
relies on a novel set of LP energy estimates for all 1 < p < oo, which may be
of independent interest.

1. Introduction. A core line of inquiry in the study of nonlinear partial differential
equations is the analysis of the finite-time breakdown of classical solutions. For
systems of conservation laws like the compressible Euler equations, the prototypical
form of finite-time breakdown is a shock, where the smooth solution stays continuous
but steepens to a cusp at a point in spacetime known as the pre-shock, after which
time it can no longer exist as a smooth solution. In recent decades it has become
apparent that having access to the precise behavior of the solution at the time
of the first singularity (the shock profile), is key to determining how the resulting
shock waves and weak singularities develop and propagate. Here we study the
shock formation problem for the Euler equations of one-dimensional ideal gases,
and we provide a detailed description of a family of stable shocks which resemble
—sgn (z)|z|” near the pre-shock for v € [3,1).

Here and throughout the paper, by the stability of the shock formation process we
mean that for arbitrary sufficiently small and smooth perturbations (with respect to
a suitable topology) of the initial data, the same type of pre-shock forms, possibly
at a different location in space and time (which may be computed exactly), and
with the same C%" shock profile (up to dilations).

1.1. The Euler equations. The compressible Euler equations in one space di-
mension are given by

By (pu) + 9y (pu® +p) =0, (1.1a)
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Owp + 0y(pu) =0, (1.1b)

OE+0y((p+ E)u) =0, (1.1c)

where the unknowns u, p, E, and p are scalar functions defined on R x R or T x R:
w is the fluid velocity, p is the (everywhere positive) fluid density, E is the specific
total energy, and p is the pressure. To close the system, one must introduce an

equation of state that relates the internal energy £ — %qu to p and p. If the fluid
is an ideal gas, the equation of state is

p=(y = 1)(E~ zpu?), (1.2)

where v > 1 is a fixed constant called the adiabatic exponent.
For ideal gases, the specific entropy, S, satisfies the relation

p: %p’yes. (13)

If we introduce the parameter o := 77_1 and define the (renormalized) sound speed’

to be
o= éﬂ/% = éeS/Qp“, (1.4)

then we can rewrite the ideal gas equations (1.1)—(1.2) in terms of u,o, and S as
follows:

Oru + udyu + o Oyo = %a%)ys, (1.5a)
0o 4+ u0yo + aodyu = 0, (1.5b)
0¢S + udyS = 0. (1.5¢)

In this paper, we prove the following theorem:

Theorem 1.1 (Main Result, abbreviated). For each parameter 8 > 1 there
exists a function wy € Cl’%(’ﬂ‘) (see § 3.2 below for an explicit description) such
that the following holds: for each choice of adiabatic exponent v > 1 there is a
choice of € > 0 small enough such that for all initial data (uo, oo, So) satisfying °

1

(w0, 00, So) — (310, 319, 0) s <eg

I, s
the unique local-in-time classical solution (u,o,S) of the Cauchy problem for (1.5)
with initial data

(ua g, S)’t:O = <u07 g9, SO)

za . Furthermore,

forms a gradient blowup singularity at a computable time T, =~ Tra

at time T, the solution has the profile

u(y, T.) = u(ye, 7o)~ (14 2) 77 +O(2))sgn (y— g ) ly — 9| 77 + (1+0(2)) (y—11)
(4. To) = oy, To) — ((143) 77 +0(2))sgn (y =)y —y: | 777 + (14+0(e)) (y— )
S(y,T.) = (g T)+0,S(ye, T) (y—y:) + O(ly g | 77)

fory in a neighborhood of radius = % about a point y, which is computable from
the wnitial data.
1 . ot 7 . _ @
The actual sound speed in a compressible fluid is ¢ = 4/ 5o

2The constraints on the initial data (uo,00,S0) are actually less restrictive than this. See
Theorem 3.1 below for the precise assumptions on the initial data.
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The above theorem provides the first constructive proof of stable C' 5+ -cusp type
singularity formation for 5 > 1. We refer to § 3.2 and Theorem 3.1 below for the
precise assumptions on the initial data, and the precise statement of our main result.

1.2. Prior results. It has been known for some time that solutions of the Euler
equations and more general systems of hyperbolic PDE can form singularities in
finite time from smooth initial data, see the seminal papers [16, 14, 18, 22, 24]. These
classical results were non-constructive and asserted a breakdown of smoothness®
without a description of the actual mechanism of singularity formation. See [6, 10,
19] for further references.

Recently, a number of constructive shock formation results have been estab-
lished [17, 7, 15, 25, 8, 20, 5, 3, 4, 1, 21, 2, 23]. These constructive results show
that for an appropriate class of smooth initial data the first gradient singularity is
of shock-type and no other singularity can occur prior. The solution at this first
singularity, i.e. the pre-shock, only possesses limited Holder regularity, which de-
scribes the type of cusp that forms. To date, only the C 3 Holder class pre-shock

(corresponding to f = % in the language of Theorem 1.1) has been extensively

studied [17, 7, 15, 5, 3, 4, 1, 23], as this C3 cusp singularity emerges in a stable
fashion from a large open set of smooth and generic initial data.
To the best of our knowledge, for the compressible Euler dynamics there are

no results establishing the formation of C%—cusp type pre-shocks with 5 > %,
corresponding to Holder exponents strictly larger than % In fact, the intuition
based on the study of the Burgers equation® only suggests the possible emergence of
aC ﬁ—cusp7 corresponding to 8 = ﬁ with k& > 1 an integer. Moreover, one expects
in these particular cases that the shock formation process is generically unstable,
but has finite-codimension stability. This intuition was successfully implemented
in the context of the 2D Euler equations with azimuthal symmetry to establish
1

the finite time formation of a C's pre-shock (corresponding to 3 = 7) in [2]. The

finite-codimension stable formation of C' Tlﬂ—cusp type pre-shocks (corresponding
to 8 = 37) for all integers k > 2 was established recently in [13].

1.3. New ideas. This paper makes use of the differentiated Riemann variables
(4.9) first introduced in [1] and later utilized in [23] to study the generic C'3 pre-
shock formation from C* initial data. The smoothness of the data employed in
[1, 23] permitted the use of a pointwise charicteristic-based approach. On the other

hand, the initial data required for the formation of C e pre-shocks with 5 > 1 have
limited regularity and, in particular, such data is not even C? (see § 3.2). As such,
we have devised a novel approach to this analysis which consists of the following
elements:

1. Both the dominant and subdominant differentiated Riemann variables, to-
gether with the entropy, are studied along the fast acoustic characterisic

3These arguments are based on an ODE comparison-principle (which necessitates a priori
assumptions on the boundedness of the density and the continuity of the gradient of the solution)
with a Riccati equation which blows up in finite time, thus yielding a proof by contradiction.

Z;For B > 0, a family of globally self-similar solutions to the 1D Burgers’ equation producing a

C'B+1 cusp have been known for some time [11, 9].
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(rather than the actual characteristic families which propagate each distur-
bance). This allows us to effectively freeze both the dominant Riemann vari-
able and the entropy in this flow, reducing the required bounds to only the
subdominant Riemann variable (and its derivatives).

2. LP-based energy estimates are then obtained for this system of variables, as-
suming limited regularity initial data in the Sobolev space W%P. This en-
ergy method allows for a spatially-global analysis for functions whose second
derivatives are not continuous, and produces bounds which are uniform in p
and time, and hence allow us to pass to the limit as p — oc.

3. We show that there exists an open set of initial data in the W?P? topology for
which C T pre-shock formation occurs for g > 1. This establishes that this
new class of cusp-type first singularities is stable under perturbation of the

initial data by small disturbances of class W2aT (T) (or smoother).
1.4. Riemann variables. The Riemann variables w and z are defined by
wi=u+o, and zi=1u—o. (1.6)
If we further adopt the notation k := .S, then the Euler equations become
Oyw + A30yw = %0281,1@,
Oz + M 0Oyz = %agayk,
Ok + Aa0yk = 0, (1.7)
where
Moi=u—ao =524 1Ee
Ao :zu:%w—i—iz,
A3 :=u+ao = H%erlfTo‘z.
Define ¢, ¢, and 7 to be the flow of A1, Ao, and A3 respectively.

2. Motivation: Burgers’ equation. Our motivation comes from a simple solu-
tion to Burgers’ equation,

wy + ww, = 0, (2.1)
which is a special case of (1.7) where o =1, zg = 0, and kg is constant. In addition
to being a special case of the 1D isentropic Euler equations expressed in Riemann
variables, Burgers’ equation is the archetypal equation for shock formation and
development.

If w is a solution of (2.1) and 7 is the flow of w, i.e. 1 solves

%77(95715) = w(n($7t)ﬂt)7 n(xﬂo) =,
then w must remain constant along the flow lines of 7. From this it follows that if
w(z,0) = wo(x) then
n(xz,t) = x + twp(x). (2.2)
When wg is C! and wj, attains its global minimum at x, the solution of Burgers’
equation remains C' smooth up to time

- {_waé*) wh(z.) <0

)

+o0 wj(zy) >0

and when w(z.) < 0 we have 1, (x,, Ty) = 0 and Oyw(n(z., Ty), Ts) = —oo.
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2.1. Key example. Let § > 0 and let w be the solution of Burgers’ equation (2.1)
on R with initial data )
wo(x) = —x + Cz|z|?

for some C' > 0. We compute that
wo(@) = ~1+ (1+ §)Clal?,

so wy, has a unique global minimum at 2 = 0, and it blows up at time T, = 1. At
the blowup time, we have

n(z,1) = Ca:|:c\f%
Therefore, if y = n(x,1) then

B
z = sgn (y) (1) 7

and . )
w(y, 1) = wo(w) = —sgn (y)C~ 7 [y| 77T +y.
2.2. Stability for 5 > 1. When 8 > 1, the geometry of the shock profile w(-,T)

obtained in § 2.1 is stable under perturbations in CY%. Let € € Cllo’f (R) be such
that

e £'(0) <1, and

o [€] o1 <(1+3)C,
and let

C
wo(z) = —x + Cx|z|? + E().
Then
wh(x) = =1 +E(0) + (1+ )Clal 5 + (£'(x) — £(0))
> -1+ E'(0)+ [(1+5)C — €] o] ||

So wy, still has a unique global minimum at = 0. Since £'(0) < 1, the minimum
of wy, is negative and we have

For all x we have )
E(x) = E(0) + &E(0)x + h(x)x|z|?

where
) - 8 —E @ ar
zlz|?
It is immediate that
h@) < 25[€) oy <C

everywhere. If we let y = n(x,T), then we have
y =2+ Towo(z) = TLE(0) + T1(C + h(z))z|z|? =y, + a(z)z|z|?.

Since |h(z)| < C everywhere, we have a(z) > 0 everywhere, so sgn (y—y.) = sgn (z)
and .

It now follows that

w(y, T.) = wo()
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=—x+ C$|.’JS|% + &(x)
= £(0) + (£'(0) — 1)z + (C + h(z))sgn (z)]z|*+7

el B _
= £(0) — =D sgn (y — y )y — v |77 + (C + h@))sgn (y — )| L

ja(z) | BT

_g! _B_
= £(0) — E O son (y — gy — vl P74+ (1= E(0))(y — ys)-

la(z)] FFT

We have proven the following;:

Proposition 2.1 (Motivating Example: Stable Shock Formation for Burg-
ers). If 3>1,C >0, and

wo = —x + Calz|? + &(x),

1
where € € C)7 (R) with £'(0) <1 and [£'] o1 < (1+ %)C then Burgers’ equation

loc s
c”®
(2.1) has a unique C* solution, w, with w|t=0 = wy on R x [0,T%), where T\, =
ﬁ'(o)' Moreover, w is continuous up to time T, and at time T, we have

w(y, T.) = £(0) —sgn (y — y)bW)ly — v |77 + (1 —E'O)(y—v.)  (2.3)

£(0
!

T?m and the function b satisfies

where Yy, 1=

(1—&'(0) F (1-&(0) %
p —— < b(y) < p —5
(O+ ﬁ[é‘/]o"%)gﬂ (C* ﬁ[g/]co'%)ﬁﬂ

for ally e R.

In this paper, we will generalize Proposition 2.1 by letting the parameter o be
any positive number (i.e. letting v be any number greater than 1) and by letting
zp and kg — fT ko be sufficiently small instead of identically zero. We will also work
on the torus T instead of R. See Theorem 3.1 below for details.

2.3. Finite-codimension stability for 0 < 5 < 1, 8 # % In the case where
0< B <1landp # %, the geometry of the shock profile obtained in § 2.1 is no
longer stable under smooth perturbations. To see this, let 0 < f < 1 and let the
perturbation now be £(z) = Sz%¢(x) where € # 0 is a small constant and ¢ is a
smooth bump function that is identically 1 for all |z| < R, for some R > 1. Then
one can check that w( has a unique global minimum at the point

5ﬁ2 11—37
(B+1)C

r=-

and
1

(1+ HOye

So the solution w still blows up in finite time, but since x, #* 0 one can now check
that if y = n(z, Ty) and y. = n(z., Tx) we have

whla,) = —1—

[5—1% - 5—1%} <0.

?J_y*"‘"(w_x*)g
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in a sufficiently small neighborhood5 of z, and therefore

w(y, To) = w(ys, To) ~ (y = 9.)’
for |y — y.| small enough. When 8 = %, this is still the same type of shock profile
as before, but for all other choices of 3 it is different. Perturbations of the form we
have specified can be made arbitrarily small in all C"V norms by sending £ — 0, so
for0<pB<1,8# %, the shock formation described in § 2.1 is unstable.

However, when 0 < 8 < 1, the example in § 2.1 is finite-codimension-stable with
respect to suitable perturbations, as we shall show next. Let 1+ % =n+ 6, where
n € Z and § € (0,1]. Since 8 < 1, we have n > 0. Let € € Cgf(R) satisfy

e £'(0) <1,

e 9IE(0)=0forall2<j<mn,

o [07€leos <C(L+ )1+ 5 —1)-(1+ 4 —(n—1)),
and choose initial data

wo(z) = —x + Calz|? + E(x).
We compute that

wh(z) = —1+E(0) + (1+ 1)Clz[? + (€'(z) — £(0))

Y

—1—‘,—5/ 0) + 1_|_l C — [0 €] o6 r %
O+ [0+ 30 - rrlg i

So w(, has a unique global minimum at x = 0. Since £'(0) < 1, the minimum of wy,

is negative and we have
1

T, = ——
1-&/(0)

as before. For all z we have
E(x) = £(0) + £'(0)z + h(z)z|z|?

where — o
h(z) = Jo Jo" o 5905(%?) dendty-y ... dey
z|z|?
It is immediate that
(07 E]co.s

|h(z)| < <C

A+3H)(0+5-1--(1+5-(n—1)
for all x € R. Therefore, if y = n(x, T)) then
y =2+ Toawg(z) = T.E(0) + Tu(C + h(z))z|z|? =y, + a(z)z|z|?.

Since |h(z)| < C everywhere, we have a(z) > 0 everywhere, so sgn (y—y.) = sgn (z)
and ,
- Y 5
z = sgn (y — .| ) |PFT

It now follows that
w(y, T) = wo(x)
=—x+ Cl‘|l‘|% +E(x)

3 can be made

1
3

50ne can check that the implicit constants in the expression y — y« ~ (z — =)

__B_
~ |a|1 1-8 , and therefore they blow up as ¢ — 0 when 8 > %, remain close to 1 when 8 =
and vanish as € — 0 when 8 < %
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= £(0) + (£'(0) — 1)z + (C + h())sgn («)|z|*+7

_g 8 Y — Ys
= £(0)— = sen (y — y)ly — 4| 777 +(C + h())sgn (y — )| !
|a(z)| FHT a(z)

_ge! B
= £(0)— = son (y — y)ly — y:| 77 +(1 — £(0))(y — ys)-

ja(z) | BT

We have proven the following;:

Proposition 2.2 (Finite-Codimension Stable Shock Formation for Burg-
ers). If0<p3<1,C >0, 1+%:n+6 with n € Z,6 € (0,1], and

wo = —x + C’x|x|% + E(x),
where & € C1°(R) with £'(0) < 1,

loc
[03€lcos <CA+ )1+ 5 —1)--(1+ 5 — (n—1)),
and 82E(0) = 0 for all 2 < j < n, then Burgers’ equation (2.1) has a unique C*

solution, w, with w|t:0 = wp on R x [0,T%), where T\, = 1_51,(0). Moreover, w is
continuous up to time Ty and at time T, we have

w(y, T.) = E(0) — sgn (y — g)b(W)y — v 77 + (1= £'(0))(y — v..) (2.4)

where y, = 1f£(?20) and the function b satisfies

28+1

((1=£'(0) 7=
(€]

(C 1 T CO)% 1 )ﬁ%
(1+3) (45 1) (145 —(n-1)
2841
(1 - £&'(0)) 7
<bly) < E7 o1 2
c B

(©

I i )T
(1+5)A+5-1) 1+ 5—(n-1))

for ally e R.

We conjecture that similar finite-codimension stability results could be estab-
lished for the 1D Euler equations, and we plan to address this in future work.

2.4. Stablility for g = % In the case g = %7 the shock from § 2.1 is stable (see
e.g. [23]), but this case is of a different nature than the other choices of 8 > 0. In
the proofs of both Proposition 2.1 and Proposition 2.2 we saw that the proof hinged
on the blowup label z., where w{ has its global minimum, coinciding with a point
where wq satisfied

wo(z) — wo(zs) — (& — z)wi(z4) ~ (T — 24) |2 — :E*|Tl* (2.5)
For a typical smooth function wy, . would be a nondegenerate critical point of wy,
so we would expect
wole) — wo(a) — (& — . )wh(e.) ~ (& —a.)°,

which is exactly what we want in the case g = % Therefore (2.5) is expected when
8= % However, as we saw in § 2.3, equation (2.5) being satisfied at the blowup
label is not stable under smooth perturbations when g < 1,5 # %
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2.5. Remark: self-similar blowup. A self-similar solution to Burgers’ equation
is a solution w : R x (—o00,T) — R of the form

w(y,t) = (T — )W (75 5%) (2.6)

where W € CL _(R;R) is the similarity profile, T € R is the fixed blowup time, and
B > 06 is the scaling exponent. A function w of the form (2.6) solves Burgers’
equation if and only if the similarity profile solves the similarity equation

—BW + (1 + B)zW, + WW,, = 0. (2.7)

Consider the implicit equation
=W — CW|W|? (2.8)
where C' > 0 is a constant.” Since j—vﬂ; =-1-C(1+ %)\Wﬁ < —1 everywhere,

it follows that W — z is a C! diffeomorphism of R and therefore (2.8) defines a
C'! similarity profile W on all of R which is also strictly decreasing. In fact, W is
locally C™?, where n € Z*,§ € (0,1], and 1 + % =mn+ 4. It is also easy to check
that this profile W solves the similarity equation (2.7).

Let W be the solution to (2.8). To determine the growth of W at infinity, we

first note that x = —W (1 +C|W|%), so sgn (z) = —sgn (W) everywhere. Therefore,

_8 B B8 1.8 B
—%mwcﬁﬂuwl_hwﬂ_wWU+CMW>“l—\1+c“1
W(z) W (W e \W|#

Since |W| — oo as || — oo, we have
8 8
— C~ 5+ |g|FHT
sen (2) 2 —1 as r — oo. (2.9)

W (z)
From (2.9) it follows that if w is defined by (2.6) with our choice of W then

lim_w(y, ) = —sgn (y — o) C 7|y = yol 7. (2.10)
t—=T~
Let us now examine the behavior of W near x = 0. Since x = —W (1 + C|W|%),
we compute that in a neighborhood of z = 0 we have

—x+Cm|x|%
=W + CW|W|F — CW|W|? (1 + C[W|5)5 — C2W|W|5 (1 + C|W|?)?
=W — 1+ HCWIW|5 +0(1+ 3)C3|W[5)

=W +0((1+ 3)C?z|"*5).

SWe are ignoring the 8 = 0 case, where the self-similar profile is given by W (z) = —z. In
5

this case, the profile doesn’t satisfy the matching condition W ~ |z|B+1 as z — to00, and so it is
different. See [11] for more.
"The previous literature up to this point has worked with the implicit equation z = —W —

CWH_%, see e.g. [12, §11.2], [11, §2.4], [9]. However, this equation does not define a global
solution for most values of 8. For example, if 8 = 1 then solution W is not single-valued and
there is no solution for z > %. Our implicit equation remedies these issues, and gives the correct
regularity which the similarity profile should have near z = 0. E.g., when 8 = 1 the similarity
profile will be C1:1 but not C2.
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The last equation is true because W (0) = 0 and W is C!. Therefore, we conclude
W =~z + Calz|% + O((1 + )C?|x|'+5) (2.11)

in a neighborhood of zero. Notice that the similarity profile agrees with the initial
data chosen in § 2.1 near 0 if we drop the highest order term in this expansion.

3. The result.

3.1. Local well-posedness. It follows from the standard well-posedness theory of
the Euler equations (1.5) that if s > 2 and wo, 20, ko € H*(T) then there exists a
maximal time of existence Ty € (0, 400], such that the following hold

e the equations (1.7) have a unique classical solution (w, z, k) € C*(Tx[0, T%); R?)
with initial data (’LU(), 20, ko);
e the unique solution (w, z, k) also satisfies

(w, 2, k) € C([0,T2); H*(T)*) N C([0, T0); H*~H(T)?). (3.1)

Furthermore, if T, < co, then the following Eulerian blowup criterion holds:

/0 (10 )l + 19y, ) + 10k, B)llpee )t =00, (3.2)

Throughout the remainder of the paper, the initial data wq, 29, kg will always
be assumed to lie in W?29(T) for some 1 < ¢ < co. In particular, the classical H*
local-existence theory applies for a suitable value of s > % To see this, recall that
ifneZ,n>2 and 1 < q < oo, then

wm(T) C H*(T)

with continuous embedding for

s:s(n,q):{n_( ) ps2

Q=
N|—=

n p>2

Foralln > 2,1 < g < oo, we have s > % So if wo, 20, ko € W24(T) for some
1 < g < oo, then wy, 29, ko € H*(T) for some s > % and our local well-posedness
theory applies to the initial data wy, 2o, ko. As such, the blowup time T, € (0, +o0]
will be the time at which the corresponding solution can no longer be continued as

a solution in C;H3 N CLHS™! for any s > 3.

3.2. Assumptions on the initial data. Let 5 > 0, and let wy be a 27-periodic
function such that

o Wy(x)=—x+ %xm% for x| <1,

e wy is Cl’%*,

o 0 <wjy(xr) <1forl<|z| <.
Notice that these assumptions imply that ||@g||p~ = ﬁ <1l

For our theorem we take 8 > 1, and the initial data (wy, 29, ko) will be such that
wy is a small perturbation of 14 wq in C’l’%, 20 is a small perturbation of 0 in W?2?,
and ko is a small perturbation of a constant state in WP, where p = % is the
Holder conjugate of 3.

We note that when 3> 1 and p = %’ = Ol’%(T) \ W2?(T). Since W2?(T)

is not dense in C"'% for B > 1, small enough perturbations of wg in C"% will not be
1
in W2P, 50 wg will not be in W2?. When 8 = 1 however, C% = 11 = W2 and
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we will be able to assume that (wg, 20, ko) lie in an open set in W?2°°(T). However,
wo will still not be C2, because in order for wy to be sufficiently close to 1 + 10 in
W2l it will have to have a jump discontinuity at 0.

3.3. Notation. At the beginning of most sections we will introduce a size param-
eter € > 0. Throughout the paper, the hypothesis that ¢ > 0 was chosen to be
sufficiently small will be implicit in the statements of all of our lemmas and propo-
sitions. How small € > 0 will need to be in order for our results to hold will depend
on our choice of v (hence «) but doesn’t depend on anything else.

In what follows, we will often identify functions on the torus T with 27-periodic
functions on R when the notation is most convenient. This identification will allow
us to write expressions like “|z| < 17. We will always use € T to denote the
Lagrangian label and y € T to denote the Eulerian variable.

We will write a < b to indicate that a < Cb, where the constant C' is independent
of €, the spatial variables z,y, time t, and the exponent p € (1,00] (see § 7). The
constant C' can, however, be dependent on ~y, and therefore also on « (see § 5).
Furthermore, C will always be independent of our choice of initial data (wg, 20, ko)
satisfying the hypotheses specified at the beginning of each section, and it will be
independent of our specific choice of wy satisfying the hypotheses listed in § 3.2.
We will write a ~ b to mean that a < b < a, and we will further adopt the notation
f = 0(g) to mean that |f| < |g|.

Often below we will have functions f defined on T x [0,7%) and maps ¥ : T x
[0,T,) — T, and we will use the notation

foWl(x,t) = f(¥(x,t),t).

We will write U1 to denote the function such that W=1oW(z,t) = WoW 1 (z,t) = x
for all ¢ when such an inverse exists. For functions f defined on T x [0,7}) we will

write )
[f]COJ = sup ‘f(yvt)_f(yat”
' v,y €T ly — y/‘é
y#y'

so that []co.s only corresponds to Holder continuity in the spacial variable and
[f]co.s is always implicitly a function of ¢ if f varies in ¢.

3.4. Statement of the theorem.

Theorem 3.1 (Main Result). Leta >0, 8> 1, let p = % € (1, 00| be the Holder
conjugate of B, and let wq be defined as in § 3.2 for this choice of B. There exists
a sufficiently small ey € (0, 1], which only depends on o and on ||Wo||L=, such that
for any 0 < € < gg the following holds.

Let wo, zg, ko be functions on T satisfying

o flwo = (A +wo)|l 1y <e

* |20llwar <e,

. ||k:0 — f?l‘ :ZCO”WQ-,;? <eg,

o wy € W24(T) for some 1 < q < c0.

The mazimal time of existence Ty for the solution (w, z, k) of (1.7) is
T. = 25 + O(e). (3.3)

For such solutions, w ~ 1 on T x [0,Ty], and z,k,0yz, and Oyk remain O(e) on
T x [0, Ty] while Oyw diverges to —oo ast — T. At the time of blowup, there exists
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a unique point y, € T where w(-,T,) is C' away fromy. but forms a preshock at
(y«, Ty) with a profile given by

8 B
w(y, Tv) = w(y., Te) = (14 5) BT +0(e))sgn (y —ya) [y =y 77 +(1+0(e)) (y —y.)
(3.4)
for ly —y«| < % + O(e). Additionally, we know that y. = 1+ O(e).

The variables z and k remain in C’l’ﬁ(T) uniformly up to time Ty with
. L < ) L <
Dl gy S& RGO sy Se (3.5)

For any fixzed v > 1, the implicit constants in all of the above statements are
independent of our choice of € sufficiently small and are independent of our choice
of (wo, 20, ko) satisfying our above hypotheses. The implicit constants do depend,
however, on our choice of v > 1.

3.5. Outline of the proof. We show that the classical solution (w, z,k) of (1.7)
with initial data satisfying some of our hypotheses only exists for a finite time T,
and we will characterize T as the time when the flow n of the fastest wave speed
A3 stops being a diffeomorphism because 7, (-, Tx) has a zero. For solutions with
appropriate initial data, we will prove that w, z, k, 0,2, and 9yk are all bounded
on T x [0,T,] while d,w diverges to —oo as ¢ approaches T,. The key technical
step of the paper will be obtaining uniform L? energy estimates for the functions
won,zon,kon, together with their derivatives of order < 2. Using these L? energy
estimates, we will show that the unique label z, € T for which 7, (x.,T.) = 0 is
z, = 0. Lastly, we invert the map x — n(x,T}) for x near 0 and arrive at the shock
profile described in Theorem 3.1.

4. Key identities. In this section, (w, z, k) will be the solution of (1.7) on T x
[0, T%,) for given initial data (wo, 2o, ko) € H*(T) for some s > 2.
In general, if p € R and A :=u+ po = HT“"U) + 17790% then
0t0 + AOyo = —J(o‘;—“’@yw + L;*"ayz).

Setting ¢ = —a, 0, and o we get

w

ot ot +z ot
oot = oge af wey - Gog = gge afo Oy °¢  gon = oge afo dyzon, (4.1)

Since

t t +
Yy = efo 8y)\101/17 by = efo %(ayw—&-@yz)oqﬁ, Ny = efo 6y>\307]7

it follows that

Vy = (g‘fofip)lz%ael%a Io duzo¥ (4.2)
bo = (2)7, (4.3)
e = () T ¢S o, (4.49)
and also that
D (kotb) = —a(od, k), (4.5)
Or(kogp) =0,

O¢(kon) = a(cdyk)on. (4.7)
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It follows that k o ¢ = k. Differentiating this equation and using (4.3) gives us
dykop = (To_ék(')aé 0. (4.8)
Define
q“ = Oyw — %Uayk, and q° = 0yz + %Uayk. (4.9)

Taking 0 of n,q"on and 1, q*op and then integrating gives us the Duhamel formulas

t
Neq®on = e *N {(’wé - %0’0]@6)6_%]%«#% / e_%konm(aayqu)on ds} , (4.10)
0

t

aaow =8| g+ Laakg)e B0 g [ by 0, k) ov s (a1
5. Initial estimates. In this section, § > 1, wy will be a function satisfying the
hypotheses described in § 3.2, and (w, z, k) will be the solution of (1.7) on T x [0, T%)
for given initial data (wo, 20, ko) satisfying

* [wo — (1+wo)llcr <e,

* |lzoflcr <e,

o |[ko — fp koller <,

o wy, 20, ko € W4(T) for some 1 < q < oo.

The last assumption is simply there so that we can apply our local well-posedness
theory and Lipschitz continuation criterion described in § 3.1. All implicit constants
will be independent of our choice of (wq, 2o, ko) satisfying these constraints and
independent of our choice of g > 1, but will depend on our choice of a > 0.

Lemma 5.1. Suppose that T € [0, 1-%4 A T] and that for all (y,t) € T x [0,T] we
have

o w~1,
hd ‘k|a |6yk|7 |Z|a |8yz‘ 5 €.
Then if ¢ < a and ¥ is defined to be the flow of X\ := u + @o we have
1y <3+,
* n:q"on = wy + O(e),
¢
o [ 10,wou(z, )| ds S =L,
for all (z,t) € T x [0,T]. Note that the implicit constants in our conclusions are

independent of our choice of ¢ < o or T € [0, 1_% A T.] and depend only on the

initial data and the implicit constants in our hypotheses.
Proof of Lemma 5.1. Fix ¢ < o and define
gz, t) =0 (U(z,1),1).
We compute that
og(z,t) = O (W(z,t),t) + O~  (V(z,t),t) ¥y (z,t)
—ne(g(x,t),t) + We(a,t) _ —Ason((g(,t),t) + Ao¥(x, )

nz(g(xvt)at) nm(g(xvt)vt)
—(Mﬁj”mmemw—mmjf@uwxy (5.1)
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Note that d;g(z,t) < 0 everywhere. We also know that

¢
U(z,t) ::ch/)\o\Il(x,T) dr, and
0
¢

W, t) = n(g(, 1), t) = gl t) + / Nson(g(e, 1), 7) dr,

t
so  x—g(x,t)= /Agon(g(x,t),T) —XoU(x,T)dr.
0
Using our hypotheses, along with (4.10), we conclude that that for all (x,t) €
T x [—¢,T], we have

sup [17:¢"on| <1+ O(e) + O(e) sup 7,
[—e.1] [—e,t]

Since

t t
Ny =1 +/07]g58y)\3077 ds =1+ /Onm(l‘*‘?o‘qwon + O(e)) ds,
it follows that

supn, < 14 122t + O(et) + O(et) supn,
[0,1] [0,1]

1+ 42t + O(et)

= supny < <3+a.
[0,¢] 1-— O(€t)
The last inequality is true for € > 0 taken to be small enough, since ¢t < H_ia.
Plugging this into (4.10) and letting € be sufficiently small gives us
-/
qwon _ Wo + 0(5)
N
It follows that
—/
w 1 wy(g(z,t)) + O(e)
q O\P(I7t) - a_watg(xﬂt) O'O\I](.’L’,t> .
Since 0yg < 0, it follows that
g oW (@, D] S —-Oug(a. D).
So .
— t
[laovnjar g 2100 < 1
0 a—@ v
Our result follows immediately from this inequality and our hypotheses. O

Lemma 5.2. For all (y,t) € T x [0, 1%} A T.] we have
e 1 -0()<w< 340,
o |z]; [kl |0y S e

Further, for all (z,t) € T x [0, IJ%Q AT, we have ¢, ~ 1.

Proof. This follows from a simple bootstrap argument. Let T" € [0, 1_%{ A T,] and
assume that
e L <w<2forall (y,t) € T x [0,7],
o |z|,|k|,|0yk| <1 for all (y,t) € T x [0,T7,
1

1
e 4 a < ¢, <4a forall (x,t) € T x [0,T].
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Then it follows from (4.6) that ko ¢ = ko = O(e) and dyk o ¢ = ¢ k) = O(e)
for all (x,t) € T x [0,T]. Our bootstrap assumptions tell us that |o| < 1 for
(y,t) € T x [0,T), so 029,k = O(e) for (y,t) € T x [0,T]. It therefore follows from
equations (1.5) that

won = wg + O(et) =1+ wg + O(e),
zoh = z9 + O(et) = 20 + O(e),
so that
3-0() <

This implies that ; — O(e)
follows from (4.3) that

IN

\/\ lw
ISTIRE

O(e), and z = 0(e).
+ O(e) for (y,t) € T x [0,7] and it therefore

\/\S

(B10() % <, < (3+0())a.

Lemma 5.3. For all (x,t) € T x [0
® 12q" o = 1wy + Oe),
e, <3+aq,
o Joloywou| S,
o Joloywod $1,
° [0yzo¢| S,
L4 1/% ~ 1.
Proof of Lemma 5.3. Another simple bootstrap argument. Let T € [0, 1jia A T,]
and let us assume that

,1+a/\T] we have

"] < Ce
where C' > 1 is a constant to be determined. Since dyk = O(e) and o ~ 1 (see
Lemma 5.2) , it follows from the bootstrap assumption and (4.2) that o, ~ 1
provided that ¢ is small enough relative to C.
The bootstrap assumption and the bounds from Lemma 5.2 let allow us to use
Lemma 5.1 to conclude that f lg¥on| < 1. Since ¢, ~ 1 for (z,t) € T x [0,T7], we
now conclude from (4.11) that

[Yeqot) — 2| S e
It therefore follows that if C' > 1 is chosen large enough and ¢ is chosen small enough

the bootstrap argument closes.
The rest of the inequalities are now immediate from Lemma 5.1. O

Proposition 5.4 (Lagrangian blowup criterion). The blowup time T, (defined
by the Eulerian blowup criterion (3.2)) satisfies

T, = H% + O(e), (5.2)
and therefore the bounds from the previous lemmas hold up to time Ty. Furthermore,
the Eulerian blowup criterion (3.2) implies the Lagrangian blowup criterion

htrng{lf(inemnx(x t)) =0, (5.3)

and we have the bound
f >1 A4
1<1|Ix1\<ﬂ M(7:8) > 3. (54)

0<t<T,
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Lastly, we note that the Lagrangian blowup criterion (5.3) also implies the Eulerian
blowup criterion (3.2), and so we may use (5.3) as the definition of Tk.

Proof of Proposition 5.4. We know from Lemma 5.3 that for (x,t) € Tx[0, lia AT
we have 7,q" on = @} + O(¢), so it follows from Lemma 5.2 that

t t
Ne =1 +/077z8y)\3077 ds =1+1%2 ; neq"onds+ O(e) = 1+ 2 tw) + O(e) (5.5)

for (x,t) € T x [0, 72~ A T.]. It follows that

' Tfa
0<n.(0,8) =1~ 1+—C‘HO(e)
for t € [0, 1+a7/\T ]. Therefore, we must have T\, < == 4 O(¢).
Since T} = 1+a AT, it follows that k, z, Oyk, and 8 z are O(g) and w is O(1)
up to time T. Therefore, it follows from (3.2) that

limsup ||Gyw(-,t)|| = = oo.
¢

Since dywon = (w0}, + O(g))n; *, we conclude that
oo = limsup ||0,w(:,t)||z~ = limsup ||Gyw o (-, t)|| L= < 2limsup ||n; (-, )| L ,
=T, T T

* — Ly — Ly

and hence (5.3) holds.
Since
ne >1— 32+ 0(¢)

for all (z,t) € T x [0, T.), we conclude that T, > 142 + O(e), otherwise (5.3) would
be violated.

To see why (5.4) is true, just note that @wj(z) > 0 for 1 < |z| < 7, so that
Ne > 1+ 0(e) for 1 < |z| <.

Lastly, to see that (5.3) implies (3.2), we show that not (3.2) implies not (5.3).
More precisely, if there exists 0 < M < oo such that

T,
(100 + 10,5l ) <

then (4.1) and the triangle inequality gives e M < h(x t) < e*M for all (z,t) €

T x [0, T.], which may be combined with (4.4) to yield e < n,(z,t) < eM for all
(x,t) € T x [0, T%]. Thus, (5.3) fails, concluding the proof. O

Let us now prove an important inequality for 7,.¢*on using (5.2). For % <t<

T,, (5.5) tells us that
Wy = 125 (N — 1+ O(e)) 1.
Therefore, for # <t < T, we have
N4 077—w0+0( )_ t1+anw+ 11+a( 1+O( ))
<2+ 7122 (14 0(€) <2 — 1+ 0(e) < —3 + 21s.

For 0 <t < 5.5) gives

T (
Ne =1+ 5% + O() > 1 — 42 + 0(e) > L + O(e).
Therefore, for 0 < ¢ < p%a we get

Neq”on =wy+0(e) <1+ 0(e) = (1 —4n,) + O(e) + 4ny < —% + 41,
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We have now proven that
Neq¥on < —5 +4n, V(1) € T x[0,T%). (5.6)

5.1. An identity for 97k. Note that since o and u are C' on T x [0, T%), it follows
from (4.3) and the fact that ¢; = uo¢ that ¢ is C? on T x [0, T%). Since ¢, ~ 1, it
follows that ¢~ is C on T x [0,T%). Tt follows k = kgog~' € W29(T x [0, T%)).
Differentiating (4.8) in x and using (4.3) gives us
02k — Lo 10,00 k)00 = @2 (ki — Loy opki).
Therefore,

Ok =10710,00,k + [¢%(ky — 2oy ogk)) oo (5.7)
6. Identities along the 3-characteristic. In this section, 5 > 1, wy will be
a function satisfying the hypotheses described in § 3.2, and (w,z, k) will be the
solution of (1.7) on T x [0,T}) for given initial data (wo, 29, ko) satisfying

° ||w0 - (1 + w0)||cl <eg,

* |2ollcr <,

L4 ||‘l€0 - fT ‘ZCOHC1 <eg,

o wo, 20, ko € W4(T) for some 1 < q < oo.

All implicit constants will be independent of our choice of (wy, 2o, ko) satisfying
these constraints and independent of our choice of 8 > 1, but will depend on our
choice of a > 0.

Adopt the notation

W :=won, W= q* on,
Z = zon, Z = q°omn,
K := kon, K = Oykon,
Y :=oon, 3= Oyoon.

Using (1.7) and the equation n; = A3 o n gives us

K, = oK, (6.1)
7= %207 - 3Ky (6.2)
S = -%(aZ - LK) (6.3)
Mot = Ne(FEEW + 1522 + L 1), (6.4)

Taking 9, of (6.1) and using gives us
Kot = n:(aXK + aXd;kon) (6.5)
Since Kyt = 0ot K + 10Ky, it follows from (5.7), (6.4), and (6.5) that

Io(t — Kzt,_nmtf(

N
= —KZ+ £SK? + aX[g2 (ki — Log 'ogkh)]og " on
= 0(e) + O(ky o ¢~ Lon). (6.6)

Therefore, taking 9; of (6.1) gives us
Ky = O(e + ki o~ ton). (6.7)
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Taking 0; of (6.3) and using (6.7) yields
S = —aXZi + O(e + kll o ¢ Lon).
Taking 9; of (4.10) gives us
0 (W) = £ Ky (W + 2).

Taking 0; of (6.4) and using (6.7) and (6.9) produces

Nzttt = Nz [H_TQVQV(PTQZD + %Kt> + 1_TO‘ZOt + O(E + k'(/)/ o ¢_1077)].

It is immediate that
Nl = Zy + = TK,.
Taking 0 of this equation and using (6.2) gives us
O (N 2) = 200,(S2) + 3 (S Ky — Bu ).
Since
8t(77xZ°) = 77th° + na:Zota
it follows from (6.4) and (6.11) that

2057y = N2y — 205, 7 + %(Zth — 3 K,) + Mot 2,

(6.11)

(6.12)

=07 — 25,7 + %(ZmKt - S Ky) + e Z(Hew + 527 4+ %Kt).

Taking 9, of (6.3) gives us
Ste = —Se(0Z — £ K;) = S(aZy — 5= Kia).

(6.13)

So it follows that taking d; of (6.11) ® and using (6.13), (6.3), (6.4), (6.10), (6.8),

(6.5), (6.7), and (6.12) results in

Mo Ztt =205 Zt A0 2o (~ W +O(€)) 41, (O() W +O(e) + O(ekf 0~ o).

(6.14)

This identity is the main computational step for the energy estimates in the next

section.

Similar computations to those used to obtain (6.1)—(6.4) allow us to write

Zy = (— dy\aq° + 2000,z + (20,0 — %o(‘)yk:)@yz + g—ff‘aayaﬁyk + 30285@ on.

This gives us

Zy(-,0) = =(552wj + 15%20) (20 + 25 00k0)

/" / 1 A 3a /1. a 2701
+ 20002y + (200 — 5500kg) 20 + 550000k, + Sogky -

2y
So
|Zy(2,0)| S |20 + [kG| + <.

This inequality will be utilized in the energy estimates below.

(6.15)

8For those concerned that we may not have enough derivatives to do this, see Remark 8.1.
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7. Energy estimates. In this section, 1 < p < oo, f > 1, wy will be a function
satisfying the hypotheses described in § 3.2, and (w, z,k) will be the solution of
(1.7) on T x [0, Ty) for given initial data (wy, 2o, ko) satisfying
[[wo — (1 +wo)llcr <,
[20llcr <,
ko — frkoller <,
wo € W24(T) for some 1 < ¢ < o0,
20, ko € WQ’p(T).
All implicit constants will be independent of our choice of p € (1, 00), independent
of our choice of (wy, 20, ko) satisfying these constraints, and independent of our
choice of 8 > 1, but will depend on our choice of o > 0.

Let b > 0 be a parameter to be determined, and suppose that the quantity

By(t) = /T St (2, e (1)) Za (2, )| (7.1)

defines a finite, differentiable function for ¢ € [0,7}). °
Using the identities from § 6, we have

E, = —bp /%E_bpnm\Zotlp + /Z‘bpnxtIZOtIP +p/2_bpnxsgn (Z0)| 24P~ Zuy
— [EnzP W 01+ B+ o)) +p [ e (2012 2
= /E‘b”nwthlp [L524W + O((1 +b)(1 + p)e)] + 2ap /El‘bpsgn (ZN 24|~ Zat
+p [EZI W + OG)
+ p/Eibpnzsgn (Z)|Z|P~1 Ofe) [W +O(1) + O(kjog™ " on)]
= [ = nIZIP (52 - W + O+ p)(1+ Do)
+ 2ap /Zl_bpsgn (Zot)|Zot|p_1Zozt

+p / Sn.sgn (20|27 O [W + O(1) + Ok o~ on)].
Since
»1-Psgn (Zot)|Z°t\p_1ZQ$t
_ %zl—bpamuz"t‘p) — %aw<21—bplz°t|p) _ %Z—bz)zw‘j”p
= 350: (SN2 — BT 2 (W + Oe)),
it follows that
1E, = /Z*meZ"t\P [(ab—1+ 1;—;)13/ +O((1+b)e)]

s[5 s (20|20 0 +00) + Oigos™ o)
= /E_bpnxﬁ/[(ab -1+ 12_7;)|Z0t|p + O<5)|th‘p_1]

9We will address this assumption below. See Remark 8.1
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+O((1 +b)e)E, + /E*bpnz|z°t|p*10(skgo¢*1on)
< [t (b 14 1522 + O 2]
+O((1+b)e)E, + % /E_b”nzlo(/ﬂgoeﬁ‘lon)lp
_/ib%xvmm—1+ Lay 70 4 O(e)| P
+O((L+b)e) By + O(SIZ° 7 < K5 117)- (7.2)
Using (5.6) and the fact that n,W = O(1), we get
nW [(ab — 14 352)| 2,7 + O(e)| Z:|P~]
< —L(ab—2+ 522)|Z,P + 4(ab — 14 L2200  ZiP + LO(e)P|O(1)].  (7.3)

Next, we choose

b=

Q\w

+35=0(1).
Using (7.3) and the fact that =% = O(1), we now deduce from (7.2) that

f, + 2tp=ta / DRCIAL

< 2(4p+ 1+ (p = 1)) +pO(e)] B, +"|OQ)P|O1)] + el O PIIKG I

< (10 + a)pEp + P |OM)[P|O(1)] + el OM) Pl kg |I7 - (7-4)

Next, we ignore the helpful damping term present on the left side of (7.4), and
then use an ODE comparison and the bound (5.2), to deduce

Ey(t) < Byp(0)e10F 0 41 [P O(D)P|O(1)] + |0 ()P kg, |0+ 0t

3(10+ P 3(010+a)

< Bp(0)e 57 + [[l0MIOW)[F + &3 [0k llre] e 7.

Taking p*" roots, we obtain

1 3(10+a) (104a)

Ey(t)? < By0)pe 155 + [£l0()] + |01k g ] e 555

Using (6.15) to bound E,(0)'/? now gives us
Ep()'7 S 12l op + kg |z + < (7.5)
Plugging (7.5) into (7.4) now gives us
1Zellee < 20 llce + kGl e + - (7.6)
Equation (6.12) tells us that
2007y = a2y + O(e), (7.7)

so we conclude that
1Zallze S llzollze + kG| 2z + & (7.8)
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7.1. The case p = oo. In the case where zg, kg € W2°°(T), we have just proven
that
1Zalle + 1Zell 2 S W20z + kgl e+
for all 1 < p < co with constants independent of p. Therefore, sending p — oo gives
us
1Zallree + 1 Zellzee S 1120 lzee + kg llzee + e (7.9)

8. Estimates along the 3-characteristic. Let § > 1, 1 < p < oo, wo will be
a function satisfying the hypotheses described in § 3.2, and let p’ be the Holder
conjugate of p, i.e. ; + % =1, with p’ = 1 when p = co. Suppose that
® [wo — (1 +wo)lcr <e,
o [wy] o1 <2,
p

o wy € W4(T) for some 1 < q < oo,
® |zollw2r <e,
o |[ko — frkollwzr <e.

Our energy estimates (7.8), (7.9) from the previous section let us conclude that

2] o <1 Zeliz S = (8.1)

Recall that

T ’ £ (K —ko) ) a5 (Ko ’ o =K P olk 5
NeW = wj + (e® — Dwy — Tooko + et e W YXK,Zds,
0

K, = e, (X0 op),

t t t
T]x=1+1+Ta/0 ands—l—l*Ta/O. ands—&—%/O YK, ds.
Using these equations and (8.1), it is immediate that

[nwVif—w{)] o1 Selwy) o1 +e+e(sup[Ky] o

1
e’ g €

);

Q
(=
S

(Ko) o1 Se+eln] o +[2o0g  or]

v v ; e
[1e] 0.2 < taup (520 = wg] o, + 152 [w] o,
+0E)([n] oz + 1)+ [Ka] o)
We know that
[froo™ton] oa < 8000 /K] — oy T ook )os  onlly S (82)
o
so, using the fact that T, = 1-&-% + O(e), a simple bootstrap argument lets us

conclude that
(W = wh] oy, = O(e(1 + [wh]_o.1,))
(K] 0.k = O(e),

< (1+0()[wf] oy, +0)

=
&,
Q
o
< e | ]

Since W, = nIW + %ZKJC and Z, = ano — %ZKQJ, we conclude that

_/ 1 = 1 = .
(W, wO}CO,? O(e) and [Z”]CO’F O(e)
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‘We know that

K =% (506 on),

so it follows from (8.2) that

K] o = 00).
Using this along with (6.1) gives us
(K] o1 = O(e). (8.3)
C'p

Using (8.1) and (8.3) in (6.2) and (6.3) gives us
[Zt]co’ﬁ =0(e), [Et]co,ﬁ =0(e).
Since W = 2% 4 Z, it follows that
Wl o = O(c).
Putting it all together, we have

W = w0l g 120 N = f Kol oy = O0e),
IWel o3y N2l g el o %2l o = O(e).

o’ 3 o’

121 o3 I o3, = OC): (3.9

Remark 8.1. Note that while the hypotheses of Theorem 3.1 preclude wg from
being C?, the hypotheses stated at the beginnings of sections § 5-8 allow for wo, 2o,
and kg to all be C*°. One can check that if we start with initial data (wo, 20, ko)
satisfying the hypotheses of § 5-8 | we can mollify wy, 2¢, and kg to produce a
sequence of smooth functions satisfying the hypotheses of § 5-8. In particular,
the estimates (8.4) will hold uniformly for this sequence, and will provide us with
compactness which we can use to pass the Holder estimates to the limit. The fact
that we can do this allows us to circumvent any concerns that the function E,(¢)
used in § 7 wasn’t a-priori known to be differentiable or even finite.

We should also note that the hypothesis that 8 > 1 wasn’t utilized anywhere in
§ 5-8, and the results of these sections still hold for other choices of 5 > 0, albeit with
the possibility of S8-dependence being introduced into some of the implicit constants
and the possibility of the range of sufficiently small € > 0 being S-dependent. All
implicit constants should be uniform in 8 > r for any r > 0, but without a lower
bound on 8 we may not have uniform implicit constants.

9. Proving the theorem.

Proof of Theorem 3.1. Let 8 > 1, and let p € (1, 00] be the Holder conjugate of f.
Suppose

o [lwo = (1 +@o)| a5 <e

[ ] ||Z()||W2,p < g,

° ||k() - f’ﬂ‘ k‘o”w2,p <eg,

o wy € W24 for some 1 < ¢ < o0.

Then we know that

Wy — w(l)]co, = O(e),

1
B
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so for |z| < 1 we have
W = @+ (We — wh) = —1+ [a]7 + (Wa(0,8) + 1) + O(e)|z|?
= W,(0,1) + (1 + O(e))|z| 7. (9.1)

Therefore, for |z| < 1 our Hélder estimates from the previous section give us

¢
ne(o.t) = 1+ [ 0, 0on)(a,s) ds
0
t t
:1+1+T°‘/0 Wz(;v,s)ds—l—l_Ta/o Zy(x,s)ds
t
:nw(O,t)+H7a/0 (W (x,8) — W,(0,s)) ds

+ %a-/o (Zx(xa S) - Zx(oa S)) ds
= n2(0,1) + (152 + O(e)) 2| 1. (9.2)

So & = 0 is the unique minimizer of 7,.(-,t) over |z| < 1 for all ¢ > 0. It now follows
from (5.3) and (5.4) that n,(-,T,) has a unique zero at z = 0.

For the remainder of this section, let us restrict our attention to labels x with
|z] < 1. Let y = n(x, Ti). We conclude from (9.2) and (5.2) that

y=n0T)+ [ Ty ds =yt [ e 1) - 0.7
=y + / 1+ 0N da’ = g, + (5 + Oe))sem (el 5.
It follows from this equation that sgn (y — y«) = sgn (z), and
v =sgn(y —y.)((L+ 37 +0)ly — .| 7. (93)
Therefore, (9.1) gives us
w(y, Ts)

=W(x,T.) = W(0,T,) + W, (0, T\)x —|—/ Wo(2', T.) — W(0,T.) dz’
0

= w(ys, Ti) + (=14 O(e))z + /OI(l +O(e)|a! |7 da’
= w(y, T) + (—1+ O(e))z + (1 + O(e)) 52 sgn (x) ]+

= w(ye, T) — (1 + )77 + 0(e))sgn (y — y)ly -yl 77 + (1 +0())(y — u..).

We have just proven that (3.4) holds for all y € T such that |z| < 1.
Let’s now estimate y, and the radius of the neighborhood around y,. for which
lz] < 1. (5.2) gives us

T, T,
p=n0.1) =52 [ Wy PTQ/O 2(0,1) dt

=4 /T* wo(0) + O(e) dt + O(e) = H2T. (1 + O(e)) = 1+ O(e).
0
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We also compute that

1 1
W) =y = [ n@Tyde= [ 1+ HeT i) + O da

=1+u+0@»/34+mém+0@=ﬂi+0@>
0

Therefore, the neighborhood {y € T : z € [0, 1]} corresponds to {y > y. : |y — y«| <
r} for some r = % + O(e). An analogous computation proves an analogous result
for labels = € [—1,0].

Let us now get the Holder regularity estimates for 9yz(-,t) and 0yk(-,t). Let

y = n(z,t). Since n, < 3 + a everywhere (see Lemma 5.1), we know that

T2
ly2 — 11| = ‘/ ne(x,t) do
x1

<B4+ a)|lxg — x|

for all 1,25 € T,t € [0,T%]. We also know that 7, > %+O(5) for0<t< 1_%0‘ and
that 1, > 1 for 1 < |z| < 7. Equation (9.2) now gives us

e > (4 + Oe))|z|?

for all |z| <1, H% <t <T,. It follows that

_1
1. 24+ 0(@)|z| 7 || <1and =5 <t <T.
e ™ 24 O(¢) otherwise

If we define yo = 7(0,¢), then for all 1-&—% <t <Tn(—1,t) <y <yo < n(l,t) we
have

Y2 1 Y2 1
To—1T1 = —dy < (2+0(e / z|78 d
2—T1 / NER) y < ( (€)) " || Y

Y1
1 y2 1
§(2+(9(a))(3+a)ﬁ/ ly —yo| 7 dy
Y1

_B_ _B_
<1+ 1)+ 0@E)3+a)F 27T ol i <oSu
- ’ ||92 — Yol 7T — |y1 — y0|m| otherwise
8
<27 (14 5)(2+ 0()(3 + a) P lyz — g 7.
It is straightforward from here to verify that

|$2—I1|§‘y2—y1|% Vxl,l‘QET,tE[O,T*}. (94)

Since

avz(y7t) = Zo(xat) - %Z(w,t)f((x,t),

o

8yk(ya t) = K(JZ, t)7
it now follows from (8.4) and (9.4) that
[0yz( )] o5 Se [0k D)] o1 S

+
This gives us the estimates (3.5) from Theorem 3.1. O
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