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Abstract. From an open set of initial data, we construct a family of classical
solutions to the 1D nonisentropic compressible Euler equations which form

C0,ν cusps as a first singularity, for any ν ∈ [ 1
2
, 1). For this range of ν, this

is the first result demonstrating the stable formation of such C0,ν cusp-type
singularities, also known as pre-shocks. The proof uses a new formulation of

the differentiated Euler equations along the fast acoustic characteristic, and

relies on a novel set of Lp energy estimates for all 1 < p < ∞, which may be
of independent interest.

1. Introduction. A core line of inquiry in the study of nonlinear partial differential
equations is the analysis of the finite-time breakdown of classical solutions. For
systems of conservation laws like the compressible Euler equations, the prototypical
form of finite-time breakdown is a shock, where the smooth solution stays continuous
but steepens to a cusp at a point in spacetime known as the pre-shock, after which
time it can no longer exist as a smooth solution. In recent decades it has become
apparent that having access to the precise behavior of the solution at the time
of the first singularity (the shock profile), is key to determining how the resulting
shock waves and weak singularities develop and propagate. Here we study the
shock formation problem for the Euler equations of one-dimensional ideal gases,
and we provide a detailed description of a family of stable shocks which resemble
−sgn (x)|x|ν near the pre-shock for ν ∈ [ 12 , 1).

Here and throughout the paper, by the stability of the shock formation process we
mean that for arbitrary sufficiently small and smooth perturbations (with respect to
a suitable topology) of the initial data, the same type of pre-shock forms, possibly
at a different location in space and time (which may be computed exactly), and
with the same C0,ν shock profile (up to dilations).

1.1. The Euler equations. The compressible Euler equations in one space di-
mension are given by

∂t(ρu) + ∂y(ρu
2 + p) = 0 , (1.1a)
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∂tρ+ ∂y(ρu) = 0 , (1.1b)

∂tE + ∂y((p+ E)u) = 0 , (1.1c)

where the unknowns u, ρ,E, and p are scalar functions defined on R×R or T×R:
u is the fluid velocity, ρ is the (everywhere positive) fluid density, E is the specific
total energy, and p is the pressure. To close the system, one must introduce an
equation of state that relates the internal energy E − 1

2ρu
2 to p and ρ. If the fluid

is an ideal gas, the equation of state is

p = (γ − 1)(E − 1
2ρu

2), (1.2)

where γ > 1 is a fixed constant called the adiabatic exponent.
For ideal gases, the specific entropy, S, satisfies the relation

p = 1
γ ρ

γeS . (1.3)

If we introduce the parameter α := γ−1
2 and define the (renormalized) sound speed1

to be

σ = 1
α

√
∂p
∂ρ = 1

αe
S/2ρα, (1.4)

then we can rewrite the ideal gas equations (1.1)–(1.2) in terms of u, σ, and S as
follows:

∂tu+ u∂yu+ ασ∂yσ = α
2γσ

2∂yS, (1.5a)

∂tσ + u∂yσ + ασ∂yu = 0, (1.5b)

∂tS + u∂yS = 0. (1.5c)

In this paper, we prove the following theorem:

Theorem 1.1 (Main Result, abbreviated). For each parameter β ≥ 1 there

exists a function w̄0 ∈ C1, 1β (T) (see § 3.2 below for an explicit description) such
that the following holds: for each choice of adiabatic exponent γ > 1 there is a
choice of ε > 0 small enough such that for all initial data (u0, σ0, S0) satisfying

2

∥(u0, σ0, S0)− ( 12 w̄0,
1
2 w̄0, 0)∥

W
2,

β
β−1

< ε

the unique local-in-time classical solution (u, σ, S) of the Cauchy problem for (1.5)
with initial data

(u, σ, S)
∣∣
t=0

= (u0, σ0, S0)

forms a gradient blowup singularity at a computable time T∗ ≈ 2
1+α . Furthermore,

at time T∗ the solution has the profile

u(y, T∗) = u(y∗, T∗)−
(
(1+ 1

β )
β

β+1 +O(ε)
)
sgn (y−y∗)|y−y∗|

β
β+1 +

(
1+O(ε)

)
(y−y∗)

σ(y, T∗) = σ(y∗, T∗)−
(
(1+ 1

β )
β

β+1 +O(ε)
)
sgn (y−y∗)|y−y∗|

β
β+1 +

(
1+O(ε)

)
(y−y∗)

S(y, T∗) = S(y∗, T∗)+∂yS(y∗, T∗)(y−y∗) +O
(
|y−y∗|

β+2
β+1

)
for y in a neighborhood of radius ≈ β

β+1 about a point y∗ which is computable from

the initial data.

1The actual sound speed in a compressible fluid is c =
√

∂p
∂ρ

.
2The constraints on the initial data (u0, σ0, S0) are actually less restrictive than this. See

Theorem 3.1 below for the precise assumptions on the initial data.
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The above theorem provides the first constructive proof of stable C
β

β+1 -cusp type
singularity formation for β ≥ 1. We refer to § 3.2 and Theorem 3.1 below for the
precise assumptions on the initial data, and the precise statement of our main result.

1.2. Prior results. It has been known for some time that solutions of the Euler
equations and more general systems of hyperbolic PDE can form singularities in
finite time from smooth initial data, see the seminal papers [16, 14, 18, 22, 24]. These
classical results were non-constructive and asserted a breakdown of smoothness3

without a description of the actual mechanism of singularity formation. See [6, 10,
19] for further references.

Recently, a number of constructive shock formation results have been estab-
lished [17, 7, 15, 25, 8, 20, 5, 3, 4, 1, 21, 2, 23]. These constructive results show
that for an appropriate class of smooth initial data the first gradient singularity is
of shock-type and no other singularity can occur prior. The solution at this first
singularity, i.e. the pre-shock, only possesses limited Hölder regularity, which de-
scribes the type of cusp that forms. To date, only the C

1
3 Hölder class pre-shock

(corresponding to β = 1
2 in the language of Theorem 1.1) has been extensively

studied [17, 7, 15, 5, 3, 4, 1, 23], as this C
1
3 cusp singularity emerges in a stable

fashion from a large open set of smooth and generic initial data.
To the best of our knowledge, for the compressible Euler dynamics there are

no results establishing the formation of C
β

β+1 -cusp type pre-shocks with β > 1
2 ,

corresponding to Hölder exponents strictly larger than 1
3 . In fact, the intuition

based on the study of the Burgers equation4 only suggests the possible emergence of

a C
1

2k+1 -cusp, corresponding to β = 1
2k with k ≥ 1 an integer. Moreover, one expects

in these particular cases that the shock formation process is generically unstable,
but has finite-codimension stability. This intuition was successfully implemented
in the context of the 2D Euler equations with azimuthal symmetry to establish
the finite time formation of a C

1
5 pre-shock (corresponding to β = 1

4 ) in [2]. The

finite-codimension stable formation of C
1

2k+1 -cusp type pre-shocks (corresponding
to β = 1

2k ) for all integers k ≥ 2 was established recently in [13].

1.3. New ideas. This paper makes use of the differentiated Riemann variables
(4.9) first introduced in [1] and later utilized in [23] to study the generic C

1
3 pre-

shock formation from C4 initial data. The smoothness of the data employed in
[1, 23] permitted the use of a pointwise charicteristic-based approach. On the other

hand, the initial data required for the formation of C
β

β+1 pre-shocks with β ≥ 1 have
limited regularity and, in particular, such data is not even C2 (see § 3.2). As such,
we have devised a novel approach to this analysis which consists of the following
elements:

1. Both the dominant and subdominant differentiated Riemann variables, to-
gether with the entropy, are studied along the fast acoustic characterisic

3These arguments are based on an ODE comparison-principle (which necessitates a priori

assumptions on the boundedness of the density and the continuity of the gradient of the solution)
with a Riccati equation which blows up in finite time, thus yielding a proof by contradiction.

4For β > 0, a family of globally self-similar solutions to the 1D Burgers’ equation producing a

C
β

β+1 cusp have been known for some time [11, 9].
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(rather than the actual characteristic families which propagate each distur-
bance). This allows us to effectively freeze both the dominant Riemann vari-
able and the entropy in this flow, reducing the required bounds to only the
subdominant Riemann variable (and its derivatives).

2. Lp-based energy estimates are then obtained for this system of variables, as-
suming limited regularity initial data in the Sobolev space W 2,p. This en-
ergy method allows for a spatially-global analysis for functions whose second
derivatives are not continuous, and produces bounds which are uniform in p
and time, and hence allow us to pass to the limit as p→ ∞.

3. We show that there exists an open set of initial data in the W 2,p topology for

which C
β

β+1 pre-shock formation occurs for β ≥ 1. This establishes that this
new class of cusp-type first singularities is stable under perturbation of the

initial data by small disturbances of class W 2, β
β−1 (T) (or smoother).

1.4. Riemann variables. The Riemann variables w and z are defined by

w := u+ σ , and z := u− σ. (1.6)

If we further adopt the notation k := S, then the Euler equations become

∂tw + λ3∂yw = α
2γσ

2∂yk,

∂tz + λ1∂yz =
α
2γσ

2∂yk,

∂tk + λ2∂yk = 0, (1.7)

where

λ1 := u− ασ = 1−α
2 w + 1+α

2 z,

λ2 := u = 1
2w + 1

2z,

λ3 := u+ ασ = 1+α
2 w + 1−α

2 z.

Define ψ, ϕ, and η to be the flow of λ1, λ2, and λ3 respectively.

2. Motivation: Burgers’ equation. Our motivation comes from a simple solu-
tion to Burgers’ equation,

wt + wwy = 0, (2.1)

which is a special case of (1.7) where α = 1, z0 ≡ 0, and k0 is constant. In addition
to being a special case of the 1D isentropic Euler equations expressed in Riemann
variables, Burgers’ equation is the archetypal equation for shock formation and
development.

If w is a solution of (2.1) and η is the flow of w, i.e. η solves

d
dtη(x, t) = w(η(x, t), t), η(x, 0) = x,

then w must remain constant along the flow lines of η. From this it follows that if
w(x, 0) = w0(x) then

η(x, t) = x+ tw0(x). (2.2)

When w0 is C1 and w′
0 attains its global minimum at x∗ the solution of Burgers’

equation remains C1 smooth up to time

T∗ =

{
− 1
w′

0(x∗)
w′

0(x∗) < 0

+∞ w′
0(x∗) ≥ 0

,

and when w′
0(x∗) < 0 we have ηx(x∗, T∗) = 0 and ∂yw(η(x∗, T∗), T∗) = −∞.
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2.1. Key example. Let β > 0 and let w be the solution of Burgers’ equation (2.1)
on R with initial data

w0(x) = −x+ Cx|x|
1
β

for some C > 0. We compute that

w′
0(x) = −1 + (1 + 1

β )C|x|
1
β ,

so w′
0 has a unique global minimum at x = 0, and it blows up at time T∗ = 1. At

the blowup time, we have

η(x, 1) = Cx|x|
1
β .

Therefore, if y = η(x, 1) then

x = sgn (y)
( |y|
C

) β
β+1 ,

and
w(y, 1) = w0(x) = −sgn (y)C− β

β+1 |y|
β

β+1 + y.

2.2. Stability for β ≥ 1. When β ≥ 1, the geometry of the shock profile w(·, T∗)
obtained in § 2.1 is stable under perturbations in C1, 1β . Let E ∈ C

1, 1β
loc (R) be such

that

• E ′(0) < 1, and
• [E ′]

C
0, 1

β
< (1 + 1

β )C,

and let
w0(x) = −x+ Cx|x|

1
β + E(x).

Then

w′
0(x) = −1 + E ′(0) + (1 + 1

β )C|x|
1
β + (E ′(x)− E ′(0))

≥ −1 + E ′(0) +
[
(1 + 1

β )C − [E ′]
C

0, 1
β

]
|x|

1
β .

So w′
0 still has a unique global minimum at x = 0. Since E ′(0) < 1, the minimum

of w′
0 is negative and we have

T∗ =
1

1− E ′(0)
.

For all x we have
E(x) = E(0) + E ′(0)x+ h(x)x|x|

1
β

where

h(x) =

´ x
0
E ′(x′)− E ′(0) dx′

x|x|
1
β

.

It is immediate that
|h(x)| ≤ β

1+β [E
′]
C

0, 1
β
< C

everywhere. If we let y = η(x, T∗), then we have

y = x+ T∗w0(x) = T∗E(0) + T∗(C + h(x))x|x|
1
β =: y∗ + a(x)x|x|

1
β .

Since |h(x)| < C everywhere, we have a(x) > 0 everywhere, so sgn (y−y∗) = sgn (x)
and

x = sgn (y − y∗)
∣∣y − y∗
a(x)

∣∣ β
β+1 .

It now follows that

w(y, T∗) = w0(x)
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= −x+ Cx|x|
1
β + E(x)

= E(0) + (E ′(0)− 1)x+ (C + h(x))sgn (x)|x|1+
1
β

= E(0)− (1−E′(0))

|a(x)|
β

β+1

sgn (y − y∗)|y − y∗|
β

β+1 + (C + h(x))sgn (y − y∗)
∣∣y−y∗
a(x)

∣∣
= E(0)− (1−E′(0))

|a(x)|
β

β+1

sgn (y − y∗)|y − y∗|
β

β+1 + (1− E ′(0))(y − y∗).

We have proven the following:

Proposition 2.1 (Motivating Example: Stable Shock Formation for Burg-
ers). If β ≥ 1, C > 0, and

w0 = −x+ Cx|x|
1
β + E(x),

where E ∈ C
1, 1β
loc (R) with E ′(0) < 1 and [E ′]

C
0, 1

β
< (1 + 1

β )C then Burgers’ equation

(2.1) has a unique C1 solution, w, with w
∣∣
t=0

= w0 on R × [0, T∗), where T∗ =
1

1−E′(0) . Moreover, w is continuous up to time T∗ and at time T∗ we have

w(y, T∗) = E(0)− sgn (y − y∗)b(y)|y − y∗|
β

β+1 + (1− E ′(0))(y − y∗) (2.3)

where y∗ := E(0)
1−E′(0) and the function b satisfies

((1− E ′(0))
2β+1
β+1(

C + β
β+1 [E ′]

C
0, 1

β

) β
β+1

< b(y) <
(1− E ′(0))

2β+1
β+1(

C − β
β+1 [E ′]

C
0, 1

β

) β
β+1

for all y ∈ R.

In this paper, we will generalize Proposition 2.1 by letting the parameter α be
any positive number (i.e. letting γ be any number greater than 1) and by letting
z0 and k0 −

ffl
T k0 be sufficiently small instead of identically zero. We will also work

on the torus T instead of R. See Theorem 3.1 below for details.

2.3. Finite-codimension stability for 0 < β < 1, β ̸= 1
2 . In the case where

0 < β < 1 and β ̸= 1
2 , the geometry of the shock profile obtained in § 2.1 is no

longer stable under smooth perturbations. To see this, let 0 < β < 1 and let the
perturbation now be E(x) = ε

2x
2φ(x) where ε ̸= 0 is a small constant and φ is a

smooth bump function that is identically 1 for all |x| ≤ R, for some R ≫ 1. Then
one can check that w′

0 has a unique global minimum at the point

x∗ = −
∣∣∣∣ εβ2

(β + 1)C

∣∣∣∣
β

1−β

,

and

w′
0(x∗) = −1− ε

1
1−β

((1 + 1
β )C)

β
β−1

[
β− β

1−β − β− 1
1−β

]
< 0.

So the solution w still blows up in finite time, but since x∗ ̸= 0 one can now check
that if y = η(x, T∗) and y∗ = η(x∗, T∗) we have

y − y∗ ∼ (x− x∗)
3



NEW STABLE SHOCKS IN GAS DYNAMICS 7

in a sufficiently small neighborhood5 of x∗ and therefore

w(y, T∗)− w(y∗, T∗) ∼ (y − y∗)
1
3

for |y − y∗| small enough. When β = 1
2 , this is still the same type of shock profile

as before, but for all other choices of β it is different. Perturbations of the form we
have specified can be made arbitrarily small in all CN norms by sending ε→ 0, so
for 0 < β < 1, β ̸= 1

2 , the shock formation described in § 2.1 is unstable.
However, when 0 < β < 1, the example in § 2.1 is finite-codimension-stable with

respect to suitable perturbations, as we shall show next. Let 1 + 1
β = n+ δ, where

n ∈ Z and δ ∈ (0, 1]. Since β < 1, we have n ≥ 0. Let E ∈ Cn,δloc (R) satisfy
• E ′(0) < 1,
• ∂jxE(0) = 0 for all 2 ≤ j ≤ n,
• [∂nxE ]C0,δ < C(1 + 1

β )(1 +
1
β − 1) · · · (1 + 1

β − (n− 1)),

and choose initial data

w0(x) = −x+ Cx|x|
1
β + E(x).

We compute that

w′
0(x) = −1 + E ′(0) + (1 + 1

β )C|x|
1
β + (E ′(x)− E ′(0))

≥ −1 + E ′(0) +

[
(1 + 1

β )C − [∂n
x E]

C0,δ

1
β (

1
β−1)···( 1β+2−n)

]
|x|

1
β .

So w′
0 has a unique global minimum at x = 0. Since E ′(0) < 1, the minimum of w′

0

is negative and we have

T∗ =
1

1− E ′(0)

as before. For all x we have

E(x) = E(0) + E ′(0)x+ h(x)x|x|
1
β

where

h(x) =

´ x
0

´ x1

0
· · ·

´ xn−1

0
∂nxE(xn) dxndxn−1 . . . dx1

x|x|
1
β

.

It is immediate that

|h(x)| ≤ [∂nxE ]C0,δ

(1 + 1
β )(1 +

1
β − 1) · · · (1 + 1

β − (n− 1))
< C

for all x ∈ R. Therefore, if y = η(x, T∗) then

y = x+ T∗w0(x) = T∗E(0) + T∗(C + h(x))x|x|
1
β =: y∗ + a(x)x|x|

1
β .

Since |h(x)| < C everywhere, we have a(x) > 0 everywhere, so sgn (y−y∗) = sgn (x)
and

x = sgn (y − y∗)
∣∣y − y∗
a(x)

∣∣ β
β+1 .

It now follows that

w(y, T∗) = w0(x)

= −x+ Cx|x|
1
β + E(x)

5One can check that the implicit constants in the expression y − y∗ ∼ (x− x∗)3 can be made

∼ |ε|1−
β

1−β , and therefore they blow up as ε → 0 when β > 1
2
, remain close to 1 when β = 1

2
,

and vanish as ε → 0 when β < 1
2
.
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= E(0) + (E ′(0)− 1)x+ (C + h(x))sgn (x)|x|1+
1
β

= E(0)− (1−E′(0))

|a(x)|
β

β+1

sgn (y − y∗)|y − y∗|
β

β+1 +(C + h(x))sgn (y − y∗)
∣∣y − y∗
a(x)

∣∣
= E(0)− (1−E′(0))

|a(x)|
β

β+1

sgn (y − y∗)|y − y∗|
β

β+1 +(1− E ′(0))(y − y∗).

We have proven the following:

Proposition 2.2 (Finite-Codimension Stable Shock Formation for Burg-
ers). If 0 < β < 1, C > 0, 1 + 1

β = n+ δ with n ∈ Z, δ ∈ (0, 1], and

w0 = −x+ Cx|x|
1
β + E(x),

where E ∈ Cn,δloc (R) with E ′(0) < 1,

[∂nxE ]C0,δ < C(1 + 1
β )(1 +

1
β − 1) · · · (1 + 1

β − (n− 1)),

and ∂jxE(0) = 0 for all 2 ≤ j ≤ n, then Burgers’ equation (2.1) has a unique C1

solution, w, with w
∣∣
t=0

= w0 on R × [0, T∗), where T∗ = 1
1−E′(0) . Moreover, w is

continuous up to time T∗ and at time T∗ we have

w(y, T∗) = E(0)− sgn (y − y∗)b(y)|y − y∗|
β

β+1 + (1− E ′(0))(y − y∗) (2.4)

where y∗ := E(0)
1−E′(0) and the function b satisfies

((1− E ′(0))
2β+1
β+1(

C +
[E′]

C
0, 1

β

(1+
1
β )(1+

1
β−1)···(1+ 1

β−(n−1))

) β
β+1

< b(y) <
(1− E ′(0))

2β+1
β+1(

C −
[E′]

C
0, 1

β

(1+
1
β )(1+

1
β−1)···(1+ 1

β−(n−1))

) β
β+1

for all y ∈ R.

We conjecture that similar finite-codimension stability results could be estab-
lished for the 1D Euler equations, and we plan to address this in future work.

2.4. Stablility for β = 1
2 . In the case β = 1

2 , the shock from § 2.1 is stable (see
e.g. [23]), but this case is of a different nature than the other choices of β > 0. In
the proofs of both Proposition 2.1 and Proposition 2.2 we saw that the proof hinged
on the blowup label x∗, where w

′
0 has its global minimum, coinciding with a point

where w0 satisfied

w0(x)− w0(x∗)− (x− x∗)w
′
0(x∗) ∼ (x− x∗)|x− x∗|

1
β . (2.5)

For a typical smooth function w0, x∗ would be a nondegenerate critical point of w′
0,

so we would expect

w0(x)− w0(x∗)− (x− x∗)w
′
0(x∗) ∼ (x− x∗)

3,

which is exactly what we want in the case β = 1
2 . Therefore (2.5) is expected when

β = 1
2 . However, as we saw in § 2.3, equation (2.5) being satisfied at the blowup

label is not stable under smooth perturbations when β < 1, β ̸= 1
2 .
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2.5. Remark: self-similar blowup. A self-similar solution to Burgers’ equation
is a solution w : R× (−∞, T ) → R of the form

w(y, t) = (T − t)βW
(

y−y0
(T−t)β+1

)
(2.6)

where W ∈ C1
loc(R;R) is the similarity profile, T ∈ R is the fixed blowup time, and

β > 0 6 is the scaling exponent. A function w of the form (2.6) solves Burgers’
equation if and only if the similarity profile solves the similarity equation

−βW + (1 + β)xWx +WWx = 0. (2.7)

Consider the implicit equation

x = −W − CW |W |
1
β (2.8)

where C > 0 is a constant.7 Since dx
dW = −1 − C(1 + 1

β )|W |
1
β ≤ −1 everywhere,

it follows that W → x is a C1 diffeomorphism of R and therefore (2.8) defines a
C1 similarity profile W on all of R which is also strictly decreasing. In fact, W is
locally Cn,δ, where n ∈ Z+, δ ∈ (0, 1], and 1 + 1

β = n + δ. It is also easy to check

that this profile W solves the similarity equation (2.7).
Let W be the solution to (2.8). To determine the growth of W at infinity, we

first note that x = −W (1+C|W |
1
β ), so sgn (x) = −sgn (W ) everywhere. Therefore,

−sgn (x)C− β
β+1 |x|

β
β+1

W (x)
=

|x|
β

β+1

|W |
=

∣∣∣∣W (1 + C|W |
1
β )

|W |1+
1
β

∣∣∣∣
β

β+1

=

∣∣∣∣ 1

|W |
1
β

+ C

∣∣∣∣
β

β+1

.

Since |W | → ∞ as |x| → ∞, we have

−sgn (x)C− β
β+1 |x|

β
β+1

W (x)
→ 1 as x→ ±∞. (2.9)

From (2.9) it follows that if w is defined by (2.6) with our choice of W then

lim
t→T−

w(y, t) = −sgn (y − y0)C
− β

β+1 |y − y0|
β

β+1 . (2.10)

Let us now examine the behavior of W near x = 0. Since x = −W (1 +C|W |
1
β ),

we compute that in a neighborhood of x = 0 we have

− x+ Cx|x|
1
β

=W + CW |W |
1
β − CW |W |

1
β (1 + C|W |

1
β )

1
β − C2W |W |

2
β (1 + C|W |

1
β )

1
β

=W − (1 + 1
β )C

2W |W |
2
β +O

(
(1 + 1

β )C
3|W |1+

3
β
)

=W +O
(
(1 + 1

β )C
2|x|1+

2
β
)
.

6We are ignoring the β = 0 case, where the self-similar profile is given by W (x) = −x. In

this case, the profile doesn’t satisfy the matching condition W ∼ |x|
β

β+1 as x → ±∞, and so it is

different. See [11] for more.
7The previous literature up to this point has worked with the implicit equation x = −W −

CW
1+ 1

β , see e.g. [12, §11.2], [11, §2.4], [9]. However, this equation does not define a global

solution for most values of β. For example, if β = 1 then solution W is not single-valued and
there is no solution for x > 1

4C
. Our implicit equation remedies these issues, and gives the correct

regularity which the similarity profile should have near x = 0. E.g., when β = 1 the similarity
profile will be C1,1 but not C2.
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The last equation is true because W (0) = 0 and W is C1. Therefore, we conclude

W = −x+ Cx|x|
1
β +O

(
(1 + 1

β )C
2|x|1+

2
β
)

(2.11)

in a neighborhood of zero. Notice that the similarity profile agrees with the initial
data chosen in § 2.1 near 0 if we drop the highest order term in this expansion.

3. The result.

3.1. Local well-posedness. It follows from the standard well-posedness theory of
the Euler equations (1.5) that if s > 3

2 and w0, z0, k0 ∈ Hs(T) then there exists a
maximal time of existence T∗ ∈ (0,+∞], such that the following hold

• the equations (1.7) have a unique classical solution (w, z, k)∈C1(T×[0, T∗);R3)
with initial data (w0, z0, k0);

• the unique solution (w, z, k) also satisfies

(w, z, k) ∈ C([0, T∗);H
s(T)3) ∩ C1([0, T∗);H

s−1(T)3). (3.1)

Furthermore, if T∗ <∞, then the following Eulerian blowup criterion holds:ˆ T∗

0

(
∥∂yw(·, t)∥L∞ + ∥∂yz(·, t)∥L∞ + ∥∂yk(·, t)∥L∞

)
dt = +∞ . (3.2)

Throughout the remainder of the paper, the initial data w0, z0, k0 will always
be assumed to lie in W 2,q(T) for some 1 < q ≤ ∞. In particular, the classical Hs

local-existence theory applies for a suitable value of s > 3
2 . To see this, recall that

if n ∈ Z, n ≥ 2, and 1 < q ≤ ∞, then

Wn,q(T) ⊂ Hs(T)
with continuous embedding for

s = s(n, q) =

{
n− ( 1q −

1
2 ) p ≤ 2

n p ≥ 2
.

For all n ≥ 2, 1 < q ≤ ∞, we have s > 3
2 . So if w0, z0, k0 ∈ W 2,q(T) for some

1 < q ≤ ∞, then w0, z0, k0 ∈ Hs(T) for some s > 3
2 and our local well-posedness

theory applies to the initial data w0, z0, k0. As such, the blowup time T∗ ∈ (0,+∞]
will be the time at which the corresponding solution can no longer be continued as
a solution in CtH

s
x ∩ C1

tH
s−1
x for any s > 3

2 .

3.2. Assumptions on the initial data. Let β > 0, and let w̄0 be a 2π-periodic
function such that

• w̄0(x) = −x+ β
β+1x|x|

1
β for |x| ≤ 1,

• w0 is C1, 1β ,
• 0 ≤ w̄′

0(x) ≤ 1 for 1 ≤ |x| ≤ π.

Notice that these assumptions imply that ∥w̄0∥L∞ = 1
β+1 ≤ 1

2 .

For our theorem we take β ≥ 1, and the initial data (w0, z0, k0) will be such that

w0 is a small perturbation of 1+ w̄0 in C1, 1β , z0 is a small perturbation of 0 in W 2,p,
and k0 is a small perturbation of a constant state in W 2,p, where p = β

β−1 is the

Hölder conjugate of β.

We note that when β > 1 and p = β
β−1 , w̄0 ∈ C1, 1β (T) \W 2,p(T). Since W 2,p(T)

is not dense in C1, 1β for β > 1, small enough perturbations of w̄0 in C1, 1β will not be

inW 2,p, so w0 will not be inW
2,p. When β = 1 however, C1, 1β = C1,1 =W 2,∞, and
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we will be able to assume that (w0, z0, k0) lie in an open set in W 2,∞(T). However,
w0 will still not be C2, because in order for w0 to be sufficiently close to 1 + w̄0 in
W 2,∞, w′′

0 it will have to have a jump discontinuity at 0.

3.3. Notation. At the beginning of most sections we will introduce a size param-
eter ε > 0. Throughout the paper, the hypothesis that ε > 0 was chosen to be
sufficiently small will be implicit in the statements of all of our lemmas and propo-
sitions. How small ε > 0 will need to be in order for our results to hold will depend
on our choice of γ (hence α) but doesn’t depend on anything else.

In what follows, we will often identify functions on the torus T with 2π-periodic
functions on R when the notation is most convenient. This identification will allow
us to write expressions like “|x| ≤ 1”. We will always use x ∈ T to denote the
Lagrangian label and y ∈ T to denote the Eulerian variable.

We will write a ≲ b to indicate that a ≤ Cb, where the constant C is independent
of ε, the spatial variables x, y, time t, and the exponent p ∈ (1,∞] (see § 7). The
constant C can, however, be dependent on γ, and therefore also on α (see § 5).
Furthermore, C will always be independent of our choice of initial data (w0, z0, k0)
satisfying the hypotheses specified at the beginning of each section, and it will be
independent of our specific choice of w̄0 satisfying the hypotheses listed in § 3.2.
We will write a ∼ b to mean that a ≲ b ≲ a, and we will further adopt the notation
f = O(g) to mean that |f | ≲ |g|.

Often below we will have functions f defined on T × [0, T∗) and maps Ψ : T ×
[0, T∗) → T, and we will use the notation

f ◦Ψ(x, t) := f(Ψ(x, t), t).

We will write Ψ−1 to denote the function such that Ψ−1◦Ψ(x, t) = Ψ◦Ψ−1(x, t) = x
for all t when such an inverse exists. For functions f defined on T× [0, T∗) we will
write

[f ]C0,δ := sup
y,y′∈T
y ̸=y′

|f(y, t)− f(y′, t)|
|y − y′|δ

so that [·]C0,δ only corresponds to Hölder continuity in the spacial variable and
[f ]C0,δ is always implicitly a function of t if f varies in t.

3.4. Statement of the theorem.

Theorem 3.1 (Main Result). Let α > 0, β ≥ 1, let p = β
β−1 ∈ (1,∞] be the Hölder

conjugate of β, and let w̄0 be defined as in § 3.2 for this choice of β. There exists
a sufficiently small ε0 ∈ (0, 1], which only depends on α and on ∥w̄0∥L∞ , such that
for any 0 < ε ≤ ε0 the following holds.

Let w0, z0, k0 be functions on T satisfying

• ∥w0 − (1 + w̄0)∥
C

1, 1
β
< ε,

• ∥z0∥W 2,p < ε,
• ∥k0 −

ffl
T k0∥W 2,p < ε,

• w0 ∈W 2,q(T) for some 1 < q <∞.

The maximal time of existence T∗ for the solution (w, z, k) of (1.7) is

T∗ = 2
1+α +O(ε). (3.3)

For such solutions, w ∼ 1 on T × [0, T∗], and z, k, ∂yz, and ∂yk remain O(ε) on
T× [0, T∗] while ∂yw diverges to −∞ as t→ T∗. At the time of blowup, there exists
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a unique point y∗ ∈ T where w(·, T∗) is C1 away fromy∗ but forms a preshock at
(y∗, T∗) with a profile given by

w(y, T∗) = w(y∗, T∗)−
(
(1+ 1

β )
β

β+1 +O(ε)
)
sgn (y−y∗)|y−y∗|

β
β+1 +(1+O(ε))(y−y∗)

(3.4)

for |y − y∗| < β
β+1 +O(ε). Additionally, we know that y∗ = 1 +O(ε).

The variables z and k remain in C1, 1
β+1 (T) uniformly up to time T∗ with

∥z(·, t)∥
C

1, 1
β+1

≲ ε, ∥k(·, t)∥
C

1, 1
β+1

≲ ε. (3.5)

For any fixed γ > 1, the implicit constants in all of the above statements are
independent of our choice of ε sufficiently small and are independent of our choice
of (w0, z0, k0) satisfying our above hypotheses. The implicit constants do depend,
however, on our choice of γ > 1.

3.5. Outline of the proof. We show that the classical solution (w, z, k) of (1.7)
with initial data satisfying some of our hypotheses only exists for a finite time T∗,
and we will characterize T∗ as the time when the flow η of the fastest wave speed
λ3 stops being a diffeomorphism because ηx(·, T∗) has a zero. For solutions with
appropriate initial data, we will prove that w, z, k, ∂yz, and ∂yk are all bounded
on T × [0, T∗] while ∂yw diverges to −∞ as t approaches T∗. The key technical
step of the paper will be obtaining uniform Lp energy estimates for the functions
w ◦η, z ◦η, k ◦η, together with their derivatives of order ≤ 2. Using these Lp energy
estimates, we will show that the unique label x∗ ∈ T for which ηx(x∗, T∗) = 0 is
x∗ = 0. Lastly, we invert the map x→ η(x, T∗) for x near 0 and arrive at the shock
profile described in Theorem 3.1.

4. Key identities. In this section, (w, z, k) will be the solution of (1.7) on T ×
[0, T∗) for given initial data (w0, z0, k0) ∈ Hs(T) for some s > 3

2 .

In general, if φ ∈ R and λ := u+ φσ = 1+φ
2 w + 1−φ

2 z, then

∂tσ + λ∂yσ = −σ
(
α−φ
2 ∂yw + α+φ

2 ∂yz
)
.

Setting φ = −α, 0, and α we get

σ◦ψ = σ0e
−α

´ t
0
∂yw◦ψ, σ◦ϕ = σ0e

−α
´ t
0
∂y

w+z
2 ◦ϕ, σ◦η = σ0e

−α
´ t
0
∂yz◦η. (4.1)

Since

ψx = e
´ t
0
∂yλ1◦ψ, ϕx = e

´ t
0

1
2 (∂yw+∂yz)◦ϕ, ηx = e

´ t
0
∂yλ3◦η,

it follows that

ψx = ( σ0

σ◦ψ )
1−α
2α e

1+α
2

´ t
0
∂yz◦ψ, (4.2)

ϕx =
(
σ0

σ◦ϕ
) 1

α , (4.3)

ηx =
(
σ0

σ◦η
) 1−α

2α e
1+α
2

´ t
0
∂yw◦η. (4.4)

and also that

∂t(k◦ψ) = −α(σ∂yk)◦ψ, (4.5)

∂t(k◦ϕ) = 0, (4.6)

∂t(k◦η) = α(σ∂yk)◦η. (4.7)
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It follows that k ◦ ϕ = k0. Differentiating this equation and using (4.3) gives us

∂yk◦ϕ = σ
− 1

α
0 k′0σ

1
α ◦ϕ. (4.8)

Define

qw := ∂yw − 1
2γσ∂yk, and qz := ∂yz +

1
2γσ∂yk. (4.9)

Taking ∂t of ηxq
w◦η and ψxq

z◦ψ and then integrating gives us the Duhamel formulas

ηxq
w◦η = e

1
4γ k◦η

[
(w′

0 − 1
2γσ0k

′
0)e

− 1
4γ k0+ α

4γ

ˆ t

0

e−
1
4γ k◦ηηx(σ∂ykq

z)◦η ds
]
, (4.10)

ψxq
z◦ψ =e

1
4γ k◦ψ

[
(z′0 +

1
2γσ0k

′
0)e

− 1
4γ k0− α

4γ

ˆ t

0

e−
1
4γ k◦ψψx(σ∂ykq

w)◦ψ ds
]
. (4.11)

5. Initial estimates. In this section, β ≥ 1, w̄0 will be a function satisfying the
hypotheses described in § 3.2, and (w, z, k) will be the solution of (1.7) on T×[0, T∗)
for given initial data (w0, z0, k0) satisfying

• ∥w0 − (1 + w̄0)∥C1 < ε,
• ∥z0∥C1 < ε,
• ∥k0 −

ffl
T k0∥C1 < ε,

• w0, z0, k0 ∈W 2,q(T) for some 1 < q ≤ ∞.

The last assumption is simply there so that we can apply our local well-posedness
theory and Lipschitz continuation criterion described in § 3.1. All implicit constants
will be independent of our choice of (w0, z0, k0) satisfying these constraints and
independent of our choice of β ≥ 1, but will depend on our choice of α > 0.

Lemma 5.1. Suppose that T ∈ [0, 4
1+α ∧ T∗] and that for all (y, t) ∈ T× [0, T ] we

have

• w ∼ 1,
• |k|, |∂yk|, |z|, |∂yz| ≲ ε.

Then if φ < α and Ψ is defined to be the flow of λ := u+ φσ we have

• ηx ≤ 3 + α,
• ηxq

w◦η = w̄′
0 +O(ε),

•
´ t
0
|∂yw◦Ψ(x, s)| ds ≲ t

α−φ ,

for all (x, t) ∈ T × [0, T ]. Note that the implicit constants in our conclusions are
independent of our choice of φ < α or T ∈ [0, 4

1+α ∧ T∗] and depend only on the
initial data and the implicit constants in our hypotheses.

Proof of Lemma 5.1. Fix φ < α and define

g(x, t) := η−1(Ψ(x, t), t).

We compute that

∂tg(x, t) = ∂tη
−1(Ψ(x, t), t) + ∂tη

−1(Ψ(x, t), t)Ψt(x, t)

=
−ηt(g(x, t), t) + Ψt(x, t)

ηx(g(x, t), t)
=

−λ3◦η((g(x, t), t) + λ◦Ψ(x, t)

ηx(g(x, t), t)

=

(
−λ3◦η + λ◦η

ηx

)
(g(x, t), t) = −(α− φ)

σ◦η
ηx

(g(x, t), t). (5.1)
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Note that ∂tg(x, t) < 0 everywhere. We also know that

Ψ(x, t) = x+

ˆ t

0

λ◦Ψ(x, τ) dτ, and

Ψ(x, t) = η(g(x, t), t) = g(x, t) +

ˆ t

0

λ3◦η(g(x, t), τ) dτ,

so x− g(x, t) =

ˆ t

0

λ3◦η(g(x, t), τ)− λ◦Ψ(x, τ) dτ.

Using our hypotheses, along with (4.10), we conclude that that for all (x, t) ∈
T× [−ε, T ], we have

sup
[−ε,t]

|ηxqw◦η| ≤ 1 +O(ε) +O(ε) sup
[−ε,t]

ηx.

Since

ηx = 1 +

ˆ t

0

ηx∂yλ3◦η ds = 1 +

ˆ t

0

ηx(
1+α
2 qw◦η +O(ε)) ds,

it follows that

sup
[0,t]

ηx ≤ 1 + 1+α
2 t+O(εt) +O(εt) sup

[0,t]

ηx

=⇒ sup
[0,t]

ηx ≤
1 + 1+α

2 t+O(εt)

1−O(εt)
≤ 3 + α.

The last inequality is true for ε > 0 taken to be small enough, since t ≤ 4
1+α .

Plugging this into (4.10) and letting ε be sufficiently small gives us

qw◦η =
w̄′

0 +O(ε)

ηx
.

It follows that

qw◦Ψ(x, t) = − 1
α−φ∂tg(x, t)

w̄′
0(g(x, t)) +O(ε)

σ◦Ψ(x, t)
.

Since ∂tg < 0, it follows that

|qw◦Ψ(x, t)| ≲ − 1
α−φ∂tg(x, t).

So ˆ t

0

|qw◦Ψ(x, τ)| dτ ≲
x− g(x, t)

α− φ
≲ t

α−φ

Our result follows immediately from this inequality and our hypotheses.

Lemma 5.2. For all (y, t) ∈ T× [0, 4
1+α ∧ T∗] we have

• 1
2 −O(ε) ≤ w ≤ 3

2 +O(ε),
• |z|, |k|, |∂yk| ≲ ε.

Further, for all (x, t) ∈ T× [0, 4
1+α ∧ T∗] we have ϕx ∼ 1.

Proof. This follows from a simple bootstrap argument. Let T ∈ [0, 4
1+α ∧ T∗] and

assume that

• 1
4 ≤ w ≤ 2 for all (y, t) ∈ T× [0, T ],

• |z|, |k|, |∂yk| ≤ 1 for all (y, t) ∈ T× [0, T ],

• 4−
1
α ≤ ϕx ≤ 4

1
α for all (x, t) ∈ T× [0, T ].
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Then it follows from (4.6) that k ◦ ϕ = k0 = O(ε) and ∂yk ◦ ϕ = ϕ−1
x k′0 = O(ε)

for all (x, t) ∈ T × [0, T ]. Our bootstrap assumptions tell us that |σ| ≲ 1 for
(y, t) ∈ T× [0, T ], so σ2∂yk = O(ε) for (y, t) ∈ T× [0, T ]. It therefore follows from
equations (1.5) that

w◦η = w0 +O(εt) = 1 + w̄0 +O(ε),

z◦ψ = z0 +O(εt) = z0 +O(ε),

so that

1
2 −O(ε) ≤ w ≤ 3

2 +O(ε), and z = O(ε).

This implies that 1
4 − O(ε) ≤ σ ≤ 3

4 + O(ε) for (y, t) ∈ T × [0, T ] and it therefore
follows from (4.3) that

(3 +O(ε))−
1
α ≤ ϕx ≤ (3 +O(ε))

1
α .

Lemma 5.3. For all (x, t) ∈ T× [0, 4
1+α ∧ T∗] we have

• ηxq
w ◦ η = w̄′

0 +O(ε),
• ηx ≤ 3 + α,

•
´ t
0
|∂yw ◦ ψ| ≲ 1,

•
´ t
0
|∂yw ◦ ϕ| ≲ 1,

• |∂yz ◦ ψ| ≲ ε,
• ψx ∼ 1.

Proof of Lemma 5.3. Another simple bootstrap argument. Let T ∈ [0, 4
1+α ∧ T∗]

and let us assume that
|qz| ≤ Cε

where C > 1 is a constant to be determined. Since ∂yk = O(ε) and σ ∼ 1 (see
Lemma 5.2) , it follows from the bootstrap assumption and (4.2) that ψx ∼ 1
provided that ε is small enough relative to C.

The bootstrap assumption and the bounds from Lemma 5.2 let allow us to use

Lemma 5.1 to conclude that
´ t
0
|qw◦η| ≲ 1. Since ψx ∼ 1 for (x, t) ∈ T× [0, T ], we

now conclude from (4.11) that

|ψxqz◦ψ − z′0| ≲ ε.

It therefore follows that if C > 1 is chosen large enough and ε is chosen small enough
the bootstrap argument closes.

The rest of the inequalities are now immediate from Lemma 5.1.

Proposition 5.4 (Lagrangian blowup criterion). The blowup time T∗ (defined
by the Eulerian blowup criterion (3.2)) satisfies

T∗ = 2
1+α +O(ε), (5.2)

and therefore the bounds from the previous lemmas hold up to time T∗. Furthermore,
the Eulerian blowup criterion (3.2) implies the Lagrangian blowup criterion

lim inf
t→T∗

(
min
x∈T

ηx(x, t)
)
= 0, (5.3)

and we have the bound
inf

1≤|x|≤π
0≤t≤T∗

ηx(x, t) >
1
2 . (5.4)



16 I. NEAL, C. RICKARD, S. SHKOLLER AND V. VICOL

Lastly, we note that the Lagrangian blowup criterion (5.3) also implies the Eulerian
blowup criterion (3.2), and so we may use (5.3) as the definition of T∗.

Proof of Proposition 5.4. We know from Lemma 5.3 that for (x, t) ∈ T×[0, 4
1+α∧T∗]

we have ηxq
w ◦ η = w̄′

0 +O(ε), so it follows from Lemma 5.2 that

ηx = 1+

ˆ t

0

ηx∂yλ3◦η ds = 1+ 1+α
2

ˆ t

0

ηxq
w◦η ds+O(ε) = 1+ 1+α

2 tw̄′
0+O(ε) (5.5)

for (x, t) ∈ T× [0, 4
1+α ∧ T∗]. It follows that

0 ≤ ηx(0, t) = 1− 1+α
2 t+O(ε)

for t ∈ [0, 4
1+α ,∧T∗]. Therefore, we must have T∗ ≤ 2

1+α +O(ε).

Since T∗ = 4
1+α ∧ T∗, it follows that k, z, ∂yk, and ∂yz are O(ε) and w is O(1)

up to time T∗. Therefore, it follows from (3.2) that

lim sup
t→T∗

∥∂yw(·, t)∥L∞ = ∞.

Since ∂yw◦η = (w̄′
0 +O(ε))η−1

x , we conclude that

∞ = lim sup
t→T∗

∥∂yw(·, t)∥L∞ = lim sup
t→T∗

∥∂yw ◦ η(·, t)∥L∞ ≤ 2 lim sup
t→T∗

∥η−1
x (·, t)∥L∞ ,

and hence (5.3) holds.
Since

ηx ≥ 1− 1+α
2 t+O(ε)

for all (x, t) ∈ T× [0, T∗), we conclude that T∗ ≥ 1+α
2 +O(ε), otherwise (5.3) would

be violated.
To see why (5.4) is true, just note that w̄′

0(x) ≥ 0 for 1 ≤ |x| ≤ π, so that
ηx ≥ 1 +O(ε) for 1 ≤ |x| ≤ π.

Lastly, to see that (5.3) implies (3.2), we show that not (3.2) implies not (5.3).
More precisely, if there exists 0 < M <∞ such thatˆ T∗

0

(
∥∂yw(·, t)∥L∞ + ∥∂yz(·, t)∥L∞

)
dt ≤M,

then (4.1) and the triangle inequality gives e−αM ≤ σ◦η
σ0

(x, t) ≤ eαM for all (x, t) ∈
T× [0, T∗], which may be combined with (4.4) to yield e−M ≤ ηx(x, t) ≤ eM for all
(x, t) ∈ T× [0, T∗]. Thus, (5.3) fails, concluding the proof.

Let us now prove an important inequality for ηxq
w◦η using (5.2). For 1

1+α ≤ t ≤
T∗, (5.5) tells us that

w̄′
0 = 2

1+α (ηx − 1 +O(ε)) 1t .

Therefore, for 1
1+α ≤ t ≤ T∗ we have

ηxq
w◦η = w̄′

0 +O(ε) = 1
t

2
1+αηx +

1
t

2
1+α (−1 +O(ε))

≤ 2ηx +
1
T∗

2
1+α (−1 +O(ε)) ≤ 2ηx − 1 +O(ε) ≤ − 1

2 + 2ηx.

For 0 ≤ t ≤ 1
1+α , (5.5) gives

ηx = 1 + 1+α
2 tw̄′

0 +O(ε) ≥ 1− 1+α
2 t+O(ε) ≥ 1

2 +O(ε).

Therefore, for 0 ≤ t ≤ 1
1+α we get

ηxq
w◦η = w̄′

0 +O(ε) ≤ 1 +O(ε) = (1− 4ηx) +O(ε) + 4ηx ≤ − 1
2 + 4ηx.
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We have now proven that

ηxq
w◦η ≤ − 1

2 + 4ηx ∀ (x, t) ∈ T× [0, T∗). (5.6)

5.1. An identity for ∂2yk. Note that since σ and u are C1 on T× [0, T∗), it follows

from (4.3) and the fact that ϕt = u◦ϕ that ϕ is C2 on T× [0, T∗). Since ϕx ∼ 1, it

follows that ϕ−1 is C2 on T× [0, T∗). It follows k = k0◦ϕ−1 ∈W 2,q
loc (T× [0, T∗)).

Differentiating (4.8) in x and using (4.3) gives us

(∂2yk − 1
ασ

−1∂yσ∂yk)◦ϕ = ϕ2x(k
′′
0 − 1

ασ
−1
0 σ′

0k
′
0).

Therefore,

∂2yk = 1
ασ

−1∂yσ∂yk +
[
ϕ2x(k

′′
0 − 1

ασ
−1
0 σ′

0k
′
0)
]
◦ϕ−1. (5.7)

6. Identities along the 3-characteristic. In this section, β ≥ 1, w̄0 will be
a function satisfying the hypotheses described in § 3.2, and (w, z, k) will be the
solution of (1.7) on T× [0, T∗) for given initial data (w0, z0, k0) satisfying

• ∥w0 − (1 + w̄0)∥C1 < ε,
• ∥z0∥C1 < ε,
• ∥k0 −

ffl
T k0∥C1 < ε,

• w0, z0, k0 ∈W 2,q(T) for some 1 < q ≤ ∞.

All implicit constants will be independent of our choice of (w0, z0, k0) satisfying
these constraints and independent of our choice of β ≥ 1, but will depend on our
choice of α > 0.

Adopt the notation

W := w◦η, W̊ := qw◦η,

Z := z◦η, Z̊ := qz◦η,

K := k◦η, K̊ := ∂yk◦η,

Σ := σ◦η, Σ̊ := ∂yσ◦η.

Using (1.7) and the equation ηt = λ3 ◦ η gives us

Kt = αΣK̊, (6.1)

Zt = Σ(2αZ̊ − 1
2γKt) (6.2)

Σt = −Σ(αZ̊ − 1
2γKt) (6.3)

ηxt = ηx(
1+α
2 W̊ + 1−α

2 Z̊ + 1
2γKt), (6.4)

Taking ∂x of (6.1) and using gives us

Kxt = ηx(αΣ̊K̊ + αΣ∂2yk◦η) (6.5)

Since Kxt = ηxtK̊ + ηxK̊t, it follows from (5.7), (6.4), and (6.5) that

K̊t =
Kxt−ηxtK̊

ηx

= −K̊Z̊ + 1
2γΣK̊

2 + αΣ
[
ϕ2x(k

′′
0 − 1

ασ
−1
0 σ′

0k
′
0)
]
◦ϕ−1◦η

= O(ε) +O(k′′0 ◦ ϕ−1◦η). (6.6)

Therefore, taking ∂t of (6.1) gives us

Ktt = O(ε+ k′′0 ◦ ϕ−1◦η). (6.7)
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Taking ∂t of (6.3) and using (6.7) yields

Σtt = −αΣZ̊t +O(ε+ k′′0 ◦ ϕ−1◦η). (6.8)

Taking ∂t of (4.10) gives us

∂t(ηxW̊ ) = 1
4γ ηxKt(W̊ + Z̊). (6.9)

Taking ∂t of (6.4) and using (6.7) and (6.9) produces

ηxtt = ηx
[
1+α
2 W̊ ( 1−α2 Z̊ + 3

4γKt) +
1−α
2 Z̊t +O(ε+ k′′0 ◦ ϕ−1◦η)

]
. (6.10)

It is immediate that

ηxZ̊ = Zx +
1
2γΣKx.

Taking ∂t of this equation and using (6.2) gives us

∂t(ηxZ̊) = 2α∂x(ΣZ̊) +
1
2γ (ΣtKx − ΣxKt). (6.11)

Since

∂t(ηxZ̊) = ηxtZ̊ + ηxZ̊t,

it follows from (6.4) and (6.11) that

2αΣZ̊x = ηxZ̊t − 2αΣxZ̊ + 1
2γ (ΣxKt − ΣtKx) + ηxtZ̊ (6.12)

= ηxZ̊t − 2αΣxZ̊ + 1
2γ (ΣxKt − ΣtKx) + ηxZ̊(

1+α
2 W̊ + 1−α

2 Z̊ + 1
2γKt).

Taking ∂x of (6.3) gives us

Σtx = −Σx(αZ̊ − 1
2γKt)− Σ(αZ̊x − 1

2γKtx). (6.13)

So it follows that taking ∂t of (6.11)
8 and using (6.13), (6.3), (6.4), (6.10), (6.8),

(6.5), (6.7), and (6.12) results in

ηxZ̊tt=2αΣZ̊xt+ηxZ̊t(−W̊+O(ε))+ηx
(
O(ε)W̊+O(ε)+O(εk′′0 ◦ϕ−1◦η)

)
. (6.14)

This identity is the main computational step for the energy estimates in the next
section.

Similar computations to those used to obtain (6.1)–(6.4) allow us to write

Z̊t =
(
− ∂yλ3q

z + 2ασ∂2yz + α(2∂yσ − 1
2γσ∂yk)∂yz +

3α
2γ σ∂yσ∂yk +

α
γ σ

2∂2yk
)
◦η.

This gives us

Z̊t(·, 0) = −( 1+α2 w′
0 +

1−α
2 z′0)(z

′
0 +

1
2γσ0k

′
0)

+ 2ασ0z
′′
0 + α(2σ′

0 − 1
2γσ0k

′
0)z

′
0 +

3α
2γ σ0σ

′
0k

′
0 +

α
γ σ

2
0k

′′
0 .

So

|Z̊t(x, 0)| ≲ |z′′0 |+ |k′′0 |+ ε. (6.15)

This inequality will be utilized in the energy estimates below.

8For those concerned that we may not have enough derivatives to do this, see Remark 8.1.
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7. Energy estimates. In this section, 1 < p < ∞, β ≥ 1, w̄0 will be a function
satisfying the hypotheses described in § 3.2, and (w, z, k) will be the solution of
(1.7) on T× [0, T∗) for given initial data (w0, z0, k0) satisfying

• ∥w0 − (1 + w̄0)∥C1 < ε,
• ∥z0∥C1 < ε,
• ∥k0 −

ffl
T k0∥C1 < ε,

• w0 ∈W 2,q(T) for some 1 < q <∞,
• z0, k0 ∈W 2,p(T).

All implicit constants will be independent of our choice of p ∈ (1,∞), independent
of our choice of (w0, z0, k0) satisfying these constraints, and independent of our
choice of β ≥ 1, but will depend on our choice of α > 0.

Let b > 0 be a parameter to be determined, and suppose that the quantity

Ep(t) :=

ˆ
T
Σ−bp(x, t)ηx(x, t)|Z̊t(x, t)|p dx (7.1)

defines a finite, differentiable function for t ∈ [0, T∗).
9

Using the identities from § 6, we have

Ėp = −bp
ˆ

Σt

Σ Σ−bpηx|Z̊t|p +
ˆ
Σ−bpηxt|Z̊t|p + p

ˆ
Σ−bpηxsgn (Z̊t)|Z̊t|p−1Z̊tt

=

ˆ
Σ−bpηx|Zt|p

[
1+α
2 W̊ +O((1 + b)(1 + p)ε)

]
+ p

ˆ
Σ−bpηxsgn (Z̊t)|Z̊t|p−1Z̊tt

=

ˆ
Σ−bpηx|Zt|p

[
1+α
2 W̊ +O((1 + b)(1 + p)ε)

]
+ 2αp

ˆ
Σ1−bpsgn (Z̊t)|Z̊t|p−1Z̊xt

+ p

ˆ
Σ−bpηx|Zt|p[−W̊ +O(ε)]

+ p

ˆ
Σ−bpηxsgn (Z̊t)|Zt|p−1O(ε)

[
W̊ +O(1) +O(k′′0 ◦ϕ−1◦η)

]
=

ˆ
Σ−bpηx|Z̊t|p

[
( 1+α2 − p)W̊ +O((1 + p)(1 + b)ε))

]
+ 2αp

ˆ
Σ1−bpsgn (Z̊t)|Z̊t|p−1Z̊xt

+ p

ˆ
Σ−bpηxsgn (Z̊t)|Zt|p−1O(ε)

[
W̊ +O(1) +O(k′′0 ◦ϕ−1◦η)

]
.

Since

Σ1−bpsgn (Z̊t)|Z̊t|p−1Z̊xt

= 1
pΣ

1−bp∂x
(
|Z̊t|p

)
= 1

p∂x
(
Σ1−bp|Z̊t|p

)
− 1−bp

p Σ−bpΣx|Z̊t|p

= 1
p∂x

(
Σ1−bp|Z̊t|p

)
− 1−bp

2p Σ−bpηx|Z̊t|p(W̊ +O(ε)),

it follows that

1
p Ėp =

ˆ
Σ−bpηx|Z̊t|p

[
(αb− 1 + 1−α

2p )W̊ +O((1 + b)ε)
]

+

ˆ
Σ−bpηxsgn (Z̊t)|Z̊t|p−1O(ε)

[
W̊ +O(1) +O(k′′0 ◦ϕ−1◦η)

]
=

ˆ
Σ−bpηxW̊

[
(αb− 1 + 1−α

2p )|Z̊t|p +O(ε)|Z̊t|p−1
]

9We will address this assumption below. See Remark 8.1
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+O((1 + b)ε)Ep +

ˆ
Σ−bpηx|Z̊t|p−1O(εk′′0 ◦ϕ−1◦η)

≤
ˆ
Σ−bpηxW̊

[
(αb− 1 + 1−α

2p )|Z̊t|p +O(ε)|Z̊t|p−1
]

+O((1 + b)ε)Ep +
O(ε)
p

ˆ
Σ−bpηx|O(k′′0 ◦ϕ−1◦η)|p

=

ˆ
Σ−bpηxW̊

[
(αb− 1 + 1−α

2p )|Z̊t|p +O(ε)|Z̊t|p−1
]

+O((1 + b)ε)Ep +O
(
ε
p∥Σ

−b∥pL∞
x
∥k′′0∥

p
Lp

x

)
. (7.2)

Using (5.6) and the fact that ηxW̊ = O(1), we get

ηxW̊
[
(αb− 1 + 1−α

2p )|Z̊t|p +O(ε)|Z̊t|p−1
]

≤ − 1
2

(
αb− 2 + 1−α

2p

)
|Z̊t|p + 4

(
αb− 1 + 1−α

2p

)
ηx|Z̊t|p + 1

p |O(ε)|p|O(1)|. (7.3)

Next, we choose

b = 3
α + 1

2 = O(1) .

Using (7.3) and the fact that Σ−b = O(1), we now deduce from (7.2) that

Ėp +
2p+(p−1)α

4

ˆ
Σ−bp|Z̊t|p

≤
[
2(4p+ 1 + (p− 1)α)) + pO(ε)

]
Ep + εp|O(1)|p|O(1)|+ ε|O(1)|p∥k′′0∥

p
Lp

x

≤ (10 + α)pEp + εp|O(1)|p|O(1)|+ ε|O(1)|p∥k′′0∥
p
Lp

x
. (7.4)

Next, we ignore the helpful damping term present on the left side of (7.4), and
then use an ODE comparison and the bound (5.2), to deduce

Ep(t) ≤ Ep(0)e
(10+α)pt + t

[
εp|O(1)|p|O(1)|+ ε|O(1)|p∥k′′0∥

p
Lp

x

]
e(10+α)pt

≤ Ep(0)e
3(10+α)

1+α p +
[
ε|O(1)||O(1)|

1
p + ε

1
p |O(1)|∥k′′0∥Lp

x

]p
e

3(10+α)
1+α p.

Taking pth roots, we obtain

Ep(t)
1
p ≤ Ep(0)

1
p e

3(10+α)
1+α +

[
ε|O(1)|+ |O(1)|∥k′′0∥Lp

x

]
e

3(10+α)
1+α .

Using (6.15) to bound Ep(0)
1/p now gives us

Ep(t)
1/p ≲ ∥z′′0 ∥Lp

x
+ ∥k′′0∥Lp

x
+ ε. (7.5)

Plugging (7.5) into (7.4) now gives us

∥Z̊t∥Lp
x
≲ ∥z′′0 ∥Lp

x
+ ∥k′′0∥Lp

x
+ ε. (7.6)

Equation (6.12) tells us that

2αΣZ̊x = ηxZ̊t +O(ε), (7.7)

so we conclude that

∥Z̊x∥Lp
x
≲ ∥z′′0 ∥Lp

x
+ ∥k′′0∥Lp

x
+ ε. (7.8)
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7.1. The case p = ∞. In the case where z0, k0 ∈ W 2,∞(T), we have just proven
that

∥Z̊x∥Lp
x
+ ∥Z̊t∥Lp

x
≲ ∥z′′0 ∥Lp

x
+ ∥k′′0∥Lp

x
+ ε

for all 1 < p <∞ with constants independent of p. Therefore, sending p→ ∞ gives
us

∥Z̊x∥L∞
x

+ ∥Z̊t∥L∞
x

≲ ∥z′′0 ∥L∞
x

+ ∥k′′0∥L∞
x

+ ε. (7.9)

8. Estimates along the 3-characteristic. Let β ≥ 1, 1 < p ≤ ∞, w̄0 will be
a function satisfying the hypotheses described in § 3.2, and let p′ be the Hölder
conjugate of p, i.e. 1

p′ +
1
p = 1, with p′ = 1 when p = ∞. Suppose that

• ∥w0 − (1 + w̄0)∥C1 < ε,
• [w′

0]
C

0, 1
p′
< 2,

• w0 ∈W 2,q(T) for some 1 < q ≤ ∞,
• ∥z0∥W 2,p < ε,
• ∥k0 −

ffl
T k0∥W 2,p < ε.

Our energy estimates (7.8), (7.9) from the previous section let us conclude that

[Z̊]
C

0, 1
p′

≤ ∥Z̊x∥Lp
x
≲ ε. (8.1)

Recall that

ηxW̊ = w′
0 + (e

1
4γ (K−k0) − 1)w′

0 − e
1
4γ

(K−k0)

2γ σ0k
′
0 +

α
4γ e

1
4γK

ˆ t

0

e
− 1

4γKΣKxZ̊ ds,

Kx = Σ
1
α ηx(

k′0

σ
1
α
◦ϕ−1◦η),

ηx = 1 + 1+α
2

ˆ t

0

ηxW̊ ds+ 1−α
2

ˆ t

0

ηxZ̊ ds+
α
2γ

ˆ t

0

ΣKx ds.

Using these equations and (8.1), it is immediate that

[ηxW̊ − w′
0]
C

0, 1
p′

≲ ε[w′
0]
C

0, 1
p′

+ ε+ ε(sup
[0,t]

[Kx]
C

0, 1
p′
),

[Kx]
C

0, 1
p′

≲ ε+ ε[ηx]
C

0, 1
p′

+ [
k′0

σ
1
α
0

◦ϕ−1◦η]
C

0, 1
p′
,

[ηx]
C

0, 1
p′

≤ t sup
[0,t]

(
1+α
2 [ηxW̊ − w′

0]
C

0, 1
p′

+ 1+α
2 [w′

0]
C

0, 1
p′

+O(ε)([ηx]
C

0, 1
p′

+ 1) + [Kx]
C

0, 1
p′

)
.

We know that

[
k′0

σ
1
α
0

◦ϕ−1◦η]
C

0, 1
p′

≤
∥∥ ηx
ϕx

(σ
−1/α
0 k′′0 − 1

ασ
−1−1/α
0 σ′

0k
′
0)◦ϕ−1◦η

∥∥
Lp

x
≲ ε, (8.2)

so, using the fact that T∗ = 2
1+α + O(ε), a simple bootstrap argument lets us

conclude that

[ηxW̊ − w′
0]
C

0, 1
p′

= O(ε(1 + [w′
0]
C

0, 1
p′
)),

[Kx]
C

0, 1
p′

= O(ε),

[ηx]
C

0, 1
p′

≤ (1 +O(ε))[w′
0]
C

0, 1
p′

+O(ε).

Since Wx = ηxW̊ + 1
2γΣKx and Zx = ηxZ̊ − 1

2γΣKx, we conclude that

[Wx − w′
0]
C

0, 1
p′

= O(ε) and [Zx]
C

0, 1
p′

= O(ε).
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We know that

K̊ = Σ
1
α (

k′0

σ
1
α
◦ϕ−1◦η),

so it follows from (8.2) that

[K̊]
C

0, 1
p′

= O(ε).

Using this along with (6.1) gives us

[Kt]
C

0, 1
p′

= O(ε). (8.3)

Using (8.1) and (8.3) in (6.2) and (6.3) gives us

[Zt]
C

0, 1
p′

= O(ε), [Σt]
C

0, 1
p′

= O(ε).

Since W = 2Σ + Z, it follows that

[Wt]
C

0, 1
p′

= O(ε).

Putting it all together, we have

∥W − w0∥
C

1, 1
p′
, ∥Z∥

C
1, 1

p′
, ∥K −

 
T
k0∥

C
1, 1

p′
= O(ε) ,

∥Wt∥
C

0, 1
p′
, ∥Zt∥

C
0, 1

p′
, ∥Kt∥

C
0, 1

p′
, ∥Σt∥

C
0, 1

p′
= O(ε) ,

∥Z̊∥
C

0, 1
p′
, ∥K̊∥

C
0, 1

p′
= O(ε). (8.4)

Remark 8.1. Note that while the hypotheses of Theorem 3.1 preclude w0 from
being C2, the hypotheses stated at the beginnings of sections § 5-8 allow for w0, z0,
and k0 to all be C∞. One can check that if we start with initial data (w0, z0, k0)
satisfying the hypotheses of § 5-8 , we can mollify w0, z0, and k0 to produce a
sequence of smooth functions satisfying the hypotheses of § 5-8. In particular,
the estimates (8.4) will hold uniformly for this sequence, and will provide us with
compactness which we can use to pass the Hölder estimates to the limit. The fact
that we can do this allows us to circumvent any concerns that the function Ep(t)
used in § 7 wasn’t a-priori known to be differentiable or even finite.

We should also note that the hypothesis that β ≥ 1 wasn’t utilized anywhere in
§ 5-8, and the results of these sections still hold for other choices of β > 0, albeit with
the possibility of β-dependence being introduced into some of the implicit constants
and the possibility of the range of sufficiently small ε > 0 being β-dependent. All
implicit constants should be uniform in β ≥ r for any r > 0, but without a lower
bound on β we may not have uniform implicit constants.

9. Proving the theorem.

Proof of Theorem 3.1. Let β ≥ 1, and let p ∈ (1,∞] be the Hölder conjugate of β.
Suppose

• ∥w0 − (1 + w̄0)∥
C

1, 1
β
< ε,

• ∥z0∥W 2,p < ε,
• ∥k0 −

ffl
T k0∥W 2,p < ε,

• w0 ∈W 2,q for some 1 < q <∞.

Then we know that

[Wx − w̄′
0]
C

0, 1
β
= O(ε),
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so for |x| ≤ 1 we have

Wx = w̄′
0 + (Wx − w̄′

0) = −1 + |x|
1
β + (Wx(0, t) + 1) +O(ε)|x|

1
β

=Wx(0, t) + (1 +O(ε))|x|
1
β . (9.1)

Therefore, for |x| ≤ 1 our Hölder estimates from the previous section give us

ηx(x, t) = 1 +

ˆ t

0

∂x(λ3◦η)(x, s) ds

= 1 + 1+α
2

ˆ t

0

Wx(x, s) ds+
1−α
2

ˆ t

0

Zx(x, s) ds

= ηx(0, t) +
1+α
2

ˆ t

0

(Wx(x, s)−Wx(0, s)) ds

+ 1−α
2

ˆ t

0

(Zx(x, s)− Zx(0, s)) ds

= ηx(0, t) + ( 1+α2 +O(ε))|x|
1
β t. (9.2)

So x = 0 is the unique minimizer of ηx(·, t) over |x| ≤ 1 for all t > 0. It now follows
from (5.3) and (5.4) that ηx(·, T∗) has a unique zero at x = 0.

For the remainder of this section, let us restrict our attention to labels x with
|x| ≤ 1. Let y = η(x, T∗). We conclude from (9.2) and (5.2) that

y = η(0, T∗) +

ˆ x

0

ηx(x
′, T∗) dx

′ =: y∗ +

ˆ x

0

ηx(x
′, T∗)− ηx(0, T∗) dx

′

= y∗ +

ˆ x

0

(1 +O(ε))|x′|
1
β dx′ = y∗ + ( β

β+1 +O(ε))sgn (x)|x|1+
1
β .

It follows from this equation that sgn (y − y∗) = sgn (x), and

x = sgn (y − y∗)
(
(1 + 1

β )
β

β+1 +O(ε)
)
|y − y∗|

β
β+1 . (9.3)

Therefore, (9.1) gives us

w(y, T∗)

=W (x, T∗) =W (0, T∗) +Wx(0, T∗)x+

ˆ x

0

Wx(x
′, T∗)−Wx(0, T∗) dx

′

= w(y∗, T∗) + (−1 +O(ε))x+

ˆ x

0

(1 +O(ε))|x′|
1
β dx′

= w(y∗, T∗) + (−1 +O(ε))x+ (1 +O(ε)) β
β+1 sgn (x)|x|

1+ 1
β

= w(y∗, T∗)−
(
(1 + 1

β )
β

β+1 +O(ε)
)
sgn (y − y∗)|y − y∗|

β
β+1 + (1 +O(ε))(y − y∗).

We have just proven that (3.4) holds for all y ∈ T such that |x| ≤ 1.
Let’s now estimate y∗ and the radius of the neighborhood around y∗ for which

|x| ≤ 1. (5.2) gives us

y∗ = η(0, T∗) =
1+α
2

ˆ T∗

0

W (0, t) dt+ 1−α
2

ˆ T∗

0

Z(0, t) dt

= 1+α
2

ˆ T∗

0

w0(0) +O(ε) dt+O(ε) = 1+α
2 T∗(1 +O(ε)) = 1 +O(ε).
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We also compute that

η(1, T∗)− y∗ =

ˆ 1

0

ηx(x, T∗) dt =

ˆ 1

0

1 + 1+α
2 T∗w

′
0(x) +O(ε) dx

= 1 + (1 +O(ε))

ˆ 1

0

−1 + |x|
1
β dx+O(ε) = β

β+1 +O(ε).

Therefore, the neighborhood {y ∈ T : x ∈ [0, 1]} corresponds to {y > y∗ : |y− y∗| ≤
r} for some r = β

β+1 +O(ε). An analogous computation proves an analogous result

for labels x ∈ [−1, 0].
Let us now get the Hölder regularity estimates for ∂yz(·, t) and ∂yk(·, t). Let

y = η(x, t). Since ηx ≤ 3 + α everywhere (see Lemma 5.1), we know that

|y2 − y1| =
∣∣∣∣ ˆ x2

x1

ηx(x, t) dx

∣∣∣∣ ≤ (3 + α)|x2 − x1|

for all x1, x2 ∈ T, t ∈ [0, T∗]. We also know that ηx ≥ 1
2 +O(ε) for 0 ≤ t ≤ 1

1+α and

that ηx >
1
2 for 1 ≤ |x| ≤ π. Equation (9.2) now gives us

ηx ≥ ( 12 +O(ε))|x|
1
β

for all |x| ≤ 1, 1
1+α ≤ t ≤ T∗. It follows that

1
ηx

≤

{
(2 +O(ε))|x|−

1
β |x| ≤ 1 and 1

1+α ≤ t ≤ T∗

2 +O(ε) otherwise
.

If we define y0 = η(0, t), then for all 1
1+α ≤ t ≤ T∗, η(−1, t) ≤ y1 ≤ y2 ≤ η(1, t) we

have

x2−x1 =

ˆ y2

y1

1

ηx(x, t)
dy ≤ (2 +O(ε))

ˆ y2

y1

|x|−
1
β dy

≤ (2 +O(ε))(3 + α)
1
β

ˆ y2

y1

|y − y0|−
1
β dy

≤ (1 + 1
β )(2 +O(ε))(3 + α)

1
β

{
|y2 − y0|

β
β+1 + |y0 − y1|

β
β+1 y1<y0≤y2∣∣|y2 − y0|

β
β+1 − |y1 − y0|

β
β+1

∣∣ otherwise

≤ 2
1

β+1 (1 + 1
β )(2 +O(ε))(3 + α)

1
β |y2 − y1|

β
β+1 .

It is straightforward from here to verify that

|x2 − x1| ≲ |y2 − y1|
β

β+1 ∀ x1, x2 ∈ T, t ∈ [0, T∗]. (9.4)

Since

∂yz(y, t) = Z̊(x, t)− 1
2γΣ(x, t)K̊(x, t),

∂yk(y, t) = K̊(x, t),

it now follows from (8.4) and (9.4) that

[∂yz(·, t)]
C

0, 1
β+1

≲ ε, [∂yk(·, t)]
C

0, 1
β+1

≲ ε.

This gives us the estimates (3.5) from Theorem 3.1.
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