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1 Introduction

Searching for new heavy particle resonances is a driving motivation at the energy frontier.
Many extensions beyond the Standard Model (SM) predict the existence of new states in
a variety of charge and color representations. The classification of dijet resonances and
their underlying model correspondence, as well as the search strategy at the LHC have
been laid out [1]; the experimental searches are being actively carried out [2, 3]. Those
new states, if kinematically accessible, would lead to large production rates and quite
distinctive kinematic signatures in their decay. Once a new resonance is discovered at a
hadron collider, it will be ultimately important to scrutinize the underlying dynamics and
determine its properties, such as the mass, spin, parity, and gauge charges. The most
challenging of all is to determine a resonant particle’s color quantum number. The color
structure is extremely difficult to diagnose in a realistic experimental environment since
quarks and gluons hadronize into color singlet bound states due to QCD confinement. The
hadronization processes necessarily involve QCD soft physics, which renders the underlying
dynamics elusive. It would be desirable to develop some techniques for diagnosing the un-
derlying color structure for the signal events and to discriminate against QCD backgrounds
effectively.

Dijet resonances with different color structures have different color flows, leading to
distinctive radiation patterns. This radiation pattern has been used to propose observables
to distinguish color octet and singlet resonances [4]. For a color octet resonance, the initial
and final state quarks are color connected whereas for a color singlet, they are not. Hence,
in the scattering plane formed by the beam and two hard final state jets, an octet resonance
is expected to have more radiation than a singlet resonance. This observation was used in
previous proposals to detect the color of particles. In ref. [4], it was proposed to look at the
antennae behavior of gluon radiation to determine if a resonance decaying into a quark-
antiquark pair is a color singlet or octet. Reference [5] analyzed the radiation patterns inside
jets to separate singlet from octet color flows. Similar color flow ideas have been applied
to distinguishing color octet and singlet dijet events [4], top pair tagging [6], and searching
for double Higgs production [7]. Machine learning techniques and two-point correlators
have also been used to distinguish pair-produced color singlets and octets decaying into
quark-antiquark pairs [8]. Some experimental analyses make use of color flow to separate
different processes, such as tt̄ measurements at Fermilab Tevatron [9] and ATLAS [10–12].

This paper provides a comprehensive guide to diagnose the properties of a singly
produced colored heavy resonance at high-energy hadron colliders. We move beyond the
typical color singlet versus octet classification and consider the various resonances classified
in ref. [1]. That is, different color representations such as triplets and sextets; various spins
such as scalars, fermions, vectors, and tensors; and resonances produced by and decaying
into all possible partons: quark-antiquark, quark-gluon, and gluon-gluon. We start by
presenting the standard methodology used to determine the spin and couplings of resonance
to quarks and gluons.

To understand the color structure of events, we study dijet resonance events with
an additional radiated gluon. We present an analytical understanding of the antennae
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radiation pattern of soft gluons for the various resonances, extending the results of ref. [4].
As we show, a particularly powerful observable to distinguish different colored resonance
is to compare the 3-jet and 2-jet rates. This observable has been useful for testing SM
predictions for pure QCD, vector boson plus jet, and Higgs plus jet [13–16], and has been
generalized in ref. [17]. A similar approach has been proposed to use the ratio of the dijet
cross section to the total width of the resonance, if the width could be measured, as the
color discriminant variable [18–22].

From the analytical understanding of the antennae patterns, we develop a collider
observable sensitive to the resonance’s different color structures. As we show, this ob-
servable can in principle distinguish the different color representations, and its behavior
is largely independent of the spin of the resonance. Hence, it provides a robust test of
the color structure of the events. In the process of analyzing the large data sample at the
LHC or future colliders, “deep-learning” (or machine-learning, ML) techniques have been
well-developed and proved to be quite fruitful for exploring the rich physics and uncover-
ing the subtle features otherwise inaccessible. Recent successful examples include Lorentz
boosted boson tagging [23–25], top [26–28], bottom [29], and strange [30] quarks tagging,
and quark/gluon jet discrimination [31, 32]. We exploit the machine-learning techniques in
the hope of improving the analyses and distinguishing different colored resonances. We use
a convolutional neural network (CNN) as an example to demonstrate how ML techniques
can help.

The rest of the paper is organized as follows. In section 2, we review our classifications
of the different possible resonances, and lay out the standard techniques and ideas for
determining the spin and chiral coupling as well as the color radiation pattern. In section 3,
we perform a cut-based analysis to observe the LHC antennae radiation pattern. Section 4
analyzes the ability to distinguish different colored resonance by using Machine Learning
techniques at the LHC. We conclude in section 5. Although our numerical results are
shown for a 14 TeV LHC, the methodology presented here should be applicable to other
future hadron colliders.

2 Classification and characteristics of color resonances

2.1 Resonances and interactions

The dijet resonances are classified according to their electric and SU(3)C color charges. Here
we briefly review possible resonances according to these two conserved quantum numbers.
Table 1 summarizes the different colored resonances discussed in this section. We list
our notation for the different states along with the leading couplings to SM partons and
spin, color representation, and electric charge of each state. A more detailed discussion,
including examples of specific realizations of the various resonances in existing literature,
is given in ref. [1].

It is beneficial to consider the color-resonances according to their production mech-
anisms from the initial state partons. Quark-quark annihilation can produce color anti-
triplet or sextet scalars [33–40] and vectors [41–44], so-called “diquarks”. The possible
scalar diquark are denoted as END

, UND
, and DND

with electric charges −4/3, 2/3, −1/3
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Particle Names J SU(3)C |Qe| B Related models
(leading coupling)

E
(µ)
3,6 (uu) 0(1) 3, 6 4

3
2
3 scalar/vector diquarks

D
(µ)
3,6 (ud) 0(1) 3, 6 1

3
2
3 scalar/vector diquarks; d̃

U
(µ)
3,6 (dd) 0(1) 3, 6 2

3
2
3 scalar/vector diquarks; ũ

U
∗(µ)
3,6 (ug) 1

2(3
2) 3, 6̄ 2

3
1
3 excited u; quixes; stringy

D
∗(µ)
3,6 (dg) 1

2(3
2) 3, 6̄ 1

3
1
3 excited d; quixes; stringy

S8 (gg) 0 8S 0 0 πT C , ηT C

T8 (gg) 2 8S 0 0 stringy

V8 (uū, dd̄) 1 8 0 0 axigluon; gKK , ρT C ; coloron
V ±

8 (ud̄) 1 8 1 0 ρ±T C ; coloron
V1 (uū) 1 1 0 0 Z ′

Table 1. Summary for resonant particle names, their quantum numbers, and possible underlying
models [1].

respectively. The subscript ND = 3, 6 for the 3 and 6 color representations, respectively.
Vector diquarks of spin-1 are represented with an additional Lorentz index µ. The inter-
action Lagrangian between quarks and diquarks is then

LqqD = Kj
ab

[
λE,τ

αβ E
j
ND

uC
αaPτuβb + λU,τ

αβ U
j
ND

dC
αaPτdβb + λD,τ

αβ D
j
ND

dC
αbPτuαa

+λE′,τ
αβ Ejµ

ND
uC

αaγµPτuβb + λU ′τ
αβ U

jµ
ND

dC
αaγµPτdβb +λD′,τ

αβ Djµ
ND
uC

αaγµPτdβb

]
+ h.c.,

(2.1)

where Pτ = 1
2(1±γ5) with τ = R,L for the right- and left-chirality projection operators and

Kj
ab are SU(3)C Clebsch-Gordan (CG) coefficients with the quark color indices a, b = 1, 2, 3,

and the diquark color index j = 1, . . . , ND. Explicit forms of the CG coefficients and sextet
representation matrices can be found in ref. [40].

Quarks and gluons annihilate into color triplet [45–60] or anti-sextet [61–63] fermions
with 1/2 or 3/2 spin. It is possible to produce a 15-plet, but the existence of such a
fermion would spoil asymptotic freedom [64]. The spin-1/2 (3/2) fermion states are denoted
by D∗

ND
, U∗

ND
(D∗µ

ND
, U∗µ

ND
) with electric charged −1/3 and 2/3, respectively. The lowest

order gauge invariant interaction between a gluon, quark, and heavy spin-1/2 fermion is
dimension-five:

LqgF = gs

Λ F
A,αβ

[
U

∗
ND
KA

ND
(λU

LPL + λU
RPR)σαβu+D

∗
ND
KA

ND
(λD

LPL + λD
RPR)σαβd

+ U
∗µ
ND
KA

ND
(gβµ + z γµγβ) γα(λU

LPL + λU
RPR)u

+ D
∗µ
ND
KA

ND
(gβµ + z γµγβ) γα(λD

LPL + λD
RPR)d

]
+ h.c. (2.2)

where A = 1, . . . , 8 is the adjoint color index, FA,µν is the gluon field strength tensor, Λ
is the scale of new physics, z is a constant which does not contribute for on-shell spin-
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3/2 particles, and KA
ND

are 3 × ND CG coefficient matrices. Explicit forms of these CG
coefficients can be found in appendix A. A spin-3/2 fermion is described by the Rarita-
Schwinger spinor [65–68] and we give a review of the Lagrangian for spin-3/2 fields in
appendix B.

Gluon-gluon annihilation can result in many different representations. A complete list
of the possible resonances from gluon-gluon annihilation can be found in table 1 of ref. [1].
Two possible color-octet resonances that can result from gluon-gluon annihilation are of
particular interest: a scalar S8 [69–74], and a tensor T8 [46–49]. These interactions can be
described in a gauge invariant way by dimension five operators:

Lgg8 = gsd
ABC

(
κS

ΛS
SA

8 F
B
µνF

C,µν + κT

ΛT
(TA,µσ

8 FB
µνF

C
σ

ν + fTA,ρ
8 ρ FB,µνFC

µν)
)
, (2.3)

where ΛS,T are the new physics scales, and the relative coupling factor f is expected to
be order one. The symbol dABC is fully symmetric and defined by the anti-commutation
relations

{TA, TB} = 1
NC

δAB + dABCTC , (2.4)

where TA are the SU(3)C fundamental representation matrices. The subscript S on 8S in
table 1 indicates that this color octet representation is the symmetric combination of two
other octets, as shown in eq. (2.3).

Finally, quark-antiquark annihilation can produce color octet [45–49, 61, 75–81] or
singlet scalars and vectors with zero or unit charge. The neutral vector-octet is denoted
by V8 and the charged vector octet states V ±

8 . The interaction Lagrangian is then

Lqq̄V = gs

[
V8

A,µ ūTAγµ(gU
LPL + gU

RPR)u+ V8
A,µ d̄TAγµ(gD

L PL + gD
RPR)d

+
(
V +,A,µ

8 ūTAγµ(CLV
CKM

L PL + CRV
CKM

R PR)d+ h.c.
)]
, (2.5)

where V CKM
L,R are the left- and right-handed Cabibbo-Kobayashi-Maskawa (CKM) matrices,

respectively. To avoid constraints from flavor physics, it is assumed that the charged
current interactions are proportional to the SM CKM matrices and that there is no tree-
level flavor changing neutral currents, i.e., gU,D

L,R and CL,R are flavor-diagonal. To obtain the
interactions with the color singlet vector bosons replace the representation matrices TA,a

b

with the Kronecker delta δa
b. It is also more natural to write the coupling in terms of the

weak coupling constant instead of the strong coupling constant. The neutral and charged
color singlet vectors will be denoted as V1 and V ±

1 , respectively. The couplings between
the octet and singlet scalar and light quarks are constrained to be small by minimal flavor
violation [82]. Hence, we ignore their contributions as s-channel resonances.

All resonances listed in table 1 couple to SM partons and will contribute to dijet
signals at the LHC. If a dijet resonance is discovered it will be imperative to disentangle
the properties of the resonant particle, such as mass, spin, and color representation. In
the following subsections, we investigate what information can be gleaned from a dijet
resonance. We illustrate the methods to measure the spin, interactions, and color structure
of a resonance, and comment on their limitations.
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Figure 1. Normalized rapidity distributions of different initial states at 3 TeV partonic center-of-
momentum energy at the 14TeV LHC.

2.2 Initial state

The species of initial state partons that produce the resonance may be probed by the rapid-
ity distribution of the di-jet system. Defining the partonic center-of-momentum (c.m.) sys-
tem rapidity as

ycm = 1
2 ln x1

x2
, (2.6)

where x1,2 are the parton momentum fractions of the initial state. The distribution of the
c.m. system rapidity reflects the imbalance between the momenta of the two incoming
partons, governed by their parton distribution functions (PDFs). Gluons and sea quarks
typically carry lower momentum fractions than valence quarks. Hence, the qg, qq̄ initial
states with a valence quark tend to have a broader rapidity distribution, and may indeed
have a peak at a non-zero value of y. In contrast, gg and qq initial states have a more
concentrated distribution in rapidity, with the peak typically near zero, as x1 ≈ x2. We
show some features of the rapidity distributions in figure 1 for gg, dg, ug, uu, ud, and uū

initial states. Here and henceforth, for the sake of illustration, we choose a hard scattering
partonic c.m. energy

√
ŝ = M = 3TeV at the 14TeV LHC, where M is the resonance

mass. As can be seen, the gg rapidity is the most highly peaked due to the symmetric
gg initial state. While, ug, with an asymmetric initial state, has the broadest rapidity
distribution and is peaked at the highest rapidity. Those qualitative features may provide
circumstantial information for the initial partonic states.

2.3 Spin

The spin of an s-channel resonance determines the angular correlations between the initial
and final states. Hence, by analyzing the angular distributions of two-to-two processes near
the invariant mass peak, the spin of the resonances can be determined. The two-to-two
process is not sensitive to the color representation of a resonance. Hence, the relevant
classification of resonances for angular distributions is according to spin: scalar, spin-1/2
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fermion, vector, spin-3/2 fermion, and tensor. Details for the matrix element calculation
and rates for each resonance see appendix C. We are only interested in the distributions, so
we factor out the total partonic cross-section of a spin-J resonance σ̂J(ŝ), which is governed
by its coupling strength.

There are four examples of scalar resonances listed in section 2.1: three scalar diquarks
and an octet scalar. There are no spin correlations between the initial and final states in
dijet events because of the scalar nature. Hence, there is no angular dependence in the
partonic cross-section as it must be isotropic, and the differential cross-section dσ̂0/d cos θ
is just a flat distribution in the partonic c.m. frame, where θ is the polar angle between
the initial state and final state quarks (gluons).

We explore two examples of spin-1/2 and 3/2 resonances: the color sextet and an-
titriplet fermions, from a quark-gluon annihilation. Allowing for both left- and right-
handed couplings in eq. (2.2) would result in large corrections to the fermionic magnetic
moments [83]. Hence, we will assume that the couplings are either purely left- or right-
handed. The spin correlations for qg → q∗ → qg with spin-1/2 resonance are illustrated in
figure 2 for (left) left-handed and (right) right-handed couplings. For both types of cou-
plings, the spin of the initial and final state quarks are in the same direction and, hence,
the final state quark will preferentially move in the direction of the initial state quark.
Therefore, in the partonic c.m. frame, the angular distribution for a spin-1/2 resonance is

dσ̂1/2
d cos θ = 1

2 σ̂1/2(ŝ =M2)
(
1 + |λi,L|2 − |λi,R|2

|λi,L|2 + |λi,R|2
|λf,L|2 − |λf,R|2

|λf,L|2 + |λf,R|2
cos θ

)
, (2.7)

where the subscripts i, j indicated initial and final state couplings, respectively. We note
that for any chiral coupling λL ̸= λR, there will be a forward-backward asymmetry linearly
proportional to cos θ.

Directly analogous to the discussion for the spin-1/2 color sextet and antitriplet fer-
mions, we also consider the spin-3/2 resonances. The partonic angular distribution for an
on-shell resonance is given as

dσ̂3/2
d cos θ =

1
2 σ̂3/2(ŝ =M2)

[
1+3 cos2 θ+ |λi,L|2 − |λi,R|2

|λi,L|2 + |λi,R|2
|λf,L|2 − |λf,R|2

|λf,L|2 + |λf,R|2
cos θ

(
3 + cos2 θ

)]
.

(2.8)
Again, for a chiral coupling λL ̸= λR, there will be a forward-backward asymmetry scaled
to 3 cos θ+cos3 θ. A spin-3/2 resonance leads to higher powers in cos θ due to the multiple
partial-wave contributions. To measure the above angular distributions, the directions of
the initial state and final state quarks must be determined. On average, valence quarks
have a higher momentum fraction of the proton than sea quarks or gluons. Previous
studies [84] have utilized this momentum imbalance to identify the reconstructed partonic
system direction with the initial state valence quark direction, as already discussed in the
previous section. However, even if we are able to statistically determine the momentum
direction of a valance quark, it is still a real challenge to identify the correlated momentum
direction of the final state quark, i.e. distinguish the quark and gluon jets. There has
been much previous work on measuring the differences between quark and gluon jets at
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qi gi

gf qf

λL 6= 0 λR = 0

qi gi

gf qf

λL = 0 λR 6= 0

Figure 2. Spin correlations for color sextet and anti-triplet spin-1/2 fermion resonance production
assuming pure (left) left-handed and (right) right-handed couplings. Single-arrowed lines represent
momentum in the c.m. frame and double-arrowed lines represent spin. The subscript i (f) indicates
initial (final) state particles. Longer double arrows indicate spin-1 particles, shorter for spin-1/2.

LHC [32, 85–88]. These techniques are subtle and need experimental verification at the
LHC. If we treat gluon and quark jets as indistinguishable, the jet angular distribution
is symmetrized and the spin-1/2 angular distribution has no difference from the scalar
angular distribution.

In section 2.1 four vector resonances with different color representations were intro-
duced: color singlet, triplet, anti-sextet, and octet. For the color triplet and anti-sextet
diquark vector production the dijet process is qq → qq while for the color singlet and octet
vectors the process is qq̄ → qq̄. In general, the angular distribution of those spin-1 states is

dσ̂1
d cos θ = 3

8 σ̂1(ŝ)
(
1 + cos2 θ + 2

g2
i,L − g2

i,R

g2
i,L + g2

i,R

g2
f,L − g2

f,R

g2
f,L + g2

f,R

cos θ
)
, (2.9)

where θ is the angle between the initial state and final state quarks, gi,L, gi,R are initial
state chiral couplings, and gf,L, gf,R are final state chiral couplings. In general, chiral
couplings λL ̸= λR lead to a forward-backward asymmetry that is linearly proportional
to cos θ. In the diquark vector cases, either final state quark can be spin correlated with
either initial state quark. Hence, the left- and right-chiral couplings are equal and the
angular distribution is completely symmetrized at the partonic level. The characteristic
distribution for a spin-1 vector state remains and it leads to the well-known non-chiral
symmetric form

dσ̂1
d cos θ

∣∣∣∣
gL=gR

= 3
8 σ̂1(ŝ)(1 + cos2 θ). (2.10)

For the color-octet and singlet vectors, their spin correlations and chiral couplings are not
necessarily equal. Figure 3 illustrates the spin correlations for (left) pure left-handed and
(right) right-handed couplings. If the chiral couplings are purely right-handed or purely
left-handed the spin of the initial state quark (antiquark) is correlated with the final state
quark (antiquark), and the final state quark preferentially moves in the direction of initial
state quarks. In the case of both left- and right-handed chiral couplings, the helicity of
the initial state and final state quarks (antiquarks) are not necessarily the same. Hence,
in principle, the shape of the angular distribution contains information about the relative
strengths of the chiral couplings, similar to that in eq. (2.9). Unfortunately, it is very
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qi q̄i

q̄f qf

gL 6= 0 gR = 0

qi q̄i

q̄f qf

gL = 0 gR 6= 0

Figure 3. Spin correlations for color singlet and octet vector resonance production assuming pure
(left) left-handed and (right) right-handed couplings. Single-arrowed lines represent momentum in
the c.m. frame and double-arrowed lines represent spin. The subscript i (f) indicates initial (final)
state particles.

gi gi

gf gf

gi gi

gf gf

Figure 4. Representative spin correlations for color tensor octet production. single-arrowed lines
represent momentum in the c.m. frame and double-arrowed lines represent spin. The subscript i
(f) indicates initial (final) state particles.

difficult to distinguish a quark jet from an anti-quark jet [89–92]. In the indistinguishable
limit, the observed angular distribution will be of the symmetric form as in eq. (2.10).

Finally, we consider a tensor octet. Figure 4 depicts some representative spin corre-
lations for initial state gluons with (left) the same helicity and (right) opposite helicities.
The final and initial states are individually symmetric under the exchange of gluons. The
angular distribution is then of the symmetric form

dσ̂2
d cos θ ∼ (1 + cos θ)4 + (1− cos θ)4 + 4

9

(
2 + ŝ

M2
T

)2(
1− ŝ

M2
T

)2

(1 + 4f)2, (2.11)

where MT is the mass of the octet tensor, f is the relative coupling factor defined in
eq. (2.3). For an on-shell tensor ŝ→M2

T , the angular distribution reduces to

dσ̂2
d cos θ = 5

32σ2(ŝ)
(
1 + 6 cos2 θ + cos4 θ

)
. (2.12)

In figure 5 we present the angular distributions for scalars, spin-1/2 (3/2) fermions,
vectors, and tensors. Not distinguishing the final state jets from q, q̄, and g, all the
distributions of spin-1/2 (3/2) fermions and scalar/vector would be symmetric. We still
see the shape difference for a vector and spin-3/2 resonance. The angular distribution of
the tensor resonance is most forward due to the higher power dependence of cos θ. We
reiterate that for chiral couplings λL ̸= λR, there will be forward-backward asymmetries
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Figure 5. Symmetrized di-jet angular distributions for different resonant signals in the partonic
center-of-momentum frame. The invariant mass of the partonic system is

√
ŝ =M , where M is the

resonance mass.

for spin-1/2, spin-3/2, and spin-1 resonances, which, if observable, would provide crucial
information for their underlying couplings.

2.4 Color representation

It will ultimately be essential to probe the color quantum number for a resonance after
discovery. Radiation patterns of gluons can be instrumental in identifying the color repre-
sentation of the resonant particle. Representative examples of the leading color flow for the
resonances outlined in section 2.1 are shown in figure 6 for (a) antitriplet vectors and scalar,
(b) sextet vectors and scalars, (c) triplet fermions, (d) antisextet fermions, (e) octet scalars
and tensors, (f) singlet vectors, and (g) octet vectors. The solid arrowed lines along the
particle lines represent the flow of fundamental color charge. As can be seen, for different
spins and color representations, different initial and final state partons are color connected
and the color flow of a given resonance depends on the resonance’s color representation
and the representations of the SM partons it couples to.

In the large NC limit, only gluons radiated off color-connected lines will interfere.
Hence, the radiation pattern of gluons can be instrumental in detecting the color repre-
sentation of the resonant particle. For example, consider a singlet versus octet resonance.
In the octet case, the initial state partons are color connected to the final state partons.
In contrast, the initial state and final state partons are separately color-connected in the
singlet case. Hence, in the plane defined by the two hard final state jets containing the
colliding beams, an octet resonance is expected to have more radiation between the beams
and the jets than a singlet resonance, i.e., where the phase space of gluons radiated off
the initial and final states overlap. This observation has been used in previous proposals
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(b)

q∗3
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(c)

q∗6
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(d)
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(e)

Z′

1
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4
(f)

V8

1

2

3

4

(g)

Figure 6. The leading color flow diagrams for (a) 3 ⊗ 3 → 3, (b) 3 ⊗ 3 → 6, (c) 3 ⊗ 8 → 3, (d)
3 ⊗ 8 → 6, (e)8 ⊗ 8 → 8, (f) 3 ⊗ 3 → 1, and (g) 3 ⊗ 3 → 8. The solid, colored arrowed lines along
the particle lines represent the flow of fundamental color charge. Z ′ denotes a color singlet vector.
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to identify the color of particles. Ref. [5] analyzed the radiation patterns inside jets to
separate singlet from octet color flows. Similar color flow ideas have been applied to dis-
tinguishing color octet and singlet dijet events [4] and top pair tagging [6] and many other
new physics searches [7, 93–95]. This is also the basic idea of the rapidity gap [96].

In this section, we study the radiation patterns and cross-sections of a single gluon
radiated off the hard di-jets. We provide analytical results of the gluon radiation pattern,
so-called “hadronic antennae” patterns, for the different colored resonances, as previously
studied analytically in ref. [4].

2.4.1 Antennae patterns

First, we present analytical results for dijet events with an additional radiated gluon. As
the discussion of color flows made apparent, the interference of the gluon radiated off of
different external legs is sensitive to the color representation of the s-channel resonance.
Hence, we work in the soft limit where the interference of different diagrams is dominant.
Under the soft approximation, the matrix element M2→3 of a 2 → 2 process plus a soft
gluon radiated off of an external colored particle is related to the matrix element without
radiated gluon, M2→2, by

M2→3 ∼ gs
ε(l) · q
l · q

M2→2, (2.13)

where ε is the gluon polarization vector, l is the gluon momentum, q is the momentum of
the parton radiating the gluon, and gs is the strong coupling constant. This factorized form
is valid for any soft gluon radiation with a transverse momentum lT ≪ qT ∼ M/2. For
massless partons, the square of the matrix element in eq. (2.13) with the gluon spin summed
is zero. Also, for a process mediated by a heavy resonance, width effects regularize any
soft divergence. As a result, in the soft limit, interference terms between gluons radiated
off of external legs are dominant for massless external partons. This interference pattern
is precisely the effect needed to detect the color flow for the different resonances.

Motivated by this observation, we calculate the matrix elements of our various reso-
nances in the soft gluon limit and only consider radiation off of the initial and final state
partons. These calculations have been performed before for vector color-singlet resonances
and the process qq̄ → g → q′q̄′ in the large NC limit [4]. For the following matrix elements,
we adopt the notation M2→R→n for the 2 to n process through the resonance R. Also, we
generically label initial state momenta as p1,2 and final state momenta as k1,2. We depict
the representative Feynman diagrams with their momentum assignments in figure 7.

First, we present the antennae patterns of a vector resonance for the color-singlet, V1,
and color-octet, V8,

|M2→V1→3|2

|M2→V1→2|2
∝ g2

s([p1p2] + [k1k2]), (2.14)

|M2→V8→3|2

|M2→V8→2|2
∝ g2

s

{(
1− 2

N2
C

)
([p1k1] + [p2k2]) +

2
N2

C

([p1k2] + [p2k1])

− 1
N2

C

([p1p2] + [k1k2])
}
, (2.15)
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p1

p2

k2

k1

l

Figure 7. Representative Feynman diagram of a 2 → 3 process with soft gluon radiation in the
final state quark.

where p1 (k1) is the momentum of the initial (final) state quark and p2 (k2) the initial (final)
state antiquark. The square brackets indicate “antennas”, which specify the interference
between radiations from different primary partons, defined by

[kikj ] =
ki · kj

l · ki l · kj
, (2.16)

where l is the radiated gluon momentum. As predicted by the color flow diagrams in
figures 6(f) and (g), the most significant interferences are between the initial state and
final state partons separately for the singlet and the initial state quark (antiquark) and
final state quark (antiquark) for the octet. The color connections and antennae patterns
for a singlet (octet) scalar coupling to quarks are the same as those for a singlet (octet)
vector.

One can explicitly evaluate the hadronic antennae in a fixed frame. Working in the
partonic c.m.-frame, for p1 + p2 → k1 + k2 + l in the soft gluon approximation lT ≪ ET ,
we have

p1 = ET (cosh η, 0, 0, cosh η), p2 = ET (cosh η, 0, 0,− cosh η) (2.17)
k1 = ET (cosh η, sinϕ, cosϕ, sinh η), k2 = ET (cosh η,− sinϕ,− cosϕ,− sinh η) (2.18)
l = lT (cosh ηg, sinϕg, cosϕg, sinh ηg). (2.19)

Using these momenta, we find the hadronic antennae

[p1 p2] =
2
l2T
, [k1 k2] =

2
l2T

cosh2 η

cosh2 ηg cosh2 η − (cos(ϕ− ϕg) + sinh η sinh ηg)2

[p k] = 4
l2T

cosh2 η + cosh2 ηg − 1− cos(ϕ− ϕg) sinh η sinh ηg

cosh2 ηg cosh2 η − (cos(ϕ− ϕg) + sinh η sinh ηg)2 , (2.20)

where, again, [p1 p2], [k1 k2], and [p k] ≡ ∑
i,j=1,2[pi kj ] are associated with interference of

gluons radiated from initial state partons, final state partons, and between initial and final
state partons.
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Next, the antennae patterns for scalar diquarks are
|M2→QND

→3|2

|M2→QND
→2|2

∝ g2
s

{
[p1k1] + [p2k2] + [p1k2] + [p2k1]∓ 2CFNC

CDND
([p1p2] + [k1k2])

}
, (2.21)

where the upper sign is for the sextet case, and the lower is for the triplet, and CD is
the quadratic Casimir operator for the sextet or triplet representation. For the sextet,
CD = 10/3 and for the triplet CD = CF = 4/3. Using the values of CD, one can find the
sextet case

|M2→Q6→3|2

|M2→Q6→2|2
∝ g2

s

{
[p1k1] + [p2k2] + [p1k2] + [p2k1]−

2
5 ([p1p2] + [k1k2])

}
, (2.22)

and for the triplet
|M2→Q3→3|2

|M2→Q3→2|2
∝ g2

s

{
[p1k1] + [p2k2] + [p1k2] + [p2k1] + 2 ([p1p2] + [k1k2])

}
. (2.23)

Note that the interference between initial (final) state quarks is suppressed by 2/5 relative
to the initial and final state interference for the sextet. In contrast, for the triplet, there
is no such suppression. Since a sextet is the symmetric combination of two triplets and an
antitriplet the antisymmetric combination, there is destructive and constructive interfer-
ence between the two possible color flow for triplet and sextet diquarks, respectively. This
effect is shown in figures 6a and 6b. Hence, for the triplet, the interference between the
initial and final state quarks is suppressed relative to the sextet case. As can be seen in
eq. (2.23), the destructive interference in the triplet case causes all possible interferences
to make roughly equal contributions, even though, in the large NC limit, the interference
between the two initial (final) state quarks is subdominant. Whereas, for the sextet case,
the interference between color-connected partons remains dominant, as shown in eq. (2.22).

For the triplet and sextet fermions:
|M2→Q∗

3→3|2

|M2→Q∗
3→2|2

∝ g2
s

{
[p1k1] +

8
9 ([p2p1] + [k2k1])−

1
9 ([p2k1] + [k2p1]) +

1
81[p2k2]

}
, (2.24)

|M2→Q∗
6→3|2

|M2→Q∗
6→2|2

∝ g2
s

{
[p1k1] +

1
3 ([p2k1] + [k2p1]) +

4
15 ([p2p1] + [k2k1]) +

1
9[p2k2]

}
, (2.25)

where p1 (k1) is the momentum of the initial (final) state gluon and p2 (k2) is the momentum
of the initial (final) state quark. As can be seen in figure 6c, for the triplet fermion
the initial and final state gluons, the initial state gluon and quark, and the final state
gluon and quark are color connected. Hence, the interferences between these pairs are the
dominant contribution to the antennae behavior. The sextet fermion is much more difficult
to interpret, although interference between initial and final state gluons is the dominant
contribution.

Finally, we have the scalar octet coupling to two gluons:
|M2→S8→3|2

|M2→S8→2|2
∝ g2

s

{
[p1p2] + [k1k2] +

1
2 ([p1k1] + [p2k1] + [p1k2] + [p2k2])

}
, (2.26)

Since all gluons are color connected and the matrix elements are symmetric under exchanges
k1 ↔ k2 and p1 ↔ p2, all possible interferences are significant. The antennae pattern for
the tensor octet is the same since the color flow is identical.
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Initial Color Spin Type R3/2

0 D3 0.41
Eµ

3 0.41
3 1 Dµ

3 0.40
Uµ

3 0.39
E6 0.29

3⊗ 3 0 D6 0.29
U6 0.28

6
Eµ

6 0.29
1 Dµ

6 0.28
Uµ

6 0.27

U∗
3 0.61

3⊗ 8 3 1
2 D∗

3 0.59

0 S8 0.69
8⊗ 8 8S 2 T8 0.70

V8 0.27
3⊗ 3̄ 8A 1

V ±
8 0.26

Table 2. Ratios of 2 → 3 resonant production cross-section over 2 → 2 processes at parton level
with pj

T > 200GeV, |ηj | < 3.0, and ∆Rjj > 0.4 at the 14 TeV LHC. The mass of all color resonances
is set to be 3 TeV and the width is set to be 30 GeV.

2.4.2 Cross-section ratios

An important quantity in understanding QCD dynamics is the scaling of cross-sections
with additional jets. The scaling is broadly defined as

R(n+1)/n = σ2→n+1
σ2→n

, (2.27)

where σ2→n is the hadronic cross-section of an underlying process with n observed hadronic
jets. Naively, the ratio goes like ∼ αs, but it depends on the color structure of a specific
process and the jet selection procedure. This property has been studied at hadron colliders
for the Drell-Yan processes W+jets and Z+jets [13, 14], pure QCD jet production [14],
direct photon+jets [15], and Higgs production [16].

The ratio of the three-jet cross-section to that of a di-jet resonance depends on many
factors, such as the di-jet system invariant mass, the di-jet initial state composition, and,
especially to our interest, the color representation of the s-channel resonance. We have
presented the analytical expressions for their matrix elements in the previous section 2.4.1.
Table 2 shows the cross-section ratios R3/2. MadGraph5_aMC@NLO [97] was used to calculate
these rates using model files generated via FeynRules [98]. As can be clearly seen, R3/2 is
strongly dependent on the color of the initial state partons as well as the color charge of the
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intermediate resonance. For instance, when comparing the R3/2 between different initial
states, such as 3 ⊗ 3, 3 ⊗ 8, 8 ⊗ 8, 3 ⊗ 3̄, a general trend is gluonic initial states provides
stronger radiation and thus larger R3/2. Within the same set of initial states, we can see that
R3/2 can distinguish the color representation of the resonance. For example, for 3⊗ 3 the
color sextet resonance generically has a smaller R3/2 than the anti-triplet resonance. This
comes from the sizable change from constructive interference for the triplet to destructive
interference for the sextet between radiation from the initial parton and final dijet pairs.
The effect can be understood using the soft-emission approximation, e.g., in eq. (2.21),
eq. (2.22), and eq. (2.23). It is striking that particles with different spins but the same
color flow have similar ratios, while particles with the same spin but different color flows
can have very different values of R3/2.

3 Cut-based analysis for the antenna pattern

Extracting the underlying color structure is a challenging task when it comes to collider
signals. We now present our analysis with the “interference spectrum”. Instead of looking
into the total energy distribution of an event after hadronization, we focus on just one
additional radiated jet to probe the color. As can be seen in the analytical results of
section 2.4.1, the radiation pattern of a gluon depends on the underlying colored resonance.
Specifically, the relative strengths of terms related to the interference of gluons radiated
off the two initial state partons [p1p2], the two final state partons [k1k2], and initial and
final state partons [pikj ] differ among the various color representations. Hence, if these
relative strengths can be measured, then information on the color representation of the
new resonance can be obtained. With this intuition, we now develop a cut-based strategy
to measure these effects. The next section will use a machine learning-based strategy to
disentangle the color representations.

Figure 8 shows contours as a dimensionless probability density (with arbitrary normal-
ization) of radiations in the η − ϕ plane of the hadronic antennae between (a) final state
partons, l2T [k1 k2], and (b) initial and final state partons, l2T [p k], with the ubiquitous factor
of l2T factored. To make the illustration more transparent rather than the uncharacteristic
spread in the η-ϕ plane, we boosted the dijet and radiation system in the transverse plane,
so that the two leading jets are not back-to-back. We do not show the pure initial state
radiation interference pattern l2T [p1 p2], since it is trivial and just a constant. The brighter
regions indicate the larger numerical values of the antennae patterns, eq. (2.16), which rep-
resents a higher probability for the radiation to take place. Both figures share highlighted
areas near the final state jets since the radiation tends to be collinear with its parent jet.
It is this region that shall not be considered in our cut-based analysis due to the low signal
(from interference) to the background (from colinear emission) ratio.

The difference in the radiation for different antennae patterns is very pronounced in
figure 8. Namely, gluons tend to be radiated between the final state jets for l2T [k1 k2] for
the color singlet and between the final state jets and the beam direction for l2T [p k] for the
color-octet. These are the distinct regions that distinguish the different patterns. Many
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Figure 8. Interference pattern between different jets/partons. (a) Interference between two final
state jets; (b) interference between final state jets and initial state partons.

works have focused on the region between the two interfering jets both theoretically [4–6]
and experimentally [9].

From the discussion above, our observables should be sensitive to the interference
regions, but insensitive to radiation collinear with the final state jets. A generic antennae
pattern can be rewritten as

[pApB] =
pA · pB

pA · l − pB · l

( 1
pB · l

− 1
pA · l

)
. (3.1)

The two terms in the parentheses represent the regions where the radiated gluon is collinear
with one of the parent partons. When the radiated gluon has the same angular separation
with both parent partons, the denominator in the pre-factor (pA · l − pB · l) is zero. Hence,
this denominator is the characteristic feature of the interference. It is intuitive to choose
the fractional factor

pA · pB

pA · l − pB · l
(3.2)

to define the “valley” region where interference is maximized since this fraction is large
when the radiated gluon is between the two parent partons. This fraction scales as the
energy scale of the dijets to the radiated gluon. Hence, to place a cut on eq. (3.2), we
use the transverse momentum of the radiation lT and the sum of transverse momentum
magnitudes of all final state jets, hT :

pA · pB

|pA · l − pB · l|
≥ hT

lT
⇒ |pA · l − pB · l| ≤ lT

hT
pA · pB. (3.3)

This condition is invariant under boosts along the beam direction and is robust at hadron
colliders.

– 16 –



J
H
E
P
0
8
(
2
0
2
3
)
1
7
3

Figure 9. The valley regions of eq. (3.3) that characterize interference effect for (a) interference
between two final state jets, and (b) interference between one pair of final state jets and initial state
partons.

The region satisfying eq. (3.3) is illustrated in figure 9, with the same kinematic con-
figuration as figure 8. In this figure, we set the event weight outside the valley region
to be zero. It is clear that this region contains most of the interfering radiation and ex-
cludes the common collinear regions shared by all interference patterns that share the same
jet/parton.

To test our observables beyond the idealized setup, a reliable event simulation is
needed. FeynRules [98] was used to implement the interactions of the colored resonances
in MadGraph5 [97] via UFO model files [99]. MadGraph5 is then used to simulate three jet
events at a 14TeV LHC. Here we simulate all resonances with a mass of 3 TeV. We require
all three jets to be hard. This requirement can be relaxed to allow for a soft 3rd jet or a
fat jet analysis, and our ML-based analysis in the next section shows the complimentary
analysis results. These hard jet requirements ensure events pass the LHC triggers and also
avoid the subtlety of multiple soft emissions whose analysis is complicated by pile-up and
underlying events. To isolate the interference region, one jet is allowed to be softer than
the other two. Hence, the following minimum cuts are applied [100]

pj1
T > 500 GeV, pj2,j3

T > 200 GeV, and, |ηj | < 3 (3.4)

where pT is transverse momentum and η is rapidity.1 The jets, ji are labeled numerically in
the order of decreasing transverse momenta, with j1 being the hardest. Due to the parent
jets being of high energy, their radiation j3 can also take high energy. Since we expect the
base event to be two jets with equal pT that then radiate a jet, we also require that pT of

1We work at the partonic level for the kinematics and ignore the detector effects.
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the second hardest jet is near the pT of the hardest jet

pj2
T ≥ 0.8 pj1

T . (3.5)

Finally, to resolve three jets, a minimum separation is required for all jet combinations

∆Rjj > 0.4 (3.6)

where ∆Rjj =
√
(∆ϕjj)2 + (∆ηjj)2 is the angular separation of two jets in the azimuthal

angle, ϕ, and rapidity plane. This hard isolation cut affects our ability to extract the
hadronic antennae pattern, and we shall see how machine learning can improve it in the
next section.

We now determine how each of the six possible interference patterns is populated for
different colored resonance as the partonic level. For every 2 → 3 event, the jet with
the smallest pT is considered as the radiation with momentum l. For a more realistic
calculation at hadron colliders, unlike the previous section, the momenta p1, p2, k1, and
k2 are ordered according to their momentum. From the total reconstructed momentum
and invariant mass of the three final state jets, the momentum of the initial state partons
can be reconstructed. The parton that carries a larger fraction x of proton momentum
is labeled p1, and the smaller one is p2. This step sets up our positive z-direction to be
the same as the direction of the partonic center-of-mass reference frame with respect to
the lab frame. Meanwhile, the jet with the largest transverse momentum is treated as
k1, and the second largest transverse momentum is k2. Without the above steps, there
would be no difference between the interference patterns [p1k1], [p1k2], [p2k1] and [p2, k2]
unless techniques to distinguish jets originating from quarks, anti-quarks, or gluons are
employed. This is not so important for resonances that come from identical initial states
like S8(gg), T8(gg), and some diquarks from uu and dd initial states. When we encounter
those resonances from different initial states like V 0,±

8 (qq̄) and Q
∗(µ)
3,6 (qg) these steps of

defining k1, k2, p1, and p2 will statistically differ the four would-be identical interference
patterns and thus shed light on the color structures.

To calculate the “valley” condition of eq. (3.3), pA and pB are a combination of the
two hardest final jets and initial state partons. For each event, we then calculate all six
possible combinations of the valley condition. The third jet (which is interpreted as the
radiation with momentum l) can be counted as one radiation in each valley condition it
satisfies. By this means, we have an “interference spectrum” of six different modes for
every resonant signal. They should have various strengths for different color structures.

Figure 10 shows the results of the interference spectrum through the procedure de-
scribed above. The horizontal axis is the six interference patterns. The vertical axis is
then the relative difference for each pattern, defined by the number of events for a given
resonance divided by the average number of events across all resonances and then sub-
tracted by unity. Identical color structures but different spins are labeled with the same
color with solid or dashed lines. In the order of the resonance classification in table 1, the
red dots and diamonds are for color-triplet scalars and vectors, respectively; the blue for
color sextet scalars and vectors; green for symmetric color octet scalars and tensors; black
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Figure 10. Hadronic antenna “Interference Spectrum” of different underlying colored resonances.
The horizontal axis is the six different interference sources in a trijet (dijet plus a radiated jet)
resonance event. The vertical axis is the normalized counting of radiation that comes from the
interference. Different underlying SU(3) color representations are shown in different colors. The
overall shape difference between different underlying color representations shows that we are able
to extract the color interference pattern using our cut-based method. A more detailed discussion
can be found in the text.

for color triplet fermions; and orange for octet vectors. Two critical features make this
figure 10 very intriguing. First, the relative strength of the six patterns is very different
for each color structure, providing the possibility of discriminating the color information.
Such patterns are crucial to break the degeneracy of the cross section ratios as shown in
table 2. Second, the same color structures have almost overlapping or parallel event counts.
In other words, we find an observable that is color structure-sensitive but insensitive to the
initial parton, boost, or spin of the resonance. This is a surprisingly nice result, given that
so many factors affect these distributions.

This spectrum is obtained around 100, 000 generated events, and there are over 9, 000
counts for each pattern. The statistical uncertainty associated with our counting would
be around 1% of the value represented by the points, which is larger than the dots’ size
in figure 10. We also tested the statistics by randomly generating another set of events
and found our results robust. There are some resonances not presented in this figure.
The diquarks from other initial states (uu, dd) all have the same behavior as diquarks
from ud initial states. The situation is similar for vector octets. Essential features of
dijets, including the color information carried by the interference pattern, can be more
effectively captured using modern machine-learning techniques. We explore aspects of
machine learning in the next section.
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4 Diagnostic studies with deep learning

While the interference patterns can already provide us with distinctive features for different
color resonances, the ML techniques have the potential to make optimal use of all the infor-
mation available. Various ML techniques have already been proven useful in collider physics
(for recent reviews see refs. [101–104]). We use a convolutional neural network (CNN) [105]
to demonstrate the capability of ML in distinguishing different color resonances.

4.1 General features of the signal processes

As in previous sections, we make use of the topology of a resonance R decaying to two
hard jets plus an additional radiated jet off the initial, final, or resonant states:

p p→ R(j) + remnants → jjj + remnants, (4.1)

where (j) in the intermediate step indicates the possibility of initial state radiation. In this
section, we study the vector color singlet V1(uū), vector color octet V8(uū), diquark vector
color sextet Eµ

6 (uu), and digluon scalar octet S8(gg) as the representative resonances. The
events simulated via MadGraph5_aMC@NLO [106] with 3 jets in the final states at the 14 TeV
LHC. The model files were generated with FeynRules [98]. We set the masses of the
resonances to be M = 3TeV and the widths to be narrow such that the apparent width in
the experimental signature is dominated by detector resolution not the resonance’s intrinsic
width. For simplicity, we adopt the non-chiral couplings for the resonances in the rest of the
presentations. The generator-level cuts on the transverse momentum and pseudo-rapidity
are set to be

pj1
T > 600 GeV, pj2

T > 500 GeV, pj3
T > 100 GeV, and | ηj |< 3, (4.2)

where, as in the previous section, the jets are ordered according to their transverse mo-
mentum. Pythia 8.1 [107, 108] is used for parton showering and hadronization. The jets
are clustered by using the anti-kT algorithm [109] with R = 0.4. The generated events are
passed into Delphes 3.4.1[110] for fast detector simulation.

A jet is a collimated spray of particles, resulting from the parton showering and
hadronization of high-energy quarks and gluons. Each jet can be defined as a calorimeter
energy deposition in the 2D angular plane ϕ-η. Pixelating jets in the ϕ-η plane can form jet
images with the intensity of pixels being observables such as transverse momentum, energy,
particle multiplicity, etc. These calorimeter images can then be used in a CNN. To max-
imally utilize all radiation information, in addition to the three hard jets generated with
MadGraph5_aMC@NLO, we include all the jets satisfying pj

T > 100GeV and |ηj | < 3 in the
jet images. Some of these jets may be generated via parton showering and hadronization.

4.2 Data pre-processing

The initial jet image is defined in the ϕ-η plane. In this study, we use four input channels
as the intensity of the pixels:

1. transverse momenta of positively charged particles,
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Figure 11. The difference of stacked jet images in the generalized coordinate system X-Y plane
for V1 − V8 (left) and V1 − S8 (right).

2. transverse momenta of negatively charged particles,

3. transverse momenta of neutral particles, and

4. charged-particle multiplicity.

The CNN is trained simultaneously on all four input channels.
To maximize the CNN learning performance, the images are pre-processed for faster

training. First, the images are rotated and reflected to change the jet image axes from ϕ-η
to a generalized dimensionless coordinate system X-Y , while keeping ∆R invariant. In this
way, the geometry of the two jets identified as originating from the resonance are the same
for each event and the jet images are sensitive to additional radiation. In this case, we
use the dominance of collinear radiation to identify the most distant of the three hardest
jets as one of the jets originating from the resonant decay. The hardest of the remaining
two jets is identified as the second jet “originating” from the resonance decay. The final
jet is identified as radiation. Additionally, we remove information that may superficially
separate the resonances such as overall rates, absolute pixel intensity, resonant mass, etc.
Considering the three hardest jets, the pre-processing steps applied to the jet images are:

1. Shift the most distant jet2 of the first three leading jets to the origin of the coordinate
system.

2. Rotate the jet with higher transverse momentum of the remaining two jets to the
positive X-axis.

3. Flip the third jet in the first quadrant.

4. Digitize the jet image with 64× 64 pixels in the range X ∈ (−1, 9) and Y ∈ (−1, 7).

5. Normalize the pixel intensities such that ∑ij Iij = 1 across the image, where i and j
index over all pixels. The intensity Iij of each pixel is the magnitude of transverse
momentum or charged particle multiplicity depending on the input channel.

2We identify the closest jet pair and define the remaining jet as the most distant one.
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Figure 12. The structure of CNN model.

6. Subtract the mean µij of the normalized images (the average intensity of pixel (i, j)
across all the data set) from each image, transforming each pixel intensity as Iij →
Iij − µij .

7. Divide each pixel value by the standard deviation σij of that pixel value in the
normalized dataset, Iij → Iij/σij .

After the first three steps, we fixed the two jets identified as originating from the resonance
decay at the origin and along the X-axis, as well as the relative position of the soft radiation.
The last three steps follow ref. [32]. In figure 11 we present the results of the pre-processing.
To obtain this figure, we stack 80,000 pre-processed images using the first three input
channels, i.e., the transverse momentum input channels. The resonances considered are the
color singlet vector V1, the color octet vector V8, and the color octet scalar S8. Figure 11a
shows the results with the color octet vector pre-processed images subtracted from the
color singlet vector pre-processed images. The positive intensity pixels (red) have larger V1
intensity, while negative intensity pixels (blue) have larger V8 intensity. This shows that,
indeed, the radiation from V1 occurs mostly near the X-axis, while radiation from the V8
resonance occurs far away from the two jets identified as originating from the resonance.

The results are even more striking in figure 11b, where we subtract the pre-processed
color octet scalar S8 images from the color singlet vector V1. There is a strong positive
intensity peak along the X-axis, while the negative intensity is more uniform. This clearly
reflects that the radiation from the color singlet preferentially occurs between the final state
jets, while the color octet does not have a preferential radiation pattern in the pre-processed
images, and gluon jets have more radiation than quark jets.

4.3 CNN architecture and training

We use the pre-processed data as inputs. The deep convolutional network architecture used
in this study consisted of three iterations of a convolutional layer with a ReLU activation
and a max-pooling layer. Two dense hidden layers consisted of 64 units following the
three convolutional layers. An output layer of two units with softmax activation is fully
connected to the final dense hidden layer. To avoid overfitting, the dropout rate was taken
to be 0.25, 0.25, 0.5 after the three convolutional layers, respectively, such that the CNN
model only picks up the general features rather than the random fluctuations in the training
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Figure 13. The ROC curves of the CNN model with 4 input channels for various resonances R1
versus R2.

samples. Each convolutional layer consisted of 32 filters, with filter sizes of 3. The max-
pooling layers performed a 2 × 2 down-sampling with a stride length of 1 to extract the
most prominent features from the previous layer. We use zero padding in the convolution
layer to keep the convolutional outputs from reducing in size. The structure of our CNN
model is shown in figure 12. We explored several CNN models with different architectures
and filter sizes, and ultimately selected the best-performing model for our analysis.

The CNN was trained using the Adam algorithm with categorical cross-entropy as the
loss function. The training used a batch size of 128 over 15 epochs. The data consisted of
120,000 jet images, partitioned into 100,000 training images and 20,000 test images. An
additional 10% of the training images were used as validation data during the training.

4.4 CNN results

To show the CNN performance using all four input channels in distinguishing two different
signals, we plot the results in figure 13 for the receiver operating characteristic (ROC). The
ROC curve shows the rejection rate of resonance R2 as a function of the acceptance effi-
ciency of resonance R1, i.e., the power of the CNN to discriminate between two resonances
R1 and R2. The area under the ROC curves (AUC) is shown in table 3. A larger AUC
indicates that the CNN is more effective in distinguishing between the two resonances.
This is because a curve with a larger AUC demonstrates a greater ability to reject R2
resonances relative to the R1 acceptance rates. As another measure of the CNN ability to
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R1 VS R2

AUC
CNN

V1 (uū) vs. V8 (uū) 0.61
V1 (uū) vs. Eµ

6 (uu) 0.73
V1 (uū) vs. S8 (gg) 0.90
V8 (uū) vs. Eµ

6 (uu) 0.70
V8 (uū) vs. S8 (gg) 0.92
Eµ

6 (uu) vs. S8 (gg) 0.93

Table 3. AUC with CNN implementations.

R2 efficiency (%)
at 50% R1 acceptance

R2 : V1 (uū) R2 : V8 (uū) R2 : Eµ
6 (uu) R2 : S8 (gg)

R1 : V1 (uū) 50% 35% 20% 4.4%
R1 : V8 (uū) 35% 50% 23% 3.1%
R1 : Eµ

6 (uu) 20% 23% 50% 2.8%
R1 : S8 (gg) 2.8% 1.8% 1.4% 50%

Table 4. R2 acceptance efficiencies at 50% R1 acceptance with CNN implementations.

distinguish resonances, in table 4 we show the acceptance efficiencies3 of various resonances
R2 when the acceptance efficiencies of another resonance R1 is set to 50%. For a fixed 50%
efficiency for R1, the smaller the acceptance for R2 the better the CNN can distinguish
between the two resonances. If the acceptance efficiencies of both resonances are 50% they
are indistinguishable.

Among all the models we consider, the digluon scalar octet S8 can be most easily
distinguished from the others. The AUC for any R1 versus S8 is 90% or greater. Also
when the efficiency of S8 is 50% the acceptance efficiencies of other resonances are percent
level and vice versa. This observation emphasizes the critical role played by the nature of
the jet, whether it is composed of quarks or gluons. The easiest to distinguish resonances
are S8 and Eµ

6 , in which the spin, QED charge, color structure, and initial and final states
are different. The efficiency of Eµ

6 (uu) can reach as low as 1.4% at the 50% S8 acceptance.
Although, S8 and V8 are nearly as easy to distinguish as S8 and Eµ

6 . In the case of S8
versus V8, the QED charges are the same but the spin, color structure, and initial and
final states are different. This indicates that in the instance of distinguishing S8 and other
resonances, factors other than the charge of the resonance are the dominating factors.

The V1 acceptance efficiency at 50% Eµ
6 acceptance is significantly lower than that

at 50% V8 acceptance. The AUC for V1 versus V8 is significantly lower than V1 versus

3Here the acceptance efficiency is 100% minus the rejection rate.
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Eµ
6 , as well. Similarly, the V8 efficiency at 50% Eµ

6 acceptance is significantly lower than
the V8 efficiency at 50% V1 acceptance. In all these cases, the spin is the same and the
initial and final states consist of quarks and/or antiquarks. The differences are the color
structure and for V1/V8 versus Eµ

6 the QED charge. This is a hint that the QED charge
information of the final state jets is important in distinguishing these resonances. The most
challenging case for CNN is to distinguish V1 from V8, where they are only differed by their
color structure. Because the resonances are quite heavy, the two leading jets in the final
state are almost back-to-back, so that the color interference is rather small. However, this
issue can be potentially mitigated in the hadron collider with larger center-of-mass energy,
where the produced heavy resonance can be significantly boosted.

5 Summary and conclusions

If a new resonance is discovered at a hadron collider such as the LHC, it would be ultimately
important to learn the underlying dynamics by determining its quantum numbers, such
as the spin, couplings, and gauge charges. In this paper, we studied the characteristics of
heavy resonances with a variety of spins, QED charges, and charges under the QCD color.
We discussed the rapidity distribution of the dijet system to infer the information of the
resonance coupling via the initial state partons. We presented the analytical expressions
of the polar angle distributions in the resonance rest frame for the chiral couplings of
resonances with a spin-0, 1/2, 1, 3/2, and 2, and showed that the spin of resonance can
be determined by measuring the angular distribution of its decay products. Resonances
with different color structures have different color flows, leading to distinctive radiation
patterns. We showed that the ratio of the base two-to-two dijet resonance production
and that with an additional radiation is quite powerful in distinguishing the color flow
of different resonances. Additionally, we presented analytical expressions for the hadronic
antennae patterns of various dijet resonances with an additional soft gluon radiation, clearly
showing the distinctions in these patterns. We carried out a parton level cut-based analysis
to exploit the antenna radiation patterns in figure 10 for a variety of color resonance states.
Those differences in the radiation patterns of different colored resonances can be used in
the deep-learning techniques to distinguish them from each other.

We then exploit the machine-learning techniques to improve the signal identification
and to distinguish different colored resonances, by adopting a Conventional Neural Network
(CNN). In the CNN model, the inputs are jet images and we exploit four input channels:
charged particle multiplicity and the energy depositions of positively charged, negatively
charged, and neutral particles. We study the heavy color resonance which is the most
challenging scenario, as the decaying two leading jets are almost back-to-back and the
color interference is small. We generate a 3-jet final state at the parton level with the
minimum transverse momentum to be 600, 500, and 100 GeV, respectively. The softest
parton can be an ISR or FSR. To fully make use of the radiation pattern from different
color connections, we include all the jets after showering and hadronization via Pythia for
CNN training. Our main results are shown in figure 13 and table 4, summarized as follows:
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• We find excellent performance in distinguishing S8 versus other resonances. In the
CNN model, V1 (V8) efficiency at 50% S8 acceptance is 2.84 (1.77)%, which implies
a very low misidentification between the states. The performance in S8 against Eµ

6
is even better than against V8. When the Eµ

6 efficiency is at 50%, the S8 acceptance
is 1.40%. These small improvements probably come from the difference in charge
distribution and color structure.

• Distinguishing Eµ
6 from V1 and V8 seems to be promising, as shown with 20% and

23% mis-identification acceptance, respectively.

• The most challenging channel is V1 versus V8, in which the only difference is the color
quantum number. When the V1 identification efficiency is at 50%, the V8 acceptance
is only 34.9% for the CNN model. It is interesting to note that distinguishing V1
versus Eµ

6 is better than V1 versus V8. This is because we separate the positive and
negative charges in the CNN model, the difference in the charge distribution plays a
significant role in this channel.

Our study shows that machine learning techniques can play an essential role in identifying
different heavy color resonances at the LHC by exploiting the color information from the
additional QCD radiation. While in this work we use binary classification to demonstrate
the capability of machine learning techniques, a multiclass classification would be very
useful to unravel the color structure once such resonances are discovered.

Overall, we systematically studied the feasibility to determine the properties and quan-
tum numbers of a heavy resonance if observed at a hadron collider. We found encouraging
results including exploring the color structure of the events. Although we demonstrated
our results numerically at the LHC, the methodology presented here should be applicable
to other future hadron colliders.
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A Excited quark Clebsch-Gordan coefficients

Here we give the Clebsch-Gordan (CG) coefficients for the excited quark interactions in
eq. (2.2). For the triplet excited quark, the CG coefficients are proportional to the funda-
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mental representation matrix:

KA
6 =

√
2TA. (A.1)

For the color sextet excited quark the CG coefficients are

K1
6 = 1√

6



00
√
2

000
00−

√
2
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000
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6
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, (A.2)

K4
6 = 1√
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.

In deriving these CG coefficients, we have used sextet representation matrices of ref. [40]
The bar notation is defined as K̄ND,A = (KA

ND
)†. Then obey the orthonormality

relationship

Tr K̄ND,AK
B
ND

= δB
A . (A.3)

B Spin-3/2 Lagrangian

Here we summarize results on the spin-3/2 Lagrangian as can be found in refs. [51, 56–
60, 65–68, 111, 112]. Start with a general form for the free field spin 3/2 Lagrangian

L = ψ̄µΛµνψν , (B.1)

In order to project out the two Dirac fermions (Lorentz representations of (1/2, 0) and
(0, 1/2)) that live in ψµ, the on-shell spinors must obey the equalities [66, 67]

γµψµ = ∂µψµ = 0.. (B.2)

Additionally, the spinors should obey the Dirac equation(
/p−M

)
ψµ = 0. (B.3)
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The equations of motion will be

Λµνψν = 0. (B.4)

The conditions in eqs. (B.2) and (B.3) are invariant under the transformation

ψµ → ψ′µ = (gµν + κγµγν)ψν . (B.5)

Hence, we demand the Lagrangian to be invariant under this transformation as well. It
can then be found that the most general bilinear is [66–68, 112]

Λµν =
(
/p−M

)
gµν +A (γµ pν + pµγν) + B

2 γ
µ
/pγ

ν + CM γµγν , (B.6)

where B = 3A2 + 2A+ 1, C = 3A2 + 3A+ 1, and A has the transformation

A→ A′ = A− 2κ
1 + 4κ . (B.7)

This transformation does not introduce any additional Lorentz structure to eqs. (B.1)
and (B.6). The constant A is unphysical and the Rarita-Schwinger Lagrangian [65] is a
special case with A = −1.

The most general propagator is

Sµν = −iΠµν

p2 −M2 + iΓM , (B.8)

where [57]

Πµν = Πµν
RS +

(
p2 −M2

) [ a2

6M2 /pγ
µγν − a b

3Mγµγν + a

3M2 p
νγµ + a b

3M2 p
µγν

]
, (B.9)

the propagator for the Rarita-Schwinger spin-3/2 field is

Πµν
RS =

(
/p+M

) [
gµν − 2

3M2 p
µpν − 1

3γ
µγν − 1

3M (pνγµ − pµγν)
]
, (B.10)

and the constants are

a = 1 +A

1 + 2A, b =
A

1 + 2A. (B.11)

The propagator in eq. (B.9) reverts to the propagator for the Rarita-Schwinger field when
the particle is on-shell p2 =M2.

The general propagator can be derived using the usual Green’s function method, or
using the transformations in eqs. (B.5) and (B.7). Using the transformation of ψµ we can
find the general propagator in terms of the Rarita-Schwinger propagator:

Πµν = (gµρ+ κγµγρ)ΠRS,ρσ (gσν + κγσγν) (B.12)

Using eq. (B.7) with A = −1 for the Rarita-Schwinger case, we can solve for the necessary
κ to make this transformation:

κ = −1
2

1 +A′

1 + 2A′ . (B.13)

From this eq. (B.9) can be derived.
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The most general form for the lowest order operator that couples a spin-3/2 particle,
spin-1/2 particle, and gauge fields has the form [51, 56–60]

ψ̄µ (gµν + z γµγν) γα 1± γ5
2 Ka ψ F a

να, (B.14)

where Ka are Clebsch-Gordan coefficients, ψ is a spin-1/2 field, F a
να is a gauge boson

field strength tensor, and z is a constant. For on-shell spin-3/2 resonant amplitudes, the
dependence on z will vanish. If we require that the effective interaction be invariant under
the transformation in eq. (B.5), the parameter z must have a transformation:

z → z′ = z − κ

1 + 4κ. (B.15)

Another approach is to demand that no additional parameters in the effective interac-
tion have transformations. In this case, the interaction becomes [111, 112]:

ψ̄µ

(
gµν +

[1
2 (1 + 4Z)A+ Z

]
γµγν

)
γα 1± γ5

2 KaψF a
να, (B.16)

where Z is an arbitrary constant that does not transform under eq. (B.5) and A is the same
constant as appears in eq. (B.6). When the spin-3/2 particle is on-shell, the parameters z, Z
cannot contribute due to the equalities in eq. (B.2). Also, using the form of the interaction
in eq. (B.16), matrix elements will be independent of the parameter A. We show this
explicitly for the resonance production by calculating the relevant helicity amplitudes in
appendix C.2.2.

Finally, we note that the combination [68] of

Ψµ ≡ ψµ − 1
d
γµγνψν , (B.17)

is invariant under the transformation in eq. (B.5):

Ψµ → Ψµ. (B.18)

The number of spacetime dimensions is d, which we set to d = 4 in the following. This can
be used as the building block to generate the interactions of the spin-3/2 field. With this
language the effective interaction invariant under eq. (B.5) would be

Ψν
γα 1± γ5

2 KaψF a
να = ψµ

(
gµν − 1

4γ
µγν

)
γα 1± γ5

2 KaψF a
να. (B.19)

This form was proposed by Peccei [113], and is equivalent to eq. (B.14) with the choice
z = −1/4. Note that unlike eq. (B.14), no parameters in this formulation will change with
the field transformation of ψµ. Also, unlike eq. (B.16), eq. (B.19) is independent of the
unphysical parameter A. However, it has been argued that this choice is too restrictive for
off-shell spin-3/2 particles [112].

We can also attempt to reformulate the kinetic term in terms of the invariant combi-
nation Ψµ in eq. (B.17). Note that even for an off-shell field we have γµΨµ = 0. Hence,
the most general Lagrangian is [68]

LΨ = Ψµ(/p−M)Ψµ = ψ̄µ

[(
/p−M

)
gµν − 1

2 (γµpν + pµγν) + 3
8γ

µ
/pγ

ν + 1
4Mγµγν

]
ψν .

(B.20)
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This corresponds to choosing A = −1/2. This has the nice transformation property A =
−1/2 → A′ = −1/2. However, A = −1/2 is not allowed since the propagator in eq. (B.9)
would be infinite [66, 68].

C Dijet helicity amplitudes

Helicity amplitudes are shown explicitly to illustrate the possible angular distributions for
2 → 2 processes. In generality we will label the resonances as R with mass MR and
width ΓR. For a given initial state and resonance spin, this notation will encompass all
possible color and electromagnetic charges of the resonances. Throughout, we assume the
initial state particles are massless but allow for massive final state particles. We present
the helicity amplitudes in terms of Wigner d-functions dJ

j1,j2(θ) and use the conventions of
ref. [114]. All helicity amplitudes are evaluated in the partonic center of momentum frame.
Finally, we only report non-zero helicity amplitudes, i.e. any missing amplitudes are zero.

C.1 Initial color states 3 ⊗ 3

In this section, we consider qiq
′
j → R → QkQ

′
l, where i, j, k, l are the quark color indices.

Let mQ be the mass of Q and mQ′ be the mass of Q′. The energies of Q an Q′ in the
partonic center of momentum frame are:

EQ =
ŝ+m2

Q −m2
Q′

2
√
ŝ

, and EQ′ =
ŝ+m2

Q′ −m2
Q

2
√
ŝ

, (C.1)

respectively. The β factors, the speeds of the final state particles in the partonic c.m. frame,
are then βQ = |pf |/EQ and βQ′ = |pf |/EQ′ , where pf is the three momentum of one of
the final state quarks.

Finally, we only consider the dominant s-channel resonant diagrams. The helicities of
the amplitudes are in the order of Ms(qi, q

′
j , Qk, Q

′
l).

C.1.1 Spin-0 resonance

The non-zero helicity amplitudes are

Ms(+,+,+,+) = −1
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.2)

×λR,R
qq′

[√
(1 + βQ)(1 + βQ′)λR,R

QQ′
∗
−
√
(1− βQ)(1− βQ′)λR,L

QQ′
∗
]

Ms(−,−,−,−) = −1
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.3)

×λR,L
qq′

[√
(1 + βQ)(1 + βQ′)λR,L

QQ′
∗
−
√
(1− βQ)(1− βQ′)λR,R

QQ′
∗
]

Ms(+,+,−,−) = 1
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.4)

×λR,R
qq′

[√
(1 + βQ)(1 + βQ′)λR,L

QQ′
∗
−
√
(1− βQ)(1− βQ′)λR,R

QQ′
∗
]
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Ms(−,−,+,+) = 1
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.5)

×λR,L
qq′

[√
(1 + βQ)(1 + βQ′)λR,R

QQ′
∗
−
√
(1− βQ)(1− βQ′)λR,L

QQ′
∗
]

C.1.2 Spin-1 resonance
The non-zero helicity amplitudes for vector diquarks are

Ms(+,−,+,−)=
(
1+δqq′

)(
1+δQQ′

)
KA

ijK
kl
A

√
ŝ2−(m2

Q−m2
Q′)2

ŝ−M2
R+iΓRMR

(C.6)

×λR,L
qq′

[√
(1+βQ)(1+βQ′)λR,R

QQ′
∗+
√
(1−βQ)(1−βQ′)λR,L

QQ′
∗
]
d1

1,1(θ)

Ms(−,+,−,+)=
(
1+δqq′

)(
1+δQQ′

)
KA

ijK
kl
A

√
ŝ2−(m2

Q−m2
Q′)2

ŝ−M2
R+iΓRMR

(C.7)

×λR,R
qq′

[√
(1+βQ)(1+βQ′)λR,L

QQ′
∗+
√
(1−βQ)(1−βQ′)λR,R

QQ′
∗
]
d1
−1,−1(θ)

Ms(+,−,−,+)=−
(
1+δqq′

)(
1+δQQ′

)
KA

ijK
kl
A

√
ŝ2−(m2

Q−m2
Q′)2

ŝ−M2
R+iΓRMR

(C.8)

×λR,L
qq′

[√
(1+βQ)(1+βQ′)λR,L

QQ′
∗+
√
(1−βQ)(1−βQ′)λR,R

QQ′
∗
]
d1

1,−1(θ)

Ms(−,+,+,−)=−
(
1+δqq′

)(
1+δQQ′

)
KA

ijK
kl
A

√
ŝ2−(m2

Q−m2
Q′)2

ŝ−M2
R+iΓRMR

(C.9)

×λR,R
qq′

[√
(1+βQ)(1+βQ′)λR,R

QQ′
∗+
√
(1−βQ)(1−βQ′)λR,L

QQ′
∗
]
d1
−1,1(θ)

There are also amplitudes that vanish when both final state quarks are massless:

Ms(+,−,−,−) = 1√
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.10)

× λR,L
qq′

[√
(1 + βQ)(1− βQ′)λR,L

QQ′
∗ +

√
(1− βQ)(1 + βQ′)λR,R

QQ′
∗
]
d1

1,0(θ)

Ms(−,+,+,+) = 1√
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.11)

× λR,R
qq′

[√
(1− βQ)(1 + βQ′)λR,L

QQ′
∗ +

√
(1 + βQ)(1− βQ′)λR,R

QQ′
∗
]
d1
−1,0(θ)

Ms(+,−,+,+) = − 1√
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.12)

× λR,L
qq′

[√
(1− βQ)(1 + βQ′)λR,L

QQ′
∗ +

√
(1 + βQ)(1− βQ′)λR,R

QQ′
∗
]
d1

1,0(θ)

Ms(−,+,−,−) = − 1√
2
(
1 + δqq′

) (
1 + δQQ′

)
KA

ijK
kl
A

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

(C.13)

× λR,R
qq′

[√
(1 + βQ)(1− βQ′)λR,L

QQ′
∗ +

√
(1− βQ)(1 + βQ′)λR,R

QQ′
∗
]
d1
−1,0(θ),

where θ is the angle between q and Q in the resonance rest frame.
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C.2 Initial color states 3 ⊗ 8

In this section, we consider qig
A → R → Qjg

B, where i, j are the quark color indices
and A,B are the gluon color indices. For generality, the final state quark is allowed to
be massive with mass mQ. Then, the energies of the final state quark and gluon in the
partonic center of momentum frame are, respectively,

EQ =
ŝ+m2

Q

2
√
ŝ
, and Eg =

ŝ−m2
Q

2
√
ŝ
. (C.14)

The β factor is then β = (ŝ−m2
Q)/(ŝ+m2

Q).
The helicities of the amplitudes are in the order of Ms(qi, g

A, Qj , g
B). In the following

θ is the angle between the initial state quark q and final state quark Q. Additionally, initial
state couplings are denoted with a subscript i and final state couplings with f .

C.2.1 Spin-1/2 resonance

We calculate the dominant s-channel resonant contributions. The non-zero helicity ampli-
tudes are

Ms(+,+,+,+) = 8(KBK
A)j

i

g2
S

Λ2
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Rλ

R∗
f,R d

1/2
−1/2,−1/2(θ) (C.15)

Ms(−,−,−,−) = 8(KBK
A)j

i

g2
S

Λ2
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Lλ

R∗
f,L d

1/2
1/2,1/2(θ). (C.16)

Ms(+,+,−,−) = 8(KBK
A)j

i

g2
S

Λ2
MR

√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Rλ

R∗
f,L d

1/2
−1/2,1/2(θ) (C.17)

Ms(−,−,+,+) = 8(KBK
A)j

i

g2
S

Λ2
MR

√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Lλ

R∗
f,R d

1/2
1/2,−1/2(θ) (C.18)

C.2.2 Spin-3/2 resonance

For the spin-3/2 calculation, we use the general propagator in eqs. (B.8) and (B.9) and
the parameterization of the effective interaction in eqs. (2.2) and (B.14). The helicity
amplitudes for s-channel sextet/triplet spin-3/2 fermion that survive when the resonance
is on-shell and the final state quark is massless are

Ms(+,−,+,−) = g2
S

Λ2

(
KBK

A
)j

i

ŝ(ŝ−m2
Q)

ŝ−M2
R + iΓRMR

λRi,Rλ
R∗
f,R d

3/2
3/2,3/2(θ) (C.19)

Ms(−,+,−,+) = g2
S

Λ2

(
KBK

A
)j

i

ŝ(ŝ−m2
Q)

ŝ−M2
R + iΓRMR

λRi,Lλ
R∗
f,L d

3/2
−3/2,−3/2(θ) (C.20)

Ms(+,−,−,+) = g2
S

Λ2

(
KBK

A
)j

i

MR
√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Rλ

R∗
f,L d

3/2
3/2,−3/2(θ) (C.21)

Ms(−,+,+,−) = g2
S

Λ2

(
KBK

A
)j

i

MR
√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Lλ

R∗
f,R d

3/2
−3/2,3/2(θ) (C.22)
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There are also a set of helicity amplitudes for s-channel spin-3/2 particles that vanish
when the resonance is on-shell:

Ms(+,+,+,+)= 1
3
g2

S

Λ2

(
KBK

A
)j

i

(ŝ−M2
R)(ŝ−m2

Q)
ŝ−M2

R+iΓRMR

ŝ

M2
R

( 1+4z
1+2A

)2
λRi,Rλ

R∗
f,R d

1/2
−1/2,−1/2(θ)

(C.23)

Ms(−,−,−,−)= 1
3
g2

S

Λ2

(
KBK

A
)j

i

(ŝ−M2
R)(ŝ−m2

Q)
ŝ−M2

R+iΓRMR

ŝ

M2
R

( 1+4z
1+2A

)2
λRi,Lλ

R∗
f,Ld

1/2
1/2,1/2(θ)

(C.24)

Ms(+,+,−,−)=−2
3
g2

S

Λ2

(
KBK

A
)j

i

(ŝ−M2
R)(ŝ−m2

Q)
ŝ−M2

R+iΓRMR

√
ŝ

MR

( 1+4z
1+2A

)2

×λRi,R
(
λR∗

f,L−
1
2
1+2A
1+4z

mQ

MR
λR∗

f,R

)
d

1/2
−1/2,1/2(θ) (C.25)

Ms(−,−,+,+)=−2
3
g2

S

Λ2

(
KBK

A
)j

i

(ŝ−M2
R)(ŝ−m2

Q)
ŝ−M2

R+iΓRMR

√
ŝ

MR

( 1+4z
1+2A

)2

×λRi,L
(
λR∗

f,R− 1
2
1+2A
1+4z

mQ

MR
λR∗

f,L

)
d

1/2
1/2,−1/2(θ) (C.26)

Finally, for the s-channel there are also amplitudes that vanish when the final state
quark is massless:

Ms(+,−,+,+) = 1√
3
g2

S

Λ2

(
KBK

A
)j

i

mQMR(ŝ−m2
Q)

ŝ−M2
R + iΓRMR

λRi,Rλ
R∗
f,L d

3/2
3/2,−1/2(θ) (C.27)

Ms(−,+,−,−) = 1√
3
g2

S

Λ2

(
KBK

A
)j

i

mQMR(ŝ−m2
Q)

ŝ−M2
R + iΓRMR

λRi,Lλ
R∗
f,R d

3/2
−3/2,1/2(θ) (C.28)

Ms(+,−,−,−) = 1√
3
g2

S

Λ2

(
KBK

A
)j

i

mQ

√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Rλ

R∗
f,R d

3/2
3/2,1/2(θ) (C.29)

Ms(−,+,+,+) = 1√
3
g2

S

Λ2

(
KBK

A
)j

i

mQ

√
ŝ(ŝ−m2

Q)
ŝ−M2

R + iΓRMR
λRi,Lλ

R∗
f,L d

3/2
−3/2,−1/2(θ) (C.30)

For completeness, and to investigate dependence on the unphysical parameter A, for
spin-3/2 we also provide the t-channel amplitudes:

Mt(+,−,+,−)= 1
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R+iΓRMR

ŝ

M2
R

( 1+4z
1+2A

)2
λRi,Rλ

R∗
f,R d

3/2
3/2,3/2(θ)

(C.31)

Mt(−,+,−,+)= 1
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R+iΓRMR

ŝ

M2
R

( 1+4z
1+2A

)2
λRi,Lλ

R∗
f,L d

3/2
−3/2,−3/2(θ)

(C.32)

Mt(+,−,−,+)= g2
S

Λ2

(
KAK

B
)j

i

MR
√
ŝ(ŝ−m2

Q)
t̂−M2

R+iΓRMR
λRi,Rλ

R∗
f,L d

3/2
3/2,−3/2(θ) (C.33)

Mt(−,+,+,−)= g2
S

Λ2

(
KAK

B
)j

i

MR
√
ŝ(ŝ−m2

Q)
t̂−M2

R+iΓRMR
λRi,Lλ

R∗
f,R d

3/2
−3/2,3/2(θ) (C.34)
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Mt(+,+,+,+)= g2
S

Λ2

(
KAK

B
)j

i

ŝ(ŝ−m2
Q)

t̂−M2
R+iΓRMR

λRi,Rλ
R∗
f,R d

1/2
−1/2,−1/2(θ) (C.35)

Mt(−,−,−,−)= g2
S

Λ2

(
KAK

B
)j

i

ŝ(ŝ−m2
Q)

t̂−M2
R+iΓRMR

λRi,Lλ
R∗
f,L d

1/2
1/2,1/2(θ) (C.36)

Mt(+,+,−,−)=− 2
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R+iΓRMR

√
ŝ

MR

( 1+4z
1+2A

)2

×λRi,R
(
λR∗

f,L−
1
2
1+2A
1+4z

mQ

MR
λR∗

f,R

)
d

3/2
−1/2,−3/2(θ) (C.37)

Mt(−,−,+,+)=− 2
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R+iΓRMR

√
ŝ

MR

( 1+4z
1+2A

)2

×λRi,L
(
λR∗

f,R− 1
2
1+2A
1+4z

mQ

MR
λR∗

f,L

)
d

3/2
1/2,3/2(θ), (C.38)

where t̂ = −(ŝ−m2
Q)(1 + cos θ)/2. As with the s-chanel diagrams, the t-channel diagrams

also have a set of amplitudes that go to zero if the final state quark is massless:

Mt(+,+,+,−) = − 2
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−M2
Q)(t̂−M2

R)
t̂−M2

R + iΓRMR

mQ

MR

( 1 + 4 z
1 + 2A

)2

× λRi,R

(
λR∗

f,L − 1
2
1 + 2A
1 + 4 z

mQ

MR
λR∗

f,R

)
d

3/2
−1/2,3/2(θ) (C.39)

Mt(−,−,−,+) = 2
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−M2
Q)(t̂−M2

R)
t̂−M2

R + iΓRMR

mQ

MR

( 1 + 4 z
1 + 2A

)2

× λRi,L

(
λR∗

f,R − 1
2
1 + 2A
1 + 4 z

mQ

MR
λR∗

f,L

)
d

3/2
1/2,−3/2(θ) (C.40)

Mt(+,−,+,+) = 1√
3
g2

S

Λ2

(
KAK

B
)j

i

mQMR(ŝ−m2
Q)

t̂−M2
R + iΓRMR

λRi,Rλ
R∗
f,L d

3/2
3/2,−1/2(θ) (C.41)

Mt(−,+,−,−) = 1√
3
g2

S

Λ2

(
KAK

B
)j

i

mQMR(ŝ−m2
Q)

t̂−M2
R + iΓRMR

λRi,Lλ
R∗
f,R d

3/2
−3/2,1/2(θ) (C.42)

Mt(+,−,−,−) = 1
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R + iΓRMR

mQ

√
ŝ

M2
R

( 1 + 4 z
1 + 2A

)2

× λRi,Rλ
R∗
f,R d

3/2
3/2,1/2(θ) (C.43)

Mt(−,+,+,+) = 1
3
√
3
g2

S

Λ2

(
KAK

B
)j

i

(ŝ−m2
Q)(t̂−M2

R)
t̂−M2

R + iΓRMR

mQ

√
ŝ

M2
R

( 1 + 4 z
1 + 2A

)2

× λRi,Lλ
R∗
f,L d

3/2
−3/2,−1/2(θ) (C.44)

There are a few things to note about these amplitudes. First, if we go into the regime
where the resonance is on-shell (ŝ =M2

R), all dependence on the parameter z in the effective
interaction disappears. Even if we go into the unphysical regime t̂ =M2

R, the dependence
on z disappears.

Now consider the off-shell regime. There seems to be a problem that the amplitudes
appear to depend on the unphysical parameter A from the propagator. However, what is
demanded is that the physical amplitudes are invariant underneath the transformation in
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eq. (B.5). As shown above, this results in the transformations of the parameters z and A

as given in eqs. (B.7) and (B.15). Using these transformations, it can be shown that

1 + 4 z
1 + 2A = 1 + 4 z′

1 + 2A′ . (C.45)

That is, all the amplitudes are invariant under the transformation in eq. (B.5). However,
the particular value of z becomes scheme-dependent.

On the other hand, we can consider the effective interaction formulation in eq. (B.16).
This formulation is explicitly invariant under the transformations in eqs. (B.5) and (B.7).
The two formulations can be identified by

z = 1
2 (1 + 4Z) + Z. (C.46)

Then we find

1 + 4 z
1 + 2A = 1 + 4Z. (C.47)

That is, using the interaction in eq. (B.16), all dependence on the unphysical parameter A
disappears from all of the amplitudes.

Finally, we could use the formulation of the effective interaction in eq. (B.19). As
stated in the discussion of that equation, this is equivalent to the choice z = −1/4. With
this choice, all dependence of the amplitudes on the unphysical parameter A vanishes.
However, man of the off-shell helicity amplitues would vanish as well.

C.3 Initial color states 8 ⊗ 8

Now we consider the scattering gAgB → R → gCgD, where A,B,C,D label the gluon
color indices. All initial and final state particles are massless in this case. Hence, in the
partonic center of momentum, the individual particle energies are

√
ŝ/2. The helicities

of the amplitudes are in the order Ms(gA, gB, gC , gD). We only provide the dominant
s-channel resonance amplitudes.

C.3.1 Spin-0 resonance

The non-zero amplitudes are

Ms(+,+,+,+) = 4g
2
Sκ

2
S

Λ2
S

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

(C.48)

Ms(−,−,−,−) = 4g
2
Sκ

2
S

Λ2
S

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

(C.49)

Ms(+,+,−,−) = 4g
2
Sκ

2
S

Λ2
S

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

(C.50)

Ms(−,−,+,+) = 4g
2
Sκ

2
S

Λ2
S

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

(C.51)
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C.3.2 Spin-2 resonance

The non-zero helicity amplitudes that survive when the resonance is on-shell are

Ms(+,−,+,−) = g2
Sκ

2
T

Λ2
T

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

d2
2,2(θ) (C.52)

Ms(−,+,−,+) = g2
Sκ

2
T

Λ2
T

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

d2
−2,−2(θ) (C.53)

Ms(+,−,−,+) = g2
Sκ

2
T

Λ2
T

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

d2
2,−2(θ) (C.54)

Ms(−,+,+,−) = g2
Sκ

2
T

Λ2
T

dABEdCDE ŝ2

ŝ−M2
R + iΓRMR

d2
−2,2(θ) (C.55)

There are four amplitudes that vanish when the resonance is on-shell:

Ms(+,+,−,−) = 1
6
g2

Sκ
2
T

Λ2
T

dABEdCDE (1 + 4 f)2 (ŝ+ 2M2
R)(ŝ−M2

R)
ŝ−M2

R + iΓRMR

ŝ2

M4
R

(C.56)

Ms(−,−,+,+) = 1
6
g2

Sκ
2
T

Λ2
T

dABEdCDE (1 + 4 f)2 (ŝ+ 2M2
R)(ŝ−M2

R)
ŝ−M2

R + iΓRMR

ŝ2

M4
R

(C.57)

Ms(+,+,+,+) = 1
6
g2

Sκ
2
T

Λ2
T

dABEdCDE (1 + 4 f)2 (ŝ+ 2M2
R)(ŝ−M2

R)
ŝ−M2

R + iΓRMR

ŝ2

M4
R
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Ms(−,−,−,−) = 1
6
g2

Sκ
2
T

Λ2
T

dABEdCDE (1 + 4 f)2 (ŝ+ 2M2
R)(ŝ−M2

R)
ŝ−M2

R + iΓRMR

ŝ2

M4
R

(C.59)

Note that when the resonance is on-shell ŝ =M2
R all dependence on f vanishes, as expected.

C.4 Initial color states 3 ⊗ 3̄

We consider the scattering qj q̄
′
k → R → QlQ̄

′
n through color octet and singlet scalars,

where j, k, l, n label the quark color indices. The helicities of the amplitudes are in the
order Ms(qj , q̄

′
k, Ql, Q̄

′
n). The amplitudes for the color octets are given. The color singlet

amplitudes can be found with the replacement TA
ij → δij .

In all amplitudes θ is the angle between the initial state quark q and final state quark
Q. The subscript i on the couplings indicates the initial state and f the final state.

C.4.1 Neutral spin-1 resonance

For the neutral vector, we allow the final state particles to be massive but have equal
masses mQ. For the color octet, the non-zero helicity amplitudes that survive for massless
final state particles are:

Ms(+,−,+,−) = 2 g2
S T

A
kjT

A
ln

ŝ

ŝ−M2
R + iΓRMR

(C.60)

× gRi,R

1
2g

R
f,R

1 +
√
1−

4m2
Q

ŝ

+ 1
2g

R
f,L

1−
√
1−

4m2
Q

ŝ

 d1
1,1(θ)
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kjT
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ŝ−M2
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(C.61)

× gRi,L

1
2g

R
f,L
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√
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4m2
Q

ŝ

+ 1
2g

R
f,R

1−
√
1−

4m2
Q

ŝ

 d1
−1,−1(θ)

Ms(+,−,−,+) = −2 g2
S T

A
kjT

A
ln

ŝ

ŝ−M2
R + iΓRMR

(C.62)

× gRi,R
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4m2
Q
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R
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4m2
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(C.63)

× gRi,L

1
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√
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4m2
Q
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2g

R
f,L
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√
1−

4m2
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The amplitudes that vanish for massless final state quarks are

Ms(+,−,+,+) = −
√
2 g2

S T
A
kjT

A
ln

mQ

√
ŝ

ŝ−M2
R + iΓRMR

gRi,R

(
gRf,L + gRf,R

)
d1

1,0(θ) (C.64)
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ŝ−M2
R + iΓRMR

gRi,L

(
gRf,L + gRf,R

)
d1
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Ms(−,+,+,+) =
√
2 g2

S T
A
kjT

A
ln

mQ

√
ŝ

ŝ−M2
R + iΓRMR

gRi,L

(
gRf,L + gRf,R

)
d1
−1,0(θ) (C.67)

C.4.2 Charged spin-1 resonance

For the charged spin 1-resonance we allow the final state particles to have different masses.
Their energies are then

EQ =
ŝ+m2

Q −m2
Q′

2
√
ŝ

, and EQ′ =
ŝ+m2

Q′ −m2
Q

2
√
s

. (C.68)

The β factors (speed in the partonic center of momenutm frame) are βQ = |pf |/EQ and
βQ′ = |pf |/EQ′ , where pf is the three momentum of one of the final state quarks. We
provide amplitudes for when the quarks are up-type and the anti-quarks down-type.

The non-zero helicity amplitudes are then that survive in the zero quark mass limit are

Ms(+,−,+,−) = g2
ST

A
kjT

A
ln

√
ŝ2 − (m2

Q −m2
Q′)2

ŝ−M2
R + iΓRMR

CR
i,RV

CKM
R,q′q (C.69)

×
(√

(1 + βQ)(1 + βQ′)CR∗
f,RV

CKM ∗
R,Q′Q +

√
(1− βQ)(1− βQ′)CR∗
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CKM ∗

L,Q′Q

)
d1

1,1(θ)
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ST
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Q −m2
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There are also amplitudes that vanish when both final state quarks are massless (βQ =
βQ′ = 1):
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