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We perform a comprehensive analysis of the scattering of matter and gravitational Kaluza-Klein (KK)
modes in five-dimensional gravity theories. We consider matter localized on a brane as well as in the bulk
of the extra dimension for scalars, fermions and vectors respectively, and consider an arbitrary warped
background. While naive power counting suggests that there are amplitudes which grow as fast as Oðs3Þ
[where s is the center-of-mass scattering energy squared], we demonstrate that cancellations between the
various contributions result in a total amplitude which grows no faster thanOðsÞ. Extending previous work
on the self-interactions of the gravitational KK modes, we show that these cancellations occur due to sum-
rule relations between the couplings and the masses of the modes that can be proven from the properties of
the mode equations describing the gravity and matter wave functions. We demonstrate that these properties
are tied to the underlying diffeomorphism invariance of the five-dimensional theory. We discuss how our
results generalize when the size of the extra dimension is stabilized via the Goldberger-Wise mechanism.
Our conclusions are of particular relevance for freeze-out and freeze-in relic abundance calculations for
dark matter models including a spin-2 portal arising from an underlying five-dimensional theory.
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I. INTRODUCTION

In recent years there has been a revival of interest in the
phenomenology and cosmology of models with compacti-
fied extra dimensions: Kaluza-Klein (KK) theories [1]. The
revival of KK theories was motivated by new solutions to the
hierarchy problem which relate the scales associated with
gravity and electroweak symmetry breaking. These included
models with flat (“large”) extra dimensions [2,3], as well as
those with a “small”warped extra dimension based on a slice
of anti–de Sitter space, known as the Randall-Sundrum (RS)
models [4,5]. Extra dimensions have been used to address
the flavor puzzle (see, for example, [6,7]) to provide a path

toward understanding the electroweak phase transition [8,9],
and to provide candidates for a dark sector. (For reviews of
these developments see Refs. [10–13].) More recently,
motivated specifically by dark matter and other cosmologi-
cal considerations, new beyond the standard model (BSM)
scenarios have emerged in which extra dimensions play a
crucial role, ranging from those including darkmatter freeze-
out [14,15] and freeze-in [16–18], to continuum dark matter
[19], the holographic axion [20], and dark dimensions in the
Swampland conjecture [21].
In many BSM scenarios a key ingredient is the calculation

of squared matrix elements for the scattering of matter
(including possible KK excitations) with massive spin-2
Kaluza-Klein graviton states. In particular, these scattering
amplitudes are of specific relevance for freeze-out and
freeze-in relic abundance calculations for dark matter
models including spin-2 portals, as well as for the study
of the potential collider signatures of such theories.
Calculations involving massive spin-2 states, however, are
plagued by (as we show, potentially anomalous) contribu-
tions that grow rapidly with the center-of-mass energy of the
scattering process. For example, calculations that involve the
production of massive spin-2 KK particles in the final state
from matter particles, such as the ones shown in Fig. 1, have
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contributions due to the helicity-0 mode of the massive
spin-2 states that naively grow like s3=M4

KK, where s is the
center-of-mass energy squared of the scattering process and
MKK the mass of the spin-2 KK modes. This anomalous
high energy behavior—note the anomalous dependence on
the low-energy scale MKK—has been used to estimate
observables like the relic density as well as direct detection
rates for spin-2 KKmediated dark matter models [15,22,23].
As we show in this paper, while it is true that the

contributions from individual diagrams to the scattering of
matter with massive spin-2 states can indeed grow as fast as
Oðs3Þ, a complete analysis using the underlying gravita-
tional theory uncovers a cancellation between different
contributions so that the full amplitude grows only like
OðsÞ. Therefore, phenomenological results based on the
naive dimensional analyses of the individual contributions
to the scattering amplitude [15,22,23] lead to erroneous
conclusions.
This work is an extension of previous analyses [24–27]

conducted by the authors and their collaborators on the
properties of the amplitudes for the scattering of massive
spin-2 states among themselves. In Kaluza-Klein theories
we have shown that the scattering amplitudes involving
spin-2 KK mode self-interactions grow only like OðsÞ
despite there being individual contributions that grow as
fast as Oðs5Þ. We showed that the full amplitudes grow as
s=M2

Pl for flat extra dimensions (toroidal compactification)
with MPl being the four-dimensional Planck mass, and as
s=Λ2

π for RS compactification, with Λπ being the effective
scale1 of the compactified Randall-Sundrum model.
In this work we extend our previous analyses to compute

matter interactions with the gravitational sector in extra
dimensions, show that the anomalous high-energy growth
cancels, and show that the physical amplitudes grow only
as fast as OðsÞ. We perform a comprehensive analysis of
the scattering of matter and gravitational modes in extra-
dimensional theories: we consider matter localized on the
brane as well as in the bulk of the extra dimensions for
scalars, fermions and vectors respectively, and consider an

arbitrary warped background (in which case flat or toroidal
compactification is a special case where the curvature goes
to zero). We show that while individual 2 → 2 scattering
diagrams (s, t, u and contact, see Fig. 2, for example) grow
anomalously, delicate cancellations enforced by a series of
sum rules ensure that the overall amplitude is well
behaved. A special case of the computations reported here
has been performed2 in [29] for brane-localized scalars,
with subsequent consequences for dark matter observables
in [14,18].3

Our computations elucidate the differences between the
behavior of scattering amplitudes of matter in the bulk and
localized on the brane, as well as the differences arising
from the nature of matter (scalars, fermions or vector) and
their various helicities. We will demonstrate that, for brane-
localized matter, the anomalous growth in the scattering
amplitudes only cancels in the case where the matter is
localized to positions at the endpoints (the “branes”) of
RS1. The cancellations we uncover are the result of the
properties of the mode equations for the gravitational KK
modes [24–27], including the consequences of the N ¼ 2
supersymmetry (SUSY) structure relating the properties of
the modes associated with the different helicities of the
gravitational sector [33,34], as well as the mode equations
for the matter particles. In all cases we demonstrate that the
residual amplitudes (after cancellations) grow no faster
than s=Λ2

π.
We also connect the observed cancellations to the

underlying diffeomorphism invariance of the 5D gravita-
tional theory. In what follows we will focus specifically on
the scattering amplitudes for matter (modes of any helicity,
arising from either brane or bulk states) to produce
longitudinally polarized spin-2 KK bosons. It is these

FIG. 1. An example of 2 → 2 scattering of matter particles (where Φ̄ ¼ S̄; χ; V̄ and Φ ¼ S, ψ , V) on the brane (left) and in the bulk
(right) to spin-2 KK modes. The circle in the middle indicates all intermediate states, and s, t, u and contact diagrams.

1Λπ ¼ MPle−krcπ , where k is the curvature and rc is the radius
of curvature.

2After this work had been submitted and announced on arXiv,
we were informed of [28]. Aside from the computation of the
production of brane scalar particles from KK graviton annihila-
tion previously published in [29] and cited here, Ref. [28]
duplicates the results presented in [24,30].

3An erroneous calculation with a massive spin-2 KK particle
as a freeze-in candidate was performed in [31], which was
subsequently refuted in [32] as a result of the Ward identities of
the theory.
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amplitudes which, due to polarization tensors of the
external graviton KK modes, suffer from the largest
potential energy growth. We show that the amplitudes
for the production of longitudinal spin-2 KK states, after
cancellation of the anomalous high-energy contributions
from individual diagrams, can be interpreted using a “KK
Equivalence Theorem” analogous to the one in the com-
pactified 5D KK Yang-Mills gauge theories [35,36]. In
extra-dimensional gauge theories the scattering amplitudes
of the longitudinally polarized KK gauge bosons equal that
of the corresponding KK Goldstone bosons in the high-
energy limit. The power counting of the scattering of
Goldstone bosons, unlike those for massive KK gauge
states, is manifest, and has no anomalous high-energy
growth. Specifically, in this paper we show that the leading
nonvanishing contributions to the amplitudes in matter-
gravity scattering involving longitudinal spin-2 states can
be rewritten in terms of of the wave functions of the scalar
gravitational KKGoldstone bosons (for arbitrary curvature)
instead of those of the KK gravitons.4

For gravity compactified on a torus, it has previously
been shown that an equivalence theorem can be established
[37,38], in which case the scattering amplitude of the
longitudinally polarized KK gravitons equals that of cor-
responding gravitational scalar KK Goldstone bosons. The
results presented here suggest that the equivalence theorem
can be extended to a warped geometry for the gravitation
mode self-interactions and their interactions with matter. A
complete demonstration of the equivalence theorem in the
RS1 model is beyond the scope of this paper, and is the
subject of subsequent work [39].

All of the potential bad high-energy behavior of the
individual contributions to the scattering of longitudinal
spin-2 KK states is, from the perspective of an equivalence
theorem, just the usual naive unphysical high-energy
behavior to be expected in a “unitary gauge” calculation
due to the unitary-gauge massive spin-2 propagators and
external polarization states. This unphysical high-energy
behavior of individual diagrams disappears in a ‘t-Hooft-
Feynman-like gauge in which there are unphysical scalar
(and, for gravity, vector) Goldstone states [39]. The con-
nection between the cancellation of the high-energy growth
of the scattering amplitudes demonstrated here and the
diffeomorphism invariance of the underlying 5D gravita-
tional theory is the ability to perform the analysis in either a
unitary or a ‘t-Hooft-Feynman-like gauge, a freedom which
relies on the diffeomorphism invariance of the underlying
5D gravitational theory.
Finally, we will show that the sum rules that ensure the

cancellations of the anomalously growing contributions to
the scattering amplitudes can be extended to models where
the extra dimension is stabilized via the Goldberger-Wise
mechanism [40]. Like the analogous calculation for spin-2
KK graviton self-interactions [27,30,41], we will argue that
the matter interactions within the GW-stabilized model will
involve additional contributions to the sum rules from the
GW scalars.
The rest of the paper is organized as follows. In Sec. II we

set up the gravitational Lagrangian, the metric, and the
graviton sector mode expansions. In Sec. III, we discuss
matter-KKmode interactions for both bulk and brane matter.
In Sec. IV, we describe the structure of the scattering
amplitudes and the necessary sum rules that ensure that
scattering amplitudes are well behaved. We conclude in
Sec. VI. We provide details of the calculation in the
Appendices for the interested reader. Appendix A gives
the Lagrangian up to 4 point interactions between the gravity

FIG. 2. Brane-localized matter (where Φ̄ ¼ S̄; χ; V̄) annihilating to spin-2 KK modes. Here r represents the radion.

4The form of the amplitudes can also be constructed via the
double copy prescription, which we will also discuss in an
upcoming work.
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sector and matter for bulk and brane, relevant for scattering
amplitude calculation. In Appendix B we provide wave
functions of gravitons and bulk matter while Appendix C
gives the coupling structures between brane/bulk matter and
the gravity sector. Appendix D gives our kinematic con-
ventions, and finally Appendix E gives detailed proofs of
sum rules used in the main body of the paper.

II. GRAVITATIONAL LAGRANGIAN,
METRIC, AND MODES

The metric for the RS model in conformal coordinates
ðxμ; zÞ can be written as

GMN ¼ e2AðzÞ

0BB@e−κφ̂=
ffiffi
6

p
ðημνþκĥμνÞ κffiffi

2
p Âμ

κffiffi
2

p Âμ −
�
1þ κffiffi

6
p φ̂

�
2

1CCA; ð1Þ

where the background 4D Minkowski metric ημν ≡
Diagðþ1;−1;−1;−1Þ is used to raise and lower indices.
The line element is then written as

ds2 ¼ e2AðzÞðημνdxμdxν − dz2Þ: ð2Þ
The metric fluctuations ĥμνðx; zÞ define the spin-2

fluctuations in 4D, while the Âμ and φ̂ fields yield the
spin-1 and spin-0 fluctuations respectively. The warp
factor AðzÞ,

AðzÞ ¼ − lnðkzÞ; ð3Þ
satisfies the Einstein equations for the bulk geometry,

A00 − ðA0Þ2 ¼ 0; ð4Þ

and the value of the coupling κ is set by the bulk and brane
cosmological constants, such that the four-dimensional
Planck constant MPl is κ4D ¼ 2=MPl. The extra dimension
spans the interval z1 ≤ z ≤ z2, where z1 is the location of
the “Planck brane” and z2 location of the “TeV brane”
respectively. The 5D RS Lagrangian can then be written as

LðRSÞ
5D ¼ LEH þ LCC þ ΔL; ð5Þ

where LEH and LCC are the usual Einstein-Hilbert and
cosmological constant terms respectively. The ΔL term is a
total derivative term required for a well-defined variational
principle for the action.
The effective 4D action is obtained after KK decom-

posing the 5D field as [27]

ĥμνðxα; zÞ ¼
X∞
n¼0

ĥðnÞμν ðxαÞfðnÞðzÞ; ð6Þ

Âμðxα; zÞ ¼
X∞
n¼1

ÂðnÞ
μ ðxαÞgðnÞðzÞ; ð7Þ

φ̂ðxα; zÞ ¼ r̂ðxαÞkð0ÞðzÞ þ
X∞
n¼1

π̂ðnÞðxÞkðnÞðzÞ; ð8Þ

and integrating over z. The massless graviton fields are

given by ĥð0Þμν , while the massive KK graviton fields are

ĥðn>0Þμν . The massless radion field is given by r̂. The
unphysical degrees of freedom, which can be eliminated
using diffeomorphism invariance, are described by the

spin-1 vector Goldstone modes ÂðnÞ
μ and the spin-0 scalar

Goldstone modes π̂ðnÞ. The wave functions satisfy the
boundary conditions

∂zfðnÞðzÞ¼ gðnÞðzÞ¼ ½∂zþ2A0ðzÞ�kðnÞðzÞ¼ 0; for z¼ z1;2:

ð9Þ

The details of the procedure to bring the Lagrangian to a
canonical form, and the coupling structures of the 3- and 4-
point vertices for the gravity sector have been documented
in [26]. In conformal coordinates, the solutions to the
Sturm–Liouville problems defining the modes subject to
the boundary conditions are [27]

fðnÞðzÞ ¼ CðnÞ
h z2½Y1ðmnz2ÞJ2ðmnzÞ − J1ðmnz2ÞY2ðmnzÞ�;

ð10Þ

gðnÞðzÞ ¼ CðnÞ
A z2½Y1ðmnz2ÞJ1ðmnzÞ − J1ðmnz2ÞY1ðmnzÞ�;

ð11Þ

kðnÞðzÞ ¼ CðnÞ
φ z2½Y1ðmnz2ÞJ0ðmnzÞ − J1ðmnz2ÞY0ðmnzÞ�

ð12Þ

for the massive modes n > 0, and

fð0ÞðzÞ ¼ Cð0Þ
h ; ð13Þ

gð0ÞðzÞ ¼ 0; ð14Þ

kð0ÞðzÞ ¼ Cð0Þ
φ z2 ð15Þ

for the massless modes, where Ja and Ya are Bessel
functions of the first and second kind, respectively. The

normalizations CðnÞ
h;A;φ are fixed by

Z
z2

z1

dze3AðzÞfðmÞðzÞfðnÞðzÞ

¼
Z

z2

z1

dze3AðzÞgðmÞðzÞgðnÞðzÞ

¼
Z

z2

z1

dze3AðzÞkðmÞðzÞkðnÞðzÞ ¼ δm;n; ð16Þ
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where the spin-2 massless mode represents the usual
massless 4D graviton that yields gravity in 4D, while
the kð0Þ massless mode is the radion. The mass mn of the
KK gravitons is the nth solution of the equation5

Y1ðmnz2ÞJ1ðmnz1Þ − J1ðmnz2ÞY1ðmnz1Þ ¼ 0: ð17Þ

The wave functions have an N ¼ 2 supersymmetric
structure [27,33,34],(
∂zfðnÞ ¼mngðnÞ

ð−∂z − 3A0ÞgðnÞ ¼mnfðnÞ

(
ð∂z þA0ÞgðnÞ ¼mnkðnÞ

ð−∂z − 2A0ÞkðnÞ ¼mngðnÞ;

ð18Þ

which we will use in what follows.
As mentioned previously, the Goldstone modes ÂðnÞ

μ and
π̂ðnÞ can be gauged away [42], and the relevant physical
states are the spin-2 KK modes with wave function fðnÞðzÞ
starting from n ¼ 0 and a massless physical radial mode
with wave function kð0ÞðzÞ. In the rest of the paper, we work
in such unitary gauge—however, we will show that the
leading nonzero scattering amplitudes involving helicity-0
spin-2 KK modes may be rewritten in terms of the “pion”
wave functions kðnÞðzÞ as expected from an equivalence
theorem.

III. BULK AND BRANE MATTER

In this section we lay out the relevant matter Lagrangians
and interaction terms for matter coupled to gravity either in
the brane or the bulk. Note that in contrast to previous
papers [24–26], we work in conformal coordinates, and
therefore the interaction Lagrangians, the Sturm-Liouville
problem and the subsequent wave functions are defined in
terms of these coordinates.
In the effective 4D description, the couplings of the spin-

2 KK gravitons to matter (scalars, fermions or vectors) can
be expressed by the following action:

SM ¼
Z

d4xLðeG; s; v; fÞ; ð19Þ

which upon expanding to order κ in the metric fluctuation
yields

SM ¼ −
κ

2

Z
d4xhμνTμνðs; v; fÞ: ð20Þ

The stress energy tensor Tμν is given by

Tμν ¼
�
−ημνLþ 2

δL

δeGμν

�
jG̃¼η: ð21Þ

From this point onward the task is to compute scattering
amplitudes of matter-KK mode interactions. We first lay
out the relevant matter Lagrangians, and the corresponding
3- and 4-point interaction terms that will be used in the
calculation of the scattering amplitudes.

A. Brane matter

We write the most general brane matter Lagrangian
interacting with the spin-2 KK sector as

Lbrane ¼ Lspin−2 þ LM;brane; ð22Þ

where

LM;brane ¼ LS̄;brane þ Lχ; brane þ LV̄;brane; ð23Þ

and LS̄;brane, Lχ; brane and LV̄;brane are the Lagrangian
densities for brane-localized scalars, fermions and vector
fields respectively. The corresponding Lagrangians, local-
ized on a brane at the boundaries z̄ ¼ z1 or z2, are given by

LS̄;brane ¼
Z

z2

z1

dz
ffiffiffiffi
Ḡ

p �
1

2
ḠMN

∂MS̄∂NS̄ −
1

2
M2

S̄S̄
2

�
× e−2AðzÞδðz − z̄Þ; ð24Þ

Lχ; brane ¼
Z

z2

z1

dz
ffiffiffiffi
Ḡ

p
ðχ̄ieμāγāDμχ −Mχ χ̄χÞ

× e−3AðzÞδðz − z̄Þ; ð25Þ

LV̄;brane ¼
Z

z2

z1

dz
ffiffiffiffi
Ḡ

p �
−
1

4
ḠMRḠNSF̄MNF̄RS

þ 1

2
M2

V̄ Ḡ
MNV̄MV̄N

�
δðz − z̄Þ: ð26Þ

The metric and its determinant are evaluated as an object
induced on the brane enforced by the delta function. Thus
the brane-localized quadratic kinetic term can then be
written in a canonically normalized form as

LS̄ S̄ ¼
1

2
∂
μS̄∂μS̄ −

1

2
m2

S̄S̄
2; ð27Þ

Lχχ ¼ ðiχ̄=∂χ −mχ χ̄χÞ; ð28Þ

LV̄ V̄ ¼ 1

2
V̄μ

�
ημνð∂ρ∂ρ þm2

V̄Þ −
�
1 −

1

ξ

�
∂μ∂ν

�
V̄μ: ð29Þ

For fermions, the covariant derivative on the fermion
field is defined as

5The masses of the “unphysical” vector and scalar states are
degenerate with those for the physical spin-2 states as the result
of an N ¼ 2 SUSY symmetry of the corresponding mode
equations [27].
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Dμχ ¼ ∂μχ þ
1

2
Ωμ

ā b̄σā b̄χ; ð30Þ

where σā b̄ ¼ ½γā; γb̄�=4, with γā;b̄ being the gamma matrices
defined over the tetrad eνā. The induced spin connection
Ωμ

ā b̄ is given by

Ωμ
ā b̄ ¼ eνāeν;μb̄ ¼ eνāð∂μeνb̄ − eρb̄Γρ

μνÞ: ð31Þ

For vectors, in Eq. (29) we have included a Proca mass
term. While such a mass term would break the 4D gauge
symmetry, we will show that it does not spoil the unitarity
for the scattering of V̄ V̄ → hðnÞhðnÞ, i.e., diffeomorphism
invariance in the gravity sector ensures that these processes
are well behaved. In the case of massless gauge boson
MV̄ ¼ 0, one would need to fix the gauge by the gauge-
fixing term,

LV̄;GF ¼
Z

z2

z1

dz

�
−

1

2ξ
ð∂μV̄μÞ2

�
δðz − z̄Þ; ð32Þ

which leads to the canonical Lagrangian in 4D given by
Eq. (29). Here we use reparametrized mass terms of the
scalar, fermion and vector fields which are

mS̄ ¼ eAðz̄ÞMS̄; ð33Þ

mχ ¼ eAðz̄ÞMχ ; ð34Þ

mV̄ ¼ eAðz̄ÞMV̄: ð35Þ

Note that unlike bulk fields, there are no interactions
which contain an explicit derivative in the fifth dimension.
We will show that this leads to different behaviors in the
leading terms of matrix elements of the scattering amplitude
calculations. From here on we can perform the usual KK
decomposition for the gravity sector to obtain an effective
4D action, with spin-2 KK graviton wave functions given by
Eq. (10). The 3- and 4-point interactions of the KK sector
and matter are written out in Appendices A 1a–A 1c.

B. Bulk matter

For matter in the bulk, we write the Lagrangian as

LM;bulk ¼ LS̄;bulk þ Lχ;bulk þ LV̄;bulk: ð36Þ

The corresponding Lagrangians for a real bulk scalar S
with a mass MS, a Dirac bulk (five-dimensional nonchiral)
fermion

ψ ¼
�
ψL

ψR

�
; ð37Þ

with a bulk mass Mψ , and a massless bulk gauge boson V
are given by

LS;bulk ¼
ffiffiffiffi
G

p �
1

2
GMN

∂MS∂NS −
1

2
M2

SS
2

�
; ð38Þ

Lψ ; bulk ¼
ffiffiffiffi
G

p
ðψ̄iEM

aΓaDMψ −Mψ ψ̄ψÞ; ð39Þ

LV;bulk ¼
ffiffiffiffi
G

p �
−
1

4
FMNFMN

�
: ð40Þ

Next we perform the integration over the extra dimension
and provide the canonical 4D Lagrangians for each of the
species of matter.
(1) Scalars: Given the above scalar Lagrangian, the

quadratic term is canonically normalized as

LSS ¼
1

2

Z
z2

z1

dze3Af∂μS∂μS − S½ð−∂z − 3A0Þ∂z
þM2

Se
2A�Sg: ð41Þ

The bulk scalar can be decomposed into KK modes
in the usual way,

Sðxα; zÞ ¼
X∞
n¼0

SðnÞðxαÞfðnÞS ðzÞ; ð42Þ

where fðnÞS are the eigenfunctions of the
eigenequation

½ð−∂z−3A0Þ∂zþM2
Se

2A�fðnÞS ðzÞ¼m2
S;nf

ðnÞ
S ðzÞ: ð43Þ

We choose the boundary condition to be6

∂zf
ðnÞ
S ðzÞ ¼ 0 at z ¼ z1;2: ð44Þ

Note that a massless mode exists only if MS ¼ 0.
The corresponding wave functions and their ortho-
gonality are provided in Appendix B 2.

(2) Fermions: For fermions, we define the vierbein EM
a

which satisfies

Ea
ME

b
Nηab ¼ GMN; ð45Þ

and the gamma matrices in 5D defined by Γa ¼
ðγμ;−iγ5Þ such that they anticommute,

6In principle, one could choose any Robin boundary con-
ditions for the scalar wave functions ∂zS − αiS ¼ 0 at z ¼ zi.
Such a choice corresponds to adding brane mass terms of the
form ΔLS ¼ �α1;2

ffiffiffiffi
Ḡ

p
eAS2δðz − z1;2Þ. For simplicity, we choose

the Neumann condition αi ¼ 0.
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fΓa;Γbg ¼ 2ηab: ð46Þ

The covariant derivative on the fermion field is
defined as

DMψ ¼ ∂Mψ þ 1

2
ΩM

abσabψ ; ð47Þ

where σab ¼ ½Γa;Γb�=4, and the spin connection is
given by

ΩM
ab ¼ ENaEN;M

b ¼ ENað∂MEN
b − EP

bΓP
MNÞ:

ð48Þ

In conformal coordinates, the quadratic term of the
fermion Lagrangian can be written as

Lψ ⊃ e4AðzÞðψ̄Li=∂ψL þ ψ̄Ri=∂ψR − ψ̄RDψψL

− ψ̄LD
†
ψψRÞ; ð49Þ

where the differential operator Dψ is defined as

Dψ ¼ ∂z þ 2A0ðzÞ þMψeAðzÞ; ð50Þ

D†
ψ ¼ −∂z − 2A0ðzÞ þMψeAðzÞ: ð51Þ

Note that D†
ψ is the Hermitian conjugate of Dψ with

respect to the inner product

hgjfiF ¼
Z

z2

z1

dze4AðzÞg�ðzÞfðzÞ: ð52Þ

After the compactification, the fermion fields can be
expanded in KK modes as

ψL=Rðxα; zÞ ¼
X
n

ψ ðnÞ
L=RðxαÞfðnÞψL=RðzÞ; ð53Þ

where fðnÞψL=RðzÞ are the wave functions of the left and
right chiral fermions respectively. The wave functions
satisfy the eigenequations8<:Dψf

ðnÞ
ψL ¼ mψ ;nf

ðnÞ
ψR ;

D†
ψf

ðnÞ
ψR ¼ mψ ;nf

ðnÞ
ψL ;

ð54Þ

with mψ ;n being the masses of the nth KK mode.
Notice that the eigenequations are coupled, i.e., they
mix the left- and the right-handed sectors. The mass

spectra of fðnÞψL and fðnÞψR are degenerate, except for the
zero mode, due to an N ¼ 2 quantum mechanical
supersymmetry. In order to have a massless left-
handed fermion, one has to choose the boundary
condition,

Dψf
ðnÞ
ψL ðzÞ ¼ fðnÞψR ðzÞ ¼ 0 at z ¼ z1;2: ð55Þ

And the corresponding boundary condition for a
massless right-handed fermion is

Dψf
ðnÞ
ψR ðzÞ ¼ fðnÞψL ðzÞ ¼ 0 at z ¼ z1;2: ð56Þ

The solutions to the eigenequations are the wave
functions provided in Appendix B 3 along with the
corresponding orthonormality conditions.

(3) Vectors: For vectors, FMN is the 5D field strength
tensor,

FMN ¼ ∂MVN − ∂NVM; ð57Þ

such that in conformal coordinates, the quadratic
term of the gauge boson Lagrangian can be
written as

LVV ¼
1

2
eAðzÞ½Vμðημν∂ρ∂ρ−∂μ∂νþημνð−∂z−A0Þ∂zÞVν

−V5∂μ∂
μV5þ2V5∂μ∂zVμ�: ð58Þ

The gauge fixing term is chosen to eliminate the
terms involving mixing between V5 and Vμ in the
above equation,

LV;GF ¼ −eA
1

2ξ
½∂μVμ − ξe−A∂zðeAV5Þ�2: ð59Þ

Then the gauge fixed quadratic terms become

LVVþGF ¼
1

2
eAðzÞ

�
Vμ

�
ημν∂ρ∂

ρ −
�
1 −

1

ξ

�
∂μ∂ν

þ ημνD
†
VDV

�
Vν

− V5ð∂μ∂μ þ ξDVD
†
VÞV5

�
; ð60Þ

where the differential operator DV is defined as

DV ¼ ∂z; ð61Þ

D†
V ¼ −∂z − A0ðzÞ: ð62Þ

Note that D†
V is the Hermitian conjugate of DV with

respect to the inner product

hgjfiV ¼
Z

z2

z1

dzeAðzÞg�ðzÞfðzÞ: ð63Þ

After the KK compactification, the gauge boson
fields can be expanded as
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Vμðxα; zÞ ¼
X
n

VðnÞ
μ ðxαÞfðnÞV ðzÞ; ð64Þ

V5ðxα; zÞ ¼
X
n

VðnÞ
5 ðxαÞfðnÞV5

ðzÞ: ð65Þ

The wave functions satisfy the eigenequations8<:DVf
ðnÞ
V ¼ mV;nf

ðnÞ
V5

D†
Vf

ðnÞ
V5

¼ mV;nf
ðnÞ
V

: ð66Þ

We choose the boundary condition to be

DVf
ðnÞ
V ¼ fðnÞV5

¼ 0 at z ¼ z1;2; ð67Þ

such that Vμ has a massless mode and V5 does not.
The solutions to the differential equations given in
terms of eigenequations are given in Appendix B 4.

IV. SCATTERING AMPLITUDES FOR BRANE
AND BULK MATTER

Consider the 2-to-2 elastic scattering of a pair of matter
fields into a pair of longitudinally polarized KK gravitons,

Φ̄λΦ̄λ̄ → hðnÞL hðnÞL ; ΦðmÞ
λ ΦðmÞ

λ̄
→ hðnÞL hðnÞL ; ð68Þ

where the Φ̄ represent incoming brane matter fields
with Φ̄ ¼ S̄; χ; V̄, and ΦðmÞ are bulk modes with ΦðmÞ ¼
SðmÞ;ψ ðmÞ; VðmÞ; here λ, λ̄ denote their helicities. In the
unitary gauge, there are six Feynman diagrams that con-
tribute to the scattering amplitude,

Mλλ̄ ¼ Mtu;λλ̄ þMh;λλ̄ þMr;λλ̄ þM4;λλ̄; ð69Þ

whereMtu;λλ̄ come from the t- and u-channel KK graviton
or matter exchange diagrams, Mh;λλ̄ corresponds to the
s-channel diagrams with intermediate KK gravitons,Mr;λλ̄

is the s-channel radion exchange contribution, and M4;λλ̄

comes from a 4-point contact interaction. These contribu-
tions are illustrated in Figs. 2 and 3 for brane matter and
bulk matter.
To analyze the energy dependence of the scattering

amplitude, we now expand the matrix element Mλλ̄ in
terms of the scattering energy

ffiffiffi
s

p
and the scattering angle θ,

Mλλ̄ðs; θÞ ¼
X
σ ∈Z

fMðσÞ
λλ̄
ðθÞsσ=2: ð70Þ

In the following sections we will analyze the energy growth
of the scattering amplitudes for matter (brane or bulk)
scattering into pairs of longitudinally polarized KK grav-

itons. We will determine the coefficients fMðσÞ
λλ̄
ðθÞ and

demonstrate that the contributions for σ > 2 vanish as the
result of sum rules which follow from the properties of
the Sturm-Liouville problems for the mode expansions in
the gravitation and matter sectors.

A. Coupling structures

In general, the self-couplings of the entire compactified
spin-2 sector, including KK-gravitons and the radion
couplings as well as any coupling of the KK sector with
matter can be split up into two pieces due to the Lorentz
structure, which we call a and b type couplings. The a type
couplings only have 4D derivatives, and therefore the
overlap integrals contain only wave functions, while b
couplings have derivatives over the compact dimension,
such that overlap integrals contain explicit 5D derivatives.
The structure of KK-sector self-couplings was discussed in
detail in [26] and in conformal coordinates in [27]. Brane
matter couplings to the KK sector involve only a type

FIG. 3. Bulk matter (where Φ ¼ S, ψ , V) annihilating to spin-2 KK modes. Note that, unlike brane matter shown in Fig. 2, there are
intermediate KK states which contribute in the t and u channels. Here r represents the radion.
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couplings of the gravity sector since matter is confined to
the 4D brane. Here we describe the coupling structures that
we will need for our calculations.

1. Graviton self-couplings

The relevant self-couplings within the gravitational
sector are given by

an1n2n3 ¼ hfðn1Þfðn2Þfðn3Þi; ð71Þ
bn̄1n̄2n3 ¼ hð∂zfðn1ÞÞð∂zfðn1ÞÞfðn3Þi; ð72Þ

bn̄1n̄2r ¼ hð∂zfðn1ÞÞð∂zfðn1ÞÞkð0Þi; ð73Þ

where the bracket h� � �i denotes the inner product,

hfðn1Þ1 fðn2Þ2 � � �i ¼
Z

z2

z1

dze3AðzÞfðn1Þ1 ðzÞfðn2Þ2 ðzÞ � � � : ð74Þ

2. Couplings to matter fields

The “a-type” couplings between the matter fields and the
graviton/radion fields, which contain no derivatives, are
defined as

aΦ1Φ2
n1n2n3 ¼ hfðn1Þfðn2ÞΦ1

fðn3ÞΦ2
iΦ1

; ð75Þ

aΦ1Φ2
n1n2n3n4 ¼ hfðn1Þfðn2Þfðn3ÞΦ1

fðn4ÞΦ2
iΦ1

; ð76Þ

aΦ1Φ2
n1n2r ¼ hfðn1ÞΦ1

fðn2ÞΦ2
kð0ÞiΦ1

; ð77Þ

where the bracket h� � �iΦ denotes the inner product,

hfðn1Þ1 fðn2Þ2 � � �iΦ ¼
Z

z2

z1

dzewΦAðzÞfðn1Þ1 ðzÞfðn2Þ2 ðzÞ � � � ;

with

8><>:
wS ¼ 3

wψL
¼ wψR

¼ wψ ¼ 4

wV ¼ wV5
¼ 1

: ð78Þ

In the case of Φ1 ¼ Φ2, we abbreviate the coupling as

aΦ1��� ¼ aΦ1Φ1��� : ð79Þ

We also define the couplings that are related to the mass
term in the Lagrangian as

aMS
n���n1n2 ¼ he2AfðnÞ � � � fðn1ÞS fðn2ÞS iS; ð80Þ

a
Mψ
n���n1n2 ¼ heAfðnÞ � � � fðn1ÞψL fðn2ÞψR iψ ; ð81Þ

aMS
n1n2r ¼ he2Afðn1ÞS fðn2ÞS kð0ÞiS; ð82Þ

a
Mψ
n1n2r ¼ heAfðn1ÞψL fðn2ÞψR kð0Þiψ : ð83Þ

The “b-type” couplings are defined in a similar manner
as the “a-type” couplings, except that we use a bar on top of
the index to denote there is a derivative acting on the
corresponding wave function,

bΦ1Φ2���n̄i��� ¼ h� � � ð∂zfðniÞi Þ � � �iΦ: ð84Þ

A detailed account of the overlap integrals for 3- and 4-
point interactions is provided in Appendices C 2–C 4 along
with the basic integration by parts and coupling identities.

B. Amplitudes for brane-localized matter

1. Brane scalar

In the case of a brane localized scalar, the nontrivial
contributions to the amplitude start at Oðs3Þ, yielding a
total

fMð6Þ ¼ κ2ð1− cos2θÞ
192m4

n

�
ðfðnÞðz̄ÞÞ2−

X∞
j¼0

annjfðjÞðz̄Þ
�
; ð85Þ

which vanishes due to completeness of the graviton wave
functions,

X∞
j¼0

annjfðjÞðz̄Þ ¼
X∞
j¼0

�Z
z2

z1

dze3AðzÞfðnÞðzÞfðnÞðzÞfðjÞðzÞ
�
fðjÞðz̄Þ

¼
Z

z2

z1

dzfðnÞðzÞfðnÞðzÞδðz − z̄Þ

¼ ½fðnÞðz̄Þ�2: ð86Þ

We note that the leading orderOðs3Þ amplitude vanishes independent of any condition on the brane z̄. The situation changes
at next order, as we demonstrate now.
At the order of Oðs2Þ, after applying the sum rule above, the amplitude at next order can be written as

fMð4Þ ¼−
κ2

576m4
n

	
ð3cos2θþ1Þ

X∞
j¼0

m2
jannjf

ðjÞðz̄Þþ24bn̄n̄rkð0Þðz̄Þ −2m2
nð3cos2θþ5Þ½fðnÞðz̄Þ�2−8m2

nann0fð0Þðz̄Þ


: ð87Þ
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One can use the eigenequations and the completeness
relation to derive the following sum rule:

X∞
j¼0

m2
jannjf

ðjÞðz̄Þ ¼ 2
X∞
j¼0

ðm2
nannj − bn̄ n̄ jÞfðjÞðz̄Þ

¼ 2m2
n½fðnÞðz̄Þ�2; ð88Þ

but, as we explain below, the last equality relies on the fact
that the wave functions ∂zfðnÞ ¼ gðnÞ vanish at the location
of the brane,

X∞
j¼0

bn̄ n̄ jfðjÞðz̄Þ ¼ m2
n½gðnÞðz̄Þ�2 ¼ 0: ð89Þ

Using this relation the amplitude at subleading order
becomes

fMð4Þ ¼ −
κ2

72m4
n
f3bn̄ n̄ rkð0Þðz̄Þ −m2

n½fðnÞðz̄Þ�2

−m2
nann0fð0Þðz̄Þg; ð90Þ

which then vanishes due to the radion sum rule

bn̄ n̄ rkð0Þðz̄Þ ¼
m2

n

3
½fðnÞðz̄Þ�2 þm2

n

3
ann0fð0Þðz̄Þ: ð91Þ

The proof of the radion sum rule is given in Appendix E.
We emphasize that the cancellation of the bad Oðs2Þ

high-energy behavior crucially relies on the fact that the
matter is localized at the boundaries z̄ ¼ z1 or z2, where the
graviton KK mode wave functions satisfy ∂zfðnÞðz̄Þ ¼
gðnÞðz̄Þ ¼ 0. The fact that the graviton wave functions have
this property at the branes can be understood as the remnant
of 5D diffeomorphism invariance. While the existence
of the branes in RS breaks general 5D diffeomorphism
invariance, the graviton Lagrangian is still invariant under
the infinitesimal coordinate transformations that leave the
location of the brane fixed,

xM ↦ x̄M ¼ xM þ ξM; ð92Þ

such that the parameter ξ satisfies

∂zξμðxα; ziÞ ¼ 0; and θðxα; ziÞ≡ ξ5ðxα; ziÞ ¼ 0: ð93Þ

As shown in [27], the residual diffeomorphism is such that
the parameters ξμ can be expanded in terms of the modes
fðjÞ, while the parameters θ have gðjÞ mode expansions.
Hence, for a “translation” along the fifth dimension ξμ ¼ 0

and θ ≠ 0, the location of the brane matter at a fixed
position is diffeomorphism invariant only if it is localized at
the boundaries. Breaking such invariance would thus spoil
the cancellation of the bad high-energy behavior. For

models with more than two branes, it is possible to localize
the brane matter in the intermediate branes—but only if the
appropriate boundary conditions are imposed in the gravi-
tational sector—leading to a different form for the mode
expansion and a different physical spectrum. The study of
such a scenario is beyond the scope of this work.
The residual nonvanishing amplitude starts at OðsÞ.

Applying all the previous sum rules, the leading nonzero
contribution to the amplitude can then be written as

fMð2Þ ¼ −
κ2ð3 cos 2θ þ 1Þ

576m4
n

(X∞
j¼0

m4
jannjf

ðjÞðz̄Þ

− 2m4
n½fðnÞðz̄Þ�2

)
: ð94Þ

Such an expression can be further simplified, using the
eigenequations, integration by part, and the fact that A00 ¼
ðA0Þ2 in the bulk,

fMð2Þ ¼ −
κ2ð3 cos 2θ þ 1Þ

96
½fðnÞðz̄Þ�2: ð95Þ

Using the N ¼ 2 SUSY relations Eq. (18) and
the boundary conditions Eq. (9), one can relate the KK
graviton wave functions fðnÞ and scalar Goldstone wave
functions kðnÞ,

kðjÞðz̄Þ ¼ −fðjÞðz̄Þ− 2A0ðz̄Þ
mj

gðjÞðz̄Þ ¼ −fðjÞðz̄Þ ðfor j > 0Þ:

ð96Þ

Therefore, the amplitude can be written as

fMð2Þ ¼ −
κ2ð3 cos 2θ þ 1Þ

96
½kðnÞðz̄Þ�2: ð97Þ

We note that, while the amplitude in Eq. (94) appears to be
singular in the limit of mn → 0, such singularity is not
physical, as shown by Eqs. (95) and (97). Another
important observation is that Eq. (97) depends solely on
the wave function kðnÞ of the scalar Goldstone mode π̂ðnÞ,
consistent with what is expected from a Goldstone
Equivalence Theorem [39].

2. Brane fermion

For the scattering of brane fermions, the leading non-
trivial contributions to the scattering amplitudes arise at
Oðs3Þ andOðs5=2Þ, depending on the helicity combinations
chosen, and are given by

fMð6Þ
�∓ ¼ κ2 sin2θ

192m4
n

�
ðfðnÞðz̄ÞÞ2−

X∞
j¼0

annjfðjÞðz̄Þ
�
¼ 0; ð98Þ
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fMð5Þ
�� ¼ � κ2mχð1þ cos 2θÞ

96m4
n

�
ðfðnÞðz̄ÞÞ2 −

X∞
j¼0

annjfðjÞðz̄Þ
�
¼ 0; ð99Þ

both of which vanish due to the sum rule given in Eq. (86).
At next order the Oðs2Þ contributions also vanish,

fMð4Þ
�∓ ¼ κ2 sin 2θ

192m4
n

(X∞
j¼0

m2
jannjf

ðjÞðz̄Þ − 2m2
n½fðnÞðz̄Þ�2

)
¼ 0; ð100Þ

due to the sum rule derived in Eq. (88). Again, it is crucial that the matter is localized at the boundaries.
The radion starts to contribute at Oðs3=2Þ, where its contribution to the amplitude at leading order can be written as

fMð3Þ
�� ¼ ∓ κ2

72m4
n

n
3bn̄ n̄ rkð0Þðz̄Þ −m2

n½fðnÞðz̄Þ�2 −m2
nann0fð0Þðz̄Þ

o
¼ 0; ð101Þ

and it vanishes due to the radion sum rule given in Eq. (91).
The leading contribution to the residual amplitudes starts at OðsÞ for helicities λλ̄ ¼ � ∓, and at Oðs1=2Þ for helicities

λλ̄ ¼ �� ,

fMð2Þ
�∓ ¼ κ2 sin 2θ

192m4
n

(X∞
j¼0

m4
jannjf

ðjÞðz̄Þ − 2m4
n½fðnÞðz̄Þ�2

)
; ð102Þ

fMð1Þ
�� ¼ � κ2mχð3 cos 2θ þ 1Þ

288m4
n

(X∞
j¼0

m4
jannjf

ðjÞðz̄Þ − 2m4
n½fðnÞðz̄Þ�2

)
: ð103Þ

Again, they can be simplified to a compact form of

fMð2Þ
�∓ ¼ κ2 sin 2θ

32
½fðnÞðz̄Þ�2 ¼ κ2 sin 2θ

32
½kðnÞðz̄Þ�2; ð104Þ

fMð1Þ
�� ¼ � κ2mχð3 cos 2θ þ 1Þ

48
½fðnÞðz̄Þ�2 ¼ � κ2mχð3 cos 2θ þ 1Þ

48
½kðnÞðz̄Þ�2; ð105Þ

which are nonsingular in the limit of mn → 0, leading to a form consistent with an equivalence theorem.
Note that for fermions, depending on whether a “helicity flip” is required, the different spin channels have different

power-counting behavior.

3. Brane vector boson

For the scattering of brane vector bosons, the leading nontrivial contributions to the amplitudes for helicities λλ̄ ¼ 00

and � ∓ arise at Oðs3Þ, for λλ̄ ¼ �0=0� at Oðs5=2Þ, and for λλ̄ ¼ �� at Oðs2Þ, and are given by

fMð6Þ
00 ¼ fMð6Þ

�∓ ¼ κ2ðcos 2θ − 1Þ
192m4

n

"
ðfðnÞðz̄ÞÞ2 −

X∞
j¼0

annjfðjÞðz̄Þ
#
; ð106Þ

fMð5Þ
�0=0� ¼ � κ2 sin 2θ

48
ffiffiffi
2

p
m4

n

mV̄

"X∞
j¼0

annjfðjÞðz̄Þ − ðfðnÞðz̄ÞÞ2
#
; ð107Þ

fMð4Þ
�� ¼ κ2ðcos 2θ þ 1Þ

48m4
n

m2
V̄

"X∞
j¼0

annjfðjÞðz̄Þ − ðfðnÞðz̄ÞÞ2
#
; ð108Þ
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all of which vanish due to the sum rule given in Eq. (86).

We note that the amplitude fMð6Þ
�� vanishes due to a direct

cancellation between the t-, u-channel diagrams and the
4-point contact interaction, and it does not require any
sum rule.
The cancellation for helicities λλ̄ ¼ � ∓ at the sublead-

ing order Oðs2Þ further uses the sum rule derived in
Eq. (88),

fMð4Þ
�∓ ¼ κ2ðcos 2θ − 1Þ

192m4
n

(X∞
j¼0

m2
jannjf

ðjÞðz̄Þ

− 2m2
n½fðnÞðz̄Þ�2

)
¼ 0: ð109Þ

The radion contributes to the scattering for the helicities
λλ̄ ¼ 00 at Oðs2Þ,

fMð4Þ
00 ¼ κ2

72m4
n

n
3bn̄ n̄ rkð0Þðz̄Þ −m2

n½fðnÞðz̄Þ�2

−m2
nann0fð0Þðz̄Þ

o
¼ 0; ð110Þ

which vanishes due to the radion sum rule given in Eq. (91).
At Oðs3=2Þ, the subamplitudes

fMð3Þ
�0=0� ¼ 0 ð111Þ

vanish once the sum rules in Eq. (86) and (88) are applied.
Finally, similar to the behavior of brane scalars and

fermions, the leading nonvanishing contribution to the
amplitudes is at OðsÞ for λλ̄ ¼ 00=� ∓, and at Oðs1=2Þ
for λλ̄ ¼ �0=0�, and can be written as

fMð2Þ
00 ¼ κ2ðcos 2θ − 1Þ

96
½fðnÞðz̄Þ�2 ¼ κ2ðcos 2θ − 1Þ

96
½kðnÞðz̄Þ�2; ð112Þ

fMð2Þ
�∓ ¼ κ2ðcos 2θ − 1Þ

32
½fðnÞðz̄Þ�2 ¼ κ2ðcos 2θ − 1Þ

96
½kðnÞðz̄Þ�2; ð113Þ

fMð1Þ
�0=0� ¼ ∓ κ2 sin 2θ

8
ffiffiffi
2

p mV̄ ½fðnÞðz̄Þ�2 ¼ ∓ κ2 sin 2θ

8
ffiffiffi
2

p mV̄ ½kðnÞðz̄Þ�2; ð114Þ

in a manner consistent with an equivalence theorem.

C. Bulk scalar

For the scattering of m-level KK scalar bosons to n-level KK gravitons, the nontrivial amplitude starts at Oðs3Þ,

fMð6Þ ¼ κ2

192m4
n

�
ð3 cos 2θ þ 5Þ

X∞
j¼0

ðaSnmjÞ2 þ ðcos 2θ − 1Þ
X∞
j¼0

annjaSjmm − 4ðcos 2θ þ 1ÞaSnnmm

�
; ð115Þ

which vanishes due to completeness of the graviton and scalar wave functions,

X∞
j¼0

ðaSnmjÞ2 ¼
X∞
j¼0

annjaSjmm ¼ aSnnmm: ð116Þ

At the order of Oðs2Þ, after applying the sum rule above, the amplitude at next order can be written as

fMð4Þ ¼ κ2

192m4
n

(
ð5 − cos 2θÞ

X∞
j¼0

m2
jannja

S
jmm − 2m2

nð5 − cos 2θÞaSnnmm − 2ðcos 2θ þ 3Þ
X∞
j¼0

m2
S;jðaSnmjÞ2

þ 2m2
S;mðcos 2θ þ 3ÞaSnnmm þ 16bSn̄ n̄mm

)
: ð117Þ

One can use the eigenequations and the completeness relation to derive sum rules as
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X∞
j¼0

m2
jannja

S
jmm ¼ 2m2

naSnnmm − 2bSn̄ n̄mm; ð118Þ

X∞
j¼0

m2
S;jðaSnmjÞ2 ¼ m2

S;ma
S
nnmm þ bSn̄ n̄mm: ð119Þ

Once the above sum rules are applied, the amplitude
vanishes at this order,

fMð4Þ ¼ 0: ð120Þ

It is interesting to note that, unlike other cases, the
cancellation of the bad high energy for the bulk scalar
case does not require the contribution from the radion,
which only starts to appear at OðsÞ.
The leading nonvanishing contribution to the amplitude

starts at OðsÞ. Applying all the previous sum rules, the
residual amplitude can then be written as

fMð2Þ ¼ κ2

576m4
n

(
24
X∞
j¼0

m4
S;jðaSnmjÞ2 − ð3 cos 2θþ 1Þ

X∞
j¼0

m2
jannja

S
jmm þ ½2ð3 cos2θþ 1Þm4

n þ 16m2
nm2

S;m − 24m4
S;m�aSnnmm

− 8½ð3 cos2θþ 1Þm2
n þ 4m2

S;m�bSn̄ n̄mm þ 16m2
nm2

S;mann0a
S
0mm − 144bn̄ n̄ r

�
bSm̄ m̄ r þ

1

3
M2

Sa
MS
mmr

�)
: ð121Þ

Although radion does not contribute to the cancellation, one can still derive the following radion sum rule, with the details
given in Appendix E:

bn̄ n̄ r

�
bSm̄ m̄ r þ

1

3
M2

Sa
MS
mmr

�
¼ 1

9
m2

nðm2
S;m þ 3m2

nÞaSnnmm þ 1

9
ð7m2

S;m − 3m2
nÞbSn̄ n̄mm −

2

3
M2

Sb
MS
n̄ n̄mm þ 1

9
m2

nm2
S;mann0a

S
0mm

þ 10

3
m3

nhA0fðnÞgðnÞfðmÞ
S fðmÞ

S iS þ
10

3
m2

nhðA0Þ2gðnÞgðnÞfðmÞ
S fðmÞ

S iS: ð122Þ

Together with another two sum rules,

X∞
j¼0

m4
jannja

S
jmm ¼ 8m4

naSnnmm − 8m2
nbSn̄ n̄ mm þ 24m3

nhA0fðnÞgðnÞfðmÞ
S fðmÞ

S iS ð123Þ

þ24m2
nhðA0Þ2gðnÞgðnÞfðmÞ

S fðmÞ
S iS; ð124Þ

X∞
j¼0

m4
S;jðaSnmjÞ2 ¼ ðm4

S;m þ 3m4
nÞaSnnmm þ 2ð3m2

S;m −m2
nÞbSn̄ n̄mm ð125Þ

− 4M2
Sb

MS
n̄ n̄ mm þ 24m3

nhA0fðnÞgðnÞfðmÞ
S fðmÞ

S iS ð126Þ

þ24m2
nhðA0Þ2gðnÞgðnÞfðmÞ

S fðmÞ
S iS; ð127Þ

and the fact that kðnÞ ¼ −fðnÞ − 2A0gðnÞ=mn [see Eq. (96)], the subamplitude can be written in a extremely compact form,

fMð2Þ ¼ κ2ð1 − cos 2θÞ
32

hkðnÞkðnÞfðmÞ
S fðmÞ

S iS; ð128Þ

which is nonsingular in the limit ofmn → 0, and depends only on the wave functions of the scalar Goldstone boson π̂ðnÞ, as
expected from an equivalence theorem.

D. Bulk fermion

For the scattering of m-level bulk fermions to n-level gravitons, the nontrivial contributions to the amplitudes start
at Oðs3Þ,
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fMð6Þ
−þ ¼ κ2 sin 2θ

192m4
n

�
3aψL

nnmm − 2
X∞
j¼0

ðaψL
nmjÞ2 −

X∞
j¼0

annja
ψL
jmm

�
¼ 0; ð129Þ

fMð6Þ
þ− ¼ κ2 sin 2θ

192m4
n

�
3aψR

nnmm − 2
X∞
j¼0

ðaψR
nmjÞ2 −

X∞
j¼0

annja
ψR
jmm

�
¼ 0; ð130Þ

both of which vanish due to the completeness of the
graviton and fermion wave functions,

X∞
j¼0

ðaψL=R

nmj Þ2 ¼
X∞
j¼0

annja
ψL=R

jmm ¼ a
ψL=R
nnmm: ð131Þ

At the order of Oðs5=2Þ, the amplitudes read as

fMð5Þ
�� ¼ � κ2ðcos 2θ þ 3Þ

192m4
n

"
mψ ;mðaψL

nnmm þ aψR
nnmmÞ

− 2
X∞
j¼0

mψ ;ja
ψL
nmja

ψR
nmj

#
: ð132Þ

One can use the eigenequations and the completeness
relation to derive sum rules as

2
X∞
j¼0

mψ ;ja
ψL
nmja

ψR
nmj ¼ mψ ;ma

ψL
nnmm þmψ ;ma

ψR
nnmm; ð133Þ

which leads to vanishing subamplitudes at Oðs5=2Þ.
The amplitudes at the order of Oðs2Þ can be written as

fMð4Þ
−þ ¼ κ2 sin 2θ

192m4
n

�
2
X∞
j¼0

m2
ψ ;jðaψL

nmjÞ2 þ
X∞
j¼0

m2
jannja

ψL
jmm − 2ðm2

n þm2
ψ ;mÞaψL

nnmm

�
; ð134Þ

fMð4Þ
þ− ¼ κ2 sin 2θ

192m4
n

�
2
X∞
j¼0

m2
ψ ;jðaψR

nmjÞ2 þ
X∞
j¼0

m2
jannja

ψR
jmm − 2ðm2

n þm2
ψ ;mÞaψR

nnmm

�
; ð135Þ

which vanish once the following sum rules are applied,

X∞
j¼0

m2
ψ ;jðaψL=R

nmj Þ2 ¼ b
ψL=R
n̄ n̄ mm þm2

ψ ;ma
ψL=R
nnmm; ð136Þ

X∞
j¼0

m2
jannja

ψL=R

jmm ¼ 2m2
na

ψL=R
nnmm − 2b

ψL=R
n̄ n̄ mm: ð137Þ

The radion starts to contribute at Oðs3=2Þ, where the amplitude can be written as

fMð3Þ
−− ¼ −

κ2

144m4
n

"
6
X∞
j¼0

m3
ψ ;ja

ψL
nmja

ψR
nmj − 2mψ ;mðbψL

n̄ n̄mm þ bψR
n̄ n̄ mmÞ þmψ ;mðm2

n − 3m2
ψ ;mÞðaψL

nnmm þ aψR
nnmmÞ

þm2
nmψ ;mann0ðaψL

0mm þ aψR
0mmÞ − 9mψ ;mbn̄ n̄ r

�
aψL
mmr þ aψR

mmr −
4Mψ

3mψ ;m
a
Mψ
mmr

�#
; ð138Þ

and it vanishes due to the sum rules,

X∞
j¼0

m3
ψ ;ja

ψL
nmja

ψR
nmj ¼

3

2
mψ ;mðbψL

n̄ n̄ mm þ bψR
n̄ n̄ mmÞ þ

1

2
m3

ψ ;mðaψL
nnmm þ aψR

nnmmÞ − 2Mψb
Mψ

n̄ n̄ mm; ð139Þ

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 109, 015033 (2024)

015033-14



bn̄ n̄ r

�
aψL
mmr þ aψR

mmr −
4Mψ

3mψ ;m
a
Mψ
mmr

�
¼ 7

9
ðbψL

n̄ n̄ mm þ bψR
n̄ n̄ mmÞ þ

1

9
m2

nann0ðaψL
0mm þ aψR

0mmÞ

þ 1

9
m2

nðaψL
nnmm þ aψR

nnmmÞ − 4Mψ

3mψ ;m
b
Mψ

n̄ n̄ mm: ð140Þ

While the first sum rule can be proved using the eigenequations and the completeness relation, the proof of the radion sum
rule on the second line also requires the completeness of the wave functions fkng of the scalar Goldstone bosons [27].
The nonvanishing helicity-violating residual amplitudes start at OðsÞ,

fMð2Þ
−þ ¼ κ2 sin 2θ

192m4
n

"X∞
j¼0

m4
jannja

ψL
jmm − 2m4

na
ψL
nnmm þ 8m4

nb
ψL
n̄ n̄ mm

#
; ð141Þ

fMð2Þ
þ− ¼ κ2 sin 2θ

192m4
n

"X∞
j¼0

m4
jannja

ψR
jmm − 2m4

na
ψR
nnmm þ 8m4

nb
ψR
n̄ n̄ mm

#
: ð142Þ

Again, they can be simplified to a compact form of

fMð2Þ
−þ ¼ κ2 sin 2θ

32
hkðnÞkðnÞfðmÞ

ψL f
ðmÞ
ψL iψ ; ð143Þ

fMð2Þ
þ− ¼ κ2 sin 2θ

32
hkðnÞkðnÞfðmÞ

ψR f
ðmÞ
ψR iψ ; ð144Þ

as is consistent with an equivalence theorem.
Similarly, the residual helicity-conserving amplitudes begin at order Oðs1=2Þ and can be written as

fMð1Þ
�� ¼ ∓ κ2mψ ;m

32
hkðnÞkðnÞðfðmÞ

ψL f
ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR Þiψðcos 2θ − 5Þ ∓ κ2Mψ

3
heAkðnÞkðnÞfðmÞ

ψL f
ðmÞ
ψR iψ : ð145Þ

E. Bulk gauge bosons

For the scattering of m-level bulk vector bosons to n-level gravitons, the nontrivial contributions to the amplitudes
start at Oðs3Þ,

fMð6Þ
00 ¼ κ2

192m4
n

"
4ðcos 2θ þ 1ÞaV5

nnmm − ð3 cos 2θ þ 5Þ
X∞
j¼0

ðaV5

nmjÞ2 − ðcos 2θ − 1Þ
X∞
j¼0

annja
V5

jmm

#
; ð146Þ

fMð6Þ
�∓ ¼ κ2ðcos 2θ − 1Þ

192m4
n

"
2aVnnmm −

X∞
j¼0

ðaVnmjÞ2 −
X∞
j¼0

annjaVjmm

#
; ð147Þ

fMð6Þ
�� ¼ κ2ðcos 2θ þ 3Þ

96m4
n

"
aVnnmm −

X∞
j¼0

ðaVnmjÞ2
#
: ð148Þ

All of them vanish due to the completeness of the graviton and fermion wave functions,X∞
j¼0

ðaVnmjÞ2 ¼
X∞
j¼0

annjaVjmm ¼ aVnnmm; ð149Þ

X∞
j¼0

ðaV5

nmjÞ2 ¼
X∞
j¼0

annja
V5

jmm ¼ aV5
nnmm: ð150Þ
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At order Oðs5=2Þ, using the previous sum rules the amplitudes become

fMð5Þ
0�=�0 ¼ � κ2 sin 2θ

96
ffiffiffi
2

p
m4

n

"
2
X∞
j¼0

mV;jaVnmja
V5

nmj −mV;mðaVnnmm þ aV5
nnmmÞ

#
: ð151Þ

One can use the eigenequations and the completeness relation to derive a sum rule as

X∞
j¼0

mV;jaVnmja
V5

nmj ¼
1

2
mV;mðaVnnmm þ aV5

nnmmÞ; ð152Þ

which leads to vanishing amplitudes fMð5Þ
0�=�0 ¼ 0: ð153Þ

At orderOðs2Þ, the radion starts to contribute. The subamplitudes are given, after applying all the previous sum rules, by

fMð4Þ
00 ¼ κ2

576m4
n

(
6ðcos 2θ − 5Þ

X∞
j¼0

m2
V;jðaV5

nmjÞ2 þ ð3 cos 2θ þ 1Þ
X∞
j¼0

m2
jannja

V5

jmm ð154Þ

−8m2
nann0aV0mm þ 48bn̄ n̄ rbVm̄ m̄ r

m2
V;m

þ 16m2
V;ma

V
nnmm ð155Þ

−½2m2
nð3 cos 2θ þ 5Þ þ 2m2

V;mð3 cos 2θ − 7Þ�aV5
nnmm ð156Þ

þ16
X∞
j¼1

m2
nm2

V;m

m2
j

annjðaV5

jmm − aVjmmÞ
)
; ð157Þ

fMð4Þ
�∓ ¼ κ2ðcos 2θ − 1Þ

192m4
n

"
2
X∞
j¼0

m2
V;jðaVnmjÞ2 þ

X∞
j¼0

m2
jannja

V
jmm − 2ðm2

n þm2
V;mÞaVnnmm

#
; ð158Þ

fMð4Þ
�� ¼ κ2

72m4
n

"
3
X∞
j¼0

m2
V;jðaVnmjÞ2 −m2

V;ma
V
nnmm − 2m2

V;ma
V5
nnmm − 3bn̄ n̄ raVmmr ð159Þ

þ2
X∞
j¼1

m2
nm2

V;m

m2
j

annjðaV5

jmm − aVjmmÞ
#
: ð160Þ

One can use the eigenequations and the completeness relation to derive the following sum rules:X∞
j¼0

m2
V;jðaV5

nmjÞ2 ¼ bV5
n̄ n̄ mm þm2

V;ma
V5
nnmm; ð161Þ

X∞
j¼0

m2
jannja

V5

jmm ¼ 2m2
na

V5
nnmm − 2bV5

n̄ n̄ mm: ð162Þ

With the help of the completeness of fkng, one can derive the following radion sum rules:

bn̄ n̄ rbVm̄ m̄ r ¼
2

3
m2

V;mb
V5
n̄ n̄ mm −

1

3
m4

V;ma
V
nnmm þ 1

6
m2

V;mðm2
n þ 2m2

V;mÞaV5
nnmm ð163Þ

þ 1

6
m2

nm2
V;mann0a

V
0mm −

1

3

X∞
j¼1

m2
nm4

V;m

m2
j

annjðaV5

jmm − aVjmmÞ; ð164Þ
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bn̄ n̄ raVmmr ¼ bVn̄ n̄mm þ 2

3
m2

V;mðaVnnmm − aV5
nnmmÞ

þ 2

3

X∞
j¼1

m2
nm2

V;m

m2
j

annjðaV5

jmm − aVjmmÞ: ð165Þ

And thus the total amplitudes also vanish at Oðs2Þ,

fMð4Þ
00 ¼ fMð4Þ

�∓ ¼ fMð4Þ
�� ¼ 0: ð166Þ

At the order of Oðs3=2Þ, the radion does not contribute,
and no new sum rules are needed. The subamplitudes
vanish once all the previous sum rules are applied,

fMð3Þ
0�=�0 ¼ 0: ð167Þ

The nonvanishing amplitudes start at OðsÞ, and may be
written as

fMð2Þ
00 ¼ κ2ð3 cos 2θ þ 13ÞÞ

96
hkðnÞkðnÞfðmÞ

V5
fðmÞ
V5

iV; ð168Þ

fMð2Þ
�∓ ¼ κ2ð3 cos 2θ þ 1ÞÞ

96
hkðnÞkðnÞfðmÞ

V fðmÞ
V iV; ð169Þ

fMð2Þ
�� ¼ 0: ð170Þ

At the order of Oðs1=2Þ, the leading amplitudes can be
written as

fMð1Þ
�0=0�¼�κ2ð3cos2θ−11ÞÞcotθ

48
ffiffiffi
2

p mV;mhkðnÞkðnÞðfðmÞ
V fðmÞ

V

þfðmÞ
V5

fðmÞ
V5

ÞiV: ð171Þ

Note again that all forms are consistent with the expect-
ations from an equivalence theorem.

V. SCATTERING AMPLITUDES WITH A
GOLDBERGER-WISE STABILIZED GEOMETRY

While all the results above are derived for an unstabi-
lized RS1 model, they can be easily generalized to the
case in which the size of the extra dimension is dynami-
cally stabilized via the Goldberger-Wise mechanism. The
Goldberger-Wise mechanism [40] introduces a bulk scalar
field Φ̂ with the kinetic term and potential terms

LΦΦ ¼
ffiffiffiffi
G

p �
1

2
GMN

∂MΦ̂∂NΦ̂
�
; ð172Þ

Lpot ¼ −
4

κ2
½
ffiffiffiffi
G

p
V½Φ̂� þ

ffiffiffiffi
Ḡ

p
V1½Φ̂�δ1ðz − z1Þ

þ
ffiffiffiffi
Ḡ

p
V2½Φ̂�δ1ðz − z2Þ�: ð173Þ

The potential terms are chosen such that the ground state
has a nonzero z-dependent expectation value for Φ̂, and
such that minimizing the action fixes the proper length of
the extra dimension. The bulk scalar field Φ̂ can be
expanded around the background as

Φ̂ðxα; zÞ ¼ 1

κ
ðϕ0ðzÞ þ ϕ̂ðxα; zÞÞ: ð174Þ

Under the assumption that the GW scalar Φ̂ is a part of the
gravity sector and does not directly couple to the matter
fields, the GW scalar only contributes to the scattering via
its mixing with the radion.7

Following the notation in Ref. [27], the GW sector can
be decomposed as

Ψ̂ðxα;zÞ¼
X∞
n¼1

π̂ðnÞðxαÞKðnÞðzÞþ
X∞
n¼0

r̂ðnÞðxÞeKðnÞðzÞ; ð175Þ

where

Ψ̂ðxα; zÞ ¼
 
φ̂ðxα; zÞ
ϕ̂ðxα; zÞ

!
; KðnÞðzÞ ¼

 
kðnÞðzÞ
lðnÞðzÞ

!
;

eKðnÞðzÞ ¼
 ekðnÞðzÞelðnÞðzÞ

!
: ð176Þ

The Goldstone modes π̂ðnÞ are rotated away in the unitary
gauge, and the physical scalars r̂ðnÞ now replace the role of
the radion to unitarize the scattering amplitudes. In par-
ticular, the completeness of the wave functions fkðnÞg is
modified,

ξðz0Þ ¼
X∞
n¼1

kðnÞðz0ÞhkðnÞξi þ
X∞
n¼0

ekðnÞðz0ÞhekðnÞξi; ð177Þ

in comparison to the one in the unstabilized RS1 model,

ξðz0Þ ¼
X∞
n¼0

kðnÞðz0ÞhkðnÞξi; ð178Þ

where ξðz0Þ is an arbitrary function that satisfies the proper
boundary conditions.
To generalize the radion sum rules discussed above to the

GW model, we consider the Feynman diagrams of
exchanging the physical GW scalars. At leading order in
s, the masses of the GW scalars can be neglected. Thus, the
scattering amplitude can be obtained by simply replacing

7In general, Φ̂ could directly couple to the matter fields, and
such interactions would contribute to the scattering amplitudes in
a model-dependent fashion. The analysis in such cases is beyond
the scope of this work.
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the radion wave function kð0Þ in the RS1 by a tower of the
GW scalar wave function ekðiÞ. Therefore, we can generalize
the radion sum rules to the GW model by replacing all the
radion-related couplings with the couplings involving the
physical scalars r̂ðiÞ,

h� � � kð0Þihkð0Þ � � �i ⇒
X∞
i¼0

h� � �ekðiÞihekðiÞ � � �i: ð179Þ

We note that such generalization at leading order is
sufficient for all the radion sum rules given in this paper,
because the radion contribution only appears at the lowest
nontrivial order of the cancellation. For the residual terms at
OðsÞ and below, they receive an additional contribution that
is proportional to the masses of the scalar fields r̂ðiÞ, which
cannot be deduced from the scattering amplitudes involving
a massless radion in RS1. An example is the scattering
amplitudes of four KK gravitons. As shown in Refs. [30,41],
the leading order radion contribution appears at Oðs3Þ,
where the radion sum rules can be generalized as above. But
the cancellation of the scattering amplitude at order ofOðs2Þ
requires an additional radion sum rule that contains terms
proportional to the scalar masses μ2ðiÞ, as in Eq. (22)
in Ref. [30].

VI. CONCLUSION

In this paper we have performed a comprehensive
analysis of the scattering of matter and gravitational
Kaluza-Klein modes in compactified five-dimensional
gravity theories. We considered the scattering amplitudes
for matter localized on a brane as well as in the bulk of the
extra dimension for scalars, fermions and vectors respec-
tively, and considered an arbitrary warped RS background.
While naive power counting suggests that these amplitudes
could grow as fast as Oðs3Þ [where s is the center-of-mass
scattering energy squared], we demonstrated by explicit
computation that cancellations between the various con-
tributions result in a total amplitude which grows no faster
than OðsÞ.
Extending previous work on the self-interactions of the

gravitational KK modes, we showed that these cancella-
tions occur due to sum-rule relations between the cou-
plings and the masses of the modes that can be proven from
the properties of the mode equations describing the gravity
and matter wave functions. We demonstrated that these
properties are tied to the underlying diffeomorphism
invariance of the five-dimensional theory. We showed
how our results generalize when the size of the extra
dimension is stabilized via the Goldberger-Wise (GW)
mechanism [40]. Our results show that naive calculations
[15,22,23] of the freeze-out and freeze-in relic abundance
calculations for dark matter models including a spin-2
portal arising from an underlying five-dimensional theory
will yield incorrect results.

Our computations further showed that the form of the
leading high-energy behavior of graviton-matter KK scat-
tering with external helicity-0 spin-2 states has the form
expected from a gravitational equivalence theorem analo-
gous to one in compactified 5D Yang-Mills gauge theory
[35,36], namely that the leading nonzero amplitudes are
proportional to overlap integrals involving the wave func-
tions of the scalar gravitational KK Goldstone bosons. In
future work [39] we will prove that the gravitational
equivalence theorem, which has been established for the
self-interactions of the gravitational modes in toroidal
compactification [37,38], generalizes to warped geometry
and also to the interaction of gravity and matter modes as
expected from the results reported here.
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APPENDIX A: LAGRANGIAN

In this Appendix, we give the relevant Lagrangian up to
4-point interactions.

1. Brane matter

a. Scalar

The 3-point interactions are given by the Lagrangian

LhS̄ S̄ ¼
κ

2

Z
z2

z1

dzĥμν
�
−∂μS̄∂νS̄þ

1

2
ημνð∂ρS̄∂ρS̄−m2

S̄S̄
2Þ
�

× δðz− z̄Þ; ðA1Þ

LφS̄ S̄ ¼
κ

2

Z
z2

z1

dz
1ffiffiffi
6

p φ̂½−∂μS̄∂μS̄þ 2m2
S̄S̄

2�δðz − z̄Þ: ðA2Þ

The 4-point interactions are given by the Lagrangian

LhhS̄S̄ ¼
κ2

4

Z
z2

z1

dz

�
ð2ĥμρĥνρ− ĥĥμνÞ∂μS̄∂νS̄

þ1

4
ðĥ2−2ĥνρĥνρÞð∂ρS̄∂ρS̄−m2

S̄S̄
2Þ
�
δðz− z̄Þ; ðA3Þ
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LφφS̄ S̄ ¼
κ2

4

Z
z2

z1

dz
1

6
φ̂2ð∂μS̄∂μS̄ − 4m2

S̄S̄
2Þδðz − z̄Þ; ðA4Þ

LhφS̄ S̄ ¼
κ2

2

Z
z2

z1

dz
1ffiffiffi
6

p φ̂ĥμν
�
∂μS̄∂νS̄

−ημν
�
1

2
∂
ρS̄∂ρS̄ −m2

S̄S̄
2

���
δðz − z̄Þ: ðA5Þ

b. Brane fermion

The 3-point interactions are given by the Lagrangian

Lhχ̄χ ¼ κ

Z
z2

z1

dz

	
1

4
ĥμν½χ̄ð−iγμ ∂

↔

ν þ iημν =∂
↔

Þχ� ðA6Þ

−
1

2
MχeAĥ χ̄ χ



δðz − z̄Þ; ðA7Þ

Lφχ̄χ ¼ κ

Z
z2

z1

dz

	
3

4
ffiffiffi
6

p φ̂½−iχ̄ =∂
↔

χ�þ 2ffiffiffi
6

p MχeAφ̂ χ̄ χ



δðz− z̄Þ;

ðA8Þ

where the derivative ∂

↔
acts only on the fermion fields and is

defined as

∂

↔

M ¼  ∂M − ∂⃖M: ðA9Þ

The 4-point interactions are given by the Lagrangian

Lhhχ̄χ ¼
κ2

2

Z
z2

z1

dz

	
1

8
ð3ĥμρĥνρ − 2ĥĥμνÞðiχ̄γμ ∂

↔

νχÞ

þ 1

8
ðĥ2 − 2ĥνρĥνρÞ½iχ̄ =∂

↔

χ − 2MχeAχ̄χ� ðA10Þ

þ 1

8
ϵλαβρhμα∂ρhμβ½χ̄LγλχL − ðL ↔ RÞ�



δðz − z̄Þ

ðA11Þ

Lφφχ̄χ ¼ −
κ2

2

Z
z2

z1

dz φ̂2

�
3

16
iχ̄ =∂

↔

χ þ 2

3
mχ χ̄χ

�
δðz − z̄Þ;

ðA12Þ

Lhφχ̄χ ¼ κ2
Z

z2

z1

dz
3

8
ffiffiffi
6

p φ̂ĥμν½χ̄ðiγμ ∂
↔

μ − iημν =∂
↔

Þχ ðA13Þ

þ8MχeAημνχ̄χ�δðz − z̄Þ: ðA14Þ

c. Brane vector boson

The 3-point interactions are given by the Lagrangian

LhV̄ V̄ ¼ κ

2

Z
z2

z1

dz

��
ĥμν −

1

4
ημνĥ

�
F̄μρF̄ν

ρ ðA15Þ

−m2
V̄

�
ĥμν −

1

2
ημνĥ

�
V̄μV̄ν

�
δðz − z̄Þ; ðA16Þ

LφV̄ V̄ ¼ −
κ

2

Z
z2

z1

dz
m2

V̄ffiffiffi
6

p φV̄μV̄μδðz − z̄Þ: ðA17Þ

The 4-point interactions are given by the Lagrangian

LhhV̄ V̄ ¼
κ2

4

Z
z2

z1

dzδðz− z̄Þ
	�

ĥμσĥνρþημρðĥĥνσ−2ĥν
αĥσαÞ

ðA18Þ

þ 1

4
ημρηνσ

�
ĥαβĥαβ −

1

2
ĥ2
��

F̄μνF̄ρσ; ðA19Þ

−m2
V̄

�
ĥĥμν − 2ĥμ

ρĥνρ þ
1

2
ημν

�
ĥρσĥρσ

−
1

2
ĥ2
��

V̄μV̄ν



; ðA20Þ

LφφV̄ V̄ ¼ κ2

4

Z
z2

z1

dz
m2

V̄

6
φ̂2V̄μV̄μδðz − z̄Þ; ðA21Þ

LhφV̄ V̄ ¼ κ2

2

Z
z2

z1

dz
m2

V̄ffiffiffi
6

p φ̂

��
ĥμν −

1

2
ημνĥ

�
V̄μV̄ν

�
δðz − z̄Þ:

ðA22Þ

2. Bulk matter

a. Scalar

The 3-point interactions are given by the Lagrangian

LhSS ¼
κ

2

Z
z2

z1

dz e3Aĥμν
�
−∂μS∂νSþ 1

2
ημνð∂ρS∂ρS − ð∂zSÞ2

−M2
Se

2AS2Þ
�
; ðA23Þ

LφSS ¼
κ

2

Z
z2

z1

dz e3A
1ffiffiffi
6

p φ̂½3ð∂zSÞ2 þM2
Se

2AS2�: ðA24Þ

The 4-point interactions are given by the Lagrangian
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LhhSS ¼
κ2

4

Z
z2

z1

dz e3A
	
ð2ĥμρĥνρ − ĥĥμνÞ∂μS∂νS

þ 1

4
ðĥ2 − 2ĥνρĥνρÞ½∂ρS∂ρS − ð∂zSÞ2 −M2

Se
2AS2�



;

ðA25Þ

LφφSS ¼−
κ2

4

Z
z2

z1

dz e3A
1

6
φ̂2½∂μS∂μSþ 10ð∂zSÞ2�; ðA26Þ

LhφSS¼
κ2

2

Z
z2

z1

dz e3A
1

2
ffiffiffi
6

p φ̂ ĥ ½3ð∂zSÞ2þM2
Se

2AS2�: ðA27Þ

b. Fermion

The 3-point interactions are given by the Lagrangian

Lhψ̄ψ ¼ κ

Z
z2

z1

dz e4A
	
1

4
ĥμν½ψ̄Lð−iγμ ∂

↔

ν þ iημν =∂
↔

ÞψL

þ ðL → RÞ� ðA28Þ

−
1

4
ĥ½ψ̄R ∂

↔

zψL − ðL → RÞ�

−
1

2
MψeAĥ½ψ̄RψL þ ψ̄LψR�



; ðA29Þ

Lφψ̄ψ ¼ κ

Z
z2

z1

dz e4A
	

1

4
ffiffiffi
6

p φ̂½−iψ̄L =∂
↔

ψLþðL→RÞ� ðA30Þ

þ 1ffiffiffi
6

p φ̂½ψ̄R ∂
↔

zψL − ðL → RÞ� þ 1ffiffiffi
6

p MψeAφ̂½ψ̄RψL

þ ψ̄LψR�


; ðA31Þ

where the derivative ∂

↔
acts only on the fermion fields and is

defined as

∂

↔

M ¼  ∂M − ∂⃖M: ðA32Þ

The 4-point interactions are given by the Lagrangian

Lhhψ̄ψ ¼ κ2

2

Z
z2

z1

dz e4A
	
1

8
ð3ĥμρĥνρ − 2ĥĥμνÞðiψ̄Lγμ ∂

↔

νψL

þ ðL ↔ RÞÞ þ 1

8
ðĥ2 − 2ĥνρĥνρÞ½iψ̄L =∂

↔

ψL

− 2MψeAψ̄RψL þ ðL ↔ RÞ� ðA33Þ

þ 1

8
ϵλαβρhμα∂ρhμβ½ψ̄LγλψL − ðL ↔ RÞ� ðA34Þ

−
1

8
ðĥ2−2ĥνρĥνρÞ½ψ̄R ∂

↔

zψL− ðL↔RÞ� ðA35Þ

þ 1

4
ĥμρ∂zĥ

ν
ρ½ψ̄RσμνψL − ðL ↔ RÞ�



ðA36Þ

Lφφψ̄ψ ¼ −
κ2

2

Z
z2

z1

dz e4Aφ̂2

	�
i
16

ψ̄L =∂
↔

ψL þ ðL ↔ RÞ
�

ðA37Þ

þ
�
1

3
ψ̄R ∂

↔

zψL − ðL ↔ RÞ
�


; ðA38Þ

Lhφψ̄ψ ¼ κ2
Z

z2

z1

dze3A
1

8
ffiffiffi
6

p φ̂ĥμνf½ψ̄Lðiγμ ∂
↔

μ − iημν =∂
↔

ÞψL

ðA39Þ

þ4MψeAημνψ̄RψL þ ðL ↔ RÞ� ðA40Þ

þ½4ημνψ̄R ∂
↔

zψL − ðL ↔ RÞ�g: ðA41Þ

c. Vector boson

The 3-point interactions are given by the Lagrangian

LhVV ¼ κ

2

Z
z2

z1

dz eA
��

ĥμν −
1

4
ημνĥ

�
FμρFν

ρ ðA42Þ

−
�
ĥμν −

1

2
ημνĥ

�
∂zVμ

∂zVν

�
; ðA43Þ

LhV5V5
¼ −

κ

2

Z
z2

z1

dz eA
�
ĥμν −

1

2
ημνĥ

�
∂μV5∂νV5; ðA44Þ

LhVV5
¼ κ

Z
z2

z1

dz eA
�
ĥμν −

1

2
ημνĥ

�
∂μV5∂zVν; ðA45Þ

LφVV ¼ κ

2

Z
z2

z1

dz eA
ffiffiffi
2

3

r
φ

�
−
1

4
FμνFμν − ∂zVμ

∂zVμ

�
;

ðA46Þ

LφV5V5
¼ −

κ

2

Z
z2

z1

dz eA
ffiffiffi
2

3

r
φ∂μV5∂

μV5; ðA47Þ

LφVV5
¼ κ

Z
z2

z1

dz eA
ffiffiffi
2

3

r
φ∂μV5∂zVμ: ðA48Þ

The 4-point interactions are given by the Lagrangian
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LhhVV ¼ κ2

4

Z
z2

z1

dz eA
	�

ĥμσĥνρ þ ημρðĥĥνσ − 2ĥν
αĥσαÞ

ðA49Þ

þ 1

4
ημρηνσ

�
ĥαβĥαβ −

1

2
ĥ2
��

FμνFρσ ðA50Þ

−
�
ĥĥμν − 2ĥμ

ρĥνρ þ
1

2
ημν

�
ĥρσĥρσ −

1

2
ĥ2
��

∂zVμ
∂zVν



;

ðA51Þ

LφφVV ¼ κ2

4

Z
z2

z1

dz eA
5

6
φ̂2

∂zVμ
∂zVμ; ðA52Þ

LhφVV ¼
κ2

2

Z
z2

z1

dz eA
1ffiffiffi
6

p φ̂

��
ĥμν−

1

4
ημνĥ

�
FμρFν

ρ ðA53Þ

þð2ĥμν − ημνĥÞ∂zVμ
∂zVν

�
: ðA54Þ

APPENDIX B: WAVE FUNCTIONS
OF BULK MATTER

1. Graviton

The gravitational wave functions in RS, in conformal
coordinates, take the form of

fðnÞðzÞ ¼ CðnÞ
h z2½Y1ðmnz2ÞJ2ðmnzÞ − J1ðmnz2ÞY2ðmnzÞ�;

ðB1Þ

gðnÞðzÞ ¼ CðnÞ
A z2½Y1ðmnz2ÞJ1ðmnzÞ − J1ðmnz2ÞY1ðmnzÞ�;

ðB2Þ

kðnÞðzÞ ¼ CðnÞ
φ z2½Y1ðmnz2ÞJ0ðmnzÞ − J1ðmnz2ÞY0ðmnzÞ�;

ðB3Þ

for the massive modes n > 0, where Ja and Ya are Bessel
functions of the first and second kind, respectively, and

fð0ÞðzÞ ¼ Cð0Þ
h ; ðB4Þ

gð0ÞðzÞ ¼ 0; ðB5Þ

kð0ÞðzÞ ¼ Cð0Þ
φ z2 ðB6Þ

for the massless modes. The normalizations CðnÞ
h;A;φ are

fixed byZ
z2

z1

dze3AðzÞfðmÞðzÞfðnÞðzÞ ¼
Z

z2

z1

dze3AðzÞgðmÞðzÞgðnÞðzÞ

¼
Z

z2

z1

dze3AðzÞkðmÞðzÞkðnÞðzÞ

¼ δm;n: ðB7Þ

The physical mass mn is the nth solution of the equation

Y1ðmnz2ÞJ1ðmnz1Þ − J1ðmnz2ÞY1ðmnz1Þ ¼ 0: ðB8Þ

2. Bulk scalar

The wave functions of KK scalars are given by

fðnÞS ðzÞ ¼ z2½cnYνðmS;nzÞ þ dnJνðmS;nzÞ�; ðB9Þ

where ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þM2

Sz
2
1

p
, and the coefficients cn and dn and

the masses mS;n are fixed by the boundary conditions,

∂zf
ðnÞ
S ðz1Þ ¼ ∂zf

ðnÞ
S ðz2Þ ¼ 0; ðB10Þ

and orthogonality,Z
z2

z1

dze3AðzÞfðmÞ
S ðzÞfðnÞS ðzÞ ¼ δm;n: ðB11Þ

3. Bulk fermion

Without the loss of generality, we consider the case
where the left-handed fermion has a massless mode. In such
case, the wave functions are given by

fð0ÞψL ðzÞ ¼ Cð0Þ
ψL z

2−Mψ z1 ; ðB12Þ

fð0ÞψR ðzÞ ¼ 0; ðB13Þ

fðnÞψL ðzÞ ¼ CðnÞ
ψL z

5
2

 
YMψ z1þ1=2ðmψ ;nzÞ −

YMψ z1−1=2ðmψ ;nz2ÞJMψ z1þ1=2ðmψ ;nzÞ
JMψ z1−1=2ðmψ ;nz2Þ

!
; ðB14Þ

fðnÞψR ðzÞ ¼ CðnÞ
ψR z

5
2

 
YMψ z1−1=2ðmψ ;nzÞ −

YMψ z1−1=2ðmψ ;nz2ÞJMψ z1−1=2ðmψ ;nzÞ
JMψ z1−1=2ðmψ ;nz2Þ

!
; ðB15Þ
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where the masses mψ ;n are the solutions of the equation

JMψ z1−1=2ðmψ ;nz2ÞYMψ z1−1=2ðmψ ;nz1Þ
− YMψ z1−1=2ðmψ ;nz2ÞJMψ z1−1=2ðmψ ;nz1Þ ¼ 0; ðB16Þ

and the normalization CðnÞ
ψL=R is fixed by the orthogonalityZ

z2

z1

dze4AðzÞfðmÞ
ψL=RðzÞfðnÞψL=RðzÞ ¼ δm;n: ðB17Þ

4. Bulk vector

The wave functions of KK gauge bosons are given by

fð0ÞV ðzÞ ¼ Cð0Þ
V ; ðB18Þ

fð0ÞV5
ðzÞ ¼ 0; ðB19Þ

fðnÞV ðzÞ ¼ CðnÞ
V z

�
J1ðmV;nzÞ −

J0ðmV;nz1ÞY1ðmV;nzÞ
Y0ðmV;nz1Þ

�
;

ðB20Þ

fðnÞV5
ðzÞ ¼ CðnÞ

V5
z

�
J0ðmV;nzÞ −

J0ðmV;nz1ÞY0ðmV;nzÞ
Y0ðmV;nz1Þ

�
;

ðB21Þ

where the masses mV;n are the solutions of the equation

Y0ðmV;nz1ÞJ0ðmV;nz2Þ − J0ðmV;nz1ÞY0ðmV;nz2Þ ¼ 0;

ðB22Þ

and the normalization CðnÞ
V and CðnÞ

V5
are fixed by the orthogonalityZ

z2

z1

dzeAðzÞfðmÞ
V ðzÞfðnÞV ðzÞ ¼

Z
z2

z1

dzeAðzÞfðmÞ
V5

ðzÞfðnÞV5
ðzÞ ¼ δm;n: ðB23Þ

APPENDIX C: COUPLING STRUCTURES

1. Graviton

The overlap integrals relevant to the KK graviton self-interaction are given by

an1n2n3 ¼ hfðn1Þfðn2Þfðn3Þi; bn̄1n̄2n3 ¼ hð∂zfðn1ÞÞð∂zfðn1ÞÞfðn3Þi; bn̄1n̄2r ¼ hð∂zfðn1ÞÞð∂zfðn1ÞÞkð0Þi: ðC1Þ

One can derive the following “b-to-a” identities using the eigenequations and integration by parts:

bj̄ n̄ n þ bn̄ n̄ j ¼ m2
nannj; ðC2Þ

bn̄ n̄ j ¼
�
m2

n −
1

2
m2

j

�
annj: ðC3Þ

2. Bulk scalar

The overlap integrals relevant to the KK scalars are given by

aSn1n2n3 ¼ hfðn1Þfðn2ÞS fðn3ÞS iS; aMS
n1n2n3 ¼ he2Afðn1Þfðn2ÞS fðn3ÞS iS; bSn1n̄2n̄3 ¼ hfðn1Þ∂zfðn2ÞS ∂zf

ðn3Þ
S iS; ðC4Þ

aSn1n2r ¼ hfðn1ÞS fðn2ÞS kð0ÞiS; aMS
n1n2r ¼ he2Afðn1ÞS fðn2ÞS kð0ÞiS; bSn̄1n̄2r ¼ h∂zfðn1ÞS ∂zf

ðn2Þ
S kð0ÞiS; ðC5Þ

aSn1n2n3n4 ¼ hfðn1Þfðn2Þfðn3ÞS fðn4ÞS iS; aMS
n1n2n3n4 ¼ he2Afðn1Þfðn2Þfðn3ÞS fðn4ÞS iS; ðC6Þ

bSn̄1n̄2n3n4 ¼ h∂zfðn1Þ∂zfðn2Þfðn3ÞS fðn4ÞS iS; bSn1n2n̄3n̄4 ¼ hfðn1Þfðn2Þ∂zfðn3ÞS ∂zf
ðn4Þ
S iS; ðC7Þ

bMS
n̄1n̄2n3n4 ¼ he2A∂zfðn1Þ∂zfðn2Þfðn3ÞS fðn4ÞS iS: ðC8Þ
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One can derive the following “b-to-a” identities using the eigenequations and integration by parts,

bSjm̄ m̄ ¼
�
m2

S;m −
1

2
m2

j

�
aSjmm −M2

Sa
MS
jmm; ðC9Þ

bSnnm̄ m̄ ¼ bSn̄ n̄mm þ ðm2
S;m −m2

nÞaSnnmm −M2
Sa

MS
nnmm: ðC10Þ

The completeness relations can be written as

X∞
j¼0

ðaSnmjÞ2 ¼ aSnnmm;
X∞
j¼0

annjaSjmm ¼ aSnnmm;
X∞
j¼0

bn̄ n̄ jaSjmm ¼ bSn̄ n̄mm: ðC11Þ

3. Bulk fermions

The overlap integrals relevant to the KK fermions are given by

a
ψL=R
n1n2n3 ¼ hfðn1Þfðn2ÞψL=Rf

ðn3Þ
ψL=Riψ ; a

Mψ
n1n2n3 ¼ heAfðn1Þfðn2ÞψL fðn3ÞψR iψ ; bψLψR

n̄1n2n3 ¼ hð∂zfðn1ÞÞfðn2ÞψL fðn3ÞψR iψ ; ðC12Þ

bψLψR
n1n̄2n3 ¼ hfðn1Þð∂zfðn2ÞψL Þfðn3ÞψR iψ ; bψLψR

n1n2n̄3 ¼ hfðn1Þfðn2ÞψL ð∂zfðn3ÞψR Þiψ ; a
ψL=R
n1n2r ¼ hfðn1ÞψL=Rf

ðn2Þ
ψL=Rk

ð0Þiψ ; ðC13Þ

a
Mψ
n1n2r ¼ heAfðn1ÞψL fðn2ÞψR kð0Þiψ ; bψLψR

n̄1n2r ¼ hð∂zfðn1ÞψL Þfðn2ÞψR kð0Þiψ ; bψLψR
n1n̄2r ¼ hfðn1ÞψL ð∂zfðn2ÞψR Þkð0Þiψ ; ðC14Þ

a
ψL=R
n1n2n3n4 ¼ hfðn1Þfðn2Þfðn3ÞψL=Rf

ðn4Þ
ψL=Riψ ; a

Mψ
n1n2n3n4 ¼ heAfðn1Þfðn2Þfðn3ÞψL fðn4ÞψR iψ ; ðC15Þ

bψLψR
n̄1n2n3n4 ¼ hð∂zfðn1ÞÞfðn2Þfðn3ÞψL fðn4ÞψR iψ ; bψLψR

n1n2n̄3n4 ¼ hfðn1Þfðn2Þð∂zfðn3ÞψL Þfðn4ÞψR iψ ; ðC16Þ

bψLψR
n1n2n3n̄4 ¼ hfðn1Þfðn2Þfðn3ÞψL ð∂zfðn4ÞψR Þiψ ; bψL

n̄1n̄2n3n4 ¼ hð∂zfðn1ÞÞð∂zfðn2ÞÞfðn3ÞψL fðn4ÞψL iψ ; ðC17Þ

bψR
n̄1n̄2n3n4 ¼ hð∂zfðn1ÞÞð∂zfðn2ÞÞfðn3ÞψR fðn4ÞψR iψ ; b

Mψ

n̄1n̄2n3n4 ¼ heAð∂zfðn1ÞÞð∂zfðn2ÞÞfðn3ÞψL fðn4ÞψR iψ : ðC18Þ

One can derive the following “b-to-a” identities using the eigenequations and integration by parts,

bψLψR
n̄mj ¼ mψ ;ja

ψL
nmj −mψ ;ma

ψR
nmj; ðC19Þ

bψLψR
n̄jm ¼ −mψ ;ja

ψR
nmj þmψ ;ma

ψL
nmj; ðC20Þ

bψLψR
jmm̄ ¼ bψLψR

jm̄m −mψ ;ma
ψL
jmm −mψ ;ma

ψR
jmm þ 2Mψa

Mψ

jmm; ðC21Þ

bψLψR
m̄mr ¼ mψ ;ma

ψL
mmr −Mψa

Mψ
mmr; ðC22Þ

bψLψR
mm̄r ¼ −mψ ;ma

ψR
mmr þMψa

Mψ
mmr; ðC23Þ

bψLψR
n̄nmm ¼ 1

2
mψ ;ma

ψL
nnmm −

1

2
mψ ;ma

ψR
nnmm; ðC24Þ

bψLψR
nnmm̄ ¼ bψLψR

nnm̄m −mψ ;ma
ψL
nnmm −mψ ;ma

ψR
nnmm þ 2Mψa

Mψ
nnmm: ðC25Þ

The completeness relations can be written as

X∞
j¼0

ðaψL=R

nmj Þ2 ¼ a
ψL=R
nnmm;

X∞
j¼0

aψL
nmjb

ψLψR
n̄jm ¼ bψLψR

n̄nmm;
X∞
j¼0

aψR
nmjb

ψLψR
n̄mj ¼ bψLψR

n̄nmm; ðC26Þ
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X∞
j¼0

annja
ψL=R

jmm ¼ a
ψL=R
nnmm;

X∞
j¼0

bn̄ n̄ ja
ψL=R

jmm ¼ b
ψL=R
n̄ n̄mm;

X∞
j¼0

ðbψLψR
n̄jm Þ2 ¼ bψR

n̄ n̄ mm; ðC27Þ

X∞
j¼0

ðbψLψR
n̄mj Þ2 ¼ bψL

n̄ n̄ mm: ðC28Þ

4. Bulk gauge bosons

The overlap integrals relevant to the KK gauge boson are given by

aVn1n2n3 ¼ hfðn1Þfðn2ÞV fðn3ÞV iV; aV5
n1n2n3 ¼ hfðn1Þfðn2ÞV5

fðn3ÞV5
iV; bVn1n̄2n̄3 ¼ hfðn1Þð∂zfðn2ÞV Þð∂zfðn3ÞV ÞiV; ðC29Þ

aVn1n2r ¼ hfðn1ÞV fðn2ÞV kð0ÞiV; bVn̄1n̄2r ¼ hð∂zfðn1ÞV Þð∂zfðn2ÞV Þkð0ÞiV; ðC30Þ

aVn1n2n3n4 ¼ hfðn1Þfðn2Þfðn3ÞV fðn4ÞV iV; aV5
n1n2n3n4 ¼ hfðn1Þfðn2Þfðn3ÞV5

fðn4ÞV5
iV; ðC31Þ

bVn̄1n̄2n3n4 ¼ hð∂zfðn1ÞÞð∂zfðn2ÞÞfðn3ÞV fðn4ÞV iV; bVn1n2n̄3n̄4 ¼ hfðn1Þfðn2Þð∂zfðn3ÞV Þð∂zfðn4ÞV ÞiV; ðC32Þ

bV5
n̄1n̄2n3n4 ¼ hð∂zfðn1ÞÞð∂zfðn2ÞÞfðn3ÞV5

fðn4ÞV5
iV: ðC33Þ

One can derive the following “b-to-a” identities using the eigenequations and integration by parts:

bVn1n̄2n̄3 ¼ mV;n2mV;n3a
V5
n1n2n3 ; ðC34Þ

bVn1n2n̄3n̄4 ¼ mV;n3mV;n4a
V5
n1n2n3n4 : ðC35Þ

The completeness relations can be written as

X∞
j¼0

ðaVnmjÞ2 ¼ aVnnmm;
X∞
j¼0

ðaV5

nmjÞ2 ¼ aV5
nnmm;

X∞
j¼0

annjaVjmm ¼ aVnnmm;
X∞
j¼0

annja
V5

jmm ¼ aV5
nnmm; ðC36Þ

X∞
j¼0

bn̄ n̄ jaVjmm ¼ bVn̄ n̄mm;
X∞
j¼0

bn̄ n̄ ja
V5

jmm ¼ bV5
n̄ n̄ mm: ðC37Þ

APPENDIX D: KINEMATICS

We define the Mandelstam variables such that

s ¼ ðp1 þ p2Þ2 ¼ ðk1 þ k2Þ2; ðD1Þ

t ¼ ðp1 − k1Þ2 ¼ ðp2 − k2Þ2; ðD2Þ

u ¼ ðp1 − k2Þ2 ¼ ðp2 − k1Þ2: ðD3Þ

Choosing the ẑ direction as the center-of-momentum frame, with two outgoing massive spin-2 KK gravitons with masses
mn, and two incoming massive particles with masses mm, we can express the four-momenta of various particles as

pμ
1 ¼

ffiffiffi
s

p
2

ð1; 0; 0; βi;mÞ; pμ
2 ¼

ffiffiffi
s

p
2

ð1; 0; 0;−βi;mÞ; ðD4Þ
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kμ1 ¼
ffiffiffi
s

p
2

ð1; βn sin θ; 0; βn cos θÞ; kμ2 ¼
ffiffiffi
s

p
2

ð1;−βn sin θ; 0;−βn cos θÞ; ðD5Þ

where βn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

n=s
p

, and βi;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

i;m=s
q

for i ¼ S̄; SðmÞ; χ;ψ ðmÞ; V̄; VðmÞ.

APPENDIX E: PROOF OF SUM RULES

In this section, we give the analytic proof of the sum rules for bulk fermions. The proof for bulk scalars and gauge bosons
can be easily derived in a similar manner.
(1) Sum rule at Oðs5=2Þ, given in Eq. (133):

2
X∞
j¼0

mψ ;ja
ψL
nmja

ψR
nmj ¼ 2

X∞
j¼0

ðbψLψR
n̄mj þmψ ;ma

ψR
nmjÞaψR

nmj

¼ 2bψLψR
n̄nmm þ 2mψ ;ma

ψR
nnmm

¼ mψ ;ma
ψL
nnmm þmψ ;ma

ψR
nnmm; ðE1Þ

where we have used Eqs. (C19), (C26), and (C24).
(2) Sum rules at Oðs2Þ, given in Eqs. (133) and (137).

With the “b-to-a” relations and the completeness relations given in Appendix C 3, one can derive

X∞
j¼0

m2
ψ ;jðaψL

nmjÞ2 ¼
X∞
j¼0

½mψ ;ja
ψL
nmj −mψ ;ma

ψR
nmj�2 −

X∞
j¼0

m2
ψ ;mðaψR

nmjÞ2 þ 2
X∞
j¼0

mψ ;mmψ ;ja
ψL
nmja

ψR
nmj ðE2Þ

¼
X∞
j¼0

ðbψLψR
n̄mj Þ2 þm2

ψ ;ma
ψL
nnmm ðE3Þ

¼ bψL
n̄ n̄mm þm2

ψ ;ma
ψL
nnmm; ðE4Þ

X∞
j¼0

m2
jannja

ψL
jmm ¼

X∞
j¼0

ð2m2
nannj − 2bn̄ n̄ jÞaψL

jmm ðE5Þ

¼ 2m2
na

ψL
nnmm − 2bψL

n̄ n̄mm: ðE6Þ

(3) To prove the sum rule at Oðs3=2Þ, as given in Eq. (139), we first show

X∞
j¼0

mψ ;jb
ψLψR
n̄jm bψLψR

n̄mj ¼ −
1

2
mψ ;mðbψL

n̄ n̄mm þ bψR
n̄ n̄ mmÞ þ 2Mψb

Mψ

n̄ n̄ mm: ðE7Þ

Proof. Note that, using the eigenequations and integration by parts,

mψ ;j

mn
bψLψR
n̄jm ¼ mψ ;j

mn
hð∂zfðnÞÞfðjÞψLf

ðmÞ
ψR iψ

¼ −hgðnÞfðmÞ
ψR ð∂z þ 2A0 −MψeAÞfðjÞψRiψ

¼ hfðjÞψRð∂z þ 2A0 þMψeAÞðgðnÞfðmÞ
ψR Þiψ

¼ −mnhfðnÞfðmÞ
ψR f

ðjÞ
ψRiψ −mψ ;mhgðnÞfðmÞ

ψL f
ðjÞ
ψRiψ

þ 2MψheAgðnÞfðmÞ
ψR f

ðjÞ
ψRiψ − 3hA0gðnÞfðmÞ

ψR f
ðjÞ
ψRiψ : ðE8Þ
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Thus, with the completeness relations,

X∞
j¼0

mψ ;jb
ψLψR
n̄jm bψLψR

n̄mj ¼
X∞
j¼0

�
−m3

nhfðnÞfðmÞ
ψR f

ðjÞ
ψRihgðnÞfðmÞ

ψL f
ðjÞ
ψRiψ −m2

nmψ ;mhgðnÞfðmÞ
ψL f

ðjÞ
ψRihgðnÞfðmÞ

ψL f
ðjÞ
ψRiψ

þ 2m2
nMψheAgðnÞfðmÞ

ψR f
ðjÞ
ψRihgðnÞfðmÞ

ψL f
ðjÞ
ψRiψ − 3m2

nhA0gðnÞfðmÞ
ψR f

ðjÞ
ψRihgðnÞfðmÞ

ψL f
ðjÞ
ψRiψ

�
¼ −m3

nhfðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψR iψ −m2

nmψ ;mhgðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψL iψ − 3m2

nhA0gðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψR iψ

þ 2m2
nMψheAgðnÞgðnÞfðmÞ

ψL f
ðmÞ
ψR iψ : ðE9Þ

On the other hand, applying eigenequations to the surface integralZ
z2

z1

dz∂zðe4AgðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψR Þ ¼ 0; ðE10Þ

one gets

hA0gðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψR iψ ¼−

1

3
mnhfðnÞgðnÞfðmÞ

ψL f
ðmÞ
ψR iψ þ

1

6
mψ ;mhgðnÞgðnÞfðmÞ

ψR f
ðmÞ
ψR iψ −

1

6
mψ ;mhgðnÞgðnÞfðmÞ

ψL f
ðmÞ
ψL iψ : ðE11Þ

Hence,

X∞
j¼0

mψ ;jb
ψLψR
n̄jm bψLψR

n̄mj ¼ −
1

2
m2

nmψ ;mðhgðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψL iψ þ hgðnÞgðnÞfðmÞ

ψR f
ðmÞ
ψR iψ Þ þ 2m2

nMψheAgðnÞgðnÞfðmÞ
ψL f

ðmÞ
ψR iψ

¼ −
1

2
mψ ;mðbψL

n̄ n̄ mm þ bψR
n̄ n̄ mmÞ þ 2Mψb

Mψ

n̄ n̄ mm: ðE12Þ

Finally, we are ready to prove the sum rule given in Eq. (139).

X∞
j¼0

m3
ψ ;ja

ψL
nmja

ψR
nmj ¼

X∞
j¼0

mψ ;jðbψLψR
n̄mj þmψ ;ma

ψR
nmjÞð−bψLψR

n̄jm þmψ ;ma
ψL
nmjÞ

¼
X∞
j¼0

n
−mψ ;jðbψLψR

n̄mj bψLψR
n̄jm Þ þmψ ;mm2

ψ ;j½ðaψL
nmjÞ2 þ ðaψR

nmjÞ2� −m2
ψ ;mmψ ;ja

ψL
nmja

ψR
nmj

o
¼ 3

2
mψ ;mðbψL

n̄ n̄mm þ bψR
n̄ n̄ mmÞ þ

1

2
m3

ψ ;mðaψL
nnmm þ aψR

nnmmÞ − 2Mψb
Mψ

n̄ n̄ mm: ðE13Þ

(4) The proof of the radion sum rule given in Eq. (140).
Proof. Applying eigenequations to the surface integralZ

z2

z1

dz½∂zðe3AfðnÞfðnÞgðjÞÞ� ¼
Z

z2

z1

dz½∂zðe3AgðnÞgðnÞgðjÞÞ� ¼ 0; ðE14Þ

one gets

hA0gðnÞgðnÞgðjÞi ¼ −
mj

6
ðhfðnÞfðnÞfðjÞi þ hgðnÞgðnÞfðjÞiÞ: ðE15Þ

Then, from
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Z
z2

z1

dz½∂zðe4AgðjÞfðmÞ
ψL=Rf

ðmÞ
ψL=RÞ� ¼ 0;Z

z2

z1

dz½∂zðe5AgðjÞfðmÞ
ψL f

ðmÞ
ψR Þ� ¼ 0; ðE16Þ

one gets

hA0gðjÞfðmÞ
ψL=Rf

ðmÞ
ψL=Riψ ¼ −

mj

3
hfðjÞfðmÞ

ψL=Rf
ðmÞ
ψL=Riψ � 2mψ ;m

3
hgðjÞfðmÞ

ψL f
ðmÞ
ψR iψ ∓ 2Mψ

3
heAgðjÞfðmÞ

ψL=Rf
ðmÞ
ψL=Riψ ; ðE17Þ

heAA0gðjÞfðmÞ
ψL f

ðmÞ
ψR iψ ¼ −

mj

2
heAfðjÞfðmÞ

ψL f
ðmÞ
ψR iψ −

mψ ;m

2
heAgðjÞfðmÞ

ψL f
ðmÞ
ψL iψ þmψ ;m

2
heAgðjÞfðmÞ

ψR f
ðmÞ
ψR iψ : ðE18Þ

Note that, by combining the SUSY relations

(
−ð∂z þ 3A0ÞgðjÞ ¼ mjfðjÞ;

ð∂z þ A0ÞgðjÞ ¼ mjkðjÞ;
ðE19Þ

one gets

kðjÞ ¼ −fðjÞ −
2A0

mj
gðjÞ for j > 0: ðE20Þ

Thus, we have

m2
nhgðnÞgðnÞkðjÞi ¼ −m2

nhgðnÞgðnÞfðjÞi −
2m2

n

mj
hA0gðnÞgðnÞgðjÞi

¼ −
2m2

n

3
hgðnÞgðnÞfðjÞi þm2

n

3
hfðnÞfðnÞfðjÞi

¼ −
2

3
bn̄ n̄ j þ

m2
n

3
annj ðfor j > 0Þ: ðE21Þ

And,

�
kðjÞ
�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

¼ −
�
fðjÞ
�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

−
2

mj

�
A0gðjÞ

�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

¼ −
1

3
hfðjÞðfðmÞ

ψL f
ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR Þiψ

¼ −
1

3
ðaψL

jmm þ aψR
jmmÞ ðfor j > 0Þ: ðE22Þ
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Finally, using the completeness of the wave functions kðjÞ of the scalar Golstone boson, we have

bn̄ n̄ r

�
aψL
mmr þ aψR

mmr −
4Mψ

3mψ ;m
a
Mψ
mmr

�
¼ m2

nhgðnÞgðnÞkð0Þi
�
kð0Þ
�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

¼ m2
n

X∞
j¼0

hgðnÞgðnÞkðjÞi
�
kðjÞ
�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

−m2
n

X∞
j¼1

hgðnÞgðnÞkðjÞi
�
kðjÞ
�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

¼ m2
n

�
gðnÞgðnÞ

�
fðmÞ
ψL f

ðmÞ
ψL þ fðmÞ

ψR f
ðmÞ
ψR −

4Mψ

3mψ ;m
eAfðmÞ

ψL f
ðmÞ
ψR

��
ψ

þ 1

9

X∞
j¼1

ðm2
nannj − 2bn̄ n̄ jÞðaψL

jmm þ aψR
jmmÞ

¼
�
bψL
n̄ n̄mm þ bψR

n̄ n̄mm −
4Mψ

3mψ ;m
b
Mψ

n̄ n̄mm

�
þ 1

9

X∞
j¼0

ðm2
nannj − 2bn̄ n̄ jÞðaψL

jmm þ aψR
jmmÞ

−
1

9
ðm2

nann0 − 2bn̄ n̄0ÞðaψL
0mm þ aψR

0mmÞ

¼ 7

9
ðbψL

n̄ n̄mm þ bψR
n̄ n̄mmÞ þ

1

9
m2

nann0ðaψL
0mm þ aψR

0mmÞ

þ 1

9
m2

nðaψL
nnmm þ aψR

nnmmÞ− 4Mψ

3mψ ;m
b
Mψ

n̄ n̄mm: ðE23Þ

(5) In a similar manner, we can also prove the radion sum rule for brane matter given in Eq. (91):

bn̄ n̄ rkð0Þðz̄Þ ¼ m2
nhgðnÞgðnÞkð0Þikð0Þðz̄Þ

¼
X∞
j¼0

m2
nhgðnÞgðnÞkðjÞikðjÞðz̄Þ −

X∞
j¼1

m2
nhgðnÞgðnÞkðjÞikðjÞðz̄Þ

¼ m2
n½gðnÞðz̄Þ�2 −

X∞
j¼1

�
−
2

3
bn̄ n̄ j þ

m2
n

3
annj

�
ð−fðjÞðz̄ÞÞ

¼
X∞
j¼0

�
−
2

3
bn̄ n̄ j þ

m2
n

3
annj

�
fðjÞðz̄Þ þ

�
−
2

3
bn̄ n̄ 0 −

m2
n

3
ann0

�
fð0Þðz̄Þ

¼ m2
n

3
½fðnÞðz̄Þ�2 þm2

n

3
ann0fð0Þðz̄Þ: ðE24Þ
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