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We introduce a technique to realize brane wrapping and double dimensional reduction in the context of

Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ) topological sigma models and also in their target

spaces, which are symplectic Ln algebroids (i.e.,QPmanifolds). Our procedure involves a novel coisotropic

reduction combined with an AKSZ transgression that realizes degree shifting; the reduced QP manifold

depends on topological data of the “wrapped” cycle. We check our procedure against the known rules for

fluxes under wrapping in the context of M-theory/type IIA duality, and we also find a new relation between

Courant algebroids and Poisson manifolds.
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I. INTRODUCTION

In a series of recent papers [1–3] we have been establi-
shing a correspondence between Bogomol'nyi-Prasad-
Sommerfield p-branes in string/M-theory on the one hand
and symplecticLpþ1 algebroids on the other hand. The latter

can be thought of as appropriate generalizations of (exact)
Courant algebroids, and they are relevant for describing
generic flux backgrounds of string theory/M-theory (see [4]
for this point of view, and [5] for an alternative). The
algebroid description of these backgrounds has been used
to understand properties of reductions such as Kaluza-Klein
(KK) spectra [6], consistent truncations [7], and marginal
deformations [8,9]. In the aforementioned brane-algebroid

correspondence, the exact Courant algebroid (which is
classified by the de Rham cohomology class of H [10]) is
associated with the fundamental string (which couples to H
electrically via a Wess-Zumino term). For other branes, such
as theM2- andM5-branes inM-theory, or even/oddD-branes
in type II string theory, the corresponding algebroids are
roughly speaking the ones that are classified by whichever
fluxes couple electrically to the brane in question.
In general, the correspondence is between a “physical”

p-brane (an F1, M2, M5,…), a symplectic Ln algebroid for
n ¼ pþ 1, and a topological Alexandrov-Kontsevich-
Schwarz-Zaboronsky (AKSZ) brane sigma model of dimen-
sion pþ 2. This can be schematically summarized in the
following diagram:

ð1:1Þ

Less tersely, the symplectic Ln algebroid—that is classified

by a certain collection of fluxes—determines a topological

n-brane sigmamodel via the AKSZ construction [11].When
the n-brane has an (n − 1)-brane boundary, an inflow-type
argument with an appropriate boundary condition produces
the Wess-Zumino (WZ) term that couples those same fluxes
to the (n − 1)-brane [1,3].

1
The algebroid also determines the

corresponding (n − 1)-brane more directly via the brane

*
alex.s.arvanitakis@vub.be

†
dtennyson@tamu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

1
A slightly different boundary condition for the AKSZ sigma

model can produce the entire (n − 1)-brane Lagrangian, including
kinetic terms. This was done for the fundamental string by Ševera
[12]. The other cases have not yet been considered in the literature.
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phase space construction that yields the Poisson algebra of
brane currents on phase space [2] (i.e., in the Hamiltonian
formulation of brane dynamics).

This correspondence between branes and algebroids

motivates the question: given that the string/M-theory

duality web acts on the branes, how is the duality web

realized on the algebroid side? Heretofore this was only

known for dualities that preserve the world volume dimen-

sion; see [13] for T-duality and [3] for M-theory/type IIA

duality along a transverse M-theory circle. [An example

of the latter is the emergence of a D2-brane given an

M2brane that does not wrap the M-theory circle, whose

algebroid avatar is symplectic reduction modulo the

U(1) action.] This “algebroid duality web” has already

found applications in physics, including, e.g., to spacetime

topology change induced by Poisson-Lie T-duality [13].

In this paper we provide an algebroid realization for

the brane wrapping operation. In the string theory

picture, this sends a p-brane to the (p − d)-brane found

by wrapping the original brane around a d-dimensional

cycle on target space and then shrinking the volume of

the cycle to zero. (Since both the dimensionality of the

brane and that of the target space are reduced in this

way, this is also known as double dimensional reduc-

tion.) The most basic example is M-theory/IIA duality,

where M2-branes wrapped around the compactified

11th dimension give rise to fundamental strings in

ten dimensions [14]. This already poses a puzzle: the

corresponding algebroids are of degree n ¼ pþ 1 ¼ 3

(for the M2-brane) and n ¼ 2 (for the F1); what is

the mathematical operation that accounts for this

degree shift?

The mystery is resolved in the supergeometric formu-

lation of symplectic Ln algebroids, defined by the data of a

QP manifold ðM;ω; QÞ where M is a non-negatively

graded manifold, ω a symplectic form of degree n, and Q a

nilpotent vector field of degree 1, Hamiltonian for ω.

Given a compact manifold X of dimension d—to be

identified with the cycle to be “wrapped”—the odd tangent

bundle X ≡ T½1&X possesses an integration measureR
X ∶ C∞ðXÞ → R of degree −d, namely the integral of

differential forms. Then the mapping space

MX
≡mapsðX →MÞ ð1:2Þ

possesses a P structure of degree (n − d), provided by the

AKSZ construction. This is the correct degree shift;

however, this manifold is infinite dimensional, and its

structure sheaf is not non-negatively graded, so it cannot be

the sought-after symplectic Ln−d algebroid.

A. A “brane wrapping” for QP manifolds

We introduce a coisotropic reduction of the space MX

to a finite-dimensional QP manifold that resolves both

issues. This resolution is heavily motivated by the intuitive

string-theoretic picture of brane wrapping. We deal with the

case where the body of M is a product N × X, seen as

a trivial bundle with fiber X, and we select a map

N ↪ mapsðX → N × XÞ, as in Fig. 1. The idea is that

each point n∈N is mapped to the cycle of N × X that

shrinks to zero size in the double dimensional reduction

procedure. Since mapsðX → N × XÞ is disconnected, with
connected components corresponding to different winding

sectors (as they would be called in physics), the choice of

map N ↪ mapsðX → N × XÞ includes a choice of wind-

ing. On the string theory side, double dimensional reduc-

tion indeed depends on winding: for instance, an M2-brane

wound w times around the M-theory circle yields a

fundamental string coupled to the H-flux wH. Since the

algebroids corresponding to these branes via the diagram

(1.1) are defined by the same fluxes, we expect winding

dependence in the obtained algebroid, and we will indeed

find it.

In more detail: we start with the data of an NQP—“N”

for non-negatively graded—manifold M with body M and

a “source” Q manifold X ¼ T½1&X as above, along with

a wrapping map w∶ X → M that defines a degree-0 sub-

manifold N ↪ mapsðX → MÞ. We then produce a finite-

dimensional, non-negatively graded QP manifold W,

whose P structure has degree n − d; we will call W the

wrapped algebroid, and we will call our procedure (brane)

wrapping. The wrapping of QP manifolds/symplectic Ln

algebroids is then a reduction of MX with respect to a

coisotropic submanifold C which may be thought of as

the lift of N ↪ mapsðX → MÞ to a graded submanifold

of mapsðX →MÞ ¼ MX . The output QP manifold W

depends on the choice of wrapping map w only up to

homotopy.

In fact, we were able to generalize beyond the case

M ¼ N × X (that was pictorially outlined above) to the

case M ¼ N × Y, with Y and X not necessarily of the

same dimension, even; then the wrapping is a map

w∶ X → N × Y, and d ¼ dimX controls the degree/dimen-

sionality shifts as before. This generalization allows us to

accommodate at least one example which might be of

interest outside of string theory, namely the wrapping of a

Courant algebroid into a Poisson manifold discussed in

Sec. IV B, which has dimY ¼ 0. When dimX ¼ nþ 1 in

FIG. 1. The wrapping map specification for N ¼ R, X ¼ S1.
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addition to dimY ¼ 0 (so that MX has a degree −1 P
structure) our wrapping procedure agrees with that of [15].

Our approach gives a complementary perspective to the

Losev-trick based wrapping-style reductions of [16,17] and

to that of [18,19].

B. Brane wrapping and AKSZ sigma models

Our brane wrapping reduction—from a QP manifold

M to a QP manifold W—also induces a reduction

of the corresponding AKSZ topological field theories.

Essentially, the two reductions commute, as in the sche-

matic diagram

ð1:3Þ

HereMX×S andWS are P manifolds of degree −1 created

by the AKSZ construction for S of appropriate dimension.

The dotted arrow corresponds to a reduction ofMX×S with

respect to the coisotropic submanifold CS ≡mapsðS; CÞ,
for C the coisotropic submanifold that appears in the

wrapping reduction M →W. This “dotted” reduction

always exists and is compatible with the AKSZ/BV

(Batalin-Vilkovisky)master actions if the wrapping reduc-

tion does.

We provide the argument for the reduction of AKSZ

sigma models in Sec. VI, along with an example: the

reduction of a topological 3-brane sigma model (corre-

sponding to the M2-brane symplectic L3 algebroid) to a

Courant sigma model (corresponding to the fundamental

string symplectic L2 algebroid). This provides an impor-

tant consistency check: if we were to derive the corre-

sponding physical brane sigma models, e.g., by

introducing boundaries and using an inflow-type argu-

ment as in [1,12], we would find that the electric

Wess-Zumino flux coupling has the correct winding

dependence.

C. Structure of the paper

In Sec. II, we describe the general procedure for

wrapping QP manifolds. We provide the conditions

required of the QP structure on M and define the

coisotropic ideal I ⊂ C∞ðMX Þ (that defines the coiso-

tropic submanifold C) in general. We show that it is well-

defined and perform the reduction. The next three

sections provide a multitude for examples. (If the reader

finds the notation of Sec. II too terse, they may find it

useful to first work their way through the examples

before coming back to the general procedure.) Section III

covers the case where dimX ¼ 0. In this case, we do not

get any wrapping and our reduction is very similar to

conventional dimensional reduction [20]. In Sec. IV we

consider examples where dimX ≠ 0, but the wrapping

map w is trivial in homotopy. These provide examples

which are simple but still present some of the main

features of the reduction. Among these is the reduction of

a Courant algebroid to a Poisson manifold given in

Sec. IV B. In Sec. V, we consider examples relevant for

physics and wrap string/M-theory branes on various

manifolds. In Sec. VI we show how our procedure

naturally lifts to a reduction of the AKSZ theory from

MX×S toWS. Section VII is left for comments and outlook.

The appendixes cover our notation (Appendix A), some key

properties and conventions of QP manifolds (Appendix B),

and a review of coisotropic reduction in the graded context

(Appendix C).

II. WRAPPING QP MANIFOLDS

Wewill describe a process of creating newQPmanifolds

from old, which effectively generalizes the notion of

dimensional reduction, that we describe as wrapping QP
manifolds. The nomenclature arises due to the consistency

of this process with the AKSZ construction [11]—that is,

one can reduce the AKSZ theory from the original QP
manifold to that of the new manifold. Solutions of this

reduced AKSZ theory will look like branes wrapping

cycles of the target space. We will describe the relation

to AKSZ sigma models in a later section and will describe

the wrapping procedure here.

We start from the following ingredients:

(i) An NQP manifold M ¼ N × Y of degree n ≥ 2

where

Y ¼ T'½n&T½1&Y ð2:1Þ

and N is otherwise generic, with underlying com-

mutative manifold
2
N. The underlying commutative

manifold for M is M ¼ N × Y, a direct product

manifold. The symplectic form will be written

ωM ¼ dϑM, where ϑM is the canonical symplectic

potential. The induced Poisson bracket onMwill be

written ð·; ·ÞM.

(ii) The Q structure of M should be a lift of the de

Rham differential of Y, seen as the vector field

dY ≡ ξm∂=∂ym on T½1&Y, with respect to the

bundle projection p that is the composition

N × Y ⟶

πY
Y ⟶

πT½1&Y
T½1&Y. Explicitly this lift con-

dition means QMp⋆ ¼ p⋆dY , which partially

determines the form of the Hamiltonian ΘM in local

coordinates:

2
By “underlying commutative manifold” we mean the com-

mutative manifoldM whose structure sheaf is the sheaf of degree
0 functions on M, i.e., C∞ðMÞ ¼ C∞

0
ðMÞ. This is well defined

since we are working on graded-commutative manifolds with a
non-negative grading. We will also refer to this as the manifold in
degree 0.
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ΘM ¼ −ξmqm þ
Xnþ1

k¼0

1

k!
θm1(((mk

ðz; yÞξm1 ( ( ( ξmk ;

ð2:2Þ

where q are the degree n conjugate momenta to y on
T⋆½n&T½1&Y and z are generic homogeneous coor-

dinates on N . The θk ¼ θkðz; yÞξ
k can be viewed

as [C∞ðN Þ-valued] differential forms on Y, and we

demand that they must be dY-closed differential

forms.

(iii) A Q manifold X ¼ ðT½1&X; dÞ where X is compact,

without boundary, and has dimension d < n. d is the
de Rham differential.

(iv) A choice of “wrapping map” w∶ X → Y, defined up
to homotopy.

We aim to produce a new NQP manifoldW fromM, X ,

which describes a brane where X has been wrapped over Y
and both cycles have been shrunk. The resulting QP
manifold should therefore have degree n − d and under-

lying commutative manifold N. There is a natural choice of

manifold of degree n − d given by the mapping space

MX ≔ mapsðX →MÞ. However, this manifold is infinite

dimensional. We will see that we can define a coisotropic

reduction of MX that produces a finite dimensional NQP

manifold which only depends on the topology of X and the

homotopy class of w.

A. Properties of the mapping space

The infinite dimensional space MX consists of maps f
which are defined by their pullback action on the coor-

dinates onM. Using generic homogeneous coordinates ZA

for M and coordinates ðσα; dσαÞ for X adapted to d

[dðσαÞ ¼ dσα, ddσα ¼ 0] we have

f'ZA ¼ ZAðσ; dσÞ ¼ ZA
0
ðσÞ þ ZA

1αðσÞdσ
α þ ( ( (

þ
1

d!
ZA
dα1(((αd

ðσÞdσα1 ( ( ( dσαd : ð2:3Þ

Defining the components Zk is equivalent to defining the

map f. To interpret the Zk we consider a change of

coordinates on M given by Z̃A ¼ Z̃AðZÞ and note that

f'Z̃AðZÞ ¼ Z̃Aðf'ZÞ

¼ Z̃AðZ0Þ þ ZB
1αdσ

α
∂Z̃A

∂ZB
ðZ0Þ

þ
1

2
dσαdσβ

#
ZB
2αβ

∂Z̃A

∂ZB
ðZ0Þ

þ ZB
1αZ

C
1β

∂
2Z̃A

∂ZB
∂ZC

ðZ0Þ

$
þ ( ( ( : ð2:4Þ

Therefore, in spite of the index structure, these in general

are not vector-bundle-valued differential forms, with the

exception of Z1 which is an f⋆
0
TM-valued one-form for

the map f0 ¼ f ) s0, where s0∶ X → X is the zero section

of X ¼ T½1&X. Of the other components, ZA
0
defines the

map f0∶ X →M, while the ZA
k for k > 1 transform

“affinely” whenever ZA
k0
≠ 0 for any 0 < k0 < k.

3
Since

we may not set ZA
k ¼ 0 consistently in general, this

introduces a subtlety for our reduction procedure that we

will discuss later in this section.

The QP structure on the mapping space is induced by

that on M through transgression. The symplectic structure

is given by

ωMX ¼

Z

X

1

2
δZAðωMÞABδZ

B¼
X

k

Z

X

1

2
δZA

k ðωMÞABδZ
B
d−k;

ð2:5Þ

which induces a Poisson bracket ½·; ·& on MX . This

Poisson bracket can be conveniently expressed in terms

of “test functions” as in [2]. Given arbitrary functions ϵ, η

on X—which correspond to differential forms on X since

X ¼ T½1&X—they write

&Z

X

ZAϵ;

Z

X

ZBη

'
¼ ð−1ÞðBþnÞϵþd

Z

X

ðZA;ZBÞMϵη; ð2:6Þ

where in the exponent we have used the shorthand B, ϵ
for the degrees of the respective functions. From (2.5) and

(2.6) we can see that if ZA is dual to ZB onM, then ZA
k will

be dual to ZB
d−k on MX . Furthermore, if we are working in

Darboux coordinates, so that components of ωM are

constant, then by performing a Hodge decomposition

Ω
kðXÞ ¼ Hk ⊕ dΩk−1 ⊕ d†Ωkþ1 ð2:7Þ

with respect to some arbitrary metric, exact forms ZA
k will

be dual to coexact ZB
d−k and harmonic forms will be dual to

harmonic forms. For convenience we introduce orthogonal

projectors

PH; Pex; Pco ð2:8Þ

onto harmonic, exact, and coexact forms, respectively.

The Q structure D onMX is defined as the Hamiltonian

vector field

D ¼ dþQM; D ¼ ½ΘMX ; ·&; ð2:9Þ

where the Hamiltonian is

ΘMX ¼ ð−1Þd
Z

X

ΘM þ ð−1Þdþnþ1

Z

X

{dϑM; ð2:10Þ

3
Exploiting Batchelor’s theorem to writeM as a graded vector

bundle only improves this situation in that some Z0 take values in
a vector bundle as well.
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where each term generates the lift of QM and d to MX ,

respectively. Note that implicit in this formula is the fact

that we have pulled back/transgressed ΘM; ϑM to objects

onX ; we have used boldface to highlight this. The signs are

such that D ¼ dX þQM.

B. The coisotrope

We need to perform a coisotropic reduction to obtain a

finite dimensional NQP manifold. This is a generalization

of symplectic reduction for Poisson manifolds which

requires a coisotropic ideal I ⊂ C∞ðMX Þ, i.e., an ideal

that satisfies

½I ; I & ⊆ I : ð2:11Þ

The description of the quotient manifold is given in two

equivalent ways. In one description, we take the submani-

fold C ⊂ MX defined by the vanishing of I and quotient by

transformations generated by I. Alternatively, we can

describe the structure sheaf of the quotient manifold as

the normalizer NðIÞ of I , quotiented by I. That is,

W ¼ C=½I ; ·& ⇔ C∞ðWÞ ¼ NðIÞ=I : ð2:12Þ

Such a manifold has a natural Poisson structure induced

from that on the mapping space; see Appendix C for a

review. Further, provided the ideal is closed with respect to

the Q structure, i.e., DI ¼ ½ΘMX ; I & ⊆ I , the reduced

space has a Q structure induced from the image of the

Hamiltonian function under the quotient map:

ΘW ¼ ΠðΘMX Þ; Π∶ NðIÞ → NðIÞ=I : ð2:13Þ

This closure is precisely the statement that ΘMX ∈NðIÞ.
We build our ideal I ¼ hIN ; IYi in two parts, each

defining a restriction to some submanifold of MX ¼
N X × YX . This factorization is convenient because Y

may be thought of as “longitudinal” to the cycle to be

wrapped, while N is “transverse.”

On YX , we would like the maps in degree 0 to restrict to

the fixed wrapping map w∶ X → Y. This restriction is

naturally given by the zero locus of the ideal generated

by y −w and its closure under D. Using (2.2) and (2.10),

we find

IY ¼ hy −w; ξ þ dwi: ð2:14Þ

This is clearly coisotropic in the coordinates on Y. The

angled brackets h( ( (iwill always denote the ideal generated
by ( ( (.
On N X , we follow [15] and take the coisotropic

submanifold to consist—in the first instance—of closed

maps under the transgressed differential d on N X . In

degree 0 we realize this via a choice of degree preserving

embedding N ↪ N X . By degree counting this is a map of

(ordinary) manifolds N ↪ NX, and we choose this to be the

map sending each n∈N to the constant map X → fng
(which is d-closed). Beyond degree 0, we simply set the

coisotropic part of each coordinate in the superfield

expansion (2.3) to zero (using the Hodge decomposition).

Therefore we define IN such that
4

IN ⊃ hPcoz
A
k i ð2:15Þ

for all values of k in the expansion (2.3), where zA is a

generic coordinate on N . If we consider the vanishing

locus of IN and IY simultaneously, we see that we are

restricted to x0 ¼ const and y0 ¼ w. This gives an embed-

ding N ↪ MX . Similarly, a choice of degree preserving

embedding N ↪ MX defines our ideal in degree 0.

This alone is not enough as we would like the reduced

manifold W to be an N manifold, i.e., a graded manifold

with non-negative coordinates, such that in degree 0 the

structure sheaf is that of an ordinary manifold.
5
To remove

these, we include harmonic generators of the maps zAk for

maps such that deg zA − k ≤ 0. The exception to this is the

maps x0 for which we do not include the harmonic (i.e.,

constant map) representatives. We therefore have

IN ¼

()
Pcoz

A
k ; PHz

A
k0
j∀ k0 ≥ deg zA if deg zA > 0

Pcoz
A
k ; PHz

A
k0
j∀ k0 > 0 if deg zA ¼ 0

*
:

ð2:16Þ

To see that this is coisotropic, we use (2.6) and the

surrounding discussion to note that the coexact genera-

tors are dual to exact generators. Hence, these terms are

coisotropic with respect to all of IN . The harmonic

generators could be dual to some other harmonic generator

in IN . However, since we only include harmonic zAk for

0 ≥ deg zA − k, the dual coordinate zB
k0
on MX has

deg zB − k0 ¼ n − deg zA − ðd − kÞ

¼ ðn − dÞ − ðdeg zA − kÞ

> 0 ð2:17Þ

so is not included in IN . The total ideal I ¼ hIN ; IYi is
coisotropic, as required.

C. Metric and coordinate independence

The construction of the ideal I appears to rely on a

choice of metric on X but we claim that the resulting

reduced manifold depends on only the topological

4
The reduction by such a coisotropic ideal is related to the

reduction by “contractible pairs” in the BV formalism [21].
5
There are issues not just with negative-graded but also with

degree 0 “formal” coordinates; see, e.g., [22, Sec. 2].
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data of X. This can be best seen from the vanishing

locus C ⊂ MX . This is given by maps which are either

d-closed (for deg zA ¼ 0 and some values of k, k0) or

ones which are also d-exact (in all other cases), as

specified in (2.16). The metric only appears in the

specification of the vanishing ideal that represents C but

C does not in itself depend on metric data. (This

apparent metric dependence thus may perhaps be seen

as due to “gauge-fixing.”)

Our construction also appears to depend on a choice of

coordinates on N . To see that this is well defined, we will

show that the submanifold C is invariant under a change of

coordinates z̃A ¼ z̃AðzÞ. Using formula (2.4), we can write

the k-form component of the transgressed z̃ as

z̃Ak ∼
X

j

CA
A1(((Aj

ðz0Þz
A1

k1
( ( ( z

Aj

kj
ð2:18Þ

such that k1 þ ( ( ( þ kj ¼ k and deg zA1 þ ( ( ( þ deg zAj ≤

deg z̃Ak ; here we emphasize that the last inequality holds true

because M—and thus N—was assumed to be an N

manifold (its structure sheaf is non-negatively graded).

Restricting to C, the coordinates z
Ai

ki
are all closed under d

and hence so is z̃Ak . Further, if deg z̃
A − k ≤ 0, then at least

one of deg zAi − ki ≤ 0. This means that z
Ai

ki
is exact. A

product of closed and exact forms is exact and hence so is

z̃Ak as required.

D. Closure under D

The final condition to check is that the ideal I is closed

under the Q structure D ¼ ½ΘMX ; ·& on MX . We have

already checked that IY is D-closed, and so we need only

check how D acts on the generating coordinates of IN .

We can use formula (2.6) with Pcoϵ ¼ 0. This choice of

epsilon selects out the harmonic and coexact generators zAk ,

respectively. We have

&
ΘMX ;

Z

X

zAϵ

'
¼ ð−1Þd

&Z

X

ΘM;

Z

X

zAϵ

'

þ ð−1Þdþnþ1

&Z

X

{dϑM; zAϵ

'

¼

Z

X

ðΘM; zAÞMϵþ

Z

X

dzAϵ: ð2:19Þ

The second term vanishes when ϵ is closed. We therefore

need to consider only the first term. We can see whether this

term is contained within I by transgressing the function

ðΘM; zAÞM to the mapping space and evaluating it over C.

If the integral vanishes when integrated against all closed ϵ,

then the ideal is closed under D. Using the form of the

Hamiltonian function we find

ðΘM; zAÞM ∝ ðωMÞAB
X

k

∂θkðz; yÞ

∂zB
ξk: ð2:20Þ

Transgressing this to the mapping space and restricting to

C, we replace y→ w, ξ → dw, z → z for z-closed (or

exact). Integrating this against ϵ we get

&
ΘMX ;

Z

X

zAϵ

'++++
C

∝

Z

X

#
ðωMÞABw'

X

k

∂θk

∂zB
ðzÞ

$
ϵ: ð2:21Þ

We require this to vanish for the above ϵ. When ϵ is

exact, this indeed vanishes if we impose dYθk ¼ 0. If ϵ is

harmonic, however, we find constraints on the coefficients

θk that we address case-by-case, in general.

E. The reduction, metric independence,

and homotopy invariance

Given the coisotropic reduction I , we consider the

reduction given in (2.12). We will consider the structure

sheaf construction of the reduced manifold. The normalizer

N ðIÞ of the ideal is generated by

NðIÞ∼ fPHx0;PHz
A
k ;I j0< degzA − k≤ n−dg: ð2:22Þ

We can expand the PHz
A
k ¼ zA;ak ea in some basis feag of

Hk, so the zA;ak are constant parameters of degree

deg zA − k. In the case that the respective cohomology

group is one dimensional (e.g., forH0;Hd) wewill omit the

a index and simply identify, e.g., zAd ¼ zAdvolX. We see that

the structure sheaf C∞ðWÞ ¼ NðIÞ=I is given therefore

generated by

C∞ðWÞ ¼ NðIÞ=I ∼ fx0; z
A;a
k j0 < deg zA − k ≤ n − dg:

ð2:23Þ

That is, the structure sheaf is given by all smooth functions

in the zA;ak (and x0).

The Hamiltonian function on W is given by the

projection Π∶ NðIÞ→ NðIÞ=I of ΘMX . We will confirm

in the examples that the final result is given by

ΘW ¼ ΠðΘMX Þ ¼

Z

X

X

k

ð−1Þkw'θkðzÞ; ð2:24Þ

where the z are now the harmonic representatives of the

cohomology groups on X. Expanding the harmonic zAk in

terms of the constant coordinates zA;ak , we can perform the

integral over X with the convention that the volume form is

on the right of the integrand, so we pull out constants from

the left. Once this is done, the final result will no longer be

an integral but will be a function in the zA;ak which will

involve, in general, a sum over cohomology groups, which

will be discrete in all cases (we only consider wrapping

over compact cycles).
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Formula (2.24) seems to depend on some metric to

choose the harmonic representatives for the z. However,
under a change of metric, the harmonic representatives

change by a d-exact term, and since we have assumed that

the forms θk are closed, this shift will not change the

integral. Furthermore, since the forms θk are closed, the

evaluation of the integral only depends on the homotopy

class of w∶ X → Y. Therefore the construction is metric-

independent and homotopy invariant.

Now that we have defined the reduction in complete

generality, we will see many examples of how this works in

practice. There are three interesting cases to consider:

(1) dimX ¼ 0—The process effectively shrinks Y to

a point.

(2) dimY ¼ 0—We produce a QP manifold with the

same underlying commutative manifold but with a

different degree.

(3) X ¼ Y—We produce a QP manifold which corre-

sponds to a brane wrapping the internal manifold.

III. EXAMPLE—dimX = 0

We consider first a simple example to show that in the

simple case that dimX ¼ 0, our procedure effectively

reduces to dimensional reduction on Y. Consider the

ingredients

M ¼ T'½n&T½1&ðN × YÞ; X ¼ pt: ð3:1Þ

Taking N ¼ T'½n&T½1&N, Y ¼ T'½n&T½1&Y, and X ¼
T½1&X ¼ pt, we introduce the Darboux coordinates

N

coord xμ ψμ χμ pμ

deg 0 1 n − 1 n

Y

coord ym ξm ϕm qm

deg 0 1 n − 1 n

ð3:2Þ

We will take the QP structure to be given by the symplectic form and Hamiltonian function

ωM ¼ dpdxþ dqdy − dψdχ − dξdϕ; ð3:3Þ

ΘM ¼ −ψp − ξqþ
1

n!
Fnψ

n þ
1

ðn − 1Þ!
Fn−1ψ

n−1ξþ ( ( ( þ
1

d!ðn − dÞ!
Fn−dψ

n−dξd: ð3:4Þ

We have suppressed all indices but they should be read

as being contracted in the natural way. The coefficients

Fk can be thought of as elements of Ω
kðNÞ ×Ω

n−kðYÞ.
These should be closed under the differential dY on Y. So,
for example, Fnψ

n ¼ Fnðx; yÞμ1(((μnψ
μ1 ( ( (ψμn should be

viewed as a differential n-form onN, but a constant function

on Y. In the ansatz above, we have assumed a trivial

connection on the bundle. We can easily reintroduce it by

making the replacement ξ → A ¼ ξþ Aψ , where A is the

connection; however, it will not change our final result, sowe

omit it for simplicity.

The first step in the reduction process is to transgress the

QP structure to MX . But since X is zero dimensional,

we have MX ≃M. Next, we need to choose a wrap-

ping map w∶ X ¼ pt → Y or, equivalently, a (degree

preserving) embedding N ↪ MX ≃M. This is equivalent

to choosing some point ŷ∈Y and defining the embedding

N → ðN; ŷÞ ⊂ M. This is described by the ideal

I0 ¼ hym − ŷmi: ð3:5Þ

We then want to form the closure of this ideal with respect

to differential Q on M. We get

IY ¼ hI0; QI0i ¼ hym − ŷm; ξmi: ð3:6Þ

It is easy to check from (3.3) that this is indeed coisotropic

with respect to the Poisson bracket on M. In principal, we

also need to restrict the maps into N to those that are

closed/exact with respect to d on X. However, since

dimX ¼ 0, this is a trivial constraint and so we just have

I ¼ IY .

To perform the coisotropic reduction, we need to go to

first find the normalizer NðIÞ of I , which can easily be

verified to be generated by the coordinates

NðIÞ ∼ fxμ;ψμ; χμ; pμ; y
m − ŷm; ξmg: ð3:7Þ

The structure sheaf of the new QP manifold W is then

defined to be the quotient of this by the ideal I . That is,

C∞ðWÞ ¼ NðIÞ=I , which is generated by

NðIÞ=I ∼ fxμ;ψμ; χμ; pμg ⇒ W ¼ T'½n&T½1&N: ð3:8Þ

Note that by construction ΘM ∈NðIÞ, and so we can find

the new Hamiltonian function through the natural projec-

tion Π∶ NðIÞ→ NðIÞ=I , which gives
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ΘW ¼ ΠðΘMÞ ¼ −ψpþ
1

n!
Fnðx; ŷÞψ

n; ð3:9Þ

and the final symplectic form is

ωW ¼ dpdx − dψdχ: ð3:10Þ

We see that this procedure has produced a new QP
manifold with the same degree but with underlying

commutative manifold N. We see that we have effectively

collapsed Y to the point ŷ. In the case where Y is a Lie

group, we find the same result as in symplectic reduction

modulo T½1&Y [13]. If we were to choose a different wrap-

ping map w0∶ X ↦ ŷ0 that is homotopic to w∶X ↦ ŷ, then
we end up with the same graded manifold where the Q
structure is evaluated for Fnðx; ŷ

0Þ. However, the condition
that the Fn is closed on Y says that it is constant, and hence

the Q structures are the same. This demonstrates the

homotopy invariance of our construction.

With regards to applications to AKSZ sigma models,

which feature prominently in the rest of the paper, this

example is less interesting on account of the following: the

AKSZ sigma model is based on the space of (super)fields

MX , which in this case is isomorphic to M itself, since

X ¼ point. This example retains physical significance in

general, because it captures direct dimensional reduction

(where there is no wrapping along the Y manifold).

IV. EXAMPLES—dimY = 0

A. n-Brane → (n− 1)-brane

Let us now consider the same example as above, but

instead of having dimX ¼ 0, we will take the dimension of

the fiber dimY ¼ 0 and take X to be nontrivial. We will

take the ingredients

M ¼ T'½n&T½1&M; X ¼ S1: ð4:1Þ

We will use the homogeneous coordinates

M

coord xμ ψμ χμ pμ

deg 0 1 n − 1 n

ð4:2Þ

and use the coordinates σ; dσ on X ¼ T½1&S1. The

Hamiltonian function and symplectic form are given by

ωM ¼ dpdx − dψdχ; ð4:3Þ

ΘM ¼ −ψpþ
1

n!
Fnψ

n: ð4:4Þ

Since Y ¼ pt in this example, we do not need to impose any

constraints on the coefficients Fn.

We need to transgress this structure to the mapping space

MX . This is now an infinite dimensional graded manifold

whose points f∈MX can be described by their pullback

action on coordinates on M. That is, we have

f'ZA ¼ ZAðσ; dσÞ ¼ ZA
0
ðσÞ þ ZA

1
ðσÞdσ: ð4:5Þ

The transgressed Hamiltonian function is given by

ΘMX ¼ ð−1Þ1
Z

X

ΘM þ ð−1Þn−1þ1

Z

X

{dϑM

¼ −

Z

T½1&S1
−ψpþ

1

n!
FnðxÞψ

n

þ ð−1Þn
Z

T½1&S1
pdx−

1

n
ðψdχ þ ðn− 1ÞχdψÞ: ð4:6Þ

The boldfaced letters in the expression correspond to

functions pulled back to functions on X as in (4.5). The

Berezin integral over T½1&S1 selects the maximal degree

component of the integrand (i.e., the one-form components)

and integrates it over S1. Our convention is that we

normalize with an overall factor of volðS1Þ, and so for

the flat metric on S1 we have

Z

T½1&S1
( ( ( ¼

1

2π

Z

S1
ð( ( (Þ

1
: ð4:7Þ

The next step is to define the coisotropic ideal

I ¼ hIN ; IYi. Since Y is trivial, so is the ideal IY , and

hence we need only determine IN . Following Sec. II, we

first start by restricting to all closed maps. That is, we take

IN ⊃ hPcoxk; Pcoψk; Pcoχk; Pcopki: ð4:8Þ

To define this ideal we choose some arbitrary metric on S1,
and for simplicity we can take the flat metric. We then

also add the harmonic representatives for ZA
k such that

degZA − k ≤ 0 (except for x0). This gives

IN ¼ hPcox0; Pcoψ0; Pcoχ0; Pcop0; PHx1; PHψ1i: ð4:9Þ

Again, in degree 0, the vanishing locus of this ideal restricts

us to maps x0 ¼ const and hence defines a natural

embedding M ↪ MX . It is a quick check using (2.6) that

this ideal is coisotropic. Indeed, the Poisson bracket of

the coexact generators with any other generators will

vanish, as they are dual to exact maps. The harmonic x1,

ψ1 representatives are dual to p0; χ0 ∈H0, respectively, and

these do not appear in the generating set of IN .

We will also verify that this ideal is closed with respect to

the Q structure (4.6). Using the test function form of the

Poisson bracket (2.6), we can calculate D acting on the

generators by calculating
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&
ΘMX ;

Z

T½1&S1
ZAϵ

'
¼ −

&Z

T½1&S1
ΘM;

Z

T½1&S1
ZAϵ

'

þ ð−1Þn
&Z

T½1&S1
{dϑM;

Z

T½1&S1
ZAϵ

'
;

ð4:10Þ

where ϵ is a function on N that is closed under d. Taking

ϵ∈Hk selects the harmonic representative Z1−k ∈H1−k,
while taking ϵ to be exact selects the coexact representative

of ZA
0
. The second term gives us

&Z

T½1&S1
{dϑM;

Z

T½1&S1
ZAϵ

'
∝

Z

T½1&S1
dZϵ ¼

1

2π

Z

S1
dZA

0
ϵ0:

ð4:11Þ

Taking ϵ to be closed tells us that ϵ0 is constant. The
integrand on the right-hand side is therefore exact and so
the integral vanishes. The Poisson bracket is then deter-
mined by the first term alone which is proportional to

&
ΘMX ;

Z

T½1&S1
ZAϵ

'
∝

Z

T½1&S1
ðΘM;Z

AÞMϵ; ð4:12Þ

where the function ðΘM; ZAÞ is transgressed to the map-
ping space. We can use these results to confirm that ΘMX

lies always in IN as outlined in Sec. II. The only nontrivial
checks are for the harmonic generators x1, ψ1, for which we
take ϵ ¼ ϵ0 to be constant. We have

ðΘM; xÞM ¼ ψ ; ðΘM;ψÞM ¼ 0: ð4:13Þ

Transgressing these functions and evaluating on C, we take
ψ1 to be exact. Hence, both vanish under the integral (4.12)
when ϵ ¼ ϵ0 is constant. This proves that the ideal is closed
under D.
Now that we have our coisotropic ideal, we perform the

coisotropic reduction. The normalizer of I is generated by

all the coordinates that are not dual to those in I ,

NðIÞ ∼ fPHx0; PHψ0; PHχ1; PHp1; Ig: ð4:14Þ

The structure sheaf for W is then NðIÞ=I , which is

generated by

NðIÞ=I ∼ fx0;ψ0; χ1; p1g ⇒ W ¼ T'½n − 1&T½1&M:

ð4:15Þ

(Note in the expression above we are now working in the

coordinates zA;ak described in Sec. II: PHx0 ¼ x0 · 1 and

PHp1 ¼ p1vol.) Thus we restrict to harmonic functions for
x, ψ—so they retain their original degrees—while we
restrict to harmonic one-forms for χ, p; hence, they have
their degrees shifted down by 1. We therefore end up with
the manifold T'½n − 1&T½1&M.

To find the symplectic form, we use the Poisson brackets
(2.6) with the ϵ, η appropriate harmonic representatives.
We find that

ωW ¼ −dp1dx0 − dψ0dχ1: ð4:16Þ

To find the form of the Hamiltonian function we project
ΘMX under Π∶ NðIÞ→ NðIÞ=I. By restricting all coor-
dinates to the harmonic representatives on which d ¼ 0,

we find Πð{d̄ϑ̄Þ ¼ 0. The term 1

n!
Fnψ

n gets projected to
1

n!
Fnðx0Þψ

n
0
which is a function on S1 and hence vanishes

under the Berezin integral. We find that we are left with
6

ΘW ¼ ΠðΘMX Þ ¼ ψ0p1: ð4:17Þ

Making the change of coordinates p1 → −p1 puts the
QP manifold in the canonical form for a (n − 1)-brane.
Interestingly, all flux twisting drops out of the Hamiltonian
function in this case. This is what happens in the zero-
wrapping sector of wrapped branes where physically one
ends up with a tensionless brane [23]. These are somewhat
pathological, and hence the physical interpretation of such
reductions is less clear. We will see that one can get more
interesting reductions if one allows X to wrap some part
of M.

B. From Courant to Poisson

Using the formulation set out, we can already find novel

relations between QP manifolds, and their associated

AKSZ sigma models. Suppose M is a Poisson manifold

with Poisson bivector π. There are at least two distinct ways

to realize this structure as a QP structure.
7
First, we can

take the straight cotangent lift of π to obtain the following

QP manifold:

W ¼ T'½1&M
coord x̃ p̃

deg 0 1

ωW ¼ dp̃dx̃;

ΘW ¼ 1

2
πp̃2:

ð4:18Þ

A quick calculation shows that ðΘW ;ΘWÞ ¼ 0 if and only

if π is Poisson.

Alternatively, we can consider the Lie algebroid structure

on T'M whose anchor map is given by the bivector

π∶ T'M → TM and whose bracket is given by

½α; β& ¼ LπðαÞβ − {πðβÞdα: ð4:19Þ

This Lie algebroid can be lifted to a Dirac structure

L ¼ fλþ πðλÞjλ∈T'Mg within the Courant algebroid

TM ⊕ T'M. The Courant algebroid and the differential

dL associated with the Dirac structure can be lifted to a QP
manifold structure via

6
Our conventions are that we integrate with the volume form

on the right of the integrand, and so we pull constants out from
the left. This gives the overall sign.

7
See, e.g., examples in the work of Voronov [24].
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M ¼ T'½2&T½1&M
coord x ψ χ p

deg 0 1 1 2

ωM ¼ dpdx − dψdχ;

ΘM ¼ −πpχ þ 1

2
∂πψχ2:

ð4:20Þ

Once again ðΘM;ΘMÞ ¼ 0 if and only if π is Poisson. We

have suppressed indices for convenience. We want to see if

we can pass from (4.20) to (4.18) via our brane wrapping

procedure.

Let us perform a circle reduction of M as above. We

transgress the structure to MX where X ¼ T½1&S1. As

before, we define I ¼ IN by first including all coexact

generators

I ⊃ hPcox0; Pcoψ0; Pcoχ0; Pcop0i: ð4:21Þ

Then we include harmonic representatives to remove

coordinates of zero or negative degree. We will slightly

relax the construction set out in Sec. II by allowing some

new coordinates of degree 0.
8
We will define

I ¼ hPcox0; Pcoψ0; Pcoχ0; Pcop0; PHx1; PHχ1i: ð4:22Þ

As before, this ideal is coisotropic.

We will check the closure of this ideal with respect to the

Q structure D on MX . The transgressed Hamiltonian

function is

ΘMX ¼ −

Z

T½1&S1
ΘM þ

Z

T½1&S1
{dϑM

¼ −

Z

T½1&S1
−πðxÞpχ þ

1

2
∂πðxÞψχ 2

þ

Z

T½1&S1
pdx −

1

2
ðψdχ þ χdψÞ: ð4:23Þ

We then act with this on
R
ZAϵ for some test function ϵ that

must be harmonic or exact. As in (4.12), the only nontrivial

constraint to check is for the harmonic representatives. We

need to check if the following vanishes:

Z

T½1&S1
ðΘM;ZAÞMϵ; ð4:24Þ

whenever the function ðΘM; ZAÞ is transgressed and

evaluated on C, and if ϵ is harmonic. Since the only

harmonic generators of I are x1, χ1, we calculate

ðΘM; xÞ ¼ πðxÞχ; ðΘM; χμÞ ¼
1

2
∂πðxÞχ2: ð4:25Þ

We transgress these functions to the mapping space and

evaluate on the vanishing locus C of I . Noting that these are

functions of x, χ alone, evaluating them on C means that the

zero-form component must be constant functions on X,
while the one-form component must be an exact form.

Integrating these against a constant function ϵ ¼ ϵ0 selects

the one-form component, which is exact, and hence the

integral vanishes as required.

The next step is to perform the coisotropic reduction with

respect to this ideal. The normalizer is generated by all

coordinates not dual to those in I ,

NðIÞ ∼ fPHx0; PHχ0; PHψ1; PHp1; Ig; ð4:26Þ

and so we obtain the structure sheaf C∞ðfMÞ ¼ NðIÞ=I
which is generated by

NðIÞ=I ∼ fx0;ψ1; χ0; p1g ⇒ fM ¼ T'½1&TM: ð4:27Þ

This time, we restrict to harmonic functions for x, χ so they
retain their degree, while we take harmonic one-forms for

ψ , p, and hence their degree is shifted down by 1. The

resulting Hamiltonian function is ΠðΘMX Þ and the sym-

plectic form is derived from the Poisson brackets (2.6) with

harmonic representatives for ϵ, η,

ΘeM ¼ −πp1χ0 −
1

2
∂πψ1χ

2

0
; ð4:28Þ

ωeM ¼ −dp1dx0 þ dψ1dχ0: ð4:29Þ

We performed the change of coordinates p1 → −p1, χ0 →

−χ0 to remove minus signs.

We have arrived at a “halfway house” QP manifold fM.

Interestingly, this is the cotangent lift of the complete lift

of the Poisson structure π on M to the tangent bundle

ðTM; πcÞ [25]. That is, given any Poisson structure ðM; πÞ
we define a Poisson structure ðTM; πcÞ by

πc ¼ πμν
∂

∂x
μ
0

∂

∂ψν
1

þ
1

2
ψ
ρ
1
∂ρπ

μν
∂

∂ψ
μ
1

∂

∂ψν
1

; ð4:30Þ

where x0 are coordinates on M and ψ1 are coordinates

along the vector bundle fibers. We can reduce the QP

manifold fM further by following [25]. Given any (torsion-

less) connection on M, we can define a global vector field

on TM given by the geodesic spray

8
The construction, as set out previously, would still work in

this case but we would end up with a trivial Q structure. To result
in a QP manifold with a nontrivial Q structure, we will need to
perform an intermediate step before removing the additional
degree 0 coordinates.
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s ¼ ψ
μ
1

∂

∂x
μ
0

− ψ
μ
1
ψν
1
Γ
ρ
μν

∂

∂ψ
ρ
1

: ð4:31Þ

This has a cotangent lift to T'½1&TM whose Hamiltonian is

S ¼ ψ1p1 − Γψ2

1
χ0: ð4:32Þ

From this, we define a new Hamiltonian function

Θ
0

eM ¼−
1

2
ðS;ΘeMÞ ¼

1

2
πp2

1
þψ1fðx0;ψ1;χ0;p1Þ; ð4:33Þ

where f is some function of the coordinates whose precise

form is not important. All we will need is that besides

the first term, 1

2
πp2

1
, each term is at least linear in the

coordinate ψ1.

Consider the ideal generated by the single coordinate

I ¼ hψ1i. This ideal is automatically closed under the Q
structure since

ðΘ0
eM;ψ1Þ ¼

#
1

2
πp2

1
þ ψ1fðx0;ψ1; χ0; p1Þ;ψ1

$

¼ ðψ1fðx0;ψ1; χ0; p1Þ;ψ1Þ

∝ ψ1ðf;ψ1Þ

∈ I : ð4:34Þ

Performing the coisotropic reduction with respect to this

ideal we obtain the structure sheaf

NðIÞ=I ∼ fx0; p1g ⇒ W ¼ T'½1&M: ð4:35Þ

That is, we reproduce the graded-commutative manifold

W. Further, the symplectic form and Hamiltonian function

are easily shown to be the following:

ωW ¼ dp1dx0; ð4:36Þ

ΘW ¼
1

2
πp2

1
: ð4:37Þ

We see then that we precisely reproduce the QP manifold

associated with the cotangent lift of the Poisson bivector that

we described at the beginning of this section. Using the

results of Sec. VI, this lifts to an association between the

Courant and Poisson sigma models themselves. Note that if

we had instead started with an H-twisted Courant sigma

model, then our procedure would have resulted in the QP
manifold associated with the H-twisted Poisson sigma

model [26].

This construction provides new links between the

Courant sigma models and the Poisson sigma models

which are physically and mathematically distinct from

previously found associations. Previous work [26–28]

found that if one considers the Courant sigma model on

a manifold with a boundary, then by studying the consistent

boundary conditions one finds that one can couple the

(H-twisted) Poisson sigma model at the boundary.
9
Our

construction, however, requires no boundary and finds that

the two theories—described in the QP language by (4.18)

and (4.20), respectively—are also related via brane wrap-

ping. (We note here that a similar relation was exhibited in a

recent work [29] using a different reduction procedure.)

Physically, our procedure should involve a compact cycle

within the brane shrinking to zero size. One way to see this

is by analogy with Kaluza-Klein theory; we retain the zero

modes of superfields, which is precisely analogous to what

happens in a KK scenario. This might provide a useful

heuristic for understanding the link between these two

theories in our construction.

V. EXAMPLES—X =Y

We will now generalize the previous two sections to

allow for cases where the source manifold X wraps the

target space fiber Y. In particular, we will be interested

in the case where X ¼ Y. We will see that the reduction

procedure requires us to choose some self-wrapping map

w∶ X → X. The examples we choose are physically

motivated and fill our understanding of how brane dualities

in M-theory/IIA arise in the QP setting. In particular, when

X ¼ S1, we will see that our procedure produces the known
relations from M-theory/type IIA duality. We will also see

that this procedure reproduces other interesting relations

between the M5-brane and the heterotic string [30,31].

A. M2 on S1

Our first example will be wrapping the M2-brane on an

S1. This will be very similar to the n-brane example in

Sec. IVA, except in this case the wrapping will allow for

more interesting Hamiltonian functions to be produced.

We start with the QP manifold M associated with the

M2-brane and a source manifold X:

M ¼ T'½3&T½1&ðN × S1Þ; X ¼ S1: ð5:1Þ

WritingN ¼T'½3&T½1&N,Y¼T'½3&T½1&S1, andX ¼T½1&S1,
we will introduce the coordinates

N

coord xμ ψμ χμ pμ

deg 0 1 2 3

Y

coord y ξ ϕ q

deg 0 1 2 3

ð5:2Þ

and use coordinates ðσ; dσÞ onX . The Hamiltonian function

and symplectic form are

9
The coupled bulk and boundary theory was called WZW-

Poisson theory in [27], or simply WZ-Poisson in [28].
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ωM ¼ dp dxþ dq dy − dψ dχ − dξ dϕ; ð5:3Þ

ΘM ¼ −ψp − ξqþ
1

4!
F4ψ

4 þ
1

3!
H3ψ

3ξ: ð5:4Þ

We require F4 to be dS1-closed; we will also use the fact that

H3ξ is dS1-closed (which is automatic).

We transgress this to the mapping spaceMX and choose

an ideal whose vanishing locus describes, in degree 0,

some embedding {∶ N ↪ MX . As explained in Sec. II, this

depends on the choice of some wrapping map w∶ S1 → S1.
In fact, as stated, the final result only depends on the

homotopy class ofw, and hencewe can take, for somew∈Z,

w∶ S1 ⟶ S1;

σ⟼wσ: ð5:5Þ

To restrict to this wrapping sector of MX , we define a

coisotropic ideal I ¼ hIN ;IYi with

IY ¼ hy − wσ; ξ þ wdσi: ð5:6Þ

As explained in Sec. II, this is coisotropic and closed under

theQ structureD ¼ ½ΘMX ; ·&. The idealIN restricts all maps

into N to closed maps. That is, we take

IN ⊃ hPcox0; Pcoψ0; Pcoχ0; Pcop0i: ð5:7Þ

For any coordinate zAk with deg zA − k ≤ 0, we need to

further restrict to exact maps by including the harmonic

representative in the ideal (except for x0). Hence, we have

IN ¼ hPcox0; Pcoψ0; Pcoχ0; Pcop0; PHx1; PHψ1i: ð5:8Þ

The ideal I ¼ hIN ;IYi is clearly coisotropic.

We need to check that IN is closed under D ¼ ½ΘMX ; ·&.
The transgressed Hamiltonian is

ΘMX ¼ −

Z

X

ΘM −

Z

X

{dϑM

¼ −

Z

X

−ψp − ξqþ
1

4!
F4ðx; yÞψ

4 þ
1

3!
H3ðx; yÞψ

3ξ

−

Z

X

pdxþ qdy −
1

3
ðψdχ þ 2χdψ þ ξdϕþ 2ϕdξÞ:

ð5:9Þ

As in the previous cases, the only nontrivial constraint

comes from the Poisson bracket between the first term and

the harmonic generators of IN . We calculate

ðΘM; xÞ ¼ ψ ; dðΘM;ψÞ ¼ 0; ð5:10Þ

and hence we have

&
ΘMX ;

Z

X

ψϵ

'
∝

Z

X

ðΘM;ψÞMϵ ¼ 0; ð5:11Þ

&
ΘMX ;

Z

X

xϵ

'
∝

Z

X

ðΘM; xÞMϵ ¼

Z

X

ψϵ: ð5:12Þ

Evaluating this on C, we take ψ1 to be exact, and so the

integral vanishes when integrated over a constant ϵ ¼ ϵ0.

This shows that the Poisson brackets with the harmonic

generators x1, ψ1 vanish when evaluated on C; i.e., they are

in I .

To perform the coisotropic reduction we find the

normalizer is generated by

NðIÞ ∼ fPHx0; PHψ0; PHχ1; PHp1; Ig; ð5:13Þ

and hence the structure sheaf is generated by

C∞ðWÞ ¼ NðIÞ=I ∼ fx0;ψ0; χ1; p1g ⇒ W

¼ T'½2&T½1&N; ð5:14Þ

where the coordinates represent harmonic maps. The

symplectic form can be derived from the Poisson brackets

on MX , as in Sec. IVA, and we find

ωW ¼ −dp1 dx0 − dψ0 dχ1: ð5:15Þ

The Hamiltonian function is given by

ΘW ¼ ΠðΘMX Þ ¼ Π

#
−

Z

X

ΘM −

Z

X

{dϑM

$
: ð5:16Þ

The second term vanishes when evaluated on harmonic

maps where d annihilates the maps, except for the term qdy.

We also get a piece −ξq from the first term. We find

Π

#Z

X

ξq − qdy

$
¼

Z

X

−dy q − qdy ¼ 0; ð5:17Þ

where we pick up a minus sign from commuting dy (degree

1) through q (degree 3). This verifies the statement made in

Sec. II about this cancellation. We then have

ΘW ¼Π

#Z

T½1&S1
ψp−

1

4!
F4ðx;yÞψ

4−
1

3!
H3ðx;yÞψ

3ξ

$

¼

Z

X

ψ0p1þ−
1

4!
F4ðx0;wσÞψ

4

0
þ

1

3!
H3ðx0;wσÞψ

3

0
wdσ

¼
1

2π

Z

X

#
ψ0p1þ

w

3!
H3ðx0;wσÞψ

3

0

$
dσ

¼ ψ0p1þ
w

3!
H̃3ψ

3

0
; ð5:18Þ

where H̃3 is the average of H3 over the fiber.

Under the change of coordinates p1 → −p1, we see that

we recover the QP manifold associated with the F1 string

with w units of H̃3 flux, as we would expect from our
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intuition of M-theory/IIA duality. Note that in the case that

w ¼ 0, the physical interpretation seems to break down—

we find a string that does not couple to the NS three-form.

However, as is noted in [23], this zero winding case

corresponds to a scenario in which the original world

volume is “collapsed.” This means that the map from the

world volume to the target space is not an embedding. From

the IIA perspective, the resulting string is tensionless, and

thus the M2-brane must somehow be tensionless. We

should discard that case on account of such objects appear

not to exist on physical grounds; nevertheless, the QP
procedure is well defined.

B. M5 on S1

The next case of interest is wrapping the M5 QP
manifold on a circle. The M5 QP manifold was written

down in [1], and our expectation is that we should recover

that of the D4-brane [3]. We start with the following

manifolds:

M ¼ T'½6&T½1&ðN × S1Þ ×R½3&; X ¼ S1: ð5:19Þ

Writing N ¼ T'½6&T½1&N ×R½3&, Y ¼ T'½6&T½1&S1, and

X ¼ T½1&S1, we introduce the homogeneous coordinates

N

coord xμ ψμ ζ χμ pμ

deg 0 1 3 5 6

Y

coord y ξ ϕ q

deg 0 1 5 6

ð5:20Þ

and use coordinates ðσ; dσÞ for X. We write the symplectic form and Hamiltonian function as

ωM ¼ dp dxþ dq dy − dψ dχ − dξ dϕ −
1

2
dζ dζ; ð5:21Þ

ΘM ¼ −ψp − ξqþ
1

7!
ðH7 þ A ∧ F6Þψ

7 þ
1

6!
F6ψ

6ξþ
1

4!
ðF4 − A ∧ H3Þψ

4ζ þ
1

3!
H3ψ

3ξζ: ð5:22Þ

We included, in this example, a nontrivial connection on

the fiber bundle N × S1 which we will assume to be S1

invariant. As previously, we can interpret the coefficients to

be elements of ΩiðNÞ ×Ω
jðS1Þ, and we require that they

are closed under the dS1 on S1.
We then transgress the structure to the mapping space

MX and aim to define a suitable ideal I ¼ hIN ; IYi with
respect to which we perform the coisotropic reduction.

The ideal IY is taken as in the previous section

IY ¼ hy − wσ; ξ þ wdσi: ð5:23Þ

The ideal IN is also taken as in the previous section, but

now with the additional constraints on the ζ coordinates,

restricting them to closed maps. That is, we take

IN ¼ hPcox0; Pcoψ0; Pcoζ0; Pcoχ0; Pcop0; PHx1; PHψ1i:

ð5:24Þ

Since we have only added coexact generators to the ideal,

the proof of coisotropy and closure underD goes exactly as

in the previous case.

Performing the coisotropic reduction, we find the struc-

ture sheaf is generated by

C∞ðWÞ ¼ NðIÞ=I ∼ fx0;ψ0; ζ0; ζ1; χ1; p1g; ð5:25Þ

which gives

W ¼ T'½5&T½1&N ×R½2& × R½3&: ð5:26Þ

To find the symplectic form, we use the Poisson brackets on

MX given by (2.6) with appropriate insertions of harmonic

test functions ϵ, η and find

ωW ¼ −dp1 dx0 − dψ0 dχ1 − dζ1 dζ0; ð5:27Þ

and the Hamiltonian function is given by
10

ΘW ¼ ΠðΘMX Þ

¼ Π

#Z

T½1&S1
ψp −

1

7!
ðH7 þ A ∧ F6Þψ

7 −
1

6!
F6ψ

6ξ −
1

4!
ðF4 − A ∧ H3Þψ

4ζ −
1

3!
H3ψ

3ξζ

$

¼ ψ0p1 þ
w

6!
F̃6ψ

6

0
−

1

4!
ðF̃4 − A ∧ H̃3Þψ

4

0
ζ1 −

w

3!
H̃3ψ

3

0
ζ0; ð5:28Þ

10
We are using the fact that the {dϑM term vanishes, apart from the qdy term, which cancels against the ξq term in ΘM.
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where the tilde denotes the average over the S1 fiber. For

w ≠ 0, we perform a canonical transformation generated by

the function − 1

2w
Aψζ2

1
to obtain the Hamiltonian

ΘW ¼ ψ0p1 þ
1

4w
F2ψ

2

0
ζ2
1
−
w

3!
H̃3ψ

3

0
ζ0

−
1

4!
F̃4ψ

4

0
ζ1 þ

w

6!
F̃6ψ

6

0
; ð5:29Þ

where F2 ¼ dA. Making the change of coordinates

p1 → −p1, ζi → −ζi puts theQPmanifold in the canonical

form of that associated with the D4-brane [3].

C. M5 on X4

The next example will be to wrap the M5-brane over a 4-

manifold X4. In [30,31] it was shown that one could

reproduce the noncritical heterotic string through such a

reduction, where the dimension of the gauge group was

related to the cohomology of the wrapping manifold. We

will start with the manifolds

M ¼ T'½6&T½1&ðN × X4Þ ×R½3&; X ¼ X4: ð5:30Þ

Writing N ¼ T'½6&T½1&N ×R½3&, Y ¼ T'½6&T½1&X4,

X ¼ T½1&X4, we introduce the homogeneous coordinates

as in the previous section

N

coord xμ ψμ ζ χμ pμ

deg 0 1 3 5 6

Y

coord ym ξm ϕm qm

deg 0 1 5 6

ð5:31Þ

where now α ¼ 1;…; 4, and we use the differential-graded (DG) coordinates ðσα; dσαÞ on X . In these coordinates the

symplectic form and Hamiltonian function take the form

ωM ¼ dp dxþ dq dy − dψ dχ − dξ dϕ −
1

2
dζ dζ; ð5:32Þ

ΘM ¼ −ψp − ξqþ
1

7!
H7ψ

7 þ
1

6!
H6ψ

6ξþ
1

2

1

5!
H5ψ

5ξ2 þ
1

3!

1

4!
H4ψ

4ξ3 þ
1

4!

1

3!
H3ψ

3ξ4

þ
1

4!
F4ψ

4ζ þ
1

3!
F3ψ

3ξζ þ
1

2

1

2
F2ψ

2ξ2ζ þ
1

3!
F1ψξ

3ζ þ
1

4!
F0ξ

4ζ; ð5:33Þ

where we have taken a trivial connection on the X4 bundle again. As before, we can view the coefficients as differential

forms on Y valued in Ω
kðNÞ that we take to be dY-closed.

We transgress this structure to MX and define a coisotropic ideal I ¼ hIN ; IYi. To define the ideal IY we need to

choose some wrapping map w∶ X4 → X4. Restriction to this winding sector of MX is given by

IY ¼ hy −w; ξ þ dwi: ð5:34Þ

It is easy to verify that this is coisotropic and closed underD. The ideal IN is similar to that for the circle reduction done in the

previous section, except now our transgressed coordinates are k-forms
11
for k ¼ 0;…; 4. This means that we need to include

more coexact generators and harmonic generators to remove unwanted coordinates. We take

IN ¼ hPcoxk; Pcoψk; Pcoζk; Pcoχk; Pcopk; PHxi; PHψ i; PHζjji > 0; j > 2i: ð5:35Þ

We need to check whether this is closed under D. As in previous cases, the only nontrivial checks come from the harmonic

generators. The Q structure D acting on the harmonic generators xi and ψ i return an element of IN precisely as in previous

cases so we need only check the closure of Dζ3 and Dζ4. Once again, this can be done by calculating

ðΘM; ζÞM ¼
1

4!
F4ψ

4 þ
1

3!
F3ψ

3ξþ
1

4
F2ψ

2ξ2 þ
1

3!
F1ψξ

3 þ
1

4!
F0ξ

4: ð5:36Þ

We then transgress this function toMX and evaluate it on the vanishing locus C of I . We then check whether the following

vanishes:

11
As noted in Sec. II, the transgressed coordinates zAk for k ≥ 2 should be viewed as differential forms evaluated in some affine bundle.

Our construction is still well defined so for simplicity we will ignore this subtlety here.
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Z

X

ðΘM; ζÞMϵ ð5:37Þ

for suitable harmonic test functions ϵ. To determine the

conditions coming from ζ4, we take ϵ ¼ ϵ0 a constant

function. We then get the constraint

Z

X

w
'ðF0Þϵ0¼

!
0; ð5:38Þ

wherewe are using the fact thatF0 is a four-form onY which

we pull back to X via the wrapping map. Similarly, the

conditions coming from ζ3 aregiven by choosing an arbitrary

harmonic one-form ϵ ¼ ϵ1,

:

Z

X

w
'ðF1Þ ∧ ϵ1¼

!
0: ð5:39Þ

This puts constraints on the coefficientsF0 andF1,which can

be most easily satisfied if they vanish; i.e., they act as

obstructions to the reduction. Note that in some cases, e.g.,

forX ¼ K3, there are no nontrivial harmonic one-forms, and

so (5.39) gives no constraints.

Assuming these constraints are satisfied, the coisotropic

reduction with respect to I ¼ hIN ;IYi gives that the

structure sheaf is generated by

C∞ðWÞ ¼ NðIÞ=I ∼ fx0;ψ0; ζ
a
2
; χ4; p4g ⇒ W

¼ T'½2&T½1&N ×H2ðXÞ½1&: ð5:40Þ

We have introduced an index a parametrising a basis feag
of H2ðX4Þ, and have expanded ζ2 ∈H2 as ζa

2
ea. Using the

Poisson brackets on MX , we get the symplectic form and

the Hamiltonian function on W to be

ωW ¼ dp4 dx0 − dψ0 dχ4 −
1

2
κabdζ

a
2
dζb

2
; ð5:41Þ

ΘW ¼ ΠðΘMX Þ ¼ −ψ0p4 þ
1

3!
H̃3ψ

3 þ
1

2
F̃aψ

2ζa
2
; ð5:42Þ

where

H̃3¼

Z

X

w
'ðH3Þ; F̃a¼

Z

X

wðF2Þ∧ea; κab¼

Z

X

ea∧eb:

ð5:43Þ

We get the canonical form of theQPmanifold associated

with a heterotic string with an Abelian gauge group of

dimension b2ðX4Þ. The Killing form on the gauge group

is also given by the symmetric form κab on H2ðX4Þ. For
example, if X4 ¼ T4, we get an Abelian gauge group of

dimension b2ðT
4Þ with a Killing form of signature (3,3). If

X4 ¼ K3, then we get a gauge group of dimension

b2ðK3Þ ¼ 22 with a Killing form of signature (3,19).

This matches the results of [30,31]. The fact that we can

only obtain Abelian gauge groups arises because we are

assuming that we are reducing on smooth manifolds.

Degenerations of X4 to some singular space should lead

to gauge enhancement and non-Abelian groups.

VI. AKSZ SIGMA MODELS

AND BRANE WRAPPING

In previous sections we obtained an NQP manifold W

from a coisotropic reduction of the mapping space MX

with respect to a coisotropic submanifold C that is invariant

with respect to the Q structure D ¼ QM þ dX on MX . (In

the expression forDwe have the lifts of vector fields on the

target and source to the mapping space.) We will now point

out that these data give rise—essentially trivially—to a

reduction of AKSZ sigma models from an AKSZ model

with target M to an AKSZ model with target W.

We start with the AKSZ sigma model with target M

where the source takes the form X × S. The N-manifold S

is taken to be T½1&S where the (bosonic) manifold S has

dimension dimS ¼ nþ 1 − dimX (n being the degree of

the target P structure). Then the BV master action is the

Hamiltonian corresponding to the Q structure on MX×S

given by

QBV ≡QM þ dX×S; ð6:1Þ

where again QM denotes the lift to MX×S of the target

space M Q structure of the same name and dX×S is the

lift of the source X × S de Rham differential again to

MX×S . Since the source is a product, we can write

dX×S ¼ dX þ dS .

The key point that leads to reduction is that we can write

MX×S ¼ ðMXÞS; ð6:2Þ

which is known as the product-exponential adjunction.

Explicitly, this corresponds to interpreting a function

f∈MX×S, which is a function fðx; sÞ of two arguments,

as a function s → fð•; sÞ where fð•; sÞ is a function of

x∈X for each s∈S.
12
Since MX is a QP manifold and S

is an NQ manifold with an integral measure we can

consider the BV structure on MX×S as arising from an

AKSZ construction with source S and target MX . If C is

coisotropic in MX , then the mapping space CS will be a

coisotropic submanifold in ðMX ÞS ≅ MX×S.

The reduced AKSZ sigma model will be given by the

coisotropic reduction ofMX×S with respect to CS. We need

to confirm that CS is invariant with respect to QBV, so that

the BV master action reduces. We rewrite QBV as

12
The definition of mapping spaces for graded manifolds is

such that this property is true; see, e.g., [32].
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QBV ¼ ðQM þ dX Þ þ dS ¼ D̂þ d̄S; ð6:3Þ

where in the last formula D̂ is the lift from MX to ðMX ÞS

of the vector field D onMX , while d̄S is the lift of dS from

S to ðMXÞS. We denote these lifts explicitly now because it

is the properties of these lifts that guarantee the reduction: if

VS is any vector field on S, then the lift V̄S always leaves

CS invariant (for any submanifold C ofMX ); CS is invariant

for D̂ if C is invariant for D. Therefore QBV gives rise to a

homological (and Hamiltonian) vector field on the coiso-

tropic reduction of MX×S , which is simply WS. Using the

results of Appendix C we find that the new BV master

action is given by evaluating the original action on CS. In

all examples we have investigated the result is another

topological field theory of AKSZ type.

In summary, the brane wrapping of QP manifolds that

we already discussed always leads to a brane wrapping

procedure that takes the BV master action associated with

an AKSZ topological field theory and produces the BV

master action of another topological field theory.

A. AKSZ 3-brane to membrane example

To illustrate, we will treat the reduction of the AKSZ

sigma model corresponding to the wrapping of an M2

algebroid (see Sec. VA) on a circle that we discussed in

Sec. VA. This is a reduction of the four-dimensional (4D)

topological field theory of Ikeda and Uchino [33] to a (3D)

Courant sigma model.

This example thus has X ¼ T½1&S1, and the coisotropic

submanifold C ⊂ MX is given by

dXp0 ¼ 0; dXx
μ
0
¼ 0; PHx

μ
1
¼ Pcox

μ
1
¼ 0; y0 ¼ wσ; y1 ¼ 0;

dXχ0 ¼ 0; dXψ
μ
0
¼ 0; PHψ

μ
1
¼ Pcoψ

μ
1
¼ 0; ξ0 ¼ 0; ξ1 ¼ −w: ð6:4Þ

We have used the superfield expansion of ZĀ ¼ fxμ; y;ψμ; ξ;…g in form degree [so xðσ; dσÞ ¼ x0ðσÞ þ x1ðσÞdσ, etc.]
For the original (4D) AKSZ theory degree counting to work we set S ¼ T½1&S where S can be any 3-manifold, so that

X × S ¼ S1 × S is the four-dimensional world volume. Using the product-exponential adjunction to writeMX×S ≅ ðMX ÞS

amounts to promoting the components ZĀ
k of the superfields ZĀ defining a map MX to superfields ZĀ

k that now depend on

the S coordinates fs; dsg as well as the X coordinates (fσ; dσg in this case). Then the coisotropic submanifold CS is the

locus of functions S →MX such that

dXp0 ¼ 0; dXx
μ
0
¼ 0; PHx

μ
1
¼ Pcox

μ
1
¼ 0; y0 ¼ wσ; y1 ¼ 0;

dX χ 0 ¼ 0; dXψ
μ
0
¼ 0; PHψ

μ
1
¼ Pcoψ

μ
1
¼ 0; ξ0 ¼ 0; ξ1 ¼ −w; ð6:5Þ

where all bolded expressions depend on fσ; s; dsg. (The projectors to coexact/harmonic pieces refer to the Hodge

decomposition with respect to X as above.)

We can explicitly check the claim that CS is invariant with respect to QBV ¼ D̂þ d̄S. For example,

D̂

Z

S×X

ðy − wσÞϵ ¼

Z

S×X

ðξ þ dσ∂σyÞϵ ¼
mod IðCSÞ

Z

S×X

ð−wdσ þ dσwÞϵ ¼ 0: ð6:6Þ

[We smeared against ϵ∈C∞ðS × XÞ and employed (2.19)]. The other differential d̄S leaves the ideal invariant

independently. This way we may confirm explicitly that SBV lies in NðIðCSÞÞ.
It remains to calculate the reduced BV master action, which amounts to calculating ΠðSBVÞ where Π implements the

quotient modulo IðCSÞ. SBV is the Hamiltonian forQBV ¼ Dþ dS ¼ QM þ dX þ dS ≡QM þ d which is explicitly given

by formula (2.10), which is a linear combination of
R
X×S ΘM and

R
X×S ιdϑM, for ϑM the transgression of a symplectic

potential on M that satisfies dMϑM ¼ ωM, ωM being given in (5.3). The bolded quantities are superfields corresponding

to MX×S now. We then calculate

Π

Z

X×S

ιdϑM ¼ Π

Z

X×S

pdxþ qdy − χdψ − ϕdξ

¼

Z

S

#Z

X

p1dσ

$
dSx0 þ w

#Z

X

q0dσ

$
−

#Z

X

χ 1dσ

$
dSψ0: ð6:7Þ

Note that terms involving x1 and ψ1 will generate dX -exact terms which will vanish under the
R
X integral. Using (5.4),
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Π

Z

X×S

ΘM ¼

Z

S

−ψ0

#Z

X

p1dσ

$
− w

#Z

X

dσq0

$
þ 0 − w

#Z

X

1

3!
H3ðψ0Þ

3dσ

$
: ð6:8Þ

We then read off the sign factors from (2.10) to find

ΠSBV ¼ Π

#
−

Z

X×S

ΘM þ

Z

X×S

ιdϑM

$

¼

Z

S

ψ0

#Z

X

p1dσ

$
þ w

#Z

X

1

3!
H3ðψ0Þ

3dσ

$
þ

#Z

X

p1dσ

$
dSx0 −

#Z

X

χ 1dσ

$
dSψ0: ð6:9Þ

The signs were such that the terms w
R
X q0dσ canceled.

In the above expression we can identify the integrated

expressions ð
R
X p1dσÞ and ð

R
X χ 1dσÞ as the conjugate

momenta superfields (with degrees 2 and 1 respectively)

that appear in the Courant sigma model for an exact

Courant algebroid structure defined by the three-form

wH3. The result we calculated via coisotropic reduction

of the original (four-dimensional) AKSZ topological sigma

model is identical to the AKSZ sigma model constructed

directly from the wrapped QP manifold W with source

manifold S [see (5.14)].

Therefore we have recovered the correct relation between

the M-theory fluxes, the M2-brane winding w, and the type

IIA NS-flux wH3 seen by the fundamental strings that arise

as theM-theory circleX ¼ S1 is shrunk to zero, all at the level
of the corresponding topological sigma models.

VII. CONCLUSIONS

We defined a reduction procedure of NQP manifolds

M →W which encompasses the properties of wrapped

branes. This is consistent with the AKSZ procedure in the

sense that the reduction naturally lifts to a reduction of the

AKSZ theory with targetM to the AKSZ theory with target

W. We applied this to many examples, including many

physically motivated examples of wrapped branes, and we

saw that it reproduced the knownM-theory/IIA dualities.We

also were able to find a novel relation between the Courant

algebroid and the Poisson algebroid through this reduction.

As mentioned in the Introduction, there is a correspon-

dence between branes, QP manifolds and higher Leibniz

algebroids E → M, which can be used to describe the geo-

metry of string backgrounds. This geometry is described

through the generalizedmetric [34–37].While our procedure

describes how the algebroids reduce under brane wrapping

(captured by the graded-commutative manifold M), deter-

mining how the full string background geometry reduces

would likely require more input than the procedure out-

lined in this paper. In particular, one would likely have

to select some precise representative of the cohomology

classes we have constructed, breaking the topological

nature. Nonetheless, in certain cases one may be able to

obtain nontrivial physical data about the reduction from our

construction as follows. In many cases, including many

supersymmetric backgrounds, the generalized metric is

described, in part, via a choice of subalgebroid L → M
which has a Lie algebroid structure [2,38–43]. This Lie

algebroid structure has an associated differentialdL, which in
theQP language is captured by the Hamiltonian vector field

Q. We see from our construction that we define a reduction

not only of the Leibniz algebroidE but also of the differential

Q ¼ ðΘ; ·Þ and hence of the associated Lie algebroid L.
Despite only describing the background in part, the L
structure contains nontrivial physical data. For example,

for reductions to Minkowski space, the L-bundle can

determine certain massless moduli in the effective theory.

For Anti-de Sitter reductions, the bundle L captures the

holomorphic data of the associated Superconformal field

theory [8]. An application of our reduction reasoning would

be to find the bundle L (called the exceptional complex

structure in [41]) associated with a IIA background with

nontrivial Ramond-Ramond flux associated with branes

arising from wrapped M2- and M5-branes in M-theory.

Beyond the application to the geometry of supersym-

metric backgrounds, we expect that our work will have

many interesting applications to other topological AKSZ

theories. One can ask how general our procedure is, or

whether it is possible to relax some of the assumptions

made in Sec. II. For example, can we relax the trivial bundle

condition M ¼ N × Y, perhaps by introducing some flat

connection similar to [15]? We can also ask whether we can

extend our construction to manifolds X with boundary. We

can also relax the constraint onX ¼ T½1&X, and instead just
take X to be some DG manifold with some invariant

measure of degree nþ 1. For example, we can try to extend

the reduction procedure to X ¼ T1;0½1&X for some complex

manifold X with dimC X ¼ nþ 1. We could then apply the

reduction to, say, the work of [44].

In Sec. IV B, we found an interesting relation between

the Courant algebroid and the Poisson algebroid QP
structures. This was based on the embedding of the

Poisson differential dπ into T ⊕ T'. There are other

interesting differentials that can appear in these Courant

algebroids [45] that are associated with topological theories

on G2 and Spin(7) manifolds. One can try to embed these

differentials in the language of QP structures and perform

the reduction to get new topological models associated with

these special holonomy manifolds.
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APPENDIX A: NOTATION

1. Commutative manifolds

M Starting/parent commutative manifold which is always

a product manifold of a base and a fiber to be

wrapped.

N The commutative manifold which is the base of the trivial

fiber bundle M.

Y The fiber of the trivial bundleM. This is the manifold over

which we wrap the branes.

X The fiber of the brane that is wrapped over Y.

2. Graded-commutative manifolds

M Starting/parent QP manifold.

N A submanifold of M which is the natural QP manifold

restricted to the base of the fibration.

Y A submanifold of M which is the natural QP manifold

restricted to the fiber; usually Y ¼ T⋆½n&T½1&Y.
X The shifted tangent bundle T½1&X; the source of the

mapping space MX .

W Final wrapped QP manifold.

MX mapsðX →MÞ.
S A DG manifold with invariant measure of degree

nþ 1 − dimX.

3. Indices

A; B; C;… Indices along M, N .

μ; ν; ρ;… Indices along N.

m; n; p;… Indices along Y.
α; β; γ;… Indices along X.
r; s; t;… Indices corresponding to degree shifted real lines

R½nr&.
a; b; c;… Indices for a basis of differential forms on X.

4. Coordinates

ZA Homogeneous coordinates on M.

zA Homogeneous coordinates on N .

xμ Degree 0 coordinates on N .

ψμ Degree 1 coordinates on N parametrizing the fiber

of T½1&N.

pμ Coordinate dual to xμ.

χμ Coordinate dual to ψμ.

ym Degree 0 coordinates on Y parametrizing the fiber of

T½1&Y.
ξm Degree 1 coordinates on Y.

qm Coordinate dual to yα.
ϕm Coordinate dual to ξα.

ðσα; dσαÞ Coordinates for the DG manifold ðX ; dÞ such that

dðσαÞ ¼ dσα.

ζr Homogeneous coordinates corresponding to degree

shifted real lines R½nr&.
ZA Transgressed coordinates of MX .

ZA
k

An expansion of the transgressed coordinates ZA

into differential k-forms.

ZA;a
k

A coordinate labeling the harmonic k-forms, labeled

by a, associated with the transgressed coordinate

ZA.

5. Functions and differential forms

Ω
k The space of differential k-forms.

Hk Harmonic k-forms.

ek;a A basis of harmonic k-form(s) (occasionally the k is

dropped).

ΘM The Hamiltonian function of M (similarly for

N ;W;…).

ωM The symplectic form of M (similarly for N ;W;…).

ϑM The canonical symplectic potential of M (similarly for

N ;W;…).

ð·; ·ÞM The Poisson bracket for M (similarly for N ;W;…).

½·; ·& The Poisson bracket on MX .

6. Miscellaneous

w Wrapping map X → Y.
w Winding number/matrix of a circle/torus over itself.

I The coisotropic ideal within MX .

C The vanishing locus of I within MX .

APPENDIX B: QP MANIFOLDS

1. Graded manifolds

A graded manifold M is a supermanifold whose

coordinates come equipped with a Z grading.
13

One can

always find homogeneous coordinates ZA of definite

13
From [46], the consistency of the Z grading of coordinates

comes from the existence of a global degree counting vector field
ε and transition functions which preserve degree.
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degree, where degZA mod 2 is the Grassman parity of the

coordinate. We will denote by A the degree of ZA, and so

we have

ZAZB ¼ ð−1ÞABZBZA: ðB1Þ

The sheaf of functions onM splits into subsheafs C∞
n ðMÞ

of functions of definite degree. The degree of a homo-

geneous function f is measured by the degree counting

vector field ε (the “Euler vector field”) via

εðfÞ ¼ degðfÞf: ðB2Þ

In local homogeneous coordinates ZA, we have

ε ¼
X

A

degðZAÞZA
∂

∂ZA
: ðB3Þ

Unless otherwise stated, all derivations are left deriva-

tions. Hence, the de Rham d is

df ¼ dZA
∂Af; ðB4Þ

and any homogeneous (in degree) vector field X acts as

XðfgÞ ¼ XðfÞgþ ð−1ÞXffXðgÞ; ðB5Þ

where we have used the shorthand X, f for the degree of

the respective components. In local coordinates we can

write X ¼ XðZÞA∂A, and so degX ¼ degXA − degZA. We

also define

degðdfÞ ¼ deg f þ 1: ðB6Þ

For this to be consistent with {AdZ
B ¼ δBA, where {A denotes

contraction with the vector field ∂A, we require that the

interior product has degree

deg { ¼ −1: ðB7Þ

2. Poisson and symplectic structures

A graded Poisson structure of degree −n is defined to

satisfy

ðf; gÞ ¼ ð−1Þ1þðfþnÞðgþnÞðg; fÞ ðB8Þ

and the graded Jacobi identity

ðf; ðg; hÞÞ ¼ ððf; gÞ; hÞ þ ð−1ÞðfþnÞðgþnÞðg; ðf; hÞÞ ðB9Þ

for all homogeneous functions f, g, h. It also acts as a left

derivation on the right-hand arguments, but a right deri-

vation on the left-hand arguments. That is,

ðf; ghÞ ¼ ðf; gÞhþ ð−1ÞðfþnÞggðf; hÞ;

ðfg; hÞ ¼ fðg; hÞ þ ð−1ÞðhþnÞgðf; hÞg: ðB10Þ

If the Poisson structure is induced from a symplectic

structure ω, we have that

{Xf
¼ ð−1Þfdf; Xf ≔ ðf; ·Þ: ðB11Þ

In local homogeneous coordinates we can write

ω ¼
1

2
dZAωABdZ

B; ðB12Þ

which implies the symmetry

ωAB ¼ ð−1Þ1þABþnðAþBÞωBA: ðB13Þ

If we define ωAB via ωABωBC ¼ δAC, then (B11) implies

ðf; gÞ ¼ ð−1Þf∂RAfω
AB

∂Bg; ðB14Þ

where ∂RA is defined by df ¼ dZA
∂Af ¼ ∂

R
AdZ

A. Note that it

is not a right derivation by itself, but the combination

ð−1Þf∂RAf is a right derivation. This is consistent with

(B10). Note that this implies

ðZA; ZBÞ ¼ ð−1ÞAωAB: ðB15Þ

The symplectic potential is defined such that dϑ ¼ ω,

and can be defined canonically through the Euler vector

field ε. We have that
14

nω ¼ Lεω ¼ {εdωþ dð{εωÞ ¼ dð{εωÞ; ðB16Þ

where we have used dω ¼ 0. This implies we can take

ϑ ¼
1

n
{εω ¼ ðdegZAÞZAωABdZ

B: ðB17Þ

3. Transgressed QP structure on MX

Let ðX ¼ T½1&X; dÞ be a DG manifold with homo-

geneous coordinates σ; dσ. A point f∈MX can be defined

by how it pulls back the coordinates on M. We have

f'ZA ¼ ZAðσ; dσÞ ¼ ZA
0
ðσÞ þ ZA

1αðσÞdσ
α þ ( ( (

þ
1

d!
ZA
dα1…αd

ðσÞdσα1 ( ( ( dσαd : ðB18Þ

We use the shorthand ZA
k ¼ 1

k!
ZA
kα1(((αk

ðσÞdσα1 ( ( ( dσαk ,

where ZA
kα1(((αk

ðσÞ is a function of degree degZA − k.

These act as coordinates on MX . Our conventions are

always that the form components come to the right of the

function. So, e.g.,

14
More generally, the Lie derivative on any graded differential

form along a vector field X is given by LX ¼ {Xdþ ð−1ÞXd{X.
The Euler vector field is degree 0, hence the expression given.

BRANE WRAPPING, ALEXANDROV-KONTSEVICH-SCHWARZ- … PHYS. REV. D 108, 086024 (2023)

086024-19



ZA
1
¼ ZA

1αðσÞdσ
α ¼ ð−1ÞA−1dσαZA

1αðσÞ: ðB19Þ

We can always define an evaluation map

ev∶MX × X ⟶ M;

ðf; σ; dσÞ⟼ fðσ; dσÞ: ðB20Þ

We also have the chain map defined by

μ'∶ Ω
•ðMX × XÞ ⟶ Ω

•ðMX Þ;

α⟼

Z

X

α: ðB21Þ

The combination μ'ev
'∶ Ω

•ðMÞ → Ω
•ðMX Þ is called the

transgression map. The QP structure on the mapping space

is defined by

ωMX ¼ μ'ev
'ωM;

ΘMX ¼ ð−1Þdμ'ev
'
ΘM þ ð−1Þnþdþ1{dμ'ev

'ϑ; ðB22Þ

where we use the same symbol d for the lift of the vector

field on X to MX .

This can be given more explicitly in the coordinates

(B18). We will use the boldface notation to denote a

function, differential form, or coordinate on M that is

pulled back to X via some function f∈MX . That is, we

effectively take f ¼ ev'f. We can then write

ωMX ¼
1

2

Z

X

δZAðωMÞABδZ
B: ðB23Þ

Our convention for integrals is that constants are pulled out

from the left. The symplectic form above gives rise to a

Poisson bracket that takes the following form on homo-

geneous functionals F, G

½F;G& ¼

Z

X

ð−1ÞF
δRF

δZA
ðωMÞAB

δG

δZB
; ðB24Þ

where

δF ¼

Z

X

δZA
δF

δZA
¼

Z

X

δRF

δZA
δZA: ðB25Þ

We can define a functional F via some pulled-back function

f by

FðϵÞ ¼

Z

X

fϵ; ∀ ϵ∈C∞ðXÞ: ðB26Þ

Then the Poisson bracket (B24) can be expressed nicely as

&Z

X

fϵ;

Z

X

gη

'
¼ ð−1ÞðfþnÞϵþd

Z

X

ðf ; gÞMϵη; ðB27Þ

where ðf ; gÞM ¼ ev'ðf; gÞM.

We can use this to calculate the Poisson bracket on two

harmonic generators ZA
k and ZB

k0
. Let ek;a be a basis of

harmonic k-forms and ẽbd−k be a dual basis of harmonic

d − k-forms. So

δba ¼

Z

X

ek;a ∧ ẽbd−k: ðB28Þ

Noting that Ω
•ðXÞ ≃ C∞ðT½1&XÞ ¼ C∞ðXÞ, and by

expanding ZA
k ¼ ZA;a

k ek;a with ZA;a
k some constant coef-

ficient, we have

ZA;a
k ¼

Z

X

ZA
k ẽ

a
d−k ¼

Z

X

ZAẽad−k: ðB29Þ

We then see that we get an induced Poisson bracket on the

coefficients given by

½ZA;a
k ;ZB;b

k0
&≡

&Z

X

ZAẽad−k;

Z

X

ZBẽb
d−k0

'

¼ð−1ÞðAþnÞðd−kÞþd

Z

X

ðZA;ZBÞMẽad−k∧ ẽb
d−k0

¼ð−1ÞðAþnÞðd−kÞþdð−1ÞAωAB

Z

X

ẽad−k∧ ẽb
d−k0

¼ð−1ÞðAþnÞðd−kÞþdð−1ÞAωABκabδkþk0;d; ðB30Þ

where we have assumed Darboux coordinates, so the ωAB

are constant, and where

κab ¼

Z

X

ẽad−k ∧ ẽbk : ðB31Þ

We use this to find the symplectic form of the reduced

theory.

APPENDIX C: COISOSTROPIC REDUCTION

OF GRADED POISSON ALGEBRAS

Let P be a graded algebra with a graded Poisson bracket

½•; •& of degree −P along with a left derivation V of P,

possibly Hamiltonian (i.e., given by Poisson brackets, so

V ¼ ½HV ; •& for HV ∈P). We will explain how all of these

objects behave under coisotropic reduction. The derivation

is as in the ungraded case considered originally by

Śniatycki and Weinstein [47].

If I is a (multiplicative, degree-homogeneous) ideal

of P, it is a coisotrope if it is a Poisson subalgebra,

i.e., ½I ; I & ⊆ I . Then the coisotropic reduction of P with

respect to I is the quotient

P ≡ NðIÞ=I ; ðC1Þ

where NðIÞ≡ ff∈Pj½f; I & ⊆ Ig is the Poisson normal-

izer of I . Then the bracket on P is defined in terms of the

bracket ½•; •& via
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½Πf;Πg&P̄ ≡ Π½f; g&; ðC2Þ

where Πf is the equivalence class f þ I . For any P

derivation V we define its reduction V̄ via

VðΠfÞ ¼ ΠVðfÞ; f∈P: ðC3Þ

Theorem 1. Given any coisotrope I , the bracket ½•; •&P̄
is well defined. It is moreover a Poisson bracket of degree

−P, and so P is a graded Poisson algebra.

If the derivation V on P preserves the Poisson structure

(V½f; g& ¼ ½Vf; g& 0 ½f;Vg&) and the coisotrope [VðIÞ ⊆ I],

then the reduced derivation V is well defined.

Finally, if V is furthermore Hamiltonian with Hamiltonian

HV ∈P (so V ¼ ½HV ; •&), then V is Hamiltonian with

Hamiltonian ΠðHVÞ. [In this latter case V automatically

preserves the Poisson structure, but the condition VðIÞ ⊆ I

implies ½HV ; I & ⊆ I .]

If all derivations we are interested in are, in fact,

Hamiltonian (which is the case in the main text), then

we just need to check that the ideal I is a coisotrope and

that ½HV ; I & ⊆ I .

Proof.—The bracket ½•; •&
P
is well defined because

½Πf;Πg&
P
¼ Π½f þ I ; gþ I & ¼ Πð½f; g& þ ½f; I &

þ ½I ; g& þ ½I ; I &Þ ¼ Π½f; g&; ðC4Þ

where the last three terms in the second equality vanish

because f; g∈NðIÞ and ½I ; I & ⊆ I . This new bracket

inherits the antisymmetry and Jacobi identity properties

from ½•; •&. Since furthermore I is homogeneous in degree,

Πf will have a well-defined degree, and so the new bracket

defines a graded Poisson algebra structure.

Similarly since Vðf þ IÞ ¼ VðfÞ þ VðIÞ we have that

V is well defined on P=I when VðIÞ ⊆ I . We then need to

show that it preserves the subspace NðIÞ=I ¼ P. Since V

preserves the Poisson bracket, we have

½Vf; I & ¼ V½f; I & 0 ½f;VI &: ðC5Þ

If f∈NðIÞ, this becomes VðIÞ 0 ½f;VI & which lies in the
coisotrope when VðIÞ ⊂ I . Therefore VðfÞ lies in NðIÞ.
Finally, if V ¼ ½HV ; •&, then ΠVðΠfÞ ¼ ΠVðfÞ ¼

Π½HV ; f& ¼ ½ΠHV ;Πf&ΠP , which completes the proof. □
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