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We introduce a technique to realize brane wrapping and double dimensional reduction in the context of
Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ) topological sigma models and also in their target
spaces, which are symplectic L,, algebroids (i.e., Q P manifolds). Our procedure involves a novel coisotropic
reduction combined with an AKSZ transgression that realizes degree shifting; the reduced QP manifold
depends on topological data of the “wrapped” cycle. We check our procedure against the known rules for
fluxes under wrapping in the context of M-theory/type IIA duality, and we also find a new relation between

Courant algebroids and Poisson manifolds.
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I. INTRODUCTION

In a series of recent papers [1-3] we have been establi-
shing a correspondence between Bogomol'nyi-Prasad-
Sommerfield p-branes in string/M-theory on the one hand
and symplectic L, | algebroids on the other hand. The latter
can be thought of as appropriate generalizations of (exact)
Courant algebroids, and they are relevant for describing
generic flux backgrounds of string theory/M-theory (see [4]
for this point of view, and [5] for an alternative). The
algebroid description of these backgrounds has been used
to understand properties of reductions such as Kaluza-Klein
(KK) spectra [6], consistent truncations [7], and marginal
deformations [8,9]. In the aforementioned brane-algebroid
|

correspondence, the exact Courant algebroid (which is
classified by the de Rham cohomology class of H [10]) is
associated with the fundamental string (which couples to H
electrically via a Wess-Zumino term). For other branes, such
as the M2- and M5-branes in M-theory, or even/odd D-branes
in type II string theory, the corresponding algebroids are
roughly speaking the ones that are classified by whichever
fluxes couple electrically to the brane in question.

In general, the correspondence is between a “physical”
p-brane (an F1, M2, M5, ...), a symplectic L,, algebroid for
n=p+1, and a topological Alexandrov-Kontsevich-
Schwarz-Zaboronsky (AKSZ) brane sigma model of dimen-
sion p + 2. This can be schematically summarized in the
following diagram:

symplectic L,-algebroid

%
b

. oundar,
topological n-brane Y

Less tersely, the symplectic L,, algebroid—that is classified
by a certain collection of fluxes—determines a topological
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Wase space

diti
condition » physical (n — 1)-brane

n-brane sigma model via the AKSZ construction [11]. When
the n-brane has an (n — 1)-brane boundary, an inflow-type
argument with an appropriate boundary condition produces
the Wess-Zumino (WZ) term that couples those same fluxes
tothe (n — 1)-brane [1,3].1 The algebroid also determines the
corresponding (n — 1)-brane more directly via the brane

'A slightly different boundary condition for the AKSZ sigma
model can produce the entire (n — 1)-brane Lagrangian, including
kinetic terms. This was done for the fundamental string by Severa
[12]. The other cases have not yet been considered in the literature.
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phase space construction that yields the Poisson algebra of
brane currents on phase space [2] (i.e., in the Hamiltonian
formulation of brane dynamics).

This correspondence between branes and algebroids
motivates the question: given that the string/M-theory
duality web acts on the branes, how is the duality web
realized on the algebroid side? Heretofore this was only
known for dualities that preserve the world volume dimen-
sion; see [13] for T-duality and [3] for M-theory/type IIA
duality along a transverse M-theory circle. [An example
of the latter is the emergence of a D2-brane given an
M2brane that does not wrap the M-theory circle, whose
algebroid avatar is symplectic reduction modulo the
U(1) action.] This “algebroid duality web” has already
found applications in physics, including, e.g., to spacetime
topology change induced by Poisson-Lie T-duality [13].

In this paper we provide an algebroid realization for
the brane wrapping operation. In the string theory
picture, this sends a p-brane to the (p — d)-brane found
by wrapping the original brane around a d-dimensional
cycle on target space and then shrinking the volume of
the cycle to zero. (Since both the dimensionality of the
brane and that of the target space are reduced in this
way, this is also known as double dimensional reduc-
tion.) The most basic example is M-theory/IIA duality,
where M?2-branes wrapped around the compactified
11th dimension give rise to fundamental strings in
ten dimensions [14]. This already poses a puzzle: the
corresponding algebroids are of degree n=p+1=3
(for the M2-brane) and n =2 (for the F1); what is
the mathematical operation that accounts for this
degree shift?

The mystery is resolved in the supergeometric formu-
lation of symplectic L,, algebroids, defined by the data of a
OP manifold (M, w®, Q) where M is a non-negatively
graded manifold, @ a symplectic form of degree n, and Q a
nilpotent vector field of degree 1, Hamiltonian for w.
Given a compact manifold X of dimension d—to be
identified with the cycle to be “wrapped”—the odd tangent
bundle X =T[I]X possesses an integration measure
Jy i C®(X) > R of degree —d, namely the integral of
differential forms. Then the mapping space

MY = maps(X - M) (1.2)
possesses a P structure of degree (n — d), provided by the
AKSZ construction. This is the correct degree shift;
however, this manifold is infinite dimensional, and its
structure sheaf is not non-negatively graded, so it cannot be
the sought-after symplectic L,_, algebroid.

A. A “brane wrapping” for QP manifolds

We introduce a coisotropic reduction of the space M
to a finite-dimensional QP manifold that resolves both
issues. This resolution is heavily motivated by the intuitive

N maps(X — N x X)

FIG. 1. The wrapping map specification for N = R, X = S'.

string-theoretic picture of brane wrapping. We deal with the
case where the body of M is a product N x X, seen as
a trivial bundle with fiber X, and we select a map
N & maps(X — N x X), as in Fig. 1. The idea is that
each point n €N is mapped to the cycle of N x X that
shrinks to zero size in the double dimensional reduction
procedure. Since maps(X — N x X) is disconnected, with
connected components corresponding to different winding
sectors (as they would be called in physics), the choice of
map N & maps(X — N x X) includes a choice of wind-
ing. On the string theory side, double dimensional reduc-
tion indeed depends on winding: for instance, an M2-brane
wound w times around the M-theory circle yields a
fundamental string coupled to the H-flux wH. Since the
algebroids corresponding to these branes via the diagram
(1.1) are defined by the same fluxes, we expect winding
dependence in the obtained algebroid, and we will indeed
find it.

In more detail: we start with the data of an NQP—“N”
for non-negatively graded—manifold M with body M and
a “source” Q manifold X = T[1]X as above, along with
a wrapping map w: X — M that defines a degree-0O sub-
manifold N < maps(X — M). We then produce a finite-
dimensional, non-negatively graded QP manifold W,
whose P structure has degree n — d; we will call WV the
wrapped algebroid, and we will call our procedure (brane)
wrapping. The wrapping of QP manifolds/symplectic L,
algebroids is then a reduction of M? with respect to a
coisotropic submanifold C which may be thought of as
the lift of N & maps(X — M) to a graded submanifold
of maps(X — M) = M?*. The output QP manifold W
depends on the choice of wrapping map w only up to
homotopy.

In fact, we were able to generalize beyond the case
M = N x X (that was pictorially outlined above) to the
case M =N x Y, with Y and X not necessarily of the
same dimension, even; then the wrapping is a map
w: X - N x Y, and d = dim X controls the degree/dimen-
sionality shifts as before. This generalization allows us to
accommodate at least one example which might be of
interest outside of string theory, namely the wrapping of a
Courant algebroid into a Poisson manifold discussed in
Sec. IV B, which has dimY = 0. When dimX =n + 1 in
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addition to dimY = 0 (so that M? has a degree —1 P
structure) our wrapping procedure agrees with that of [15].
Our approach gives a complementary perspective to the

Losev-trick based wrapping-style reductions of [16,17] and
to that of [18,19].

B. Brane wrapping and AKSZ sigma models

Our brane wrapping reduction—from a QP manifold
M to a QP manifold W—also induces a reduction
of the corresponding AKSZ topological field theories.
Essentially, the two reductions commute, as in the sche-
matic diagram

M wrapping w
lAKSZ lAKSZ (1.3)
MAXS y WS

Here M**S and W are P manifolds of degree —1 created
by the AKSZ construction for S of appropriate dimension.
The dotted arrow corresponds to a reduction of M**S with
respect to the coisotropic submanifold C° = maps(S,C),
for C the coisotropic submanifold that appears in the
wrapping reduction M — W. This “dotted” reduction
always exists and is compatible with the AKSZ/BV
(Batalin-Vilkovisky)master actions if the wrapping reduc-
tion does.

We provide the argument for the reduction of AKSZ
sigma models in Sec. VI, along with an example: the
reduction of a topological 3-brane sigma model (corre-
sponding to the M2-brane symplectic L5 algebroid) to a
Courant sigma model (corresponding to the fundamental
string symplectic L, algebroid). This provides an impor-
tant consistency check: if we were to derive the corre-
sponding physical brane sigma models, e.g., by
introducing boundaries and using an inflow-type argu-
ment as in [1,12], we would find that the electric
Wess-Zumino flux coupling has the correct winding
dependence.

C. Structure of the paper

In Sec. II, we describe the general procedure for
wrapping QP manifolds. We provide the conditions
required of the QP structure on M and define the
coisotropic ideal Z C C*(M%) (that defines the coiso-
tropic submanifold C) in general. We show that it is well-
defined and perform the reduction. The next three
sections provide a multitude for examples. (If the reader
finds the notation of Sec. II too terse, they may find it
useful to first work their way through the examples
before coming back to the general procedure.) Section III
covers the case where dim X = 0. In this case, we do not
get any wrapping and our reduction is very similar to
conventional dimensional reduction [20]. In Sec. IV we

consider examples where dimX # 0, but the wrapping
map W is trivial in homotopy. These provide examples
which are simple but still present some of the main
features of the reduction. Among these is the reduction of
a Courant algebroid to a Poisson manifold given in
Sec. IVB. In Sec. V, we consider examples relevant for
physics and wrap string/M-theory branes on various
manifolds. In Sec. VI we show how our procedure
naturally lifts to a reduction of the AKSZ theory from
MI*S to WS, Section VII is left for comments and outlook.
The appendixes cover our notation (Appendix A), some key
properties and conventions of QP manifolds (Appendix B),
and a review of coisotropic reduction in the graded context
(Appendix C).

II. WRAPPING QP MANIFOLDS

We will describe a process of creating new Q P manifolds
from old, which effectively generalizes the notion of
dimensional reduction, that we describe as wrapping QP
manifolds. The nomenclature arises due to the consistency
of this process with the AKSZ construction [11]—that is,
one can reduce the AKSZ theory from the original QP
manifold to that of the new manifold. Solutions of this
reduced AKSZ theory will look like branes wrapping
cycles of the target space. We will describe the relation
to AKSZ sigma models in a later section and will describe
the wrapping procedure here.

We start from the following ingredients:

(i) An NQP manifold M = N x Y of degree n > 2

where

Y =T*n|T[1]Y (2.1)
and N is otherwise generic, with underlying com-
mutative manifold® N. The underlying commutative
manifold for M is M = N x Y, a direct product
manifold. The symplectic form will be written
W = ddy,, where 9, is the canonical symplectic
potential. The induced Poisson bracket on M will be
written (-, -) .

(ii) The Q structure of M should be a lift of the de
Rham differential of Y, seen as the vector field
dy =&"0/oy™ on T[1]Y, with respect to the
bundle projection p that is the composition

N x Y2 28 1]y, Explicitly this lift con-
dition means Q,p* = p*dy, which partially
determines the form of the Hamiltonian ® ,, in local
coordinates:

2By “underlying commutative manifold” we mean the com-
mutative manifold M whose structure sheaf is the sheaf of degree
0 functions on M, i.e., C®°(M) = C{(M). This is well defined
since we are working on graded-commutative manifolds with a
non-negative grading. We will also refer to this as the manifold in
degree 0.
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n+1

1
On = ="+ D 1 Oy (2 3)EM -+ &M,
k=0 """

(2.2)

where ¢ are the degree n conjugate momenta to y on
T*[n|T[1]Y and z are generic homogeneous coor-
dinates on N. The ) = 6,(z,y)& can be viewed
as [C®(N)-valued] differential forms on Y, and we
demand that they must be dy-closed differential
forms.

(iii) A Q manifold X = (T[1]X,d) where X is compact,
without boundary, and has dimension d < n. d is the
de Rham differential.

(iv) A choice of “wrapping map” w: X — Y, defined up
to homotopy.

We aim to produce a new NQP manifold W from M, X,
which describes a brane where X has been wrapped over Y
and both cycles have been shrunk. The resulting QP
manifold should therefore have degree n — d and under-
lying commutative manifold N. There is a natural choice of
manifold of degree n —d given by the mapping space
M? := maps(X — M). However, this manifold is infinite
dimensional. We will see that we can define a coisotropic
reduction of M that produces a finite dimensional NQP
manifold which only depends on the topology of X and the
homotopy class of .

A. Properties of the mapping space

The infinite dimensional space M consists of maps f
which are defined by their pullback action on the coor-
dinates on M. Using generic homogeneous coordinates Z4
for M and coordinates (6% do®) for X adapted to d
[d(¢*) = do*, ddo”* = 0] we have

f*Z4 =77 (0,do) = Z{ (o) + Z{,(c)do* + - - -
1

+ _Zgal--~a(; (6)de™ - - do®.

- (2.3)

Defining the components Z; is equivalent to defining the
map f. To interpret the Z, we consider a change of
coordinates on M given by Z4 = Z4(Z) and note that

2M2Z) = 2)(f°Z)

~ 0/
78(Z) + Z?adaaaZ—B (Zo)

1 0z*
+ 5 dGadUﬂ <Z§aﬁ ﬁ (Zo)

*74
+ 78 7€ (Z0)>—i—---

1Z1p 5,8 5,C (2.4)

Therefore, in spite of the index structure, these in general
are not vector-bundle-valued differential forms, with the

exception of Z; which is an f}7TM-valued one-form for
the map f, = f osy, where sp: X — X is the zero section
of X = T[1]X. Of the other components, Zj defines the
map fo: X > M, while the Z{ for k> 1 transform
“affinely” whenever Z’]?, #0 for any 0 < k' < k> Since
we may not set Z4 =0 consistently in general, this
introduces a subtlety for our reduction procedure that we
will discuss later in this section.

The QP structure on the mapping space is induced by
that on M through transgression. The symplectic structure
is given by

1 1
X K /X
(2.5)

which induces a Poisson bracket [-,-] on M%. This
Poisson bracket can be conveniently expressed in terms
of “test functions” as in [2]. Given arbitrary functions e, 7
on X—which correspond to differential forms on X since
X = T[1]X—they write

{AZAe,/XZB,,] :(_1)(B+n)€+d/X(2A’ZB)M€r]’ (2.6)

where in the exponent we have used the shorthand B, ¢
for the degrees of the respective functions. From (2.5) and
(2.6) we can see that if Z4 is dual to Z® on M, then Z4 will
be dual to Z5_, on M*. Furthermore, if we are working in
Darboux coordinates, so that components of w,, are
constant, then by performing a Hodge decomposition
QF(X) = HF @ dQF! @ dTQ! (2.7)
with respect to some arbitrary metric, exact forms Z{ will
be dual to coexact Zg_k and harmonic forms will be dual to

harmonic forms. For convenience we introduce orthogonal
projectors

PH’ Pex’ Pco (28)

onto harmonic, exact, and coexact forms, respectively.
The Q structure D on M* is defined as the Hamiltonian
vector field
D = d + Q M

D= [0, (2.9)

where the Hamiltonian is
0, = (-1)d/@M+(—1>d+n+1/ Wy, (2.10)
X X

JExploiting Batchelor’s theorem to write M as a graded vector
bundle only improves this situation in that some Z, take values in
a vector bundle as well.
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where each term generates the lift of Q( and d to M*?,
respectively. Note that implicit in this formula is the fact
that we have pulled back/transgressed © ,, 9, to objects
on X’; we have used boldface to highlight this. The signs are
such that D =dy + O .

B. The coisotrope

We need to perform a coisotropic reduction to obtain a
finite dimensional NQP manifold. This is a generalization
of symplectic reduction for Poisson manifolds which
requires a coisotropic ideal Z C C* (M%), i.e., an ideal
that satisfies

[Z,Z]CT. (2.11)
The description of the quotient manifold is given in two
equivalent ways. In one description, we take the submani-
fold C ¢ M defined by the vanishing of Z and quotient by
transformations generated by Z. Alternatively, we can
describe the structure sheaf of the quotient manifold as
the normalizer N(Z) of Z, quotiented by Z. That is,
W=C_C/[Z,] & C®W)=N(2)/I. (2.12)
Such a manifold has a natural Poisson structure induced
from that on the mapping space; see Appendix C for a
review. Further, provided the ideal is closed with respect to
the Q structure, i.e., DZ = [®,x,Z] CZ, the reduced
space has a Q structure induced from the image of the
Hamiltonian function under the quotient map:
Oy =T1(O ), I: N(Z) > N(Z)/Z. (2.13)
This closure is precisely the statement that ©® \.« € N(Z).

We build our ideal Z = (Z,Zy) in two parts, each
defining a restriction to some submanifold of M% =
N¥ x V¥ This factorization is convenient because )
may be thought of as “longitudinal” to the cycle to be
wrapped, while N is “transverse.”

On Y, we would like the maps in degree 0 to restrict to
the fixed wrapping map w: X — Y. This restriction is
naturally given by the zero locus of the ideal generated
by y —w and its closure under D. Using (2.2) and (2.10),
we find

Ty = (y—w,E+dw). (2.14)
This is clearly coisotropic in the coordinates on ). The
angled brackets (- - -) will always denote the ideal generated
by ---.

On N?¥, we follow [15] and take the coisotropic
submanifold to consist—in the first instance—of closed
maps under the transgressed differential d on AN/, In
degree 0 we realize this via a choice of degree preserving

embedding N < N/*. By degree counting this is a map of
(ordinary) manifolds N < N*, and we choose this to be the
map sending each n €N to the constant map X — {n}
(which is d-closed). Beyond degree 0, we simply set the
coisotropic part of each coordinate in the superfield
expansion (2.3) to zero (using the Hodge decomposition).
Therefore we define Z ,, such that*
Iy > <PCOZII?> (2.15)
for all values of k in the expansion (2.3), where z* is a
generic coordinate on A. If we consider the vanishing
locus of 7, and 7y simultaneously, we see that we are
restricted to x, = const and y, = . This gives an embed-
ding N & M?. Similarly, a choice of degree preserving
embedding N < M% defines our ideal in degree 0.

This alone is not enough as we would like the reduced
manifold W to be an N manifold, i.e., a graded manifold
with non-negative coordinates, such that in degree O the
structure sheaf is that of an ordinary manifold.” To remove
these, we include harmonic generators of the maps z4 for
maps such that deg z* — k < 0. The exception to this is the
maps X, for which we do not include the harmonic (i.e.,
constant map) representatives. We therefore have

: <{ Poozi Pz | VK 2 deg 24 if deg 24 > 0>
N Pt Pzl V> 0 if deg A =0/
(2.16)

To see that this is coisotropic, we use (2.6) and the
surrounding discussion to note that the coexact genera-
tors are dual to exact generators. Hence, these terms are
coisotropic with respect to all of Z,,. The harmonic
generators could be dual to some other harmonic generator
in 7). However, since we only include harmonic z? for
0 > degz* — k, the dual coordinate z& on M has

degz? — k' = n—degz* — (d —k)
= (n—d)— (degz* — k)
>0 (2.17)

so is not included in Z .. The total ideal Z = (Z , Zy) is
coisotropic, as required.

C. Metric and coordinate independence

The construction of the ideal Z appears to rely on a
choice of metric on X but we claim that the resulting
reduced manifold depends on only the topological

*The reduction by such a coisotropic ideal is related to the
reduction by “contractible pairs” in the BV formalism [21].

>There are issues not just with negative-graded but also with
degree 0 “formal” coordinates; see, e.g., [22, Sec. 2].
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data of X. This can be best seen from the vanishing
locus C ¢ M®. This is given by maps which are either
d-closed (for degz* =0 and some values of k, k') or
ones which are also d-exact (in all other cases), as
specified in (2.16). The metric only appears in the
specification of the vanishing ideal that represents C but
C does not in itself depend on metric data. (This
apparent metric dependence thus may perhaps be seen
as due to “gauge-fixing.”)

Our construction also appears to depend on a choice of
coordinates on N. To see that this is well defined, we will
show that the submanifold C is invariant under a change of
coordinates 7* = 74(z). Using formula (2.4), we can write
the k-form component of the transgressed Z as

3 NZC i

such that k; + - -+ + k; = k and degz* + - -- +degzt <
deg 7¢'; here we emphasize that the last inequality holds true
because M—and thus N—was assumed to be an N
manifold (its structure sheaf is non-negatively graded).

Restricting to C, the coordinates zf" are all closed under d
A Further, if deg 74 — k < 0, then at least
one of degz i— ki < 0. This means that z?_" is exact. A

(20) zk1 = -z;:j’ (2.18)

and hence so is 7

product of closed and exact forms is exact and hence so is
7 as required.

D. Closure under D

The final condition to check is that the ideal Z is closed
under the Q structure D = [@ -] on M*. We have
already checked that 75, is D-closed, and so we need only
check how D acts on the generating coordinates of 7 .
We can use formula (2.6) with P_,e = 0. This choice of
epsilon selects out the harmonic and coexact generators z4,
respectively. We have

o [ 4]~ o[ [ o [ 24
i [
ZA(GM,ZA)M€+A&A€.

The second term vanishes when ¢ is closed. We therefore
need to consider only the first term. We can see whether this
term is contained within 7 by transgressing the function
(®,, %) \4 to the mapping space and evaluating it over C.
If the integral vanishes when integrated against all closed €,
then the ideal is closed under D. Using the form of the
Hamiltonian function we find

(2.19)

90, (
(@/\/h ZA)M a)M ABZ k Z y (220)

Transgressing this to the mapping space and restricting to
C, we replace y —» w, & - dw, z —» z for z-closed (or
exact). Integrating this against ¢ we get

{@MX,Aer} ch/X((wM)ABm*Z;%(zQe. (2.21)

We require this to vanish for the above e. When e is
exact, this indeed vanishes if we impose dy6;, = 0. If € is
harmonic, however, we find constraints on the coefficients
0, that we address case-by-case, in general.

E. The reduction, metric independence,
and homotopy invariance

Given the coisotropic reduction Z, we consider the
reduction given in (2.12). We will consider the structure
sheaf construction of the reduced manifold. The normalizer
N(Z) of the ideal is generated by
N(Z)~{Pyxo,Pnzp, I|0 <degz? —k<n-d}. (2.22)
We can expand the Pz} = zi““e, in some basis {e,} of
H*, so the zf’“ are constant parameters of degree
degz* — k. In the case that the respective cohomology
group is one dimensional (e.g., for H°, H¢) we will omit the
a index and simply identify, e.g., z4 = z4voly. We see that
the structure sheaf C*(W) = N(Z)/Z is given therefore
generated by

C®(W) = N(I)/T ~ {x0,7°|0 < degz* —k < n—d}.

(2.23)
That is, the structure sheaf is given by all smooth functions
in the z}"* (and xo).

The Hamiltonian function on W is given by the
projection IT1: N(Z) - N(Z)/Z of ®,x. We will confirm
in the examples that the final result is given by

0y, = I1(0 ) /Z

where the z are now the harmonic representatives of the
cohomology groups on X. Expanding the harmonic z{ in

)er00; (2 (2.24)

terms of the constant coordinates z?‘“, we can perform the
integral over X with the convention that the volume form is
on the right of the integrand, so we pull out constants from
the left. Once this is done, the final result will no longer be
an integral but will be a function in the z; 44 which will
involve, in general, a sum over cohomology groups, which
will be discrete in all cases (we only consider wrapping
over compact cycles).
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Formula (2.24) seems to depend on some metric to
choose the harmonic representatives for the z. However,
under a change of metric, the harmonic representatives
change by a d-exact term, and since we have assumed that
the forms 6, are closed, this shift will not change the
integral. Furthermore, since the forms 6, are closed, the
evaluation of the integral only depends on the homotopy
class of w: X — Y. Therefore the construction is metric-
independent and homotopy invariant.
Now that we have defined the reduction in complete
generality, we will see many examples of how this works in
practice. There are three interesting cases to consider:
(1) dim X = 0—The process effectively shrinks Y to
a point.

(2) dimY = 0—We produce a QP manifold with the
same underlying commutative manifold but with a
different degree.

N
coord | ¥ w* y, p,
dg [ 0 1 n-1 n

(3) X = Y—We produce a QP manifold which corre-
sponds to a brane wrapping the internal manifold.

III. EXAMPLE—dim X =0

We consider first a simple example to show that in the
simple case that dimX = 0, our procedure effectively
reduces to dimensional reduction on Y. Consider the
ingredients

M=TWII(NxY), X=pt

(3.1)

Taking N = T*[n]T[1]N, Y =T*[n]T[1]Y, and X =
T[1]X = pt, we introduce the Darboux coordinates

We will take the QP structure to be given by the symplectic form and Hamiltonian function

Wy = dpdx + dgdy — dydy — dédgp,

1
Op=—wp =g+ Fy" +(

We have suppressed all indices but they should be read
as being contracted in the natural way. The coefficients
F can be thought of as elements of QX(N) x Q"*(Y).
These should be closed under the differential dy on Y. So,
for example, F,y" = F,(x,y), ., " -y should be
viewed as a differential n-form on N, but a constant function
on Y. In the ansatz above, we have assumed a trivial
connection on the bundle. We can easily reintroduce it by
making the replacement & - A = £ + Ay, where A is the
connection; however, it will not change our final result, so we
omit it for simplicity.

The first step in the reduction process is to transgress the
QP structure to M. But since X is zero dimensional,
we have M? ~ M. Next, we need to choose a wrap-
ping map w: X =pt— Y or, equivalently, a (degree
preserving) embedding N & MY ~ M. This is equivalent
to choosing some point € Y and defining the embedding
N — (N,9) C M. This is described by the ideal

To="—9"). (3.5)

We then want to form the closure of this ideal with respect
to differential Q on M. We get

1
n—1)

Yy
coord | y" & bu  qm (3.2)
dg | 0 1 n-1 n
(3.3)
F ”—l§+...+;F n—déd (34)
¥ dn—a) Ve ‘
Ty = (Zo, QZy) = (Y™ = 3", &™). (3.6)

It is easy to check from (3.3) that this is indeed coisotropic
with respect to the Poisson bracket on M. In principal, we
also need to restrict the maps into N to those that are
closed/exact with respect to d on X. However, since
dim X = 0, this is a trivial constraint and so we just have
To perform the coisotropic reduction, we need to go to
first find the normalizer N(Z) of Z, which can easily be
verified to be generated by the coordinates
N(I) ~ {x* 9 g P Y™ =976} (3.7)
The structure sheaf of the new QP manifold WV is then
defined to be the quotient of this by the ideal Z. That is,
C®(W) = N(Z)/Z, which is generated by
N(Z)/T ~{x*.y" yy. pu} = W =T"[n]T[1]N.  (3.8)
Note that by construction ® ., € N(Z), and so we can find

the new Hamiltonian function through the natural projec-
tion IT: N(Z) —» N(Z)/Z, which gives
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1

®W :H(GM) = —l;/p—l—;F,,(x,j})lp”, (39)
and the final symplectic form is
wyy = dpdx — dydy. (3.10)

We see that this procedure has produced a new QP
manifold with the same degree but with underlying
commutative manifold N. We see that we have effectively
collapsed Y to the point y. In the case where Y is a Lie
group, we find the same result as in symplectic reduction
modulo T[1]Y [13]. If we were to choose a different wrap-
ping map ’: X > 3§’ that is homotopic to o : X > J, then
we end up with the same graded manifold where the Q
structure is evaluated for F, (x, ). However, the condition
that the F,, is closed on Y says that it is constant, and hence
the Q structures are the same. This demonstrates the
homotopy invariance of our construction.

With regards to applications to AKSZ sigma models,
which feature prominently in the rest of the paper, this
example is less interesting on account of the following: the
AKSZ sigma model is based on the space of (super)fields
M¥, which in this case is isomorphic to M itself, since
X = point. This example retains physical significance in
general, because it captures direct dimensional reduction
(where there is no wrapping along the Y manifold).

IV. EXAMPLES—dim Y =0

A. n-Brane — (n-1)-brane

Let us now consider the same example as above, but
instead of having dim X = 0, we will take the dimension of
the fiber dimY = 0 and take X to be nontrivial. We will
take the ingredients

M =T*[n|T[1]M, X =St (4.1)
We will use the homogeneous coordinates
M
coord | A TR (4.2)
deg ‘ 0 1 n-1 n

and use the coordinates o,dc on X = T[1]S'. The
Hamiltonian function and symplectic form are given by

Wy = dpdx — dydy, (4.3)

1
Om =—yp+Fuy". (4.4)
Since Y = ptin this example, we do not need to impose any
constraints on the coefficients F,,.
We need to transgress this structure to the mapping space
M. This is now an infinite dimensional graded manifold

whose points f € M can be described by their pullback
action on coordinates on M. That is, we have

fZA =Z4(0,do) = Z§(0) + Z{(0)do.  (4.5)

The transgressed Hamiltonian function is given by

O = (=)' [ @ (1 [t
X X
1
:_/ —yp +—F,(x)y"

T[1]s! n:

1

1) [ pdr iy (1= D). (46
T[1]s n

The boldfaced letters in the expression correspond to
functions pulled back to functions on X as in (4.5). The
Berezin integral over T[1]S! selects the maximal degree
component of the integrand (i.e., the one-form components)
and integrates it over S'. Our convention is that we
normalize with an overall factor of vol(S'), and so for
the flat metric on S!' we have

1
/T[l]S‘ Y S‘( )1

The next step is to define the coisotropic ideal
T = (Z.Zy). Since Y is trivial, so is the ideal Zy, and
hence we need only determine Z ,r. Following Sec. II, we
first start by restricting to all closed maps. That is, we take

(4.7)

IN ) <Pcoxk’Pcol//k’PcoZkvPcopk>- (48)

To define this ideal we choose some arbitrary metric on S 1
and for simplicity we can take the flat metric. We then
also add the harmonic representatives for Z2 such that
deg Z4 — k < 0 (except for x,). This gives

I/\f = <Pcox07PCOWO’Pco)(OvPcopO’PHx19PH1//l>- (49)

Again, in degree 0, the vanishing locus of this ideal restricts
us to maps xy = const and hence defines a natural
embedding M < M¥. It is a quick check using (2.6) that
this ideal is coisotropic. Indeed, the Poisson bracket of
the coexact generators with any other generators will
vanish, as they are dual to exact maps. The harmonic xi,
w representatives are dual to py, v, € H’, respectively, and
these do not appear in the generating set of Z .

We will also verify that this ideal is closed with respect to
the Q structure (4.6). Using the test function form of the
Poisson bracket (2.6), we can calculate D acting on the
generators by calculating
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|:®MX,/ ZA€:| = —|:/ @M,/ ZA€:|
T[1]s! T[1]s! T[1]S!
(-1 [ [ [ ZAe},
(1S T[1)s!

(4.10)

where € is a function on A/ that is closed under d. Taking
e € HF selects the harmonic representative Z;_, € H'7,
while taking € to be exact selects the coexact representative
of Z4. The second term gives us

1
{/ ld19M,/ ZA€:| oc/ dZez—/ dZje.
T[1]s' T[1]s" T[1]s' 2r [

(4.11)

Taking € to be closed tells us that €, is constant. The
integrand on the right-hand side is therefore exact and so
the integral vanishes. The Poisson bracket is then deter-
mined by the first term alone which is proportional to

[@Mx,/ ZA€:| o</ (Op. ZA) €, (4.12)
T(1)s" T(1)s'

where the function (@, Z*) is transgressed to the map-
ping space. We can use these results to confirm that ©
lies always in Z 5 as outlined in Sec. II. The only nontrivial
checks are for the harmonic generators x;, y, for which we
take € = ¢, to be constant. We have

(O X)p =W, O w)p =0. (4.13)
Transgressing these functions and evaluating on C, we take
y to be exact. Hence, both vanish under the integral (4.12)
when ¢ = ¢ is constant. This proves that the ideal is closed
under D.

Now that we have our coisotropic ideal, we perform the
coisotropic reduction. The normalizer of 7 is generated by

all the coordinates that are not dual to those in Z,

N(Z) ~ {Pyxo. Prwo. Pry1. Pyp1. T}

The structure sheaf for W is then N(Z)/Z, which is
generated by

(4.14)

N(I)/T ~{x0:wo.x1-P1} = W = T*[n - 1|T[1]M.
(4.15)

(Note in the expression above we are now working in the
coordinates zf’“ described in Sec. II: Pyxy = x-1 and
Py, py = pyvol.) Thus we restrict to harmonic functions for
x, w—so they retain their original degrees—while we
restrict to harmonic one-forms for y, p; hence, they have
their degrees shifted down by 1. We therefore end up with
the manifold 7*[n — 1|T[1]M.

To find the symplectic form, we use the Poisson brackets
(2.6) with the €, n appropriate harmonic representatives.
We find that

wyy = —dpdxy — dyody;. (4.16)

To find the form of the Hamiltonian function we project
O« under I1: N(Z) - N(Z)/Z. By restricting all coor-
dinates to the harmonic representatives on which d = 0,
we find TI(139) = 0. The term -5 F,y" gets projected to
L F,(xo)wg which is a function on S' and hence vanishes
under the Berezin integral. We find that we are left with?

Making the change of coordinates p; — —p; puts the
QP manifold in the canonical form for a (n — 1)-brane.
Interestingly, all flux twisting drops out of the Hamiltonian
function in this case. This is what happens in the zero-
wrapping sector of wrapped branes where physically one
ends up with a tensionless brane [23]. These are somewhat
pathological, and hence the physical interpretation of such
reductions is less clear. We will see that one can get more
interesting reductions if one allows X to wrap some part
of M.

B. From Courant to Poisson

Using the formulation set out, we can already find novel
relations between QP manifolds, and their associated
AKSZ sigma models. Suppose M is a Poisson manifold
with Poisson bivector z. There are at least two distinct ways
to realize this structure as a QP structure.” First, we can
take the straight cotangent lift of z to obtain the following
QP manifold:

coord X p wy = dpdx,
W =T 1M v
deg 0 1 0y = 57p.

(4.18)

A quick calculation shows that (8, ®,) = 0 if and only
if 7z is Poisson.

Alternatively, we can consider the Lie algebroid structure
on T*M whose anchor map is given by the bivector
n. T*M — TM and whose bracket is given by

[av ﬁ] = En(u)ﬂ - lﬂ(/i)da-

This Lie algebroid can be lifted to a Dirac structure
L={A+n(A)|[A€eT*M} within the Courant algebroid
TM & T*M. The Courant algebroid and the differential
d; associated with the Dirac structure can be lifted to a QP
manifold structure via

(4.19)

®Our conventions are that we integrate with the volume form
on the right of the integrand, and so we pull constants out from
the left. This gives the overall sign.

7See, e.g., examples in the work of Voronov [24].
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coord X vy xy p wp = dpdx — dydy,
M = T*[QJT[1IM | M M (4.20)
deg ‘ 0O 1 1 2 O = —zmpy + 5 0myy”.
|
Once again (©,, ®,,) = 0 if and only if 7z is Poisson. We - 1 ’
have suppressed indices for convenience. We want to see if (O, %) = z(x)y. (Ot ) = 2 om(x)y.  (4.25)

we can pass from (4.20) to (4.18) via our brane wrapping
procedure.

Let us perform a circle reduction of M as above. We
transgress the structure to M? where X = T[1]S!. As
before, we define Z = Z s by first including all coexact
generators

> <Pcox07Pcol//O’Pco)(OvPcopO>- (421)
Then we include harmonic representatives to remove
coordinates of zero or negative degree. We will slightly
relax the construction set out in Sec. II by allowing some
new coordinates of degree 0.% We will define

T = (PcoXos PeoWos PeoX0s PeoPos PrXis Pryry)- (4.22)
As before, this ideal is coisotropic.

We will check the closure of this ideal with respect to the
Q structure D on M?. The transgressed Hamiltonian
function is

@MX_—/ ®M+/ ldl()/\/l
T[1)8! T[1]s!

1
=—/ n()px + ~ n (e
T[1]s!

2
+ / pdx
T[1]S!

We then act with this on | Z*¢ for some test function e that
must be harmonic or exact. As in (4.12), the only nontrivial
constraint to check is for the harmonic representatives. We
need to check if the following vanishes:

1

3 (wdy + xdw). (4.23)

/ (Opr, Z4) pqe, (4.24)
T[1]s!

whenever the function (®,,Z*) is transgressed and
evaluated on C, and if € is harmonic. Since the only
harmonic generators of 7 are x;, y;, we calculate

$The construction, as set out previously, would still work in
this case but we would end up with a trivial Q structure. To result
in a QP manifold with a nontrivial Q structure, we will need to
perform an intermediate step before removing the additional
degree 0 coordinates.

We transgress these functions to the mapping space and
evaluate on the vanishing locus C of Z. Noting that these are
functions of x, y alone, evaluating them on C means that the
zero-form component must be constant functions on X,
while the one-form component must be an exact form.
Integrating these against a constant function € = ¢, selects
the one-form component, which is exact, and hence the
integral vanishes as required.

The next step is to perform the coisotropic reduction with
respect to this ideal. The normalizer is generated by all
coordinates not dual to those in Z,

N(T) ~{Pyxo, Prxo, Prw1, Pyp1. L},

and so we obtain the structure sheaf C*(M) = N(Z)/Z
which is generated by

(4.26)

N(@)/T ~{xo. w100 1} = M =T [1]TM.  (4.27)

This time, we restrict to harmonic functions for x, y so they
retain their degree, while we take harmonic one-forms for
v, p, and hence their degree is shifted down by 1. The
resulting Hamiltonian function is IT(® ) and the sym-
plectic form is derived from the Poisson brackets (2.6) with
harmonic representatives for e, 7,

1
@/’(/l = —7P1Xo — 557“//1)(%, (4.28)
> = —dpdxg + dydyo. (4.29)

We performed the change of coordinates p; = —py, yo —
—¥o to remove minus signs.

We have arrived at a “halfway house” QP manifold M.
Interestingly, this is the cotangent lift of the complete lift
of the Poisson structure z on M to the tangent bundle
(TM, =°) [25]. That is, given any Poisson structure (M, r)
we define a Poisson structure (TM, z°) by

0

1 d
¢ =" —— 4 sy, — —,
A o

(4.30)
0xt, oy

where x, are coordinates on M and y; are coordinates
along the vector bundle fibers. We can reduce the QP

manifold M further by following [25]. Given any (torsion-
less) connection on M, we can define a global vector field
on TM given by the geodesic spray
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0 0
s = W’fa—xg—W’fWTFﬁvWi- (4.31)

This has a cotangent lift to 7*[1]7M whose Hamiltonian is

S =w1p1 = Tyixe. (4.32)
From this, we define a new Hamiltonian function
/ 1 1 2
®A~/t = _E(S’(’D/\]) :Eﬂpl +yif(xo. w100, P1),  (4.33)

where f is some function of the coordinates whose precise
form is not important. All we will need is that besides
the first term, %ﬂp%, each term is at least linear in the
coordinate .

Consider the ideal generated by the single coordinate
Z = (y). This ideal is automatically closed under the Q
structure since

1
((9/;471/11) = (57717% + l//1f(xo,ll/1,)(o,P1),W1>

= (w1f (X0, ¥ 1. %0, P1)-W1)

oy (foy)
€l (4.34)

Performing the coisotropic reduction with respect to this
ideal we obtain the structure sheaf

That is, we reproduce the graded-commutative manifold
W. Further, the symplectic form and Hamiltonian function
are easily shown to be the following:

wyy = dplde, (436)
1 2
O = 5 7pi. (4.37)

We see then that we precisely reproduce the QP manifold
associated with the cotangent lift of the Poisson bivector that
we described at the beginning of this section. Using the
results of Sec. VI, this lifts to an association between the
Courant and Poisson sigma models themselves. Note that if
we had instead started with an H-twisted Courant sigma
model, then our procedure would have resulted in the QP
manifold associated with the H-twisted Poisson sigma
model [26].

This construction provides new links between the
Courant sigma models and the Poisson sigma models
which are physically and mathematically distinct from
previously found associations. Previous work [26-28]
found that if one considers the Courant sigma model on
a manifold with a boundary, then by studying the consistent

boundary conditions one finds that one can couple the
(H-twisted) Poisson sigma model at the boundary.9 Our
construction, however, requires no boundary and finds that
the two theories—described in the QP language by (4.18)
and (4.20), respectively—are also related via brane wrap-
ping. (We note here that a similar relation was exhibited in a
recent work [29] using a different reduction procedure.)
Physically, our procedure should involve a compact cycle
within the brane shrinking to zero size. One way to see this
is by analogy with Kaluza-Klein theory; we retain the zero
modes of superfields, which is precisely analogous to what
happens in a KK scenario. This might provide a useful
heuristic for understanding the link between these two
theories in our construction.

V. EXAMPLES—X =Y

We will now generalize the previous two sections to
allow for cases where the source manifold X wraps the
target space fiber Y. In particular, we will be interested
in the case where X =Y. We will see that the reduction
procedure requires us to choose some self-wrapping map
w: X - X. The examples we choose are physically
motivated and fill our understanding of how brane dualities
in M-theory/ITA arise in the QP setting. In particular, when
X = S', we will see that our procedure produces the known
relations from M-theory/type IIA duality. We will also see
that this procedure reproduces other interesting relations
between the M5-brane and the heterotic string [30,31].

A. M2 on $!

Our first example will be wrapping the M2-brane on an
S'. This will be very similar to the n-brane example in
Sec. IVA, except in this case the wrapping will allow for
more interesting Hamiltonian functions to be produced.

We start with the QP manifold M associated with the
M2-brane and a source manifold X:

M = T*[3|T[1}(N x S'), X =5 (5.1)
Writing N = T*[3|T[1]N, Y =T*[3]T[1]S!,and X =T[1]S",
we will introduce the coordinates

N
coord | X y* y, p,
deg ‘ o 1 2 3

y
coord | y & ¢ ¢q
dg | 0 1 2 3

(5.2)

and use coordinates (o, do) on X. The Hamiltonian function
and symplectic form are

The coupled bulk and boundary theory was called WZW-
Poisson theory in [27], or simply WZ-Poisson in [28].

086024-11



ALEX S. ARVANITAKIS and DAVID TENNYSON

PHYS. REV. D 108, 086024 (2023)

oy =dpdx+dgdy —dwdy —dédg,  (5.3)

1 1
Om=—yp =g+ F4w+ Hyy e (5.4)

31
We require F, to be dgi-closed; we will also use the fact that
H;¢ is dgi-closed (which is automatic).

We transgress this to the mapping space M< and choose
an ideal whose vanishing locus describes, in degree O,
some embedding 1: N & M®. As explained in Sec. II, this
depends on the choice of some wrapping map w: S! — S'.
In fact, as stated, the final result only depends on the
homotopy class of w, and hence we can take, for some w € Z,

w: ' — S,

6 +—>Wwo. (5.3)

To restrict to this wrapping sector of M<, we define a
coisotropic ideal Z = (Z,r,Zy) with

Ty = (y—wo,E+ wdo). (5.6)

As explained in Sec. 11, this is coisotropic and closed under

the Q structure D = [® v, -]. Theideal Z y/ restricts all maps

into V' to closed maps. That is, we take
Iy > <Pcox07Pcol//O’PCOZO’Pc0p0>' (57)
For any coordinate zi' with degz! —k <0, we need to

further restrict to exact maps by including the harmonic
representative in the ideal (except for x;). Hence, we have

Iy = (PeoXo: PeoWo: PeoXo: PeoPo Prxt, Prwry).  (5.8)
The ideal Z = (Z s, Z+) is clearly coisotropic.
We need to check that Z 5, is closed under D = [® yx, -].
The transgressed Hamiltonian is
@MY = / 9/\/1 / ldth
1
== [ vty F4(x Yt + 5 Haxy)ys

- /Xpdx +qdy - 3 (v/dx + 2xdy + Edep + 2¢pdE).

(5.9)

As in the previous cases, the only nontrivial constraint
comes from the Poisson bracket between the first term and
the harmonic generators of Z . We calculate

(®M » X ) =V,

d®uy.w) =0,  (5.10)

and hence we have

(5.11)

{GM”’LV/% “L(@M"I/)MG_O’
[@MA',AXG] oc/X(G)M,x)Me_Ly/e. (5.12)

Evaluating this on C, we take y to be exact, and so the
integral vanishes when integrated over a constant € = .
This shows that the Poisson brackets with the harmonic
generators x|, y; vanish when evaluated on C; i.e., they are
inZ.

To perform the coisotropic reduction we find the
normalizer is generated by

N(Z) ~{Pyx0, Puwo, Py, Prp1. T}, (5.13)
and hence the structure sheaf is generated by
C*(W) =N(Z)/T ~{xo.wo.x1.P1} = W
= T*[2]T[1]N, (5.14)

where the coordinates represent harmonic maps. The
symplectic form can be derived from the Poisson brackets
on M¥, as in Sec. IVA, and we find

wy = —dp; dxg — dyo dy;. (5.15)

The Hamiltonian function is given by

@W:H(eMX):n<—A(~)M—Ald3M). (5.16)

The second term vanishes when evaluated on harmonic
maps where d annihilates the maps, except for the term gdy.
We also get a piece —€¢ from the first term. We find

H(/éq—qdy> =/—dyq—qdy=0,
X X

where we pick up a minus sign from commuting dy (degree
1) through ¢ (degree 3). This verifies the statement made in
Sec. II about this cancellation. We then have

®W=H<A” Vo~ L Fu(e )~ Hix.y) 3&)

(5.17)

3l H;(xo, wo)yiwdo

= /<W0P1+ H3(xo, wo) 8)‘15

=yop1+5

1 L1
= [ ot — gy Falro. wolwi +5;

Hys, (5.18)

31
where Hj is the average of H; over the fiber.

Under the change of coordinates p; — —p;, we see that
we recover the QP manifold associated with the F1 string
with w units of H; flux, as we would expect from our
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intuition of M-theory/IIA duality. Note that in the case that
w = 0, the physical interpretation seems to break down—
we find a string that does not couple to the NS three-form.
However, as is noted in [23], this zero winding case
corresponds to a scenario in which the original world
volume is “collapsed.” This means that the map from the
world volume to the target space is not an embedding. From
the IIA perspective, the resulting string is tensionless, and
thus the M2-brane must somehow be tensionless. We
should discard that case on account of such objects appear
not to exist on physical grounds; nevertheless, the QP
procedure is well defined.

|

N

coord | x* w* { y, pu

dg [ 0 1 3 5

B. M5 on S!

The next case of interest is wrapping the M5 QP
manifold on a circle. The M5 QP manifold was written
down in [1], and our expectation is that we should recover
that of the D4-brane [3]. We start with the following
manifolds:

M = T*[6]T[1](N x ') x R[3], X=:5" (519
Writing A = T*[6]T[1]N x R[3], Y = T*[6]T[1]S!, and
X = T[1]S", we introduce the homogeneous coordinates

and use coordinates (o, do) for X. We write the symplectic form and Hamiltonian function as

1
= dpdx +dgdy — dy dy — dgdgp 7 dC dL,

1
Om=—yp—&q+= <H7+A/\F6)U/+

We included, in this example, a nontrivial connection on
the fiber bundle N x S' which we will assume to be S!
invariant. As previously, we can interpret the coefficients to
be elements of Q'(N) x Q/(S'), and we require that they
are closed under the dgi on S'.

We then transgress the structure to the mapping space
MY and aim to define a suitable ideal Z = (Z ;, ) with
respect to which we perform the coisotropic reduction.
The ideal Z+ is taken as in the previous section

Ty = (y—wo,E+ wdo). (5.23)
The ideal Z ), is also taken as in the previous section, but
now with the additional constraints on the & coordinates,
restricting them to closed maps. That is, we take

Iy = <Pcox01 005 PeoCos PeoXos copO’PHxl’PHV/l>'
(5.24)
J

7

6!

Yy
coord | y & ¢ ¢ (5.20)
deg [ 0 1 5 6
(5.21)
1o PR
,F6ll/§+ ( A/\H3)U/C+§H3W§§- (5.22)

|
Since we have only added coexact generators to the ideal,
the proof of coisotropy and closure under D goes exactly as
in the previous case.
Performing the coisotropic reduction, we find the struc-
ture sheaf is generated by
ce(W)

:N(I)/IN{XO7WO’C07C1J(17P1}’ (525)

which gives
W = T*[5|T[1]N x R[2] x R[3]. (5.26)
To find the symplectic form, we use the Poisson brackets on

M given by (2.6) with appropriate insertions of harmonic
test functions €, # and find

1 1 .
:H( - yp——(H;+A N Foy’ —Felllﬁtf—(F4—A/\H3)1I/4€_3!H3w3§€>

1
=yoPi +6 Fewl — 4,(

A A H3)WOCI

wyy = —dp; dxg — dyo dy, —dg; ddo, (5.27)
and the Hamiltonian function is given by10
H%U/OCOv (5.28)

"We are using the fact that the 139, term vanishes, apart from the gdy term, which cancels against the £ term in @ .
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where the tilde denotes the average over the S' fiber. For

w # 0, we perform a canonical transformation generated by
1

the function —5-Aw{} to obtain the Hamiltonian

1 W o~
_ A, W 3
Oy =wopi +4WF2¥/051 3!H3l//o§o

1. w o
_ZFM//(%Q +aF6V/8v (5.29)

where F, = dA. Making the change of coordinates
p1 — —p1,¢; = =, puts the QP manifold in the canonical
form of that associated with the D4-brane [3].

C. MS on X,

The next example will be to wrap the M5-brane over a 4-
manifold X,. In [30,31] it was shown that one could
reproduce the noncritical heterotic string through such a
reduction, where the dimension of the gauge group was
related to the cohomology of the wrapping manifold. We
will start with the manifolds

M = T*[6]T[1](N x X4) x R[3], X=X, (5.30)
Writing N = T*[6]T[1]N x R[3], Y = T*[6]T[1]X,,
X = T[1]Xy4, we introduce the homogeneous coordinates
as in the previous section

N Yy
coord | ¥ y* ¢ z, p,  cood | ¥ & 4, g, (5.31)
dg | 0 1 3 5 6 dg | 0 1 5 6
where now a = 1, ...,4, and we use the differential-graded (DG) coordinates (6%, do”) on X. In these coordinates the
symplectic form and Hamiltonian function take the form
1
a)M:dpdx+dqdy—dz//d)(—dcquﬁ—id(:dé’, (5.32)
0, = 11{7 1H6 llH 5£2 11H 4 £3 llH 3 4
M ——II/P—561+ﬂ v +a ¥ ~f+§§ swr& +§E Wwe +Z§ E1/AS
1 4 1 3 11 ) 1 5 1 4
+4—!F4II/ C+§F3l// §C+§EF2W§C+§F1V/5 C+4—!F0§ ¢ (5.33)

where we have taken a trivial connection on the X, bundle again. As before, we can view the coefficients as differential
forms on Y valued in Qf(N) that we take to be dy-closed.

We transgress this structure to M and define a coisotropic ideal Z = (Z s, Zy). To define the ideal Z5, we need to

choose some wrapping map Y: X, — X,. Restriction to this winding sector of M¥ is given by

Iy=(y—wE+dmw). (5.34)

Itis easy to verify that this is coisotropic and closed under D. The ideal Z , is similar to that for the circle reduction done in the

previous section, except now our transgressed coordinates are k-forms'' for k = 0, ..., 4. This means that we need to include
more coexact generators and harmonic generators to remove unwanted coordinates. We take

IN = <Pco~xkvPcol//kvPcoZ:kvPco)(k’Pcopk7PHxi7PHl//i7PH§j|i > 07.] > 2> (535)

We need to check whether this is closed under D. As in previous cases, the only nontrivial checks come from the harmonic

generators. The Q structure D acting on the harmonic generators x; and y; return an element of Z », precisely as in previous
cases so we need only check the closure of D{3 and D{,. Once again, this can be done by calculating

1 1 1 1 1
CIVRIVES 4—!1'741//4 +§F3l//35 +ZF21//2§2 +§F1U/§3 +4—!F0§4‘ (5.36)

We then transgress this function to M¥ and evaluate it on the vanishing locus C of Z. We then check whether the following
vanishes:

" A noted in Sec. II, the transgressed coordinates z‘,‘c1 for k > 2 should be viewed as differential forms evaluated in some affine bundle.
Our construction is still well defined so for simplicity we will ignore this subtlety here.
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L (Opc. &) s (537)

for suitable harmonic test functions ¢. To determine the
conditions coming from {4, we take ¢ = €, a constant
function. We then get the constraint

A w* (Fy)ep=0. (5.38)

where we are using the fact that F, is a four-form on Y which
we pull back to X via the wrapping map. Similarly, the
conditions coming from ;5 are given by choosing an arbitrary
harmonic one-form ¢ = ¢y,

. / w*(F,) A €,=0. (5.39)

This puts constraints on the coefficients Fy and F'|, which can
be most easily satisfied if they vanish; i.e., they act as
obstructions to the reduction. Note that in some cases, e.g.,
for X = K3, there are no nontrivial harmonic one-forms, and
0 (5.39) gives no constraints.

Assuming these constraints are satisfied, the coisotropic
reduction with respect to Z = (Z,,Zy) gives that the
structure sheaf is generated by

C®(W) =N(T)/T ~{x0.w0.L5. x4 Ps} = W

= T*[2]T[1]N x H*(X)[1]. (5.40)
We have introduced an index a parametrising a basis {e,}
of H*(X,), and have expanded ¢, € H? as {Se,. Using the
Poisson brackets on M®, we get the symplectic form and
the Hamiltonian function on W to be

1
@y = dpydxo — dyro dyy — 5 KapdC3 dgs, (5.41)
1~ 3 1 2 ~a
Oy =I1(O ) = —wops +§H3V/ toFaw &5, (5.42)
where
g3:/m*(H3), Fa:/m(Fz)/\ea, Kab:/ea/\eb.
X X X
(5.43)

We get the canonical form of the Q P manifold associated
with a heterotic string with an Abelian gauge group of
dimension b,(X,). The Killing form on the gauge group
is also given by the symmetric form x,, on H?(X,). For
example, if X, = T*, we get an Abelian gauge group of
dimension b, (7T*) with a Killing form of signature (3,3). If
X, =K3, then we get a gauge group of dimension
b,(K3) =22 with a Killing form of signature (3,19).

This matches the results of [30,31]. The fact that we can
only obtain Abelian gauge groups arises because we are
assuming that we are reducing on smooth manifolds.
Degenerations of X, to some singular space should lead
to gauge enhancement and non-Abelian groups.

VI. AKSZ SIGMA MODELS
AND BRANE WRAPPING

In previous sections we obtained an NQP manifold W
from a coisotropic reduction of the mapping space M¥
with respect to a coisotropic submanifold C that is invariant
with respect to the Q structure D = Q v, + dy on M¥. (In
the expression for D we have the lifts of vector fields on the
target and source to the mapping space.) We will now point
out that these data give rise—essentially trivially—to a
reduction of AKSZ sigma models from an AKSZ model
with target M to an AKSZ model with target W.

We start with the AKSZ sigma model with target M
where the source takes the form X’ x S. The N-manifold S
is taken to be T[1]S where the (bosonic) manifold S has
dimension dimS = n + 1 —dim X (n being the degree of
the target P structure). Then the BV master action is the
Hamiltonian corresponding to the Q structure on M?**S
given by

Opv = QO + dxxs, (6.1)
where again Q,, denotes the lift to M**S of the target
space M Q structure of the same name and dy,g is the
lift of the source X' x S de Rham differential again to
M**S_ Since the source is a product, we can write
dyyxs = dy +ds.

The key point that leads to reduction is that we can write

MAXS — (MX)S’ (6.2)
which is known as the product-exponential adjunction.
Explicitly, this corresponds to interpreting a function
f e MY which is a function f (x,s) of two arguments,
as a function s — f(e,s) where f(e,s) is a function of
x € X for each s € S."* Since M¥ is a QP manifold and S
is an NQ manifold with an integral measure we can
consider the BV structure on M**S as arising from an
AKSZ construction with source S and target M. If C is
coisotropic in M, then the mapping space C° will be a
coisotropic submanifold in (M?Y)S = M,

The reduced AKSZ sigma model will be given by the
coisotropic reduction of M**S with respect to C°. We need
to confirm that C® is invariant with respect to Qgy, so that
the BV master action reduces. We rewrite Qgy as

“The definition of mapping spaces for graded manifolds is
such that this property is true; see, e.g., [32].
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Opy = (Qum +dy) +ds = D +ds, (6.3)
where in the last formula D is the lift from M¥ to (M¥)S
of the vector field D on M¥, while dg is the lift of dg from
S to (M™Y)S. We denote these lifts explicitly now because it
is the properties of these lifts that guarantee the reduction: if
Vs is any vector field on S, then the lift Vs always leaves
CS invariant (for any submanifold C of M®); C® is invariant
for D if C is invariant for D. Therefore Qpy gives rise to a
homological (and Hamiltonian) vector field on the coiso-
tropic reduction of M™**S, which is simply W¥. Using the
results of Appendix C we find that the new BV master
action is given by evaluating the original action on CS. In
all examples we have investigated the result is another
topological field theory of AKSZ type.

|

In summary, the brane wrapping of QP manifolds that
we already discussed always leads to a brane wrapping
procedure that takes the BV master action associated with
an AKSZ topological field theory and produces the BV
master action of another topological field theory.

A. AKSZ 3-brane to membrane example

To illustrate, we will treat the reduction of the AKSZ
sigma model corresponding to the wrapping of an M2
algebroid (see Sec. VA) on a circle that we discussed in
Sec. VA. This is a reduction of the four-dimensional (4D)
topological field theory of Ikeda and Uchino [33] to a (3D)
Courant sigma model.

This example thus has X’ = T[1]S!, and the coisotropic
submanifold C ¢ M*¥ is given by

dXxg - 0,
Xm//(; = O’

PHxlll:Pcofo:(),
PHWT:PCOWII:O’

dypo =0, yi =0,

dyyo =0,

Yo = wWo,

& =0, & =—-w. (6.4)
We have used the superfield expansion of Z4 = {x*,y,y* £, ...} in form degree [so x(c,do) = xo(0) + x,(0)do, etc.]

For the original (4D) AKSZ theory degree counting to work we set S = T[1]S where S can be any 3-manifold, so that
X x § = 8! x Sis the four-dimensional world volume. Using the product-exponential adjunction to write M**S & (M*)®
amounts to promoting the components Zé of the superfields ZA defining a map M to superfields Zé that now depend on
the S coordinates {s,ds} as well as the X coordinates ({o, do} in this case). Then the coisotropic submanifold C¢ is the

locus of functions S — M such that

1 :Ov

El =W,

d;(x’é = O,

dX'I/(; == O,

Ho_ Ho_
Pyx| = P.ox| =0,

PHl[/lll:Pcol[/lf:O,

dypo =0,
dxxo =0,

Yo = wo,

& =0, (6.5)
where all bolded expressions depend on {c,s,ds}. (The projectors to coexact/harmonic pieces refer to the Hodge
decomposition with respect to X" as above.)

We can explicitly check the claim that CS is invariant with respect to Qgy = D + ds. For example,

A m S
D[ (y-wole= / €+ doo,y)e "EH)
SxX

SxX

/ (—wdo + dow)e = 0. (6.6)
SxX

[We smeared against € € C®(S x X) and employed (2.19)]. The other differential ds leaves the ideal invariant
independently. This way we may confirm explicitly that Sgy lies in N(Z(C®)).

It remains to calculate the reduced BV master action, which amounts to calculating I1(Sgy) where IT implements the
quotient modulo Z(C®). Sgy is the Hamiltonian for Qgy = D + dg = Q( + dy + dg = Q,( + d which is explicitly given
by formula (2.10), which is a linear combination of [, s@aq and [y, ¢ 149, for 9, the transgression of a symplectic
potential on M that satisfies d ;9 = @, @ being given in (5.3). The bolded quantities are superfields corresponding
to M** now. We then calculate

H/ a9 =H/ pdx + qdy — xdy — ¢pd§
xS XxS

_/S<Apld0>dsxo+w<quoda> - <Axlda>dswo.

Note that terms involving x; and y; will generate d,-exact terms which will vanish under the f y integral. Using (5.4),

(6.7)

086024-16



BRANE WRAPPING, ALEXANDROV-KONTSEVICH-SCHWARZ- ...

PHYS. REV. D 108, 086024 (2023)

H[\fo@M_[S‘_W()([\_’p]dG) —w(Ldaq0> +O—w< X%H3(1//0)3do—>.

We then read off the sign factors from (2.10) to find

HSBV:H<—/ ®M+/ ld19M>
xS xS

fol ) s (fe)on- (e

The signs were such that the terms w f v qodo canceled.

In the above expression we can identify the integrated
expressions ([, p;do) and ([,x;do) as the conjugate
momenta superfields (with degrees 2 and 1 respectively)
that appear in the Courant sigma model for an exact
Courant algebroid structure defined by the three-form
wH3. The result we calculated via coisotropic reduction
of the original (four-dimensional) AKSZ topological sigma
model is identical to the AKSZ sigma model constructed
directly from the wrapped QP manifold ¥V with source
manifold S [see (5.14)].

Therefore we have recovered the correct relation between
the M-theory fluxes, the M2-brane winding w, and the type
ITA NS-flux wH5 seen by the fundamental strings that arise
as the M-theory circle X = S' is shrunk to zero, all at the level
of the corresponding topological sigma models.

VII. CONCLUSIONS

We defined a reduction procedure of NQP manifolds
M — W which encompasses the properties of wrapped
branes. This is consistent with the AKSZ procedure in the
sense that the reduction naturally lifts to a reduction of the
AKSZ theory with target M to the AKSZ theory with target
W. We applied this to many examples, including many
physically motivated examples of wrapped branes, and we
saw that it reproduced the known M-theory/IIA dualities. We
also were able to find a novel relation between the Courant
algebroid and the Poisson algebroid through this reduction.

As mentioned in the Introduction, there is a correspon-
dence between branes, QP manifolds and higher Leibniz
algebroids E — M, which can be used to describe the geo-
metry of string backgrounds. This geometry is described
through the generalized metric [34—37]. While our procedure
describes how the algebroids reduce under brane wrapping
(captured by the graded-commutative manifold M), deter-
mining how the full string background geometry reduces
would likely require more input than the procedure out-
lined in this paper. In particular, one would likely have
to select some precise representative of the cohomology
classes we have constructed, breaking the topological
nature. Nonetheless, in certain cases one may be able to
obtain nontrivial physical data about the reduction from our
construction as follows. In many cases, including many

(6.8)

(6.9)

|

supersymmetric backgrounds, the generalized metric is
described, in part, via a choice of subalgebroid L — M
which has a Lie algebroid structure [2,38-43]. This Lie
algebroid structure has an associated differential d; , which in
the QP language is captured by the Hamiltonian vector field
Q. We see from our construction that we define a reduction
not only of the Leibniz algebroid E but also of the differential
0 = (0,-) and hence of the associated Lie algebroid L.
Despite only describing the background in part, the L
structure contains nontrivial physical data. For example,
for reductions to Minkowski space, the L-bundle can
determine certain massless moduli in the effective theory.
For Anti-de Sitter reductions, the bundle L captures the
holomorphic data of the associated Superconformal field
theory [8]. An application of our reduction reasoning would
be to find the bundle L (called the exceptional complex
structure in [41]) associated with a IIA background with
nontrivial Ramond-Ramond flux associated with branes
arising from wrapped M2- and M5-branes in M-theory.

Beyond the application to the geometry of supersym-
metric backgrounds, we expect that our work will have
many interesting applications to other topological AKSZ
theories. One can ask how general our procedure is, or
whether it is possible to relax some of the assumptions
made in Sec. II. For example, can we relax the trivial bundle
condition M = N x Y, perhaps by introducing some flat
connection similar to [15]? We can also ask whether we can
extend our construction to manifolds X with boundary. We
can also relax the constraint on X = T[1]X, and instead just
take X to be some DG manifold with some invariant
measure of degree n 4 1. For example, we can try to extend
the reduction procedure to X = T"?[1]X for some complex
manifold X with dim¢ X = n 4 1. We could then apply the
reduction to, say, the work of [44].

In Sec. IV B, we found an interesting relation between
the Courant algebroid and the Poisson algebroid QP
structures. This was based on the embedding of the
Poisson differential d, into 7 @ T*. There are other
interesting differentials that can appear in these Courant
algebroids [45] that are associated with topological theories
on G, and Spin(7) manifolds. One can try to embed these
differentials in the language of QP structures and perform
the reduction to get new topological models associated with
these special holonomy manifolds.
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APPENDIX A: NOTATION

1. Commutative manifolds

M Starting/parent commutative manifold which is always
a product manifold of a base and a fiber to be
wrapped.

N The commutative manifold which is the base of the trivial
fiber bundle M.

Y The fiber of the trivial bundle M. This is the manifold over

which we wrap the branes.
The fiber of the brane that is wrapped over Y.

<

2. Graded-commutative manifolds

Starting/parent QP manifold.

A submanifold of M which is the natural QP manifold
restricted to the base of the fibration.

A submanifold of M which is the natural QP manifold
restricted to the fiber; usually ) = T*[n]T[1]Y.

The shifted tangent bundle T[1]X; the source of the
mapping space M.

Final wrapped QP manifold.

X maps(X - M).

A DG manifold with invariant measure of degree

n+1-dimX.

eI R < =%

3. Indices

A,B,C,... Indices along M, N.

u,v,p, ... Indices along N.

m,n,p,... Indices along Y.

a,p,y,... Indices along X.

r,s,t,... Indices corresponding to degree shifted real lines
R[n,].

a,b,c,... Indices for a basis of differential forms on X.

4. Coordinates

zA Homogeneous coordinates on M.

A Homogeneous coordinates on N,

XH Degree 0 coordinates on N

wt Degree 1 coordinates on N parametrizing the fiber
of T[1]N.

Py Coordinate dual to x*.

Xu Coordinate dual to y*.

y" Degree 0 coordinates on ) parametrizing the fiber of
T[1]Y.

en Degree 1 coordinates on ).

qm Coordinate dual to y“.

b Coordinate dual to &%.

(6%,do*)  Coordinates for the DG manifold (X, d) such that
d(c%) = do“.

g Homogeneous coordinates corresponding to degree
shifted real lines R[n,].

zA Transgressed coordinates of M¥.

z An expansion of the transgressed coordinates Z*
into differential k-forms.

ZQ-“ A coordinate labeling the harmonic k-forms, labeled
by a, associated with the transgressed coordinate
ZA.

5. Functions and differential forms

QF The space of differential k-forms.

HE Harmonic k-forms.

€ra A basis of harmonic k-form(s) (occasionally the k is
dropped).

Oy The Hamiltonian function of M (similarly for
NW, ).

oy The symplectic form of M (similarly for A", W, ...).

I The canonical symplectic potential of M (similarly for
NW, ...

. The Poisson bracket for M (similarly for N, W, ...).
-] The Poisson bracket on M.

6. Miscellaneous

Wrapping map X — Y.

Winding number/matrix of a circle/torus over itself.
The coisotropic ideal within M¥.

The vanishing locus of Z within M*.

aANs g

APPENDIX B: QP MANIFOLDS
1. Graded manifolds

A graded manifold M is a supermanifold whose
coordinates come equipped with a Z grading.13 One can
always find homogeneous coordinates Z4 of definite

BFErom [46], the consistency of the Z grading of coordinates
comes from the existence of a global degree counting vector field
e and transition functions which preserve degree.
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degree, where deg Z4 mod 2 is the Grassman parity of the
coordinate. We will denote by A the degree of Z4, and so
we have

7AZB = (=1)ABZBZA, (B1)
The sheaf of functions on M splits into subsheafs C (M)
of functions of definite degree. The degree of a homo-
geneous function f is measured by the degree counting

vector field & (the “Euler vector field”) via

e(f) = deg(/)f- (B2)
In local homogeneous coordinates Z4, we have
€= Zdeg (zMZ azA (B3)

Unless otherwise stated, all derivations are left deriva-
tions. Hence, the de Rham d is

df = dz%,f, (B4)
and any homogeneous (in degree) vector field X acts as

X(fg) = X(flg+ (=) fX(g).

where we have used the shorthand X, f for the degree of
the respective components. In local coordinates we can
write X = X(Z)"d,, and so deg X = deg X — deg Z4. We
also define

(BS)

deg(df) =degf + 1.

For this to be consistent with 1,dZ? = 68 ,, where 1, denotes
contraction with the vector field d,, we require that the
interior product has degree

(B6)

degi1=-— (B7)

2. Poisson and symplectic structures

A graded Poisson structure of degree —n is defined to
satisfy

(f.g) = (=1t (g, £) (B8)
and the graded Jacobi identity
(f.(g. 1) = ((f.9). h) + (=D)V+) (g, (f, b)) (BI)

for all homogeneous functions f, g, h. It also acts as a left
derivation on the right-hand arguments, but a right deri-
vation on the left-hand arguments. That is,

= (f.9)h+ (=) ag(f h),
flg.h) + (1) ma(f h)g.

(f.gh)

(fg.h) = (B10)

If the Poisson structure is induced from a symplectic
structure @, we have that

o= (<1/df. Xp=(f). (BI)
In local homogeneous coordinates we can write
1
w = EdZAa)ABdZB, (B12)
which implies the symmetry
wpp = (—1)1HABEn(A+B) g (B13)

via @*Bwge = &, then (B11) implies

(f.9) = (=

where 0% is defined by df = dZ49, f = 08dZA. Note that it
is not a right derivation by itself, but the combination
(=1)/0Rf is a right derivation. This is consistent with
(B10). Note that this implies

If we define w8

1)/ ok fa*Bogg, (B14)

(Z4,78) = (=1) B, (B15)

The symplectic potential is defined such that dd = w,
and can be defined canonically through the Euler vector
field e. We have that'*

nw = L.o =1.do+d(i,w) = d(,w), (B16)

where we have used dw = 0. This implies we can take

1
9 =—1,0 = (deg Z*) Z w,5dZ°. (B17)
n

3. Transgressed QP structure on M*

Let (X =T[1]X,d) be a DG manifold with homo-
geneous coordinates ¢, do. A point f € MY can be defined
by how it pulls back the coordinates on M. We have

f*Z4 = Z*(6,do) = Z} (o) + Z{ (o)do™ + - - -
1
d'Zga ,(0)dc™ - - do. (B18)
We use the shorthand Zf{ =LZ¢  (6)do™ ---do*,
. 1 k

where Z£a1-~-ak(a) is a function of degree degZ” — k.

These act as coordinates on M. Our conventions are
always that the form components come to the right of the
function. So, e.g.,

“More generally, the Lie derivative on any graded differential
form along a vector field X is given by Ly = ixd + (—1)%duy.
The Euler vector field is degree 0, hence the expression given.
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24 = 73 (0)do" = (~1)*1do"Z}, (o). (BI9)

We can always define an evaluation map

evViMEx X — M,

(f,o,do)— f(0,do). (B20)

We also have the chain map defined by
Q' (MY x X) — Q' (MY),

[

The combination p,ev*: Q'(M) — Q' (M%) is called the
transgression map. The QP structure on the mapping space
is defined by

(B21)

Wpx = PV,

O = (=1)u,ev O, + (=) evd,  (B22)
where we use the same symbol d for the lift of the vector
field on X to M*.

This can be given more explicitly in the coordinates
(B18). We will use the boldface notation to denote a
function, differential form, or coordinate on M that is
pulled back to X via some function f € M®. That is, we
effectively take f = ev*f. We can then write

1
W = 5/ SZA () 45028, (B23)
x

Our convention for integrals is that constants are pulled out
from the left. The symplectic form above gives rise to a
Poisson bracket that takes the following form on homo-
geneous functionals F, G

SRF oG
F.G| = —1F=— AB B24
[ ’G] [X’( ) 5ZA (O)M) §ZB’ ( )
where

We can define a functional F via some pulled-back function
f by
:/fe, YV eeC®(X). (B26)
X

Then the Poisson bracket (B24) can be expressed nicely as

Uxfe’/xg"} = (= L (f.8)pen.  (B27)

where (f.g) e = eV (f, 9)

We can use this to calculate the Poisson bracket on two
harmonic generators Z4 and Z%. Let ¢, be a basis of
harmonic k-forms and EZ_k be a dual basis of harmonic

d — k-forms. So
(Sba = / €r.a VAN ézbi—k'
X

Noting that Q'(X)~C®(T[1]X) = C®(X), and by
expanding Z4 = Z{“e, , with Z{* some constant coef-
ficient, we have

Aa Azsa Aza
Z —/Zked_k—/Z e k-
X X

We then see that we get an induced Poisson bracket on the
coefficients given by

2. 23" = [/XZAéZ_k,/ZBed k’:|
— (=)ot | (@029 e A2

:(_1)(A+n)(d—k)+d(_1)A AB/ed k/\e y
X

(B28)

(B29)

_ (—1)<A+n)(d_k)+d(—l)Aa)ABK'ab(sk_,'_k/’d, (B30)

where we have assumed Darboux coordinates, so the w??
are constant, and where

ab __ ~a ~b
K —Aed_k/\ek.

We use this to find the symplectic form of the reduced
theory.

(B31)

APPENDIX C: COISOSTROPIC REDUCTION
OF GRADED POISSON ALGEBRAS

Let P be a graded algebra with a graded Poisson bracket
[»,¢] of degree —P along with a left derivation V of P,
possibly Hamiltonian (i.e., given by Poisson brackets, so
V = [Hy, ] for Hy, € P). We will explain how all of these
objects behave under coisotropic reduction. The derivation
is as in the ungraded case considered originally by
Sniatycki and Weinstein [47].

If 7 is a (multiplicative, degree-homogeneous) ideal
of P, it is a coisotrope if it is a Poisson subalgebra,
i.e., [Z,Z] CZ. Then the coisotropic reduction of P with
respect to Z is the quotient

P =N(I)/T. (c1)
where N(Z) = {f € P|[f,Z] CZ} is the Poisson normal-
izer of Z. Then the bracket on P is defined in terms of the
bracket [¢, ¢| via
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117, Mgl = 1[f, gl, (€2)
where IIf is the equivalence class f + Z. For any P
derivation V we define its reduction V via

V(IIf) = IV(Y), fePp. (C3)

Theorem 1. Given any coisotrope Z, the bracket [¢, ¢| 5
is well defined. It is moreover a Poisson bracket of degree
—P, and so P is a graded Poisson algebra.

If the derivation V on P preserves the Poisson structure
VIf.g] = [Vf,g] £ [f.Vg]) and the coisotrope [V(Z) C 7],
then the reduced derivation V is well defined.

Finally, if V is furthermore Hamiltonian with Hamiltonian
Hy€P (so V= [Hy,*]), then V is Hamiltonian with
Hamiltonian TT(Hy,). [In this latter case V' automatically
preserves the Poisson structure, but the condition V(Z) C Z
implies [Hy,Z] € Z.]

If all derivations we are interested in are, in fact,
Hamiltonian (which is the case in the main text), then
we just need to check that the ideal 7 is a coisotrope and
that [Hy,Z] C 7.

Proof.—The bracket [, ¢|5 is well defined because

[M1f. Nglp =T[f +Z.g+ 1] = I([f. g + [f.Z]

+[Z.gl+[2.7) = 1[f. 4], (C4)
where the last three terms in the second equality vanish
because f,geN(Z) and [Z,Z] CZ. This new bracket
inherits the antisymmetry and Jacobi identity properties
from [e, ¢]. Since furthermore 7 is homogeneous in degree,
I1f will have a well-defined degree, and so the new bracket
defines a graded Poisson algebra structure.

Similarly since V(f +Z) = V(f) + V(Z) we have that
V is well defined on P/Z when V(Z) C Z. We then need to
show that it preserves the subspace N(Z)/Z = P. Since V
preserves the Poisson bracket, we have

VI I =VIf. I £ [f. VI (C5)
If f€N(Z), this becomes V(T ) =+ [f, VZ] which lies in the
coisotrope when V(Z) C Z. Therefore V(f) lies in N(Z).

Finally, if V= [Hy,*], then IIV(IIf) =TIIV(f) =

I[Hy, f] = [ITHy, I1f]p, Which completes the proof. [J
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