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Abstract

In recent years, domains such as natural language processing and image recognition
have popularized the paradigm of using large datasets to pretrain representations
that can be effectively transferred to downstream tasks. In this work we evaluate
how such a paradigm should be done in imitation learning, where both pretraining
and finetuning data are trajectories collected by experts interacting with an unknown
environment. Namely, we consider a setting where the pretraining corpus consists
of multitask demonstrations and the task for each demonstration is set by an
unobserved latent context variable. The goal is to use the pretraining corpus
to learn a low dimensional representation of the high dimensional (e.g., visual)
observation space which can be transferred to a novel context for finetuning on
a limited dataset of demonstrations. Among a variety of possible pretraining
objectives, we argue that inverse dynamics modeling – i.e., predicting an action
given the observations appearing before and after it in the demonstration – is
well-suited to this setting. We provide empirical evidence of this claim through
evaluations on a variety of simulated visuomotor manipulation problems. While
previous work has attempted various theoretical explanations regarding the benefit
of inverse dynamics modeling, we find that these arguments are insufficient to
explain the empirical advantages often observed in our settings, and so we derive a
novel analysis using a simple but general environment model.

1 Introduction

Pipelines in image recognition and natural language processing commonly use large datasets to
pretrain representations that are then transferred to downstream tasks where data is limited [Devlin
et al., 2018, Chen et al., 2020, Radford et al., 2021]. In this paper, we consider how this paradigm
can be applied to imitation learning [Pomerleau, 1991, Ho and Ermon, 2016, Kostrikov et al., 2019].
In contrast to supervised learning domains where datasets consist of input-output pairs, imitation
learning datasets consist of trajectories with both the input-output mapping to be learned (namely,
observation-action pairs) as well as information about the dynamics of the environment. Given
this additional structure, it is worthwhile to study pretraining approaches that can incorporate this
structure to improve beyond methods from traditional supervised learning domains.

To formalize the precise notion of transfer between pretraining and finetuning phases, we consider
a multitask imitation setting where the environment (i.e., the transition dynamics) is fixed and data
is comprised of trajectories of task experts acting in this environment. A task is defined by a latent
context variable that is observed by an expert demonstrator, but is not contained in the dataset, as
shown in Figure 1. During pretraining, we have access to a large number of trajectories from various
tasks, while during finetuning we have access to a small number of trajectories from a single task.
The goal is thus to use the pretraining dataset to learn representations that contain information about
the environment that facilitates efficient learning of the finetuning task.
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Another, perhaps simpler approach is to use behavior cloning as a pretraining algorithm. Arora et al.
[2020] shows that this can be a well-motivated approach to pretraining a representation when the
task variable is observed. Other work uses behavior cloning objectives to pretrain representations of
temproally extended actions [Ajay et al., 2020] or priors for offline RL [Zang et al., 2022].

A third approach is to model the forward dynamics of the system as a pretraining objective. Most
directly related to our work, Nachum and Yang [2021] show that this is a well-motivated technique
for imitation learning and provide empirical evidence on single task atari games, but do not compare
to inverse dynamics. This technique has also been explored in empirical work for online and offline
RL [Schwarzer et al., 2021, Laskin et al., 2020, Aytar et al., 2018, Lee et al., 2022b, Wu et al., 2023].

Finally, a method which we will refer to as static observation modeling does not leverage information
about dynamics and rather directly uses self-supervised methods from computer vision [Pari et al.,
2021, Chen et al., 2020, Grill et al., 2020]. This approach does not take advantage of any additional
structure in an imitation learning setting, but has nevertheless worked well in some settings.

Several empirical studies of representation learning for decision-making already exist. Most closely
related to this work, [Chen et al., 2022] conducts an empirical evaluation of representations for
imitation and finds that none of them consistently outperform training directly from pixels. However,
this prior work (a) considers much larger finetuning datasets which can dramatically reduce the
benefits of pretraining, and (b) considers different environments than we do, where the gap between
pretraining and finetuning tasks is less controlled. Another line of work like Nair et al. [2022] attempts
to pretrain general representations using large human-collected video datasets like Ego4d [Grauman
et al., 2022]. In contrast, we focus on a more carefully controlled (albeit smaller scale) experimental
settings where we can derive a more clear understanding of the relative merits of different pretraining
objectives. Another empirical study from Stooke et al. [2021] considers representations in online
reinforcement learning. Meanwhile, Yang and Nachum [2021] considers representations for imitation
but does not consider image-based or multitask problems. Moreover, none of these works includes a
theoretical understanding for the findings presented therein.

A further discussion of pretraining in the context of imitation can be found in Appendix A.

3 Problem setup

Here we present the formal setup for our problem setting of reward free pretraining from multitask
expert data . We formalize this as a contextual MDP with rich (i.e., visual) observations where the
latent context determines the initial state and reward functions.

Environment. We model the environment as a contextual MDP with context-independent dynamics:

c ∼ Pc, o0 ∼ ρc, ri = rc(si, ai), oi+1 ∼ T (oi, ai). (1)

Importantly, we consider the context variable c and rewards rc to be latent, i.e., they are not available
during training, and only used to evaluate a learned policy. At a high level, this captures the setting
where the task (defined by the context variable) may change, but the dynamics of the world do not.
For example, the context variable could be a continuous variable like a goal position that the expert is
navigating towards or a discrete variable representing a behavior like locking a door.

Data generation. Data is generated by executing policies π that map observations to actions in
the environment. We consider two different datasets for any given problem. First there is a large
multi-context pretraining dataset that will be used for representation learning, specifically to learn an
observation encoder. Second, there is a small single-context finetuning dataset for policy learning on
top of the pretrained representation. The multi-context pretraining data is generated as follows:

Dpre = {τi}
Npre

i=1
: c ∼ Pc, τ = (o0, a0, o1 . . . ) ∼ Pπc , πc ≈ π∗

c = argmax
π

Jrc(π), (2)

where Jrc(π) denotes the expected return of π when the reward is rc. Note that the demonstration
policy has access to the latent context c, but this latent context is not observed in the data.

Then the single-context finetuning data is generated for context cfine as follows:

Dfine = {τi}
Nfine

i=1
: τ = (o0, a0, o1 . . . ) ∼ P

πcfine . (3)
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Table 1: Description of the different datasets used in the experiments. Dataset sizes are measured

in number of trajectories (N
pre
traj for pretraining and N

fine
traj for finetuning) and given as ranges with

default values in bold. Trajectory lengths vary from 50 to 400 steps. These default sizes may vary in
each experiment when indicated. Each datasets contains a certain number of latent contexts (N

pre
context

and N
fine
context). For each finetuning context, we sample datasets with N

fine
seed different seeds.

Environment N
pre
traj N

fine
traj N

pre
context N

fine
context N

fine
seed

Pointmass (1e1, 1e2, 1e3) (1, 2, 5, 10) N
pre
traj 5 1

Pick + place (1e1, 1e2, 1e3) (2, 5, 10, 20) N
pre
traj 5 1

Door (1e1, 1e2, 1e3) (2, 5, 10, 20) 3 1 5
Kitchen (50, 150, 450) (2, 5, 10, 15) 21 3 5
MW-ML45 (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5
MW-R3M (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5

our own pretraining datasets described above. Each of the representations will be referred to by its
bolded name after it is described.

All algorithms (except for the Imagenet and R3M baselines) share the exact same encoder architecture
to control as best we can for variation in architecture between methods. Each method is pretrained
for the same number of gradient steps. Additional training details can be found in Appendix C.

Skyline/oracle. As a skyline or oracle representation we directly use the low dimensional states
(States) from the simulator. Depending on the task, this representation includes the position of the
robot, position of the object to be manipulated, and/or position of the goal. A full description of the
per environment state variables can be found in Appendix C.

Baselines. We consider three baseline representations that are not trained on our pretraining datasets.
The first is to directly use the pixels with image augmentations (Pixels + Aug) to train an encoder
and a policy from scratch on the finetuning data. It is essential to use the augmentations to ensure
that this a strong baseline. The second is features of a ResNet18 pretrained on Imagenet (Imagenet).
The last consists of the features of a ResNet18 that is specifically pretrained for robotic manipulation
by Nair et al. [2022] on the Ego4d dataset (R3M).

Inverse dynamics. The primary representation learning objective that we consider is inverse
dynamics (ID) which models the distribution P (a|o, o′) using an architecture that first encodes o, o′

with an encoder φ and then predicts a with a small MLP f :

φ∗

ID = argmin
φ

min
f

E
o,a,o′

[(a− f(φ(o), φ(o′)))2]. (6)

Behavior cloning. A simpler alternative objective is to directly apply behavior cloning (BC) to
the multitask actions in the pretraining dataset conditioned on the observations using MSE loss. The
learner is parameterized as an encoder φ followed by a small MLP π:

φ∗

BC = argmin
φ

min
π

E
o,a

[(a− π(φ(o)))2]. (7)

Forward dynamics. We consider two representation learners that predict the forward dynamics
of the system. The first is explicit forward dynamics (FD-e) which explicitly constructs a model
of the forward dynamics in the space of observations by encoding the current observation and then
attempting to reconstruct the next observation o′ using a decoder d:

φ∗

EFD = argmin
φ

min
d

E
o,a,o′

[(o′ − d(φ(o), a))2]. (8)

The second objective is implicit forward dynamics (FD-i) which implicity constructs a model of the
forward dynamics using contrastive learning. Explicitly, we consider a form of contrastive learning
where an energy function is defined as the inner product of L2-normalized projected embeddings
(given by projection MLPs f1, f2) which is then passed into an InfoNCE loss:

E(o, a, o′) = exp(f1(φ(o), a)
⊤f2(φ(o

′))), (9)

φ∗

IFD = argmin
φ

min
f1,f2

E
o,a,o′

[− log(E(o, a, o′)) + logE
ō′
[E(o, a, ō′)]]. (10)
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Thus, the Bayes optimal BC policy does not depend on o at all. As a result, the optimal representation
learned by BC can just map every observation to zero. This representation is not capable of represent-
ing the optimal policy for any choice of c. However, switching to inverse dynamics pretraining where
we condition on the outcome observation o′ breaks the confounding and allows us to learn the true
representation even without observing c.

7 Discussion

We have seen that inverse dynamics pretraining provides an effective method for learning features from
multitask demonstration data. We demonstrated this across a suite of datasets with visual observations
and provided analysis in a simplified model to understand the strong empirical performance.

Limitations. There are still a few limitations of our work that are worth pointing out explicitly.
First, in this work we prioritized simulated domains with large numbers of predefined tasks and
datasets with a single morphology to allow for a variety of experiments. However, it is possible that
the results we observed in these tasks would differ when scaled to real world tasks with additional
visual diversity and physical realism. We leave this extension to future work.

Second, while our theoretical analysis provides a clear rationale for the observed empirical results in
a toy model, there is clearly room for better theory. Ideally, future work could present a more rigorous
theory that goes beyond a toy model. However, we do think that the toy model captures some of
the essential characteristics of the problem and recognize that any theory must make simplifying
assumptions.

Future directions. In addition to removing the limitations described above, there are many other
interesting directions for future work to build on our results. One direction would be to extend these
results to settings with suboptimal data. In this work we focus on an imitation learning setting where
data is collected by expert policies across a variety of tasks. In future, it would be interesting to study
how and if the properties of various representation learning algorithms change in the presence of
suboptimal data.

It would also be interesting for future work to compare the relative merits of a broader array of
pretraining techniques that go beyond representation learning. For example, methods that learn con-
ditional generative models (e.g. goal-conditioning, language-conditioning, or reward-conditioning)
provide a different paradigm for pretraining policies instead of the feature extractors that we consider
in this work.

Finally, it would be interesting to consider developing new pretraining objectives for representation
learning. This could be done by combining existing objectives or developing completely new ones.
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A Extended related work

In this paper we focus specifically on pretraining methods that learn representations of high di-
mensional observations from multitask demonstration data with latent contexts for the purpose of
imitation. There are many closely related problems that are studied in other papers that we did not
have space to address fully in the main text that we more fully describe here. These are all very
interesting and complementary lines of work, but are beyond the scope of this paper.

Perhaps the largest closely related line of work focuses on learning reward-directed representations in
the context of reinforcement learning. This is a different setting than ours and methods from there
are not applicable in our setting where we do not have access to rewards. Moreover, most of these
methods do not consider multitask settings [Zhang et al., 2020, Gelada et al., 2019, Fu et al., 2021,
Ghosh et al., 2018, Eysenbach et al., 2022, Sodhani et al., 2021].

Another line of work seeks to learn representations of actions or sequences of actions rather than
observations. This is a directly complementary line of work to the ideas presented in this paper [Ajay
et al., 2020, Yang et al., 2021, Lynch et al., 2020, Whitney et al., 2019].

Another body of literature focuses on learning representations that can be transferred across domain
and embodiment gaps and even trained directly from videos without access to actions at all [Oord
et al., 2018, Aytar et al., 2018, Seo et al., 2022, Ma et al., 2022, Zakka et al., 2022, Ghosh et al., 2023].
In this paper, we focus on the simpler task of pretraining a representation within one MDP with
consistent dynamics and access to demonstration actions, but with varied tasks. This choice allows us
to make more clear comparisons between algorithms and rigorous claims about when representations
will be effective, but also limits the generality of the representations that are learned.

There are a variety of new methods that rely on transformer architectures to construct interesting
new pretraining objectives [Yang and Nachum, 2021, Lee et al., 2022a, Reed et al., 2022, Seo et al.,
2023, Wu et al., 2023]. In this paper we focus on simple methods that can all use the same simple
convolutional architecture operating on transition tuples to provide the most controlled comparison
that we can. It is an interesting direction for future work to see how our insights in the Markovian
case could be leveraged to inform sequence level models of partially observed problems.

Another line of work avoids pretraining representations directly and instead meta-learns a policy
that can adapt to new tasks [Duan et al., 2017, Finn et al., 2017a,b, Yu et al., 2018, Rakelly et al.,
2019, Mitchell et al., 2021]. This approach is beyond the scope of this paper which focuses on
representation learning. Moreover, these meta-learning algorithms require the pretraining trajectories
to be partitioned by task so that each task has multiple trajectories. Since we focus on pretraining
data where we don’t have access to the latent context, it is unclear how to create these meta-training
datasets.

Finally, recent work has shown the promise of zero-shot generalization for multitask imitation,
especially when the task identifying information is expressed in natural language to leverage advances
in language models [Ding et al., 2019, Jang et al., 2022, Cui et al., 2022, Brohan et al., 2022]. This
is an exciting line of work, but beyond the scope of this project where we focus on data where the
context information is latent. It is an interesting direction for future work to assess precisely how
much performance can be improved via extra context information to gauge whether it is worth the
cost of labeling trajectories with context information.

It is an interesting direction for future work to try to better synthesize some of the findings from
across this broad array of approaches to pretraining in slightly different settings.

B Extended experimental results

In this section we present the experimental results that were excluded from the main text due to
space constraints. In particular, Section B.1 presents representation analysis by predicting one
representation from another, Section B.2 presents the per-dataset results of various sweeps over
dataset size and type, Section B.3 presents per-dataset results for representation analysis, and Section
B.4 presents results of an ablation over multistep dynamics.

B.1 Cross-representation prediction

In the main text, we evaluated representation quality by measuring accuracy of small MLPs to
predict either the actions on the finetuning data or the low dimensional states on the pretraining
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Pick and place. The pick and place task is taken from the metaworld suite. In our version, the
context c ∈ R

3 determines the goal location for the block. The demonstration policy π∗

c is a scripted
policy from the metaworld repo. We remove the goal indicator from the image in this environment so
that the context is fully latent and not observable from the observation. The low dimensional state
is the 3d position of the gripper, 1d openness of the gripper, and 7d position and orientation of the
block. The high dimensional observations are images of size 120x120x3.

Door. The door environment is also taken from the metaworld suite. In our version, the context
c ∈ [4] determines the index of the environment from door-close, door-open, door-unlock, and door-
lock. For our default experiments we use door-close, door-open, and door-unlock as the pretraining
contexts and door-lock as the eval context. For the ablation where we ensure that the eval context
is in the pretraining distribution, we include door-lock in the pretraining data. The demonstration
policy π∗

c is a scripted policy from the metaworld repo. Given the context, the initial position of the
robot, initial position of the door, and goal position (which is visible in the observation image) are all
randomized. Note, the context is inferrable since the initial position of the door and lock allow the
learner to infer the context. The low dimensional state is the 3d position of the gripper, 1d openness
of the gripper, 7d position and orientation of two objects in the scene, and 3d goal position. The high
dimensional observations are images of size 120x120x3.

Kitchen. The kitchen environment and dataset are taken from Gupta et al. [2019]. Each trajectory
contains a sequence of four tasks in a simulated kitchen collected by a human demonstrator. In
our version, the context c ∈ [24] is determined by the sequence of four tasks contained within
the demonstration trajectory (of which there are 24 possibilities). We evaluate on three contexts:
microwave-kettle-light switch-slide cabinet, bottom burner-top burner-slide cabinet-hinge cabinet,
and kettle-bottom burner-top burner-light switch. In our default setup, we pretrain on the other 21
contexts, and in the ablation of in distribution evaluation we pretrain on all 24 contexts. The context is
fully latent and not observable from the initial state. The low dimensional state is a 9d description of
the arm position and a 21d description of the position of objects in the kitchen. The high dimensional
observations are images of size 120x120x3.

Note: the kitchen environment is the only one that we consider that has added noise. The raw data
from Gupta et al. [2019] contains gaussian noise added to the low dimensional states and actions, so
this noise cannot be removed without re-generating the data. We render the images from the noisy
states, so there is also noise present in the image observations. We also evaluate in an environment
with the same noise added, so there is no gap between training and eval.

Metaworld (ML45 and R3M). Finally, we consider two variants of the full metaworld suite.
Here the context c ∈ [50] determines which metaworld task is used. We consider two different
train-eval splits for our default environments. The ML45 split takes the eval tasks from the original
metaworld ML45 task which are bin-picking, box-close, hand-insert, door-lock, and door-unlock.
The R3M split takes the eval tasks that were chosen in the R3M paper [Nair et al., 2022]: assembly,
bin-picking, button-press, drawer-open, and hammer. Given the context, the initial and goal positions
are randomized. The goal position is visible in the observation. The low dimensional state is the 3d
position of the gripper, 1d openness of the gripper, 7d position and orientation of (potentially) two
objects in the scene, and 3d goal position. The high dimensional observations are images of size
120x120x3.

Table 2: A summary of the description of datasets above. Inferrable refers to whether the context is
observable. OOD refers to whether the evaluation context is out of distribution.

Dataset Policy Context Inferrable OOD Noise State dim

Point mass PD controller R
2 No No No 2

Pick and place Script R
3 No No No 11

Door Script [4] Yes Yes No 21
Kitchen Human [24] No Yes Yes 30
Metaworld-ML45 Script [50] Yes Yes No 21
Metaworld-R3M Script [50] Yes Yes No 21
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C.2 Pretraining details

Software dependencies. We implement all of our training in JAX [Bradbury et al., 2018]. We use
flax for neural networks [Heek et al., 2023] and optax for optimization [Babuschkin et al., 2020]. Our
code is loosely based on Kostrikov [2022].

Architecture. All of our pretraining algorithms share exactly the same encoder architecture to
ensure that we have a fair comparison. Since our tasks are relatively simple visually, and so as to
allow for large scale experiments without too much compute, we use a relatively small convnet
encoder. Specifically, we follow the architecture from Yarats et al. [2021] which consists of a 4
layer convnet with 3x3 filters, number of channels of (32, 64, 128, 256), and strides of (2,2,1,1). We
add a modification to include a spatial softmax activation [Finn et al., 2016], which we found to be
important for the manipulation tasks we consider. This is followed by a linear layer to project into the
embedding dimension of 64 and finally a layernorm and tanh activation to normalize the embedding.
We use the gelu activation function throughout.

Now we will birefly describe the architecture used for each pretraining algorithm, following their
descriptions in Section 4.2:

• Inverse dynamics: the inverse dynamics head is an MLP that takes in φ(o), φ(o′) and
produces an estimated action. This MLP has two hidden layers of width 256 and dropout of
0.1 during training.

• BC: the BC policy head is an MLP with two hidden layers of width 256 and dropout of 0.1
during training.

• Implicit forward dynamics: the implicit forward dynamics model uses an action encoder
φa(a) which outputs a 64 dimensional normalized action embedding which is concatenated
to φ(o) to form φ(o, a). Then there are two projection heads f1, f2 that take in φ(o, a) and
φ(o′) respectively and produce 64 dimensional embeddings that are normalized to have unit
norm. All these networks (φa, f1, and f2) are MLPs with two hidden layers of width 256
and the relevant input and output dimensions.

• Explicit forward dynamics: the explicit forward dynamics model uses the same architecture
to encode a with φa. Then, instead of projection heads, we require a convolutional decoder
to produce an image. Following Yarats et al. [2021] we use an architecture that inverts the
encoder, having a dense projection layer followed by channels of (256, 128, 64, 32) and
strides of (1,1,2,2).

• Contrastive: the contrastive network is the same as the implicit forward dynamics network
except that there is no action input and o′ is replaced by an augmentation of o.

Training hyperparameters. For pretraining, we split the datasets into two categories: easy (point
mass, pick and place, and door) and hard (kitchen, metaworld-ml45, and meatworld-r3m). On the
easy tasks we train for 100k gradient steps and on the hard tasks we train for 200k gradient steps.
Batch size is 256 for all methods except explicit forward dynamics where (due to the added compute
required for the decoder) we use batch size of 128 to even out computational requirements across
methods. All methods are trained with the adamw optimizer with learning rate 1e-3, a cosine learning
rate decay schedule, and default weight decay of 1e-4.

Data augmentation. Following [Chen et al., 2022] and others, we note that cropping augmentations
are the most important for training policies in simulated visual domains. As such, all of our pretraining
algorithms (and the Pixels + Aug baseline) use random cropping augmentations, and we found this to
be an important implementation detail. The one exception is explicit forward dynamics where we
found it difficult to reconstruct images with augmentations, so we omit them for that algorithm.

Compute resources. Pretraining was all done on an internal cluster using RTX8000 GPUs. We
estimate that the final training run needed to produce the results in the paper took approximately 600
GPU hours.

C.3 Finetuning and evaluation details

Training hyperparameters. The policy is always an MLP with two hidden layers of width 256.
We use gelu activation and apply dropout with probability 0.1 during finetuning. We finetune on every
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dataset for 10k gradient steps with batch size 256. All policies are trained with the adamw optimizer
with learning rate 1e-3, a cosine learning rate decay schedule, and default weight decay of 1e-4.

As explained in Table 1 there are several seeds and evaluation contexts for each environment. For
example, for the default results in Figure 1 we end up having a total of 80 different finetuning datasets
per representation when sweeping across dataset, context, and seed so that Figure 1 is reporting
aggregate results across 720 finetuning and evaluation runs.

Evaluation hyperparameters. Each evaluation is run for 100 episodes in the environment to
estimate the success of the policy (except for the kitchen environment where we run 50 episodes due
to slow rendering of that environment).

Compute resources. Finetuning and evaluation was all done on an internal cluster on CPU (since
the finetuned policy network is small and environments run on CPU). We estimate that all the
finetuning and evaluation in the final runs used to produce results for the paper took approximately
2000 CPU hours.

C.4 Comparison to R3M experimental setup

There are several low-level but important differences between our evaluation setup and the one used
in the R3M paper [Nair et al., 2022] which uses some similar environments. These differences end
up making the pretrained R3M representations perform worse in our evaluations than those in the
original paper. For the kitchen tasks in particular, the biggest difference is that while the R3M paper
considers only learning single subtasks (e.g. slide the door open, see section 4.2 of the R3M paper),
we consider learning sequences of subtasks (e.g. open the microwave, put the kettle on, turn on
the light, and slide the door open, all in one trajectory). The R3M paper considers explicitly easier
tasks. We did this because the kitchen data itself contains sequences of subtasks, not single subtasks
(following the paper that introduced the kitchen dataset). For the metworld tasks, R3M chose to
evaluate on a particular subset of tasks that are somewhat easier than average (this is why we consider
two different splits of metaworld on with the R3M eval tasks and one with the original eval tasks from
the metaworld paper). Another difference is that to focus solely on feature learning, we only pass in
the image observation and not the proprioception while R3M passes in both. Again this makes the
problem a little bit more difficult. wW also render images at a lower resolution due to computational
constraints.

Finally, it is important to note that R3M is attempting to solve a different problem of general image
representation learning that transfers across domains, while we are focusing on within domain, but
cross-task generalization (which is easier to analyze in a controlled way).

D Extended analysis discussion

Here we provide a more detailed discussion of related theoretical work.

One recent line of work focuses on learning representations for exploration [Efroni et al., 2021, Lamb
et al., 2022] and offline RL [Islam et al., 2022] in the presence of exogenous noise. The exogenous
noise setting means that the high dimensional observations contain information that is not effected by
the actions; e.g., background dynamics that appear in image observations but do not affect the task.
This line of work argues that inverse dynamics modeling is the best approach to ignore exogenous
noise. Our results are complementary to this line of work in showing that even in settings without
exogenous noise, inverse dynamics is still often preferable to alternatives for representation learning.
Moreover, we consider a multitask imitation setting with latent contexts while they consider single
task and reward-directed problems.

Another line of work proves that learning a forward dynamics model is a well-motivated approach for
multitask imitation [Nachum and Yang, 2021]. While that work does not directly compare to inverse
dynamics pretraining, we find that inverse dynamics pretraining outperforms forward dynamics
modeling in our settings. Moreover, while this paper shows that if our representation learns a good
forward dynamics model that it works well for imitation, it does not discuss how efficiently such a
representation can be learned. So, while both methods are well-motivated, we find inverse dynamics
modeling to be more efficient than learning the forward dynamics.
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Finally, another line of work studies multitask representation learning for imitation by directly
performing behavior cloning [Arora et al., 2019, Zhang et al., 2022]. These methods provide positive
results for the approach, but require algorithms that have access to the latent context information
which must be discrete so as to learn a separate policy for every pretraining context, thus avoiding
confounding. This method requires extra information and is difficult to scale to very large numbers
of contexts. In contrast, we find that inverse dynamics modeling is able to perform well without this
extra information or added complexity of learning multiple models and naturally avoids confounding
by the latent context information.
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