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Abstract

Graph neural networks (GNNs) have become increasingly popular for classification
tasks on graph-structured data. Yet, the interplay between graph topology and
feature evolution in GNNS is not well understood. In this paper, we focus on node-
wise classification, illustrated with community detection on stochastic block model
graphs, and explore the feature evolution through the lens of the “Neural Collapse”
(NC) phenomenon. When training instance-wise deep classifiers (e.g. for image
classification) beyond the zero training error point, NC demonstrates a reduction in
the deepest features’ within-class variability and an increased alignment of their
class means to certain symmetric structures. We start with an empirical study that
shows that a decrease in within-class variability is also prevalent in the node-wise
classification setting, however, not to the extent observed in the instance-wise case.
Then, we theoretically study this distinction. Specifically, we show that even an
“optimistic” mathematical model requires that the graphs obey a strict structural
condition in order to possess a minimizer with exact collapse. Interestingly, this
condition is viable also for heterophilic graphs and relates to recent empirical
studies on settings with improved GNNs’ generalization. Furthermore, by studying
the gradient dynamics of the theoretical model, we provide reasoning for the partial
collapse observed empirically. Finally, we present a study on the evolution of
within- and between-class feature variability across layers of a well-trained GNN
and contrast the behavior with spectral methods.

1 Introduction

Graph neural networks [52] employ message-passing mechanisms to capture intricate topological
relationships in data and have become de-facto standard architectures to handle data with non-
Euclidean geometric structure [11, 12, 22, 24, 33, 60, 63, 66, 70]. However, the influence of
topological information on feature learning in GNNss is yet to be fully understood [40, 64, 69, 72].

In this paper, we study the feature evolution in GNNs in a node-wise supervised classification setting.
In order to gain insights into the role of topology, we focus on the controlled environment of the
prominent stochastic block model (SBM) [1-3, 29, 45]. The SBM provides an effective framework
to control the level of sparsity, homophily, and heterophily in the random graphs and facilitates
analysis of GNN which relies solely on structural information [8, 16, 32, 40, 42, 49]. While inductive
supervised learning on graphs is a relatively more difficult problem than transductive learning, it
aligns with practical scenarios where nodes need to be classified in unseen graphs [24], and is also
amenable to training GNNs that are deeper than conventional shallow Graph Convolution Network
(GCN) models [14, 16, 32, 35, 47, 62, 62, 70].

The empirical and theoretical study of GNNs’ feature evolution in this paper employs a “Neural
Collapse” perspective [48]. When training Deep Neural Networks (DNNs) for classification, it
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is common to continue optimizing the networks’ parameters beyond the zero training error point
[9, 28, 39], a stage that was referred to in [48] as the “terminal phase of training” (TPT). Papyan,
Han, and Donoho [25, 48] have empirically shown that a phenomenon, dubbed Neural Collapse
(NC), occurs during the TPT of plain DNNs? on standard instance-wise classification datasets. NC
encompasses several simultaneous properties: (NC1) The within-class variability of the deepest
features decreases (i.e., outputs of the penultimate layer for training samples from the same class
tend to their mean); (NC2) After subtracting their global mean, the mean features of different classes
become closer to a geometrical structure known as a simplex equiangular tight frame; (NC3) The last
layer’s weights exhibit alignment with the classes’ mean features. A consequence of NC1-3 is that
the classifier’s decision rule becomes similar to the nearest class center in the feature space. We refer
to [34] for a review on this topic.

The common approach to theoretically study the NC phenomenon is the “Unconstrained Features
Model” (UFM) [31, 43]. The core idea behind this “optimistic” mathematical model is that the
deepest features are considered to be freely optimizable. This idea has facilitated a recent surge of
theoretical works in an effort to understand the global optimality conditions and gradient dynamics
of these features and the last layer’s weights in DNNs [18, 25, 37, 43, 54-56, 61, 65, 71, 74]. In
our work, we extend NC analysis to settings where relational information in data is paramount, and
creates a tension with the ‘freeness’ associated with the UFM model. In essence, we highlight the key
differences when analyzing NC in GNNs by identifying structural conditions on the graphs, under
which the global minimizers of the training objective exhibit full NC1. Interestingly, the structural
conditions that we rigorously establish in this paper are aligned with the neighborhood conditions on
heterophilic graphs that have been empirically hypothesized to facilitate learning by Ma et al. [40].

Our main contributions can be summarized as follows:

* We conduct an extensive empirical study that shows that a decrease in within-class variability
is prevalent also in the deepest features of GNNs trained for node classification on SBMs.
However, not to the extent observed in the instance-wise setting.

* We propose and analyze a graph-based UFM to understand the role of node neighborhood
patterns and their community labels on NC dynamics. We prove that even this optimistic
model requires a strict structural condition on the graphs in order to possess a minimizer
with exact variability collapse. Then, we show that satisfying this condition is a rare event,
which theoretically justifies the distinction between observations for GNNs and plain DNNS.

* Nevertheless, by studying the gradient dynamics of the graph-based UFM, we provide
theoretical reasoning for the partial collapse during GNNS training.

* Finally, we study the evolution of features across the layers of well-trained GNNs and
contrast the decrease in NC1 metrics along depth with a NC1 decrease along power iterations
in spectral clustering methods.

2 Preliminaries and Problem Setup

We focus on supervised learning on graphs for inductive community detection. Formally, we consider
a collection of K undirected graphs {Gr, = (Vi, &)} |, each with N nodes, C non-overlapping
balanced communities and a node labelling ground truth function yy, : Vi, — {e1,...,ec}. Here,
Ve € [0], e. € RY indicates the standard basis vector, where we use the notation [C] = {1,--- ,C}.
The goal is to learn a parameterized GNN model 1)¢ (.) which minimizes the empirical risk given by:

1 & A
min - ;ﬁ(’l/)@(gk)ayk (Vr)) + 3 ||@||fv> M

where ||-|| - represents the Frobenius norm, £ is the loss function that is invariant to label permutations
[16], and A > O is the penalty parameter. We choose £ based on the mean squared error (MSE) as:

Lo (G, u) = min - [1ve (Gr) — 7 (e VI, @

where 7 belongs to the permutation group over C' elements. Using the MSE loss for training
DNN classifiers has become increasingly popular recently. For example, Hui and Belkin [30] have

>Throughout the paper, by (plain) DNNs we mean networks that output an instance-wise prediction (e.g.,
image class rather than pixel class), while by GNNs we mean networks that output node-wise predictions.



performed an extensive empirical study that shows that training with MSE loss yields performance
that is similar to (and sometimes even better than) training with CE loss. This choice also facilitates
theoretical analyses [25, 55, 71].

2.1 Data model

We employ the Symmetric Stochastic Block Model (SSBM) to generate graphs {Gy, = (Vi, ) HE .
Stochastic block models (originated in [29]) are classical random graph models that have been
extensively studied in statistics, physics, and computer science. In the SSBM model that is considered
in this paper, each graph G, is associated with an adjacency matrix A;, € RV*Y  degree matrix
D} = diag(A;1) € RV*Y and a random node features matrix X; € R¥¥ with entries sampled
from a normal distribution. Formally, if P € R*¢ represents a symmetric matrix with diagonal
entries p and off-diagonal entries ¢, a random graph Gy, is considered to be drawn from the distribution
SSBM(N, C, p, q) if an edge between vertices v;, v; is formed with probability (P)yk(vi),yk(vjf-

We choose the regime of exact recovery [1-3, 45] in sparse graphs where p = < In(N) ,q = b hll\(/N)

N
for parameters a,b > 0 such that |\/a — v/b| > +/C. The need for exact recovery (information-

theoretically) stems from the requirement that 1)g should be able to reach TPT (Appendix B).

2.2 Graph neural networks

Inspired by the widely studied model of higher-order GNNs by Morris et al. [44], we design ¥g
based on a family of graph operators F = {I, A}, Vk € [K], and denote it as ¢ . Formally, for a
GNN £ with L layers, the node features H(" € R%>*¥ at layer | € [L] is given by:

X =wiH{"" + wH{"VA,,

l l

where H,(CO) = X}, and o(-) represents a point-wise activation function such as ReLU. ng), Wél) €

R%*di-1 are the weight matrices and Kk = Aka_,1 is the normalized adjacency matrix, also
known as the random-walk matrix. We also consider a simpler family without the identity operator

F' = {A.},Vk € [K] and analyze the GNN ¥&' with only graph convolution functionality.
Formally, the node features Hg) € RN for g " is given by:

X\ = wlH{VA,,

l l
H = 5x{").

Here, the subscript for the weight matrix ng) is retained to highlight that it acts on H,(Cl_l)./&k.
Finally, we employ the training strategy of Chen et al. [16] and apply instance-normalization [58] on

c;'(X,(Cl))7 Vi e {1,---,L — 1} to prevent training instability.

2.3 Tracking neural collapse in GNNs

In our setup, reaching zero training error (TPT) implies that the network perfectly classifies all
the nodes (up to label permutations) in all the training graphs. To this end, we leverage the NC
metrics introduced in [48, 55, 56, 74] and extend them to GNNs in an inductive setting. To begin

with, let us consider a single graph G, = (Vx, &), k € [K] with a normalized adjacency matrix Ay.
Additionally, we denote Hg) € R4*N ag the output of layer [ € [L — 1], irrespective of the GNN

design. Now, by dropping the subscript and superscript for notational convenience, we define the
class means and the global mean of H as follows:

B 1 . B 1 C n
h, = - ;hc,i Ve € [C], hg = On Zzhcvi’ ®)

c=1i=1
where n = N/C represents the number of nodes in each of the C' balanced communities, and h, ;
is the feature vector (a column in H) associated with v.; € V, i.e., the it node belonging to class

3In our setup, the nodes of sampled SSBM graphs are allowed to have self-edges.



¢ € [C]. Next, let N (v ;) denote all the neighbors of v, ; and let V. (v, ;) denote only the neighbors

of v.; that belong to class ¢’ € [C]. We define the class means and global mean of HA., which is
unique to the GNN setting as follows:

:thﬁfl Ve e [C), N = ZZh (6)

clzl

where hjc\,[i = (Evm EN.(ves) hc,j + Zvc,‘je./\/c,#c(vu,i) hc/,j) /|N(v(,,7,)‘

e Variability collapse in features H: For a given features matrix H, let us define the within- and
between-class covariance matrices, Xy (H) and X 5(H), as:

C n
1 _ _
Sw(H) = 5= >3 (hes —Be) (hei —Bo) @
c=11i=1
1 ° — — \T
Sp(H) = 5 > (he—hg) (he —he) . ®)
c=1

To empirically track the within-class variability collapse with respect to the between-class variability,
we define two NC1 metrics:

NCI(H) = éTr (EW(H)ETB(H)) , NC. (H) = Tr (3w (H))

Tr(Zp(H))’

where T denotes the Moore-Penrose pseudo-inverse and Tr(-) denotes the trace of a matrix. Although

©))

NC; is the original NC1 metric used by Papyan et al. [48], we consider also NC 1, which has been
proposed by Tirer et al. [56] as an alternative metric that is more amenable to theoretical analysis.

e Variability collapse in neighborhood-aggregated features HA: Similarly to the above, we track
the within- and between-class variability of the “neighborhood-aggregated” features matrix HA
by By (HA) and X 5(HA) (computed using Hiv and HJC\;/), as well as NC; (HA) and N'C, (HA).
(See Appendix C for formal definitions.) Finally, we follow a simple approach and track the mean
and variance of NC; (H), NC, (H),NC; (HK),/\A/(JH (H:&) across all K graphs in our experiments.

As the primary focus of our paper is the analysis of feature variability during training and inference,
we defer the definition and examination of metrics based on NC2 and NC3 to Appendix C, H.

3 Evolution of penultimate layer features during training

In this section, we explore the evolution of the deepest features of GNNs during training. In
Section 3.1, we present empirical results of GNNs in the setup that is detailed in Section 2, showing
that a decrease in within-class feature variability is present in GNNs that reach zero training error,
but not to the extent observed with plain DNNs. Then, in Section 3.2, we theoretically study a
mathematical model that provides reasoning for the empirical observations.

3.1 Experiments

Setup. We focus on the training performance of GNNs /g, 1/)5' on sparse graphs and generate
a dataset of K = 1000 random SSBM graphs with C' = 2, N = 1000,p = 0.025,q = 0.0017.
The networks ¥Z, g " are composed of L = 32 layers with graph operator, ReLU activation, and
instance-normalization functionality. The hidden feature dimension is set to 8 across layers. They are
trained for 8 epochs using stochastic gradient descent (SGD) with a learning rate 0.004, momentum
0.9, and a weight decay of 5 x 10~%. During training, we track the NC1 metrics for the penultimate

layer features Hl(ffl), by computing their mean and standard deviation across k € [K] graphs after
every epoch. To measure the performance of the GNN, we compute the ‘overlap’ [16] between
predicted communities and ground truth communities (up to permutations):

N
) 1 1 1
overlap(g, y) := max (N ;:1: Og(vi)m(y(vi)) — C) / (1 - C) (10)
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Figure 1: GNN ¢Z: Illustration of loss, overlap, and A'C; plots for H, HA during training.
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Figure 2: GNN ¢ ": Tlustration of loss, overlap, and N'C; plots for H, HA during training.

where ) is the node labelling function based on GNN design and Zf\; 1 94(v:),m(y(v:)) 18 the training
accuracy (9 denotes the Kronecker delta). The overlap allows us to measure the improvements in
performance over random guessing while retaining the indication that the GNN has reached TPT.

Formally, when = ZZ]\LI Og(vi),m(y(v)) = 1 (zero training error), then overlap(g,y) = 1. We
illustrate the empirical results in Figures 1 and 2, and present extensive experiments (showing similar
behavior) along with infrastructure details in Appendix H*.

Observation: The key takeaway is that N'C; (HECL_I)), NG, (H,(f_l)) tend to reduce and plateau

during TPT in 1/)5 and ng ". Notice that even though we consider a controlled SSBM-based setting,
the N'C; values observed here are higher than the values observed in the case of plain DNNs on real-

world instance-wise datasets [48, 74]. Additionally, we can observe that trends for N'C; (Hffﬁl):&k),
NC, (Hffﬁl):&k) are similar to those of N'C; (H;fﬁl)), NCy (H,(CLfl)).

3.2 Theoretical analysis

In this section, we provide a theory for this empirical behavior. Most, if not all, of the theoretical
papers on NC, adopt the UFM approach, which treats the features as free optimization variables —
disconnected from data [18, 25, 43, 55, 56, 74]. Here, we consider a graph-based adaptation of this

approach, that we dubbed as gUFM. We consider GNNs of the form of 1/ ', which is more tractable
for mathematical analysis. Formally, by considering £ to be the MSE loss, treating {H,E,L_l)}kK:1 as

freely optimizable variables, and representing WéL) € RExdr—1, H;L_l) € RiL—1xN as Wy, Hy,
(for notational convenience), the empirical risk based on the gUFM can be formulated as follows:

A

SF K 1 K 1 —~ 2
R™ (Wa, {Hi}p—y) == K Z N HWQHkAk - YHF +

Hy 2 Aw. 2
e JE 1) + 25 Wal
k=1

Y

where Y € RE*¥ is the target matrix, which is composed of one-hot vectors associated with the
different classes, and Ay, , Agr,, > 0 are regularization hyperparameters. To simplify the analysis, let
us assume that Y = I ® 1,}, where ® denotes the Kronecker product. Namely, the training data
is balanced (a common assumption in UFM-based analyses in literature) with n = N/C nodes per

*Code is available at: https://github.com/kvignesh1420/gnn_collapse



class in each graph and (without loss of generality) organized class-by-class. Note that for K =1
(which allows omitting the graph index k) and no graphical structure, i.e., A = I (since A = 1), (11)
reduces to the plain UFM that has been studied in [25, 55, 71]. In this case, it has been shown that
any minimizer (W3, H*) is collapsed, i.e., its features have exactly zero within-class variability:

hl,=---=h},=h,, VeelC], (12)

which implies Xy (H*) = 0. We will show now that the situation in gUFM is significantly different.

Considering the K = 1 case, we start by showing that, to have minimizers of (11) that possess the
property in (12), the graph must obey a strict structural condition. For K > 1, having a minimizer
(W3, {H}}) where, for some j € [K], H} is collapsed directly follows from having the structural
condition satisfied by the j-th graph (as shown in our proof, the sufficiency of the condition does not
depend on the shared weights W5). On the other hand, generalizing the necessity of the structural
condition to the case of K > 1 is technically challenging (see the appendix for details). For that
reason, we state the condition in the following theorem only for K = 1. Note also that, showing that
the condition is unlikely to be satisfied per graph is enough for explaining the plateaus above zero of
NC metrics (computed over multiple graphs), which are demonstrated in Section 3.1.

Theorem 3.1. Consider the gUFM in (11) with K = 1 and denote the fraction of neighbors of node

Ue,; that belong to class ¢’ as s¢er ; = %%’))“ Let the condition C based on s.. ; be given by:

(scl,la"' 7SCC,1) == (Scl,na"' 7scC,n)7 Ve e [C] (C)

If a graph G satisfies condition C, then there exist minimizers of the gUFM that are collapsed
(satisfying (12)). Conversely, when either \/ApAw, = 0, or \/AgAw, > 0 and G is regular (so

that A = AT ), if there exists a collapsed non-degenerate minimizer’ of gUFM, then condition C
necessarily holds.

Remark: The proof is presented in Appendix D. The symmetry assumption on A (which implies
that G is a regular graph) in the second part of the theorem has been made to pass technical obstacles
in the proof rather than due to a true limitation. Thus, together with the results of our experiments
(where no symmetry is enforced), we believe that this assumption can be dropped. Accordingly, we
state the following conjecture.

Conjecture 3.1. Consider the gUFM in (11) with K = 1 and condition C as stated in theorem 3.1.
The minimizers of the gUFM are collapsed (satisfying (12)) iff the graph G satisfies condition C.

Let us dwell on the implication of Theorem 3.1. The stated condition C essentially holds when any
node ¢ € [n] of a certain class c obeys (S¢1,4, " , Sec,i) = (Se1,- -+, Sec) for some (sc1, -+, Sec),
a tuple of the ratio of neighbors (23:1 Scer = 1) independent of i. That is, (s.1,- - , Sec) must be
the same for nodes within the same class but can be different forA nodes belonging to different classes.
For example, for a plain UFM this condition trivially holds, as A = I. Under the SSBM distribution,
it is also easy to see that EA satisfies this condition. However, for more practical graphs, such as
those drawn from SSBM, the probability of having a graph that obeys condition C is negligible. This
is shown in the following theorem.

Theorem 3.2. Let G = (V,E) be drawn from SSBM(N, C,p, q). For N >> C, we have

cc-1

P (G obeys C) < (zn: [(Z‘)qt(l_q)ntr) T (13)

t=0

The proof is presented in Appendix E. It is not hard to see that as the number of per-class nodes n
increases, the probability of satisfying condition C decreases,® as numerically exemplified below.

Numerical example. Let’s consider a setting with C' = 2, N = 1000,a = 3.75,b = 0.25. This
givesusn = N/C = 500, p = 0.025, ¢ = 0.0017, for which P(G obeys C) < 2.18 x 107188,

In Appendix E we further show by exhaustive computation of P(G obeys C) that its value is negligible
even for smaller scale graphs. Thus, the probability of sampling a graph structure for which the
¢UFM minimizers exhibit exact collapse is practically 0.
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Figure 3: gUFM for ¢ ": Tlustration of loss, overlap, and A'C; plots for H, HA during training on
10 SSBM graphs satisfying condition C.
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gUFM experiments. For a better understanding of these results, we present small-scale experiments
using the gUFM model on graphs that satisfy and do not satisfy condition C. By training the gUFM

(based on ¢ “Yon K =10 graphs that satisfy condition C, we can observe from Figure 3 that NC1

metrics on H, HA reduce significantly. On the other hand, these metrics plateau after sufficient
reduction when the graphs fail to satisfy condition C, as shown in Figure 4. In both the cases, the
SSBM parameters are C' = 2, N = 1000, p = 0.025,q¢ = 0.0017, and the gUFM is trained using
plain gradient descent for 50000 epochs with a learning rate of 0.1 and L2 regularization parameters
Aw, = Aw, = Ag = 5 x 1073, Extensive experiments with varying choices of N, C, p, ¢, feature
transformation based on wg and additional NC metrics are provided in Appendix H. (The additional
NC metrics measure the alignment of the classes’ mean features with simplex Equiangular Tight
Frame (ETF) and Orthogonal Frame (OF) structures.)

Remark. Note that previous papers consider UFM configurations for which the minimizers possess
exact NC, typically without any condition on the number of samples or on the hyperparameters of the
settings. As the UFMs are “optimistic”” models, in the sense that they ignore all the limitations on
modifying the features that exist in the training of practical DNNs, such results can be understood
as “zero-order” reasoning for practical NC behavior. On the other hand, here we show that even the
optimistic gUFM will not yield perfectly collapsed minimizers for graph structures that are not rare.
This provides a purer understanding of the gaps in GNNs’ features from exact collapse and why these
gaps are larger than for plain DNNs. We also highlight the observation that condition C applies to
homophilic as well as heterophilic graphs, as the constraint on neighborhood ratios is independent of
label similarity. Thus providing insights on the effectiveness of GNNs on highly heterophilic graphs
as empirically observed by Ma et al. [40].

Gradient flow: By now, we have provided a theory for the distinction between the deepest features
of GNNs and plain DNNs. Next, to provide reasoning for the partial collapse in GNNs, which is
observed empirically, we turn to study the gradient dynamics of our gUFM.

We consider the K = 1 case and, following the common practice [25, 56], analyze the gradient flow
along the “central path” — i.e., when Wy = W(H) is the optimal minimizer of R” (W3, H)

>Non-degenerate minimizers in the sense that W3H* € RE*¥ is full-rank. This eliminates degenerate
‘zero’-solutions which are obtained when the regularization hyper-parameters are large.
®Each term in each of the sums is the n*" power of a number smaller than 1 (a binomial probability).



w.r.t. Wy, which has a closed-form expression as a function of H. The resulting gradient flow is:
dH,
dt

Similarly to [25, 56], we aim to gain insights on the evolution of Xy, (Ijt) and ¥ 5(H;) (in particular,

= —VR” (W}(H,), H,). (14)

their traces) along this flow. Yet, the presence of the structure matrix A significantly complicates the
analysis compared to existing works (which are essentially restricted to A= I). Accordingly, we
focus on the case of two classes, C' = 2, and adopt a perturbation approach, analyzing the flow for a
graph A = EA +E, where the expectation is taken with respect to the SSBM distribution and E is a
sufficiently small perturbation matrix. Our results are stated in the following theorem.

Theorem 3.3. Let K = 1, C = 2 and A\w, > 0. There exist « > 0 and E > 0, such that
for0 < Ag < aand 0 < |E|| < E, along the gradient flow stated in (14) associated with the

graph A = EA + E, we have that: (1) Tr(Xw (H,)) decreases, and (2) Tr(X 5 (H;)) increases.
Accordingly, NC1(H,) decreases.

The proof is presented in Appendix F. The importance of the theorem comes from showing that
even graphs that do not satisfy condition C (in the context of the analysis: perturbations around
[EA) exhibit reduction in the within-class covariance and increase in the between-class covariance of
the features. This implies a reduction of NC1 metrics (to some extent), which is aligned with the
empirical results in Section 3.1. Additionally, we highlight that since an increase in Tr(X5(H;)) and
decrease in Tr(Xy (H;)) is desirable for NC, this behavior of the penultimate layer’s features can
potentially serve as a remedy for the over-smoothing problem in GNNs (more details in Appendix A).

4 Feature separation across layers during inference

Till now, we have analyzed the feature evolution of the deepest GNN layer during training. In this
section, we use these well-trained GNNss to classify nodes in unseen SSBM graphs and explore the
depthwise evolution of features. In essence, we take an NC perspective on characterizing the weights
of these well-trained networks that facilitate good generalization. To this end, we present empirical
results demonstrating a gradual decrease of NC1 metrics along the network’s depth. The observations
hold a resemblance to the case with plain DNNs (shown empirically in [20, 55] and more recently in
[26], and theoretically in [56]). To gain insights into this depthwise behavior we also compare it with
the behavior of spectral clustering methods along their projected power iterations.

4.1 Experiments

Setup. We consider the 32—layered networks g, ¥§ " which have been designed and trained as per
the setup in section 3.1 and have reached TPT. These networks are now tested on a dataset of K = 100
unseen random SSBM graphs with C' = 2, N = 1000, p = 0.025,¢ = 0.0017. Additionally, we
perform spectral clustering using projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices [51] for each of the test graphs. The motivation behind this approach is
to obtain an approximation of the Fiedler vector of NL/BH that sheds light on the hidden community
structure [1, 4, 46, 67]. Formally, for a test graph G = (), £), the NL and BH matrices are given by:

NL(G)=1-D"Y2AD"1/2, (15)

BH(G,r) = (r* — )I - rA + D, (16)
where 7 € R is the BH scaling factor. Now, by treating B to be either NL or BH matrix, a projected
power iteration to estimate the second largest eigenvector of B = ||B|| I — B is given by:

~ (1-1) _ (x(=1)
x) = Bw(lfl), where w1 = x {x A/Ad )
< = D )],

with the vector v € R denoting the largest eigenvector of B. Thus, we start with a random normal
vector w® € RY and iteratively compute the feature vector x(’ € RY, which represents the 1-D
feature for each node after [ iterations’.

7

"Interestingly, the connection between message passing in GNNs and power iterations without the normaliza-
tion has been explored in [36]. However, projection and normalization are paramount to our setup (with random
features) for approximating the Fiedler vector.
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Figure 5: NC; (H),./\f/\é 1(H) metrics (top) and traces of covariance matrices (bottom) across pro-
jected power iterations for NL and BH (a,b), and across layers for GNNs 1/15 and 1/15 ' (c,d).
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4.2 Towards understanding depthwise behavior

From Figure 5, we can observe that the rate of decrease in NC1 metrics is much higher in wg and
wg/ (avg test overlap = 1) when compared to the baseline spectral approaches (avg test overlap
NL= 0.04, BH= 0.15) with random normal feature initialization. For wg and ¢g ', the NC1
metrics and traces of covariance matrices are tracked after each of the components of a layer: graph
operator, ReLU and instance normalization. For spectral methods, the components are: the operator
B and the normalization. Interestingly, this rate seems to be relatively higher in ¢ " than in I
and the variance of metrics tends to reduce significantly across all the test graphs after a certain
depth in wg " and wg . Intuitively, the presence of W in wg seems to delay this reduction across
layers. On the other hand, owing to the non-parametric nature of the spectral approaches, observe
that the ratios Tr(X 5 (x1))/Tr(Zp(w=D)), Tr(Zw (xV)) /Tr(Zy (w 1)) tend to be constant
throughout all iterations. However, the GNNs behave differently as Tr(X (X ")) /Tr(X5(H-1)),
Tr(Sw (X)) /Tr(Zy (HD)) tend to decrease across depth (Figure 6).

For a better understanding of this phenomenon, we consider the case of C' = 2 (without loss of
generality) and assume that the (I — 1)*"-layer features H(!~1) of nodes belonging to class ¢ = 1,2
are drawn from distributions D;, D, respectively. We do not make any assumptions on the nature
of the distributions and simply consider u(ll_l)7 ugl_l) € R4-1 and Zgl_l), Eél_l) € Rdi-1xdi1
as their mean vectors and covariance matrices, respectively. In the following theorem, we present
bounds on the ratio of traces of feature covariance matrices after the graph operator is applied.



Theorem 4.1. Let C = 2, \;(-), A\_;(-) indicate the i*" largest and smallest eigenvalue of a matrix,

_ P—q _ P ., — P +q
Br= 054 P2 = wpray P8 = nprqe and denote

TW — WT(I)TWTU) + 52 {W;(l)TW;(l) + WT(Z)TW;(U} + B3W;(l)—rw;(l)7

Tp = (W’;“) +51W;<l>)T (W;m +51W§<”).

. ) . )
Then, the ratios of traces T;F(z(i?l(;((l il))))) 7 T?( 2(:levu(/ IEID((L i1)>))) forlayerl € {2,--- , L} of a network %

are bounded as follows:

Y A (BT A (Tp) - Te(Bp(X0) XA (ZpHY) A (Tp)
)

SN (SpE(-)C RER(HED)) Sy (s Ee-0)
S A (Bw HED)A(Tw) _ Tr(Sw((XO) S A (Sw (HD)) A (Tw)
SN (Sw(H-D)) = Tr(Sw (HD)) — SN (S (HO-D))

The proof is presented in Appendix G. To understand the implications of this result, first observe
that by setting W = 0 and modifying Ty = SsW3 " TW; D Tz = g2W; 0 TW;W | we can
obtain a similar bound formulation for qu’. To this end, as Ty, Tz depend on the spectrum of

(1) . Tr(Zp(X® Tr(Sw (X
W,", the ratios Tr(z(:B]?IEI“*l)’))) ’ TI‘(E(IWW(/IEI“”)))))
«(1)T

W, Wf(l) in Tyy is not scaled by any factor that is inversely dependent on n, it tends to act as a
spectrum controlling mechanism and the reduction in within-class variability of features in wg is

relatively slow when compared to ng ". Thus, justifying the empirical behavior that we observed in
subplots 6¢ and 6d in Figure 6.

are highly dependent on /31, 3. Notice that since

5 Conclusion

In this work, we studied the feature evolution in GNNs for inductive node classification tasks.
Adopting a Neural Collapse (NC) perspective, we analyzed both empirically and theoretically the
within- and between-class variability of features along the training epochs and along the layers during
inference. We showed that a partial decrease in within-class variability (and NC1 metrics) is present
in the GNNs’ deepest features and provided theory that indicates that greater collapse is not expected
when training GNNs on practical graphs (as it requires strict structural conditions). We also showed a
depthwise decrease in variability metrics, which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers in GNNs with spectral clustering along
projected power iterations, we provided insights into this GNN behavior and distinctions between
two GNN architectures.

Interestingly, the structural conditions on graphs for exact collapse, which we rigorously established
in this paper, are aligned with those that have been empirically hypothesized to facilitate GNNs
learning in [40] (outside the context of NC). As a direction for future research, one may try to
use this connection to link NC behavior with the generalization performance of GNNs. Moreover,
note that a reduction in NC1 metrics of the deepest features implies not only that the within-class
variability decreases but also that the between-class variability is bounded from below. Therefore,
methods that are based on promoting NC (e.g., by utilizing the established structural conditions) can
potentially mitigate the over-smoothing problem in GNNs. See Appendix A for a formal statement
on the relation of NC and over-smoothing and additional discussions on the potential usage of graph
rewiring strategies for this goal.
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A Discussion on Oversmoothing and Graph Rewiring

In this appendix, we briefly discuss oversmoothing and graph rewiring from a neural collapse
perspective along with some limitations and scope for future efforts.

A.1 Oversmoothing

Repeated message-passing operations on the node features across the depth of a GNN lead to the
‘oversmoothing’ phenomenon, which leads to poor node classification performance [14, 15, 32, 47,
62, 64]. We adopt the formal definition of oversmoothing by Rusch et al. [50] to our setup as follows:

Definition A.1. (Oversmoothing): For an undirected, connected graph G = (V, &) with |[V| = N
and I-th layer hidden features H' € R“*N | a function pu : R%*N — R is called a node-similarity
measure if it satisfies:

1. 3c € R% with H; = c for all nodes i € V <= u(H) =0, for H € Ru*N
2. p(H+T) < p(H) + u(T), forall H, T € R4*N,

Oversmoothing with respect to |1 is now defined as the layer-wise exponential convergence of the
node-similarity measure p to zero, i.e,

p(HY < Cre= % forl =1, .-, L with some constants Cy,Cy > 0.

Observe from the definition that as the depth [ increases, all the node features converge to a single
feature vector c¢. This implies that both Sy (HE=1), E5(HE~1) — 0. In this context, if the
penultimate layer features exhibit neural collapse during training, then Xy, (HX 1) decreases, and
> 5(HL1) is bounded from below. Thus, potentially addressing the oversmoothing problem.

To this end, in the unconstrained features setting, Theorem 3.1 indicates that the graph must satisfy a
strict structural condition for having an exact neural collapse solution as a minimizer of the empirical
risk. Additionally, we obtained conditions on the amount of regularization needed for X 5 (H*~1) to
increase along the gradient flow in Theorem 3.3 (also see Appendix F). However, since we cannot
expect graphs to satisfy this condition (Theorem 3.2), a potential alternative is to explore graph
rewiring techniques, which are discussed below.

A.2 Graph Rewiring

Graph rewiring techniques aim to propagate messages between nodes via computational graphs that
are suitable for the task [5-7, 19, 21, 23, 24, 57]. One of the popular examples is the Personalized
PageRank (PPR) and Heat kernel (HK) based diffusion on graphs by Gasteiger et al. [21]. This
approach leverages the diffusion matrix to facilitate message-passing between nodes many hops apart
in the actual graph. However, the graph resulting from the diffusion operations tends to be quite
dense. On the other hand, recent works on addressing over-squashing in long-range dependent tasks
leverage the “curvature” information for rewiring [57].

In the context of our paper, one can aim to design a rewiring technique that can modify the input graph
to satisfy condition C. In previous work, Ma et al. [40] generate synthetic graphs based on CORA by
ignoring the original graph and adding edges between nodes to satisfy certain uniform neighborhood
distributions. Alternatively, exploring an edge re-weighting scheme as proposed by Yan et al. [64]
can also be an interesting research direction. From a scalability perspective, a neighborhood sampling
technique based on condition C can also aid in better representation learning. Additionally, note that
condition C is not limited to homophilic graphs and can be extended to heterophilic settings as well
[38, 73], provided the sum of slices of the columns in A € RV*N are the same for all nodes in a
class/community (refer to the necessity condition in the proof of Theorem 3.1 in Appendix D for
more details). We believe that further research in this direction can shed some light on Conjecture 3.1
and improve our understanding of the nature of global minimizers.
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A.2.1 Measuring neighborhood similarity

A key question that pops up when rewiring a graph to achieve condition C is a trackable metric for
node neighborhoods. The ‘Cross-Class Neighborhood Similarity (CCNS)’ metric by Ma et al. [40]
serves as a good starting point to numerically track the cosine similarity in intra-class neighborhoods
and dissimilarity of inter-class neighborhoods of nodes. The definition from Ma et al. [40] is given as:

Definition A.2. Cross-Class Neighborhood Similarity (CCNS): Given a graph G and labels y for all
nodes, the CCNS between classes c,c is s(c,c’) = m Diev, jev,, cos(d(i),d(j)) where V.

indicates the set of nodes in class ¢ and d(i) indicates the empirical histogram (over C classes) of
node i's neighbors’ labels, and the function cos(.;.) measures the cosine similarity.

A limitation of this metric is that the CCNS between two classes is measured as an average of
the cosine similarity of node neighborhood histograms while failing to incorporate the variance of
these neighborhood similarities. Now, note that when condition C in Theorem 3.1 is combined
with CCNS, we can ensure that the variance of the cosine similarities is zero for any pair of classes
¢, € |C]. Overall, better metrics based on different similarity measures and the condition C, along
with efficient rewiring techniques to maximize/minimize such metrics can be a valuable future effort
in the community.

B A Brief Note on Exact Recovery of Planted Communities

Phase transitions in recovering the planted communities of the Stochastic Block Model (SBM) graphs
have been extensively studied in the literature. In this context, ‘exact recovery’ indicates a perfect
assignment of nodes to their respective communities/clusters. For the bi-clustering problem (i.e.,
C = 2), one can date back to the works of Bui et al. [13] for min-cut based clustering, and Boppana
[10] for a spectral clustering based approach (Refer to [1, 2] for a historical perspective and additional
references on this topic). Along these series of developments to find thresholds in terms of p, ¢ for
the exact recovery of communities, the seminal work of Abbe et al. [3] leveraged an information
theoretic perspective to identify sharp thresholds in the logarithmic degree settings. The requirement
for logarithmic degree can be understood from the following observation. If we consider p = g, then
the SBM is essentially an Erdos-Renyi (ER) random graph model with edge-connection probability

p. Based on the results by Erdss et al. [17], if p = < l(;\g/ N thena randomly sampled ER graph from

ER(N, CI(;\% N is connected with high probability if and only if ¢ > 1 (see section 2.5 in [1]). Thus,
in order to achieve exact recovery, one must ensure that the SBM graph is connected along with some

over-sampling of edges. In the Symmetric SBM case, when p = 2 1‘;\% N og= bl‘ﬁ N this condition
can be represented using the |v/a — \/B| > /C inequality (see Theorem 13 and the following remarks
in [1]). Finally, observe that from a Neural Collapse perspective, we sample SSBM graphs in this

regime to ensure that a GNN can achieve zero node-classification error and reach TPT.

16



C Additional neural collapse metrics

In this appendix, we define additional NC metrics pertaining to NC1-3 for our problem setup.

e Variability collapse in neighborhood-aggregated features HA: We track the within- and
between-class variability of the “neighborhood-aggregated” features matrix HA by defining the

covariance matrices Xy (H;&) , 2B (HJAX) as:

s (1) = L5 ) ()
1 < TN (N AT
o () - 15 (6 52) ()
To this end, we define the N'C; (H ) ,NC1 (HA) metrics as follows:
e () - Lme(my (0R) 2, (1R)), e, (1) - o (IR

Tr (EB (HK))

Their primary purpose is to track the within-class variability of neighborhood aggregated features
HA relative to their between-class variability, both now dependent on the topological structure of
graph G. The motivation to track these features arises from the P2 condition in the proof of theorem
3.1 in Appendix B. Essentially, this condition states that the neighborhood aggregated features should
collapse to their respective class means for the minimizer to satisfy NC.

o SNR for variance collapse: We track the following ‘Signal-to-Noise’ ratios pertaining to variability
collapse of H and HA:

SNRNC,) = Wi(He1,)|, (19)
RNACE H®1T)HF
W, (H 1]
SNRNCY) := H 2< >H (20)

v a1 )

These SNR metrics provide an alternate perspective for us to empirically analyze the desirability
of variance collapse. Here H := [Hl e HC] € R4*C and ﬁN = [Hjlv . Hg} € R4xC
are the class-mean matrices without and with neighborhood aggregation respectively.

o Convergence of weights to a simplex ETF: To track the convergence of the weights W1, Wy to a
simplex ETF structure, we define N'CZTH (W), NCETF (W) as:

W, W/ 1 1
NCFTE(W,) = LRAS I (IC - 1012> 1)
W W, c—1 c B
W,oW.J 1 1
NCETE(W,) = 22 (Ic — 1C1T> (22)
2 ( 2) HW2W2THF C 1 C C B

o Convergence of weights to an Orthogonal Frame (OF): To track the convergence of the weights
W1, W, to an orthogonal frame structure, we define NCPF (W), NCS¥ (W) as:

W, W/ I
NCEF (W) = || el — =2 23
F WS Iwi T, Ve, -
WoW, I
NCOF (W) = || ——22 ¢ 24
2 ( 2) || |W2W;—HF /*C B ( )
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o Convergence of features to a simplex ETF: To track the convergence of the features H, HA t0a
simplex ETF structure, we define NCFTF (H), NCFTF (HA) as:

H'H 1 1
NCEFTE(H) = — (I -1 1T> 25
F F
~ ﬁNTﬁN 1 1
NCFTE(HA) = — <I -1 1T> 26
2 ( ) ﬁNTﬁNH C_1 C C cLio ( )
F F
where H := [Elfﬁg Hcfﬁg]ERleCandﬁN:: {Ejlv_ﬁg Hg_ﬁg}e

R%*C are the re-centered class-means without and with neighborhood aggregation respectively.

o Convergence of features to an OF: To track the convergence of the features H, HA to an OF
structure, we define N'C$¥ (H), NCSF (HA) as:

[
H H Ic
NCOF(H) = — - = (27)
H H e
mH|, VO,
—NT—=N
~ H H Ic
NCOF(HA) = =TT — = (28)
" ' Ve
mUH |, VO,

e Generic alignment of weights and features: To track the alignment of W with its dual H, we
define NC3(W 1, H) as:

—T
W H
il [[H g ||
Similarly, to track the alignment of Wy with its dual HJAX, we define N'C3(Wo, HJAX) as:

—=NT

~ W, H
NC3(Wo, HA) = — (30)
W2z HﬁNH
Flp

o Alignment of weights and features with respect to simplex ETF: To track the alignment of W
and its dual H with respect to a simplex ETF, we define NCFTF (W, H) as:

NCFTF (W, H) =

W, H 1
C

H_ Io - 11c12) 31)
|wam| Vet
F F

Similarly, we track the alignment of W and its dual HA with respect to a simplex ETF using:

NC?)ETF(WQ,HK) = c

W,oHN 1 <

1
Wi - Ic—lclé) (32)
2
F

F

e Alignment of weights and features with respect to OF: To track the alignment of W and its
dual H with respect to an OF, we define NC$¥' (W1, H) as:

W, H I

NCOF (W1 H) = || — =< (33)

W.H|, VT,

Similarly, we track the alignment of W and its dual HA with respect to an OF using:
=N
~ W-oH I

NCET(Wy HA) 1= || — —— (34)

[w=r], Ve

F
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D Proof of Theorem 3.1

In this appendix, we present the proof for Theorem 3.1 by analyzing the sufficiency and necessity
conditions of the graph structure given by:

(301,17"' 7SCC,1) == (Scl,na"' 7scC,n)a Ve € [0]7 (C)

where the fraction of neighbors of node v, ; that belong to class ¢’ as s¢r ; = %7”;3)“

Proof sketch: Our aim is to identify the structural properties of a graph G (especially A), such that
the features H, which exhibit neural collapse are indeed the minimizers of the risk. First, we obtain
a lower bound for the risk using Jensen’s inequality and show that, for a ‘collapsed’ H to be the
minimizer, it is sufficient if the graph G satisfies condition C. However, the inequality is applied on
a convex function of {e.;} (standard basis vectors) that is not strictly convex, and so, this analysis
does not imply necessity. Thus, we show the necessity of condition C for a ‘collapsed” H to be a
minimizer of the risk by analyzing the optimality conditions of the stationary points. Additional
details of the sketch for the ‘necessity’ argument are also presented.

Sufficiency: We begin by revisiting the risk R”' for K = 1. For simplicity, we drop the superscript
F’, subscript k, and treat the unconstrained features of the corresponding graph G = (V, €) as H,

and denote A = AD~!. The risk R(Wo, H) is now given by:

AW,

~ 1 ~ 2 A
R(Wa, H) = 50 |WoHA - Y|+ ZH[HIE + 252 W (35)

~ A
=t L(W>, H) + =772 [Wy 7.

Now, by denoting e, ; € RY as the one-hot vector associated with the index of the feature column
h.; (among the N feature columns), we lower bound £(W3, H) as follows?:

. 1 - 2\
LWz, H) = o [W2HA — Y|+ S0

C n
LN Z Z HWQHK-eC,i — Y

c=1i=1
1 ¢ N — ~
= ﬁ Z E Z HW2HAec,i — Y
C
o wanal - > m

i
2
F c
1 1 n N )\H c 1 n 2
ﬁ;n WQE;hcﬂ'_y 72:: E;hc,z

Note that Jensen’s inequality, which we used above, is applied on a convex function of e ;’s that
is not strictly convex. Therefore, the lower-bound in equation 36 can be attained despite having
different e, ;’s, e.g., when the properties P1 and P2, which are stated below, hold V¢ € [C]:

n

Ty i |He, |
+ A Hec,i 2
r 2 c=1 7=1

2 c n

2 ZZZHHeC'LHQ (36)

2 n

2
1
- § €cq
n

2

| \/

WQHA Z €ci —Ye

2

«Pl:h,, = =h., =h,
«P2:hY, = =h¥, =k

The first property P1 indicates zero intra-class variability of H, i.e., ¥y (H) — 0, and the second
property P2 indicates zero intra-class variability of HA i.e, ¥y (HA) — 0.

Recall condition C:

SWhen K > 1, observe that R(Wo, {H} ) = X L(Wy, Hy) + AVQVZ |W2||5.. Thus, each of the
L (W2, Hy) terms can be lower-bounded independently, resulting in a lower-bound for ﬁ(Wg, {H} ) itself.
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- C: (861,17 T 7SCC,1> = = (Scl,'ru e 7SCC,n) = (5017 e 7SCC)s

where (s.1,- - , Scc) (shared by any node ¢ € [n] in class ¢) represents any suitable tuple of the ratio
of neighbors per class”.

We just need to show that if C is satisfied then H with both P1 and P2 exists. Equivalently, we
can assume P1 (which is in the “feasible set” of the optimization) and show that then C implies P2.
Indeed, in this case

N ZNC(”CJ') hej + ZNC';éc(vc,z) he

h), = 37
’ WV (vei)]
. ZNc(vc,i) h, + ENC/#C(vc,i) he/ . i s.h (38)
N (i) =
Therefore P2 holds: h?Y;, = --- = h, = Hjcv. Accordingly, C is sufficient for having H that obeys

P1 and P2, and thus minimizes the risk.

Sketch for ‘Necessity’: The goal of this analysis is to nullify the possibility of having a minimizer
that exhibits collapse (i.e., H which satisfies P1) for a graph that does not satisfy condition C. We
do so by analyzing the optimality conditions of the stationary points satisfying P1, and obtaining

conditions on the A matrix. Specifically, we obtain a system of linear equations that is shared by all
n nodes within a class, which in turn leads to condition C. Thus, proving its necessity.

Necessity: Analysing the necessity of condition C is relatively more complicated than the sufficiency
case. Nonetheless, we prove the necessity by considering K = 1, and by leveraging the idea of

a tight-convex alternative for 7€(W27 H) as been used in [55, 74] for the conventional UFMs!0.
Formally, assuming d;,_; > C, we minimize:

~ 1 ~
R(Z) = 55 1ZA = Y7+ Az)|Zl.. (39)

where Az = \/AgAw,, Z € RE*Y 'and | - || denotes the nuclear norm. Namely, if Wy and H
minimize the former, then Z = WsH minimizes the latter, which follows from:

. A A
Vil = oy (R Wl 2 ). @0)

Wy, H s.t. WoH=Z 2

We start with providing necessity analysis for the case Az = 0. Later, we generalize this analysis to
address the case Az > 0.

Analysis for Az = 0: When Az = 0, observe that ZA =Y = [yi,--,yc]®@1] =Ic®1, gives
us the minimum value for R (Z). Here y.. € R represent the one-hot label vectors corresponding to
nodes of class ¢ € [C].

Now, note that NC1 implies H=H® 1] <= Z =Z® 1] (where H € R¥%-1%C and Z =

W,H € REXY). Thus, by leveraging this Kronecker structure of Z = Z® 1, = [zy,...,2¢]® 1]
andY = [y1,...,yc] ® 1}, we formulate:

1 1
al,l e a/{l/,l o ac)l e a’rCL'71
- T - T
[Zl@ln ZC@ln} 41
I n I n
al’C e al’C e aC’C e aC,C
_ T T
=yiol) - ye®1]]

where a’ , € R™ represents the slice of columns in A corresponding to node i € [n] belonging

to class ¢ € [C] and forming edges with nodes from class ¢’ € [C]. Additionally, since A is the

Note that the tuple can be different for nodes belonging to different classes, but must be the same for nodes
within the same class.

"The K = 1 setting allows us to employ analysis strategies based on a tight convex formulation, which is not
applicable for K > 1 settings. Specifically, we cannot generalize the problem stated for Z = W2>H to multiple
{H}} as they share the same W.
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normalized adjacency matrix, we have s.- ; = 1, a’ a, » € R, which represents the sum of elements
. Z . . .
ina;, .. This gives us:

C
S s = 1, (42)

=1
because A = AD~! is the degree- normahzed adjacency matrix. Now, multiplying the matrix
7 =7 ® 1] with the first column of A gives us:
$11,1Z1 + -+ - + S10,1ZCc = Y1 (43)
Similarly, due to the block structure of Z,Y, we get forall ¢ € [n] and ¢ = 1:
511,421 + -+ + S1C,iZc = Y1 (44)

where 511,21 + - - - + s1¢,:Z¢c = Y1 itself can be written as C' linear equations (one for each of the
vector components) as formulated below:

Z11 tt Zoa S11,4
: Sl = (45)

zZi,c - Zo,c| |s10
Now, by treating {511,,', cee SlC,i} as the C unknowns which satisfy equation 42, observe that the
solution to this linear system remains the same for all nodes belonging to class ¢ = 1. This implies:
S101 =" = S1ems V€ [C], (46)

The generalization of this result for all C classes essentially indicates that:

(sc1,1,7 7 1 8cc1) =+ = (Setns*+ , Secon), Ve € [C, (47)

which exactly represents condition C as stated above.

Analysis for Az > 0: When H exhibits neural collapse, we have the optimality condition for the
minimizer of equation 39 based on the sub-differential of the nuclear norm as follows:

1 ~ ~
= (ZA - Y) AT+ AZUZV} ~0
N
L (54T T\ AT T T (48)
— +(Z21)A-Toe1]) AT +0,U Ve =17 =0,
N((®n) c®1, +AzUzV5 ® fn
Where Z € R¢*Y is the matrix of “collapsed” columns of Z, and Uy € R“*¢ vV, ¢ RV*x¢
represent the left and right singular vectors of Z. Add1ti0nally, since Z holds a “block” structure, we

represent V), = V% \}11, where V- € RE*¢
1

e Matrix Quadratic Form: By considering — Nz U ZV% ® ﬁerL = B, we get:

(ZA -Y)AT =B, (49)
as our optimality condition. Analyzing this condition along the same lines as Az = 0 is non-trivial
due to the outer product of AAT. To address this complication, we leverage the fact that SSBM
graphs tend to be regular with a high probability as N increases. Thus, by assuming that A is
symmetric, we obtain the following matrix quadratic form:

ZA2 - YA -B=0. (50)

As Z is rectangular, we can take the pseudo-inverse and obtain:
A? —7ZiYA -Z'B=o. (51)

Since Z'Y,Z'B € RV*N we can treat A as the variable matrix and leverage the results on
quadratic matrix equations by Higham and Kim [27]. Especially, we leverage theorem 3 in Higham
and Kim [27] and employ a generalized Schur decomposmon technique to obtain a condition on
A (as shown in the following lemma). This condition on A allows us to obtain a system of linear
equations that are shared by all n nodes within a class (similar to the Az = 0 case). Thus, establishing
the necessity of condition C.
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Z'B 7'y 0 I
decomposition of ¥, G be given by:

Q'FK=T, Q'GK =E,

I
LemmaD.1. Let F = [ 0 } ,G = {I O} =1 R?N*2N_ and the generalized Schur

K1 Ky
Ko Koo
block matrix with blocks of size N x N. Then A satisfies: K11 A = Ko;.

where Q, K are unitary and T, E are upper triangular. K = [ ] € R2VX2N 45 g2 x 2

Proof. The proof is relatively straightforward once we observe that A satisfies:

I I~
F {‘d =G [K] A. (52)
Now, the condition Kufk = Ko is a direct consequence of theorem 3 in [27], which leverages the

1
QR decomposition of [ f&} using K as the orthogonal matrix. O

o Kronecker structure of F': To leverage the relationship between A and K as per Lemma D.1, a
closer look at F is required. Observe that:

F_| 0 I ] f[z'o z'z] [zt o]]0o Z (53)

~|z'B Z'Y|  |Z'B z'Y| |0 zf||B Y|°
By expanding the Kronecker structures of Z, B, Y, we get:
F:[ZT 0“0@12 Z®1;}

0 Z'| [Be1l) Io®1)
no SO (54)
o - 0 Ziz, - Z'zo 217
- ZTbl ZTbC zTel ZTeC n-
Observe that the pseudo-inverse Z' can be represented by:
. 1
— Tr7T
7' =(V;® ﬁln)SZUZ (55)
which also holds a “block” structure (but with respect to rows, instead of columns):
) v VISTZU}
zh=— | |slul=— : . 56
\/ﬁ .T Z Z \/ﬁ . T . ( )

Where v; € RY,Vj € [C] and v] is the j*" row of V5 € R®*C. With this formulation, a
matrix-vector product term in F, for instance ZTE, i € [C], can be given as:

v S, UL,

Z'b, = —

NG 1,. (57)

= (V4SLULb) ®

Sl-

T T. TH
VCSZUZbi Nx1

By considering the following notational simplifications:
b; = V,SL, U b;
7 = V,SlUz, (58)

Ei = VZSTZU;ez;
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we can represent F as:

B ) 0 Ziz, - Z'zZo T
L _ZTE oo Zibe Ztey - Zlec ®1,

__~ 0 e 0 El®% zc®ﬁ1n o1 “

T b ® <1 .. ® L1, & ® R | n (59)
|71 Vnn f 1 f LS nn
o --- 0

= | ] 1n®1T
by - bo & 20x2c

o Schur decomposition of F: For notational simplicity, let :

~ 1
F=F® —1,®1]
®\/ﬁ ®1]
_ 0 - 0 7 - 7o
here: F = |~ = = ~
Where I:bl i bo & - &

(60)
2Cx2C.

Since G = I, the diagonal entries of S must equal the eigenvalues of I. This condition is satisfied
when Q = K. This also simplifies the generalized Schur decomposition for square matrices F, G

to the standard Schur decomposition of F. Now, let the schur decomposition of F € R2V*2N Fe
R2C*2C be given as:

F=KTK',F=KTK"'. ©61)

Here K, T € R2V*2N gnd K, T € R29*2C To find a relation between K, T, K, T, we can
leverage the Schur decomposition properties of Kronecker products [53, 59] and obtain:

sz‘@%ln@lz (62)
_Fae %1711; (63)
KTK' = (KTK") ® (JOJ7) (64)
~ (KeJ) (T2o) (K 2Jd7). (65)

Where J, O € R™ "™ are unitary and upper triangular respectively, and are the Schur decomposition
factors of ﬁlnlz e R"x",

e Linear systems: In matrix form, K = K ® J can be represented as:

I212 ®J
~ 66
Ky ®J (66)

K ©J
K=| =2
{ Ko ®J

]QNXQN

Where K11, K2, Ka1, Koz € REXC. Now, observe that K17 A = Ko (based on Lemma D.1) can
be reformulated as:

(IN(H ®J> A= (R21 ®J) . (67)

Now, as per equation 41, we leverage the same line of analysis that we followed for the Az = 0 case.
For notational simplicity, we represent the unitary matrix J € R”*" in column format as follows:

J=01 - Jnls (68)

where j; € R™, i € [n] are linearly independent vectors. Now, by multiplying the first row of I~<11 ®J
and the first column of A, we get:
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ai,i

an,1
[ (Ki)ia i - dnd - Kiwelin - dal ] : = (K21)1.1j1-
a(Cc-1)n+1,1

L aCn,1 i
This translates to the following linear equation:

a11(Ki1)11§1 + - + @t (Ki1)1ajn + - )
+‘1(0—1)n+1,1(K11)1,cj1 + -t acni1(Kii)i,cjn = (Ka1)1,1d1-

Due to linear independence of vectors j;, i € [n], we obtain the following n equations pertaining to
the coefficients of j;:

a1 (Ki)i+---+ a(C—l)n+1,1(I~(11)1,C = (K21)1,1

az1 (K1) +-- + a(C—l)n+2,1(I~<11)1,C =0

an,1(I~<11)1,1 +- 4+ aC’n,l(Kll)l,C =0.
By adding all these equations, we get:

811,1(K11)1,1 + -+ 810,1(ﬁ11)1,c = (R21)1,1~ (70)

By following the same approach for the other rows of I~(11 ® K, and the first column of 1/31, we get
the following system of equations for node vy 1:

(f(n)m (f(n)l,c $11,1 (K21)1,1
: . : : = : . (71)
(IN(11)C,1 e (Ku)c,c S10,1 (I~<21)c,1

The same line of analysis can be applied for all the rows of I~(11 ® K, and the second column of _/A&,
to get the following system of equations for node v o:

(I~<11)1,1 (I~<11)1,C 511,2 (I~<21)1,1
L : =] (72)

(Ki)en - (K)ol [5102 (Ka1)ca
Thus, it is straightforward that the systems of equations are the same for all n nodes belonging to
class ¢ = 1, as the procedure of row and column multiplication remains the same. Thus, the C

unknowns in these linear systems have the same solution for all n nodes belonging to class ¢ = 1. It
is straightforward to extend this to any class ¢ € [C] and obtain:

(501,17"' 7SCC,1) == (Scl,na"' 7scC,n)a Ve € [0]7 (73)

which exactly represents the condition C as per the theorem.
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E Proof of Theorem 3.2

In this appendix, we derive the upper bound on the probability of sampling the desired neighborhood
for condition C.

. .. . N N (e, )| . Ne(vea)l :
Recall that to satisfy condition C, the requirement w.r.t A is for ( N (o] TN )] ) , Vi € [n]

to be the same for a given ¢ € [C]. To this end, we are primarily concerned with the probabilities of
edges between nodes v;,vj,1 <4 < 7 < N. Thus, as per preliminaries, the probability matrix P can
be given in block form as:

p]-nl;br q]-n]-;zr e q]-nl;br
; p]-n]-;lz— e q]-nl?—zr
P = :
T
Plaly | Non

Where we are only concerned with the diagonal and upper triangular values''. Now, for a pair of
classes ¢, ¢’ € [C], we are concerned with the block probability matrix p1,, 1, when ¢ = ¢ and
q1,1,) when ¢ # ¢ for sampling edges between nodes. Observe that sampling edges within a
community based on diagonal block matrix p1,,1, is the same as sampling an Erdos-Renyi graph
with edge probability p. Similarly, sampling edges between communities based on off-diagonal block
matrix ¢1,,1, is the same as sampling a bipartite graph with edge probability g.

Concentration of pairwise neighbor ratios: To begin with, consider the set of nodes belonging
toclass ¢ € [C] as Q. = {vc1, -+, Uen }. Now, to satisfy condition C, the fraction of neighbors of
nodes v, ;, Ve, j, % # j € [n] that belong to class ¢’ € [C] should be equal, i.e Sce ; = Scer,j. Formally,
this leads to:

INer (ve,i)] _ ‘NC’(UCJN — INer (ve,i)] _ N (ve,q)]
IN (ve,i)] IV (ve,5)] Ne(ve )| TN (ve5)]

Without loss of generality, observe that | N, (v, ;)| is the sum of n independent Bernoulli random

variables cl’l,Vl ¢ [n] with P(<! = 1) = ¢. This implies that E|NV (v.;)| = ng. Now, we appl
Ye, Ve,i q p , q pply

%

the Chernoff bound to obtain:
P (|INes (ve0)| — ng| > dng) < 2=t

Where § € [0,1] and ¢t > 0 is a constant. By choosing § = 1/% for sufficiently large
r>0,N>>C,wegetd =0(1)asq= % . Now, by taking a union bound over all the nodes
in the class, we get:
P (Vi € [n], |[Ne (ves)| — ng| > dng) < 2ne~(r+Hnn
Thus, with a probability at-least 1 — 2n~", we get:
Wer(vei)| = ng (1 £ 0O(1))

By applying the same line of argument to |\ (v, ;)| and assuming a sufficiently large value of n, we
get with a probability at-least 1 — 4n~" that:

Noeil

Wer (ve )]
To this end, we assume that [N, (ve;)| = [Ne(ve,;)|, Ve € [C],i # j € [n] with a high probability
for the rest of the analysis. The consequence of this assumption is that all the nodes belonging to the
same class have the same degree. However, it is not necessary that the graph itself is regular.

Off-diagonal blocks: Without loss of generality, consider the set of nodes belonging to a pair of
classes c # ¢ € [Clas Qe = {ve1, - ,Ven}, Qo = {Ver 1, -+, Vs } Tespectively. Now, we need

""Due to symmetry, one can equivalently consider the lower triangular values and proceed with sums of
columns instead of sums of rows.
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to ensure that every node v, ; € ). is connected to (say) exactly ¢, € R,0 < t.r < n, nodes in Q..
If Eglz (tccr) indicates that such an event occurs for node v, ; € €2, with respect to €./, we can formally

represent it as the sum of n independent Bernoulli random variables ij i€ n], V5 e{l,...,n}

with P(Wz:zfj = 1) = g sum to ¢, as follows:

C, n ’ n— ’
P o) = ([ a1 .

Now, we are concerned with an intersection of events pertaining to all nodes in §2., which ensures that
each node has exactly .. neighbors in Q.. By considering the event ES (t.r) = (i, Egi(tcc/)
and leveraging the fact that edges are sampled independently, we obtain:

P (Eg/ (tcc’)) =P (Zé Egji(tcc/)> = [(tZ) gtee' (1 — q)”‘tca] "

Now, to account for all possible values of 0 < t..» < n, we compute the probability of the union of
events B¢ = J]' _o ES (te) as:

p(E)< Y [(t" )qwl - q>}

’
- cc
to.r=0

Note that this result can be applied to any distinct pair of classes ¢ # ¢ € [C] based on the

C) _ c(c-1

characteristics of the SSBM. Since we have (2 — combinations of distinct communities,

the probability of occurrence of all the corresponding events is given by:

p(cﬂl ﬁ E) gcf[l ﬁ zn: Ktzl)qtm'(lqwtw’r. (74)

c=1 c’=c+1 c=1 c’=c+1t..,=0

Observe that the binomial expansion of (¢ + 1 — ¢)™ is given by:

l=(g+1-9"= > (n )qtcc'(l —q)" e, (75)

t..r=0 tCC/

cec

where each term, say f(tcer) = (,",) ¢ (1—¢)" "' in the sum is strictly less than 1. Additionally,

n

= Y fle) | = > (k N k) [T Ftee)te (76)
to =0 k>0 N0 TSy g

ko+--+kn=n,ko,

Z Flteer)" + Z (ko n k ) H Fter) e
toor=0 ) /oy

kot +kn=n,0<ko, ,kn<n 1=0
(77)

cc

This gives us:
n n n n kt l
Soster=1- % (") e aw
teoer=0 Ko+ +hkn=n,0<ko, kn<n toer=0

Observe that there are n + 1 terms in >, _, f(tsr) = 1 and the maximum value that f (.. ) can

take is < 1. Thus, each of the f(t..) terms tend to zero after taking the nth power, as n. — 00,
leading to ;" _ f(teer)™ — 0.

Diagonal blocks: Handling the exact event probabilities when ¢ = ¢’ € [C] is not so straightforward
due to symmetry constraints. To begin with, observe that the sum of n independent Bernoulli random

variables fygf,z € [n],Vj € {1,...,n} with P(7§f = 1) = p sum to t.. is given by:

c _ - c,J _ n tee _ n—tee
P (E¢(tec)) =P ;v =le | = (tm>p (1-p)
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Since IP’(EC ( c)) for € [n] is conditional on P(EY ;(t..)), the desired probability for the
event ES(tee) = Niey ) can be formulated as:

rj >
E ’Z
re (ﬁ )
B n—1
=P (Eﬁ,l(tcc)) P ( 5,2(tcc)!E§,1(tcc)) P (Eg,n(tw) m E&'“CC))
i=1

Obtaining a clean expression for the diagonal case is complicated by the fact that the events
Eg o (tee), B o(tee), -+, BE,,(tee) are not independent. Since we have already shown in the off-

diagonal case that the PP (ﬂf;ll ﬂgzc 41 Eg/) — 0 as n — oo, we proceed with the simpler

inequality P (E¢(t..)) < 1 to convey the message of this theorem. Thus, we estimate the probability
of the intersection of all events pertaining to ¢, ¢’ € [C] as:

(A7) =(T i, S ()0 ])

c=1lc'=c c=1 ¢/=c+1t,.,=0
c c n N

— P (ﬂ N E) < (Z K?)qtu —q)"—t} ) (79)
c=1c'=c t=0

E.1 Tllustration with exhaustive combinations for a small graph

A key assumption in our theoretical analysis has been N >> C, which allowed us to assume that
nodes belonging to the same class have the same degree. However, for an intuitive understanding
of condition C, let us consider an extremely simple graph with N = 4, C = 2. This leads to the
following adjacency matrix formulation:

Y11 Y12 713 714
A= |72 722 723 V24 (80)
Y13 Y23 733 V34
Y14 Y24 Y34 744
Where +;,; represents a Bernoulli random variable depending on p, q. We defer assigning values to p, g
until the end as we are interested in the ‘realizations’ of A that satisfy condition C. Observe that there
are only 10 random variables in A due to symmetry (4 on the diagonal and 6 on the upper-triangular
part). Since each can either take a value of 0, 1, there are 1024 unique realizations of A. To this end,
condition C can be represented as:

Y11 + Y12 _ Y12 + Y22 and
Y11 + 712 713 Y14 Y12 + Y22 + Y23 + You
Y13 + V14 _ Y23 + Y24 and
Y11+ Y12 + 713 +v1e Y12 + Y22 + Y23 + Vo4
(81)
Y13 + 723 _ Y14 + Y24 and
Y13 + Y23 + VY33 + V34 Y14 + Y24 + V34 + Va4
Y33 + V34 _ Y34 + Va4

Y13 + Y23 + Y33 + V34 Y14 + V24 + V34 + Yas
Based on our simulations for graphs with self-edges, less than 1,/10 of the 1024 realizations satisfy
this property. A few are illustrated below:

1 0 1 11 0 1
1110 1110
A=l 1 10 A=lo1 01
1 0 0 1] 1 0 1 0f
10 1 0] 10 0 1
010 1 01 1 0
A=110 10" A=lo1 01
0 1 0 1] 1 0 1 0f
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By considering p = 0.2, ¢ = 0.05, the probability of sampling such A is ~ 0.046. Interestingly,
when p = 0.05,¢ = 0.2, the probability increases to ~ 0.06. Now, by increasing the density of
edges in the graph, i.e., when p = 0.4,¢ = 0.1 and p = 0.1,q = 0.4, we get probability values
~ 0.166, 0.178 respectively. Now, let us consider the case where N = 8, C' = 2. In this case, we
have 36 Bernoulli random variables ;;,7 < j € {1,--- ,8}. The number of possible values for A
turns out to be 236 = 68,719, 476, 736, for which the brute force approach to validate condition C is
not efficient. To this end, we follow a simple Monte-Carlo approach and draw 1, 000, 000 random
graphs from SSBM(N = 8,C = 2,p = 0.5,¢ = 0.2). We observed that only ~ 800 graphs out of
1,000, 000 satisfied condition C, i.e., a probability of ~ 0.0008. A few are illustrated below:

0 1 1 100 0 0 11 1 101 0 0
11010000 111100710
10110000 11111000

A_ll 1100000 {1 1110001
“loooo0oo0o11o0" *loo100111
00001111 100071 101
00001111 01001011
0000011 0 000 1 1 1 1 0
0 1 100 1 0 I M 1 1.0 1 1 0 0
11010111 10111010
10111110 110107101

A_l0L LT 0o 1 o1 1100 11
“loo1 1010 1" * 11001110
11101011 10101011
01110111 01011101
1101 1 1 1 0] 001 10 1 1 1]

Thus, the takeaway is that, even for small-medium scale homophilic and heterophilic SSBM graphs,
random graphs that satisfy condition C are rarely sampled.
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F Proof of Theorem 3.3

In this appendix, we analyse the gradient flow stated in (14) and establish the results stated in
Theorem 3.3. Our analysis is inspired by the one in [56], but significantly differs from it, as we need
to overcome the complexity introduced by the graph structure matrix.

Based on the setup of gUFM for GNN /7 ", we analyze the risk R’ given as follows:

A, Aw,
R7 (W, () KZ(2N [wart & = x| 2 ) + 25wl

By taking the derivatives of R”" with respect to (W, Hy,), we get:

ORF' 1 &

= — (W2Hk.&]€ - Y)(H;@Kk)T + )\W2W2
OW, KN P

ORF
OH, KN

N . 1
(W (WH AL — Y)A]] + EAHka

. RF . .
Now, by setting %RW = 0 we get the closed form representation of Wy in terms of H.

R 1 & A AT
s = e 2o (WeHkAL - Y)(HAQT + hw, Wa =0
k=1

K
]. -~ -~ ~
— = (WoH AGATH] — YATH] ) + Awy NW3 = 0
k=1

K K
1 ~ 1 ~
= W, [K E_ijAkAgH;f + )\WQNI] == ;_1: YA H/]
Thus, the ideal value of W3 is given by:

K K !
1 < 1 A A
W3 = [K ZYA,IH,I] lK > HAAH] + AWQNI]

Now, under the assumption that K = 1, C' = 2, we drop the subscript for Hy, Kk to get:
—~ SN -1
Wi = (YATHT) (HAATHT + /\WZNI) (82)

To this end, we return to our risk minimization formulation for a single graph with these optimal
values as follows:

~ 1 T A 2 )\W * A
RY (M) = 5 [WiHA - Y|+ 222 w3+ 2 H 3 (83)

F1 Aasa perturbation of EA

Since we are deahng with SSBM graphs, we can formulate A as the perturbed version of its expected
value. Formally, A = EA + E where EA € RV*¥ is the expected normalized adjacency matrix
and E € RV*¥ s the perturbation matrix. EA can be written in block matrix form as:

EA =

1 T T
{plnln q1,1, 84)

np+nq |qlpl,) Plnlz]NxN
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1
1 _ 1 n
Where the EA has eigenvalues 1 assoc1ated with eigenvectors \/ﬁl and ¢c = TN [—LJ N

respectively. Thus, we can represent EA using its spectral information as follows:

2 2 pPrey qT, P4 T
EA =
N@+@(2 2
ar 0 T

— [y {\/071 OH\/‘)‘T 0 ]TuN g7

(85)

0 v/ O 0 \/ o
=QQ"
Where a1 = %, Qo (p+q)N, and Q = [1ny ] {V 31 \/%TJ € RN *2 ig the factor matrix.

F.2 Preliminary results

Let us recall the definitions of the within- and between-class covariance matrices, Xy (H) and
Y. p(H), for computing the preliminary results:

Z:T/V = CTLCZ_;; (,1_70 c,i_Hc)Ta
C

Sa(H) = & 3 (B~ Be) (B~ i)'

c=1

Here, the class means h,, Vc € [C] and the global mean hg of H are given as follows:

:i;hc,i Ve e [C], he = CnZth

c=1i=1

F2.1 Relating ¥5(H), X5 (H)

Since C' = 2 in our analysis and hg = h1+h2 due to balanced communities, note that:
2

(B ~ o) (be —be) |

M
=
=

i

o
Il
—

/N

—
=i

~hg) (b ~he) + (he —h) (b2~ he) )

N e S L S I R R O

, —hy) (By —hy) "

=

/N

Bih, +hoh, —hih, —hoh, )
= (QEJB(H) - Elﬁ; - HQHI)
Thus, we get the following relation between % 5 (H), ¥ 5 (H):
255 (H) — 435(H) = hyh, +hoh, (86)

Additionally, we can extend this result to the following:

95 5(H) — 4%5(H) = ik, + hoh,
— (2hg —h2) By + (2hg —y) By
= 2h¢ () +hy ) — huh, —hohy
= 4%¢(H) - 23 5(H)
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Where X = Hgﬁg. This gives us:

$p(H) — S¢(H) = Zp(H) (87)

F.2.2 Expanding HAHT
Based on the perturbed representation of A =FEA + E, we can modify HAHT and HATH as:
HAH' —H [EA|H" + HEH
— [HQ|[HQ|” + HEH'
HA'H' —H[EA| H™ +HE'H

~

—H|[EA|HT +HETHT

=[HQ][HQ]" + HE 'H
Observe that HQ can be broken down in terms of h. ;, ¢ € [C],i € [n] as follows:
Vo 0
HQ=[h;; - hin hoy o hop],  v[In dy,, { 0 1 \/@]
= [v a1 Zi:l Yiihe o (0 hi— 30, hy;)]
= [2’/74/0[15(; T/ 2 (Hl —Hg)]
This leads to the following expansion of [HQ)] [HQ]T
=T
— A 2n/aoqrhg
[HQ] [HQ]—r = 2n./athg n./as (h; —hy AR
onyaitic nyes (B~ o)) | jvhl_m)
h; —h )

— _ 88
= 4n2a1hghg + n2a2 (h1 ) ( ( )
= 4TL OélhghG + 47’l (%) (h1 )

he)'

Since hg = % (due to balanced classes). This also implies that:

[HQ][HQ]" = 4n’a1hehe + 4na; (s — he) (B2 — Bg) | (89)
Thus, by taking the average of values in equation 88, 89, we get:
[HQ] [HQ]" = 4n’a;X¢(H) + 4nas X p(H)

= a7 et + 2w )

=2 [f)B(H) — Sp(H) + Ei ; Z; 2B(H)}

- [iB(H) - (p2+qq) EB(H)]

Finally, HAH can be simplified to:

AHT — 21 |5 2q
HAH' =2 {EB(H) Rl )}+A1 (90)

Where A; = HEH corresponds to the first order perturbation term. Similarly,

HATH' =2n [iB(H) - (pi"q)zB(H)} +A] o1
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F.2.3 Expanding HAATHT
Expanding AAT can be done along the same lines:
AAT = [FA + E| [FA + E| = [EA] "LEET4E [EA| + [EA|ET

BA] = afy O]o @l aff Doy o

o 1 0 NOél 0 T
=y [0 ag} [ 0 Nag} R
T
:Q \/OllN 0 \/OélN 0 QT
0 QQN 0 OZQN
12
Based on the formulations above, H {IEA} HT can be given by:

w8 )

_ o 2na1v/Nh,
= [2na;vV/Nh N(h; —h voita
[ e ¢ naz\ﬁ( ! 2)] lnagx/ﬁ(m - h2)T] ©2)

— =T N =,
= 4n’aiNhchg + n*a3N (h; — hs) (hy — hy)
— =T — =\ = T
= 4n’aiNhghg + 4n*ajN (hy — he) (hy — he)
Since hg = @ (due to balanced classes). This also implies that:
~12 . _ _ _ _
H [EA} H' = 4n’a?Nhgh; + 4n%a2N (B, — he) (hy — Be) (93)
Thus, based on taking the average of values in equation 92, 93, we get:

~12
H {EA} H' = 4n%02N3¢(H) + 402N 5 (H)

N2(p+q

= FJB(H) - (pi]_?z)z EB(H)}

= 8n? [EG(H) + (7"])2)223(11)}

Finally, HAATH can be simplified to:

4pq
(p+q)?
Where Ay = H {EE—r +E [EK} + {]EK} ET} H' is a symmetric matrix corresponding to the

first and second order perturbation terms.

HAATH =2n {i B(H) — ) B(H)} + Ay (94)

F.2.4 Expanding YATHT YH'
We follow similar line of expansions for YATH to get:
YATH =Y {EK} H +YEH =(Lo1]) [E,&} H +YE H'

=T =T
nph; + ngh,

1
+|+YETHT

=(IL®l, T
(T2 )np+nq nthTnanh2 95)

—T T
pth + qh2T
gh; +ph, |

n

= — + Az
p+gq
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Where A; = YETHT is the first order perturbation term. Next, observe that:

YH = (Lol )H =nH' (96)
F.2.5 Expanding HAY YATH'
~ —~ ~ —~ T
HAY YA'H - H [EA + E} Y'Y {EA + E} H'
T —T77
n_ |ph; +qh, AT n ph1 + qh2 As
=\ oo o ST TAs +
P+4q |qh, +ph, p+q th —|—ph2
n? — — = — ph + qh
= phi +ghy gh; +ph T 21+ As
(p+q)? oo abe b+ ph) gh; +phy
n? — T — — — =T = =T ~
=~ ta? [(P2 +4q°) (h1h1 + h2h2> + (2pq) (hth + hoh, )} + Az
2
@ n = = <
= ta? [2(192 +¢*)2(H) + (2pq) (QEB(H) - 4EB(H))} + Az
2
Yp(H 723 :| + A
o) - P w4 A
97

Where A; = H (EYTYET + [EK] Y'YET +EYTY []EKD HT and the equality (a) is
based on equation 86.
F.3 Trace formulation of risk
Now, note that the risk can be formulated in terms of matrix traces as follows:
R7'(H) = Q;VTr{ (W;H,& - Y) (W;HK - Y)T } + A;V? Tr{W;w; "} +

)\H

(98)
ST {HH'}

~ ~ T
Where the term (W;HA - Y) (W;HA - Y) can be expanded as follows:
~ ~ T ~ ~
(W;HA - Y) (W;HA - Y) — W:HAATH W;T - WiHAY'
~YATH WiT + YY"
Since W3 {HKKTHT + Aw, NI} =YATHT, we can multiply W3 on both sides and get:

WiHAATH W, = YATH W3 — \y, NWi W3 '
Using these simplifications and matrix trace properties, the risk can be modified as:

1 LT A *TT A T /\W * * )\H
2NTr{ (WQHA - Y) (WQHA - Y) } + ST (W5 W3 T} + SETr {HH )

1 SHAVT T Au T
= o T {-WiHAYT + Yy} + Slmr (HHT)

1 N R -1
= 55T {—YATHT [HAATHT + 2, NT|  HAY' + YYT} + %HTr{HHT}
—~ —~ ~ o~ —1
ﬁTr {—HAYTYATHT [HAATHT + AWZNI} }

+—Tr{YYT} +2 T {HH'}
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Where the covariance matrix formulations for HAATHT , HAY TYATHT can be leveraged to
formulate the risk as:

R” (H) = —;VTr{ {2n2 (f}B(H) RS )) +£3]

(p+q)?

(p+q)?

¥ %HTr{NiT(H)}

-1
[271 <iB(H) pa 5 25(H )) + A + AWQNI} } + % (99)

F.4 Trace evolution of covariance matrices

Now, we analyze the traces of dﬁt"" , d?ﬁ along the gradient flow:

dH,

_ _vupF
= VR (H,). (100)

Let 0y represent the derivative of I*" entry of hy, j- For notational simplicity, we also consider
EW = Ew(H), EB = EJB(H)7 EB = EB(H), ET = ET(H) This leads to:

1

8kleB = o (el (Hk — Hg)—r + (Hk — Hg) elT)

3@123 = elhk + hkel )

(101)

a

2n

1 —
OpjiBw = m (el hy ; — hk + (hk,j - hk) elT)
=~ 1
OpjiBr = o (e

hkj+hkjel )

Now, considering J = 2n (ZNIB — ﬁﬁ)g), we formulate 8kjl7€7/(H) as:

o~ ot —-n
iR (H) = ﬁTr {8ka ( J+—

Since C' = 2 in our analysis, the derivative expands into:

_ 1 As
8kle}- (H) = —4Tr{6kjl (J + > [T+ Ag + A, NI~ }
1 {
— =Tr
4
Where the second term can be expanded as:
1
4Tr{
1
= 4Tr{

- —Tr{[.] + Ay 4+ A, NI

- N
[T+ A + A, NT| 1) } I TnH (2¢/ hy ;)

A
J+=2
n

6@'[ ([J + Ay + /\WQNI 1)} + )\Hel—rth

J+

O ([J Ay AW2NI]*1) }

[T+ Do+ Aw, NI 7 00 (3 + Ag) [+ A + A, NI

A _
J+ 73 [T+ A+ A, NI 7 01 ( +A2)}
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Now, by expanding 9y;; (J) in terms of covariance matrix derivatives, we get:

~ 4
6kjl (J) = akjﬂn (EB - &23)

I 4 o o
= (elh;r + hkel—r) — 0 f(f])Q (el (hk — hG)T + (hk — hg) elT)

2 T 2
P—q\ +— dpq - P—q\ i+ dpq - T
=e =2 hy+ h + —— | hy+ ——=hg | e
l<<p+q> T +a)? G) <<p+q) T+ G) :

This leads to the following formulation for Oy /RT(H):

I+ Ao+ A N 0(3) }

) 1
akle]: (H) = —ZTI’{[
1 1 As 1
+ ZTr [T+ A + Ay, N1 J+ - [J+ A+ Aw, NI~ Oju (J)

+ )\HelThk,j + Priji

_ , T
_ — — 4 —
=—=Tr{ [J+ Ay + )\WZNI] ! € <<pq> h; + Pq hg>

2 P+q (p+q)?

1 {[
;Tr{[ A [J 4 Ag + Aw, NI !

+ J+ Ay + Ay, NI J+73

2 T
P—q\ + dpg T
= 1) b+ h + e hy i + Prs
el<<p+q> T+ a2 G) O

Where Py represents the remaining trace terms pertaining to the partial derivatives of Ao, 83:
1 _ A
ijl = 4TI'{[J+A2+/\W2NI] 18“71 (;)}

A
J+=

n

1 [T+ Ag + Aw, NI 7' 9t (Ag)}

1 _
+ Tr{[J + Ao+ A, NI

We now denote M := [J + Ay + Ay, NI~ to obtain:

2 T
P—q\ i dpg —
M e h; + hg| — 2)\Hh;€’ i e
] <p+q) (p+4q)? ] j>

(102)
Without loss of generality, since Py;; € R, we consider Py = pzjel where py ; € Ré-1isa
random vector which represents the overall perturbation effect of Py ;;. Note that the randomness is

associated with the E matrix in A, As. We can now represent akjﬂ%f/ (H) = (Rg,j, e), where:

A
J+=2
n

~ 1
O R” (H) = 3 ([M -M

+ Prji

L(~t pq)2 dpq  +
Ryj=—-M|(~——) hy+ ——hg| — 2 \ghy; — 2p;
" 2( <p+q R e HMG T Pk
- (103)
_ As
M=|M-M|J+—=|M
n
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e Derivative of X: By denoting ¥3(a,b) = e, Xpe;, as the (a, b)-element of X, we use the
above result for 9y, R” ' (H) and the chain rule to compute dzB along the flow (14), as follows:

A% 5(a,b)
dt

Z 8k7] ZEB(CL b) th Z 8;w ZEB((I b) (—3k7j717/€f/ (H))

k,j,l k,j,l

= ZZ —i ((ea,el><eb,ﬁk —Eg> + <ea7Hk —Hg><el,eb>) <Rk7j,el>

1 _ _
= Z o ((eq, Rij) (e, by, — he) + (eq, hy, —he)(Ry j, e5))

k.j
1 _ _
2ne;r( k] hkfhg) (hkfhg)R;’j €y
LT p—q> P = = T
= ¢ h — 2 ghy i —2p.i | (hy — h e
an e ( P+g k (p+q)2 el HOE j Pk,j ( k G) b

.
P—q\ + dpg
hy + ——she| — 2 ghe; — 2pg e
(p+Q) "+ q)? G] Hg pk”) ’

1
+Ee;r kthth (

For further simplification, let’s consider the following term:
p—a\’+ e = T
> () Rt 2] -

p+aq (p+q)
- o3 QZ[p 0)* By + dpabic] [y — i)

1 — — — —T — =T
= e > [ p—@)*hihy, — (p — q)*hyh + 4pghch, — 4pthho}
k.3

- (ZH‘;Q)Q {(p —a)*2n8p — 8npgSc — 2nZe ((p—a)* - 4pq)}
= ﬁ [Qn(p - C])QEB +2n(p — q)QEG — 8npqdg — 2nXq ((p _ q)2 . 4pq)]

2
b—q
—on (1) 3,
(p+q>

Next, we proceed with the simplification of }; . —Aghg, (hy —hg)" — Ag(hy — Hg)h;j:

~Ag()_hy (b, —he)" + (b, —he)hy )
k.j
ol N S s R e ET. N RN s I s el
= 7>\H(nh1(h1 — hg) + nhg(hg — hg) + n(h1 — hG)h1 + n(h2 — hg)hQ )
— “Ay(2nhih, + 2nhoh, — nhihg, — nhohg — nheh, — nhgh, )
= “Ap(2nhih, + 2nhoh, — 4nhchy) = —Ag(AnSp — 4nS6) = —dnApEp

These results now simplify dEB as:

s 1 AN A -
2B el [on (22 MEB 1o (P29} oM -85 —Pp e,  (104)
dt 4n p+q p+q
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Where Pp = 2> k. pr,;(hy —he) T + (hy _EG)ka’,j'

° Derivative of EW By denoting Xy (a,b) = e ey as the (a, b)-element of Xy, we use a

de as follows:
dZ a,b) dh 1] ~ 1
Ewlnd) _§~p, Sl Z}f[ =3 0saZw(a.b) (~055, R (H))
k,_;, k,j,l

= ZZ _% ((eq,er){ep, hy j —hi) + (eq, hy ; — hy) (e, ) (R j, €)

= Z —o— ((ea, Ry j) (b, hy j — hy) + (€q, hy j — hi) (Ry 5, €5))

k.j

1 — —
=—e, [ D —Ri; (b, - b)) — (e~ B R | e

2n
¥
R b <H>2hk+ W9 F| —onmhy — 200 | (i, —B) " | e
an — p+q (p+q)
2 T
1T Tyl (P=9\ Apq
— hy,; —hy) (M h he| — 2\nhe — 2pe
T kj(k,] k)< (p+q) R PR g = 2Pk e

For further simplification, let’s consider the following term:

—_o\2_ 4 _ _
3 (pq> hﬁ%hg [y, —Be]
k,j

P+q (p+q

— 4 o B
Z,; <p+q) Jr(pqu)th] Z(hm*hk) =0

Next, we simplify Zk —Arhy j(hy; — hy)" — A (hy; — hk)h,Ij as follows:
— i Y (g (b —hy)" + (b, —hy)h) )

k,j
—T J—
= (hk’jhg’j — hyjhy, +hy kb~ hkh;j)
k,j
—T — — =T — =T
= <A > (hesh, —hughy +heghl, —Bhl; + Beby — Biby )
k,j

= _)\H (QTLEW + QTLET - QTLEB) = —4TL)\H2W

dEw

Where the last inequality is based on the fact that ET =3w + ) B- as:
dXw 1 T
dxw _ Sy — P ) 1

Where f’W = QEk,j PkJ(th — Hk)T + (th — Hk)p;:j.

o Trace of covariance matrices along the flow: Taking the derivative of Tr (Xyy) gives us:

dTr (2{/{/) o 1 ~

(106)

1 _
= —QAHTF(Ew) — ETI’ Zka(hk’j — hk)—r
k)j
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Similarly, the derivative of Tr (X ) gives us:

dTr (Xp) 1 p—q\’ P-a\ o = =
——2 = 2ygTr (X —Tr| 2 — | MX 2 — | ¥gM-P
i mTr( B)+4nr<n(p+q B+2n praraps B B

2
= 22gTr(¥p)+ —Tr | 2n () MXp —2 pr;(hy —hg
(2a) + - Tr | 20 (21 > b i o

2
= 22gTr(¥p) +1 — | MX — =T E (hy —h
H r( B) r((p q) B> r Pk,y( k a)

k,j
= Ir (

Observe that for small enough perturbation matrix E, formally for | E|| < E for sufficiently small E,

the sign of dIfEw) and dTrEfB) depends on the first term in each of them, and not on the second

term that depends on E. Therefore, since Ay > 0, we have that Tr (3yy,) decreases. It is left to show
that Tr (X 5) increases in this regime.

2
P—q\
P=9) M- 2xyI
(p+q)

1 o

.1 L TNT

B> nTr E pk,;(hy —hg)
k,j

(107)

Since the trace of the product of a positive definite matrix and a non-zero positive semidefinite matrix

2 __
is positive by Von-Neumann trace inequality, we aim for conditions that allow [(”—’1) M -2\ HI]

p+q
hd‘|
M = [J+ Ay + A, NI !

< 4pq
=2 (EB S+ q)223>

to be positive definite. First, observe that M is symmetric:

M = [M—M J+&
n

Since fJB, ¥5,I, Ay and 83 are symmetric.

Observe that (pi% < 1, because
0<(p—q) =p”+2pq+¢* —4pg = (p+q)* — 4pq.
Thus,

4pq
(p+q)?

Thus also M > 0 for small As. Note also that [J + Ay, N I]f1 J < 1. Therefore, for small enough
E (and thus small Ay, Az), we have that

JZZ?’l(iB— EB>Z2n(§B—EB):2nEGzO

. A
M=M-M|J+=2|M>0.
n

2 __
Thus, {(p_q) M — ZAHI} is positive definite when:

p+q
b—4q 2 s
22 g < | —— | Amin (M 108
" (p+q> (™) (109

Here \,,;n (I\N/I) represents the smallest eigenvalue of M.
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G Proof of Theorem 4.1
Let’s begin by calculating the expected value and covariance of features XY, which are obtained
after the graph convolution operation based on equation 3.
e Casec =1:
We begin by considering the features of a node belonging to class ¢ = 1 as follows:

x) = wWiVn{7V + wiVHDA ey ; (109)
By expanding the H(l_l)fAt term based on neighbors from all classes, we get:

PIVTRIRS YERE DRIV
1= wiOn{Ty 4wyl <E FEUBL SR MY “) (110)

X5
a W (1,6)]
Now, by taking expectations on both sides with respect to features hgli_l) and structure Kt, we get:

(Z'Ul,je-/\[l(”l,i) hlv] + Z’L}Q,]’GNQ(’ULi) h2n7>

E. xO — WOr. pi-D  wiOp.
An%1i 1 A,h" 1,0 2 Ah ‘N(Ul,i”

nppi " + nqu§”>

n(p + q)

_(wr P W*(”> H(l1)+< q W*(l)> MG
( 1 p+q 2 1 p+q 2 2

— Wi(l)uglfl) —|—W;(l) <

(111)
- . 0] O] O] 01" ;
Similarly, the covariance E [Xl,i -Ex hxl’l} [Xl,i -Ex hxlﬂ} is based on:
[Wi(l)hﬁl;” + W THD Aey ; — Eg,hxgl,)i}

—~ T
[ WiOR(Y - WEOHIDA e - By x|
R (-1 (1-1)
_ [Wr(l) <hgl71—1) _ /J'(ll_l)) +W;(l) (H(ll)Atel,i _ PHq pig/’lﬂ >‘|

l -1 -1 1 ~ pu(l_l) + QM(l_l) '
. [WT() (h§Z ) uﬁ_ )) +W;() (H(ll)Atel,i _ 1 2 )]

p+gq
T
(1 - - - - ()T
= W1() (hgz R Ng 1)) (hgz R /i% 1)) W1()

! -1 -1 ~ pﬂ(lil) +qu(lil) ! T
+WT() (hg,; ) ugf )) (H(l_l)AteLi . 1 2 ) W;()

ptq

0 (er-n 2 pid ™V S VN ey e\ T T
+ W, H Aier; — Py (hu — K ) W,

R (1-1) (1-1) R (-1 -0\ "
n W;(l) (H”‘”Ateu by g ) (H(l_l)AteM _ bt aps ) \;V;(l)T

p+q pP+q

-
The expectation of the term Wf(l) (hgl’i_l) — ugl_l)) (hgl,i_l) — ugl_1)> Wf(l)—r is given by:

«(l -1 -1 -1 1=\ T ()T
Eﬁ,h [Wl( ) (hgz - l‘(l )) (hgz ) - #g )> Wl( )
T
(1 -1 -1 -1 -1 «()T 113
= Wl( )Ex,h |:(h§z ) — Ng )) (hgz ) - Hg )) ] Wl() (113)

_ W;(l)zglfl)wt(l)"r
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.
) _ _ N (1—1) (1—1) . o
The expectation of W) (thA R 1)) (H(l‘l)Atel W) W T s given

)t p+q
by the following:
(1-1) (1-1)
" _ _ e + *
Es . Wl(l) (hgz’i 1 ugl 1)) HODAe,; — DHy ) Wz(z)r
’ p+q
(1-1) -1\ "
* — _ N + *
_ EK . W1(l)h§li 1) H(l I)Atel,i _ by qHs WQ(l)T
’ ’ p+q
R (-1 -1\ "
~Ez 4, WO (DR e, — PRyt qps w7
p+q
s + s (l -1) (1-1) -\ "
— WO, |ntY P2 j—h j=1h _PHi Tt qig wrOT
! b @+Q) P+4q ?
_wWOR |:h(lf1) < p h(lfl)T>} wWOT
1 h 1,8 n(p+q) 1,0 2
(l 1) -1 -1 T
LW OR, |ty P j_1zih '+q > i1 hy _ ped Y o qud Y wiOT
' b (p+® P+ ?

Since the features are independent draws from their normal distributions, we can simplify the
expectation as follows:

1 1-1 -1 N pu(l Yy qu(l Y nT
Ezn WI( ) (hg_z_ ) - Ng - )> H(lfl)Ate1 1 W;( )
’ p+gq
_w { L (2 (-1) | 0 )ugll)'l'):| wiOT
(114)
L [ (=D p D ngud™0 pul ) gD S—
v n(p+ q) Pty 2
(1) wrDT
! [Mp+® L } 2

—~ -1, ,,0-1 T
Similarly, the expectation of W(*) (H(l_l)Atel w) (hﬁjl) - uﬁH)) wiOT

p+q
is given by the following:

! ~ el 4 qud -1 -\ " nT
EZ\,h W;() H(lfl)Atel - Ptq 2 <h§z_ )*N(1_ )) Wi()

- T
«() (L(=1) (=1 ~ pud ™Y+ qul ™Y «OT | (115)
W1( (hu — ) H"VA e, — =2 2 W,

p+q

— w0 {ngzl)} wioT
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*(Z) ~ (1— 1)+ (1—-1) —_~ [ l)+ (I1—1) T
Next, the expectation of: W, ( H"D Ae; ; - H(-DAe;; — -

can be computed as follows:

(-1 (-1)
W;(l) H(l—l);&tel P by + quy
' p+q

]EK,h

R (1-1) (1-1)
(HEDA ey, - priCtaps W;(Z)T
ptq

R R (=1 0=\ T
—Fs, W;(l) (H(l_l)Atel,i) (H(l_l)Atel b ot Zﬂz ) W;(I)T

(=1 (-1 N (-1 (-1
B, W2(z) <pu1 + apsy ) (H(l_l)AteLi _puy t+qig ) W;(z)r

p+q pP+q
Where the second term reduces to 0. On expanding the first term, we get:

1 ~ ~ pli(l 1)+QN(l D\’ nT
Ex W;()(H(l_l)Atel,i) (H(l_l)Atel,i_ - > W;()

p+q
N N T
= W;(Z)EAJ; [(H(I_I)Atem) (H(l_l)AteLi) ] W;(Z)T

R (=1 =D\ T
_W;(Z)E&h (H(Z_I)Atel,i) <PN1 p+gﬂ2 ) W;(Z)T

n -1 n -1 n -1 n -1 T

W OR pio i +a ) hiy Y (po bl + ey by wrOT

2 h 2
n(p+q) n(p +q)

(1-1) (-1 (-1 -1\ "
_ W;(l) (plh + qps > <pH1 +qps ) W;(UT

ptq p+q

= wW;E,

(l 1)h(l nT 2 h(l 1) (=T
(p Z Z 2,; )] W2(l)T

ﬁ@+)
ll -1)T ll -1)T
(p Zg 12' 176] ( )h( 22] 12' I;éj ( )h( ) >‘|W*(Z)T
2

W@+@

n n 1-1) 1-1)T
pq Zj:l Zj’:l hg,j h( + pq Z] 1 ZJ’_I 2 \J hg Ni ) W*(Z)T
n2(p + )2 ?

(-1 (-1 (1-1) -\ "
—W;(l) (pul + qus ) <pli1 + qus ) W;(z)r

+ W3R,

+ W3R,

ptq Ptq

Due to the independence of the features, we can simplify the expectation as follows:
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~ ~ ) 4 gD
Ez n W;(Z) (H(l_l)Atel,i) (H(l_l)Atel,i - p+gﬂ > W;(l)T

-1 -1 (-1T - -1 (-1)T
np? (2070 4+ V0T g (B0 4 T

—w:® wrT
2 n2(p+ q)° ?
r -1y (1-1)T -1y (1-1)T
R N T Sy S U O T S T S T
+ W, 2 2 W,
I n?(p+q)
- I-1)T 1— 11—
RN R L T «OT
+ W, 2 W,
I n?(p+q)?
-1 -1)T -1 I-1)T -1 -1 I-1)T
e [ (P T VT pand ]+ P VT ] e
| (p+q)? ?
22(5—1) 22(5—1)
— w0 |22 +a7 2 T

n(p+q)?

Putting these results together, the covariance Ex ({Xili ~Ez hxgﬂ [x§ ) _E. (l)} > is:

7 Ahxlz
l l l l
B ( [ - Bau] [ - B2 ] )

p (D) (1= xxrx(D)T
— W'Y \\%
g LT ar)
Egl—l)_’_quél—l)

n(p +q)?

— W;‘(l) Egl—l)wi‘(l)—r +

+ W;(Z)E(l 1)W (l)T+W*(l) W;(Z)T

(p+<J)

To summarize, the means and covariance matrices for X(*) can be given by:

=0 _ (WO P *(z)> = ( q *(z)) (1—-1)
= + W + W
1241 ( 1 ptg 2 1251 q Mo

igz) :Wf(l)zgl_l)WI”)T P O -DywrOT

nprg Tt (18)
p22§l—1) +q22§l—1)
n(p +q)?

b P WrOnDgrOT | gy
n(p+q)

e Case c = 2:
The analysis presented above can be extended for ¢ = 2 in a straightforward fashion to get ﬁgl), f)gl)
as follows:

~() _ W*(l) p *(1) (1-1) q *(1) (1-1)
= + —W, + W,
Mo ( P+g > Mo (p q 1251

f]él) :W;(l)z(; 1)W1«(Z)T+ p W*(Z)E(l 1)W;(l)T

np+q) 1 77 (119)
P 4 sl
n(p+q)?

+ p W;(l)zél—l)w’{(l)—r +W§(l)

n(p +q)

W;‘(Z)T
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G.1 Modelling an increase/decrease in between-class variability
T
Let 2%71) = (uglfl) — uélil)) (uglfl) - ugfl)) indicate the between-class covariance matrix

for features at layer [ — 1. Based on the equations 118, 119, we analyze 3 5(X()) to understand the
effect of the convolution layer on feature separation. First, observe that:

-
~()  ~( ~) ~(
=pX) = (3 - @) (5" - &)
_ W*(l)+p_qw*(l)>( (-1 _ (1-1)
( 1 P+q 2 1251 Mo )

.
(0D _ <l—1))T <W*(” N P—CIW*(U)
(lh Mo 1 Pty 2

(120)

.
_ W*<z>+pqw*(z>>2 H(-D (W*(Z)+pqw*(1>>
( 1 ptq 2 B( ) 1 ptq 2

By taking the trace on both sides, we get:

.
Tr (2p(X")) = Tr ((Wf”) + iT ‘q]w;‘”) Sp(HID) (W’{(l) + i—Jr ijl)) )

-
=Tr | ZpHEHY <W*(l)+pqw*(l)) (W*(1)+MW*(1)>
( o W W Yolptg P

(121)

-
Where (W}F(Z) + ﬁw;(l)) (W;‘(l) + ﬁw;(l)) € Ré-1*di-1 g 3 symmetric and positive

semi-definite matrix. This matrix product formulation allows us to leverage the eigenvalue-based

T
trace inequalities [41, 68]. Formally, let T = (WIU) + MW;(Z)) (Wf(l) + ﬁwg(”). We

p+q
now leverage Corollary.6 in Zhang and Zhang [68], and get the following inequality based on the

eigenvalues of g (H(~Y), Ty as:
di—1

Z Ady_1—it1 (EB(H(FI)D Ai (Tp)

<Tr (EB(H“—U)TB) (122)

< df i (EB(HU—U)) Ai (TB)

Where \;(.) represents the i" largest eigenvalue of a matrix. Additionally, based on the standard trace
equality: Tr (Sp(HD)) = Y70\ (Sp(HD)), the increase/decrease in Tr (X 5(X1))
with respect to Tr (25 (H~1)) boils down to:

di_1 di—1
L At BTN A(TE) g oy BN EeETD)A(TE)

SN (Ba(0-D)) T 5 (mpEe)

(123)

G.2 Modelling an increase/decrease in within-class variability

Let Ty (H!™Y) = § (2(11‘1) + Eg_l)) represent the within-class covariance matrix for features

HU~Y in our balanced class setting. Similar to the previous analysis, we leverage the results in
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equations 118,119 to model 3y (X (1)) as follows:
S (X0) = % (Z0 + =)
_ % (W»l«(l) (2(11—1) + 251—1)) WT(Z)T)
+

D (1) ( (1-1) (171)) *(z)r>
—W by + X W
(n(p+q) 1 1 2 2

p *(1) (I-1) (1-1) *(1)T
—W by + 3 %%
<n(p+q) 2 ( 1 2 ) 1 >

1
2 (124)
1

2

(r* +¢%) (EﬁH) + EQH))

W*(l)T
n(p+q)? 2

(o
+5 (W

By taking trace on both sides, we get:
Tr (S (X)) = Tr (Sw () WO Tw0)

p =) \wrrDT *(l)>
+Tr| —Yw(H A%Y% \%\%
(n(p +4q) wi E !

p (1-1)\ (DT *(l))
+Tr | —3¥w(H W W
(n(p+q) ( ) 1 2

(p*> +¢%) -1\ (DT *(0)
+Tr | ——L% (H w;Ytw
' (n(p +q)? ( N 2

— Ty <2W(H(”>) [WT(Z)TWI(”+p [W;(l)TW”{(l)JrWr(l)TW;(l)

(1[ q )‘NI* l ‘Nr* l
2() 2( )

n(p + q)?
(125)

n(p+q) n(p+q)*
Then, observe that Ty, € R%-1%di-1 jg symmetric and positive semi-definite. To this end, the
increase/decrease in Tr (Zyy (X (1)) with respect to Tr (Zy, (H(~1)) boils down to:

Let Ty = WiTWi® o ors [wiOTwi® 4 wiOTwi 0] o e w0 T w0,

iy di—1
% Aamin (Sw (HI-D)) A; (Tw) TH (S (XO)) ; i (S (D)) A, (Twy)
dZ A (Sw (HO-D)) - T dZ Ai (Zw (HOD))

(126)
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H Addition Experiments

o Infrastructure details: We perform experiments on a virtual machine with 8 Intel(R) Xeon(R)
Platinum 8268 CPUs, 32GB of RAM, and 1 Quadro RTX 8000 GPU with 32GB of allocated memory.
Our Python package ‘gnn_collapse’ leverages PyTorch 1.12.1 and PyTorch-Geometric (PyG) 2.1.0
frameworks. For reproducible experiments and consistency with previous research, we extend the
SBM generator by Chen et al. [16] and NC metrics by Zhu et al. [74].

H.1 Experiments with GNNs to track penultimate layer features

o Datasets: We consider a variety of SSBM graph datasets as follows:
D1: C =2, N =1000,p = 0.025,¢ = 0.0017, K = 1000
D2: C' =4, N = 1500,p = 0.072, ¢ = 0.0048, K = 1000

e GNNs: In our experiments, we empirically track the NC metrics of penultimate layer features
during training for both the GNN designs ¥g, ¥§ . The number of layers is set to 32 and the hidden
dimension is set to 8 across layers for datasets with C' = 2 and set to 16 for datasets with C' = 4.

e Optimization: The GNNs are trained for 8 epochs using stochastic gradient descent (SGD) with
momentum 0.9, weight decay 5 x 10~%, and a learning rate set to 0.004 for D1 and 0.006 for D2.

e Observations: Figures 7, 8 illustrate the training loss, overlap and all the NC metrics that we
defined in our setup for ¢, /& " on dataset D1. Note that when C' = 2, the re-centering of the 2 class-
means by subtracting the global mean, always leads to separation with maximal angle, irrespective of
the configuration of the non-centered class-means. Thus, we skip the corresponding N Cs plots for
H, HA when C = 2. Additionally, we can observe similar trends in NC metrics from Figures 9, 10
even after increasing N, C' in dataset D2.

Additionally, in all these experiments, notice that A'Ca, A'C3 metrics do not show a significant
reduction. In this context, a reduction indicates that a simplex equiangular tight-frame (simplex ETF)
or an orthogonal frame (OF) is the desired configuration for weights and penultimate layer feature
(re-centered) class-means. This behaviour can be linked to the presence of A in the risk formulation.
However, our understanding of the role of A in determining these alignments towards simplex ETF
or an OF is still unclear and would be a valuable future effort.
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Figure 7: GNN ¢ on D1: C = 2, N = 1000, p = 0.025,¢ = 0.0017, K = 1000. Illustration of
training loss, trammg overlap, N'C; plots for H, HA, SN R(NCy) for H, HA, Frobenius norms of
Wi, W, H, HA, NC, plots for W1, Wy, N'C3 plots for W1, H and W, HA.

45



06
1.00 1 I I ] —_— — T
0.5 — Tz =
035 0.99 03 — — TrET3'NC
T 0.0 \/__\ '1; 0.0 — TrEwTriZs)
s 0.
o4 0.98 g a
o =1 -0.5
E S-0s =S
go3 50.97 4 BR— || 2
- 3 =-10 e
0.2 0.96 = z
g-1s — THEm g-ls \——\\
01 0.95 — T
—2.0 — THEnI'NC -2.0
0.0 .04 — THZWHTr(Za) ~——
0 ) a 3 ] 0 2 ] 3 3 [ 2 T 3 B [ Z a 5 E]
iter?1000 iter%1000 iter%1000 iter%1000
§ 2.
— wHA i e e By —
12 175 00K
\
-01 \
- —1.50 = e \
D @ @ 7709 T8
[ ; 1.25 2-02 i v
b & — Wil | 2 »-1.0 s
= = 1.00 — e | 8 — weEn | g = [ ==
208 4 : 203 ==+ W, (OF) 2 i
= =0.75 ey 2-15
o s ~ ”
= -0.4
z =050 g E
i -2.0
' 0.25 5 i o
. —————— E — (W, HA]
0.00 e 23 wemion
= 3 s @ o 2 4§ B 0 2 4 6 B 6 2 i 6 8
iter%1000 iter%1000 iter%1000 iter%1000

Figure 8: GNN ¢5, onD1: C =2, N = 1000,p = 0.025,¢ = 0.0017, K = 1000. Illustration
of training loss, training overlap, N'C; plots for H, HA, SN R(NC;) for HA, Frobenius norms of
Wy, H,HA, NCs plots for W, and N/ C3 plots for W, HA.
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Figure 9: GNN ¢Z on D2: C = 4, N = 1500,p = 0.072,¢ = 0.0048, K = 1000. Illustration of
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H.2 Experiments with UFM to model penultimate layer behavior

To improve our understanding of the empirical behavior of GNNs and to validate our theoretical
results with the gUFM, we prepare datasets based on two strategies:

* Case C": This case represents a graph that satisfies condition C. Without loss of generality,
we leverage the expected degrees of nodes and consider t.. = [n * p|,c € [C] and
teer = [N % q],c # ¢ € [C]. Based on our notation, recall that )., Q. represents the set of
nodes belonging to classes(communities) ¢, ¢’ € [C] respectively. To this end, observe that
the following conditions should be satisfied!?:

1. The sub-graph formed by nodes 2. should be t..-regular, for all ¢ € [C].
2. The bipartite sub-graph formed by 2., .~ should be ¢, -regular, for all ¢, ¢’ € [C].

» Case C™: This case represents a graph that does not satisfy condition C. Since any random
graph sampled from SSBM(N, C, p, q) satisfies this requirement with a high probability (as
per theorem 3.2), we simply use this randomly sampled graph. As a simple sanity check,
one can verify if the sampled graph satisfies the condition C and re-sample.

Especially, we consider the CT, C~ variants of SSBM graphs with following parameters:
D1: C =2, N =1000,p = 0.025,q = 0.0017, K = 10
D2: C =4, N =1500,p = 0.072,q = 0.0048, K = 10

e Optimization: The gUFMs are trained using plain gradient descent for 50000 epochs with a
learning rate of 0.1 and L2 regularization parameters Ay, = A, = Ag = 5 x 1073.13

o Observations: Figures 12, 14, and 16, 18 illustrate the training loss, overlap and the NC metrics for
the gUFM acting on C~ variants of datasets D1, D2 respectively. Although gUFM is an optimistic
mathematical model, we can observe a close resemblance of the values and trends of NC metrics to
those of the penultimate layer features of the actual GNNs. This observation is justified as any random
SSBM graph fails to satisfy condition C with a high probability. To this end, observe from Figures
11, 13, 15, 17 that when graphs satisfy condition C, the NC1 metrics tend to reduce drastically (for

gUFM designs based on wg , ¢£ "and C = 2,4). Thus proving our theoretical results. Furthermore,

2We utilize NetworkX python libraries to generate SSBM graphs that satisfy these conditions.
13 \w, is not applicable for gUFM based on 13 "
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observe from Figures 15, 17 that the (re-centered) class means for H, HA tend to align very closely
to a simplex ETF and tend to converge at such a configuration. Based on our previous observations
for GNN training, we underscore this observation for gUFM and emphasize that a rigorous theoretical

analysis on the role of A in determining the structures of H can be a crucial future effort.
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Figure 18: gUFM wg’ on C~ variant of D2: C = 4, N = 1500,p = 0.072,q = 0.0048, K = 10.
Ilustration of training loss, training overlap, N'C; plots for H, HA, SN R(N'C;) for HA, Frobenius
norms of Wy, H, HA, N'C5 plots for W4, H, HA, and A/Cs plots for Wy, HA.

H.3 Experiments with GNNs and Spectral Methods

The main focus of this section is to emphasize the differences between power iterations-based spectral
methods and GNNs. To this end, we consider the following datasets and GNNs as follows:

D1: C =2, N = 1000, p = 0.025, ¢ = 0.0017, K (train) = 1000, K (test) = 100
D2: C =2, N = 1000, p = 0.0017, ¢ = 0.025, K (train) = 1000, K (test) = 100

o GNNs: In our experiments, we empirically track the NC metrics of penultimate layer features during

training for both the GNN designs ¢Z, 5 ". The number of layers is varied based on L = 64,128
and the hidden dimension is set to 8 across layers.
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o Spectral methods: The number of projected power-iterations are varied based on L = 64, 128 for
a fair comparison with GNNs.

e Optimization: The GNNs are trained for 8 epochs using stochastic gradient descent (SGD) with
learning rate of 0.004, momentum 0.9 and a weight decay of 5 x 10~

e Observations: For the dataset D1 with homophilic graphs, we first plot the
training metrics for GNNs ¢Z,¢g with L = 64 in Figures 19, 20 respectively
and ensure that they reach TPT. Now, from Figures 21, 22 observe that the ratios
Tr(Zp(x®))/Tr(Ep (WD), Tr(Sw (xP)) /Tr(Zw (w~1)) tend to be constant through-
out the power iterations for spectral methods, whereas, the GNNs behave differently as
Tr(Zp(XW)/Tr(ZpHD)), Tr(Zw (X)) /Tr(Zw (HED)) tend to decrease across depth.
We make similar observations for GNNs 1[15 ,1/)5' with L = 128 in Figures 23,24,25,26 and
note that the behaviour is the same as I. = 32 case illustrated in the main text. However,
when considering the dataset D2 with heterophilic graphs, even though the GNNs reach TPT
during training (Figures 27,28,29,30 ), the evolution of ratios Tr(Xz(X®))/Tr(Zz(H!1)),
Tr(Zw (X)) /Tr(Sw (HD) tends to differ especially for the GNN 13" when L = 64 (Figures
31,32) and L = 128 (Figures 33,34). Thus, highlighting the empirical role of depth in GNN design
which requires further investigations in future efforts.
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1000. Hlustration of training loss, training overlap, N'C; plots for H, HA, SN R(NC;) for H, HA,
Frobenius norms of W1, Wy, H, HA, N'C5 plots for W1, Wy, A/Cs plots for W1, H and W4, HA.

55



1.0

1.00 — e TEw L | —_—
05 05 — TriZa) 0.5
0.98 & — TAIwiz'C —_
o = )
0.4 % i TAEWNTr(Za) 2 00
0.96 " 9
a o = — Tt
203 20.04 =05 2705 — Tr{ga)
2 ] 2 2 \\— THEWIFNC
2 = g -L0 — TrTwNTr(Za)
0.2 0.92 I 10 £ e
9 5
=-15 9-150 N

o
s
o o
© o
® o
1
N]
=)
i
o
|
U
N
=)

M e —
0.0
0 2 7] 3 0 2 a 3 0 a [ 2 T 3
iter%1000 iter’%1000 iter’%1000 iter%1000
4 2000 ——
— WHA pm——— e — /—\
11 1.75 090 0.0 | —
_10 5150 = 2, L}
2 = T 02 L-05 |
Soo B12s [ i \
2 = — Wi | B 5 \
Sos 5, 1.00 — e 2 e m——— 1.0 e e -=
£ S0.7s — Il | 8 ¥ Sl
S0 w T ' 5
- = g / g1s
~0.50 = ! =-1
Foe = -0.6| |
0.25 } A
0.5 ! — W (ETF) —2.0| — W.HA)
oo —m™m™™/—————————————— —0.8| ' ——- W; (OF) == (W;HA, OF)
0.4 :
] 2 3 3 ) 0 2 q 3 ) 0 3 3 3 [ [ 2 I3 3 8
iter?%1000 iter%1000 iter%1000 iter%1000

Figure 28: GNN wg’ with L = 64 on D2: C' = 2, N = 1000,p = 0.0017, ¢ = 0.025, K = 1000.
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Figure 29: GNN ¢ with L = 128 on D2: C = 2, N = 1000,p = 0.0017,q = 0.025, K =
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Figure 30: GNN d)g with L = 128 on D2: C' = 2, N = 1000, p = 0.0017, ¢ = 0.025, K = 1000.
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