
A Neural Collapse Perspective on Feature Evolution in

Graph Neural Networks

Vignesh Kothapalli ∗

New York University
Tom Tirer

Bar-Ilan University
Joan Bruna

New York University

Abstract

Graph neural networks (GNNs) have become increasingly popular for classification
tasks on graph-structured data. Yet, the interplay between graph topology and
feature evolution in GNNs is not well understood. In this paper, we focus on node-
wise classification, illustrated with community detection on stochastic block model
graphs, and explore the feature evolution through the lens of the “Neural Collapse”
(NC) phenomenon. When training instance-wise deep classifiers (e.g. for image
classification) beyond the zero training error point, NC demonstrates a reduction in
the deepest features’ within-class variability and an increased alignment of their
class means to certain symmetric structures. We start with an empirical study that
shows that a decrease in within-class variability is also prevalent in the node-wise
classification setting, however, not to the extent observed in the instance-wise case.
Then, we theoretically study this distinction. Specifically, we show that even an
“optimistic” mathematical model requires that the graphs obey a strict structural
condition in order to possess a minimizer with exact collapse. Interestingly, this
condition is viable also for heterophilic graphs and relates to recent empirical
studies on settings with improved GNNs’ generalization. Furthermore, by studying
the gradient dynamics of the theoretical model, we provide reasoning for the partial
collapse observed empirically. Finally, we present a study on the evolution of
within- and between-class feature variability across layers of a well-trained GNN
and contrast the behavior with spectral methods.

1 Introduction

Graph neural networks [52] employ message-passing mechanisms to capture intricate topological
relationships in data and have become de-facto standard architectures to handle data with non-
Euclidean geometric structure [11, 12, 22, 24, 33, 60, 63, 66, 70]. However, the influence of
topological information on feature learning in GNNs is yet to be fully understood [40, 64, 69, 72].

In this paper, we study the feature evolution in GNNs in a node-wise supervised classification setting.
In order to gain insights into the role of topology, we focus on the controlled environment of the
prominent stochastic block model (SBM) [1–3, 29, 45]. The SBM provides an effective framework
to control the level of sparsity, homophily, and heterophily in the random graphs and facilitates
analysis of GNN which relies solely on structural information [8, 16, 32, 40, 42, 49]. While inductive
supervised learning on graphs is a relatively more difficult problem than transductive learning, it
aligns with practical scenarios where nodes need to be classified in unseen graphs [24], and is also
amenable to training GNNs that are deeper than conventional shallow Graph Convolution Network
(GCN) models [14, 16, 32, 35, 47, 62, 62, 70].

The empirical and theoretical study of GNNs’ feature evolution in this paper employs a “Neural
Collapse” perspective [48]. When training Deep Neural Networks (DNNs) for classification, it

∗Correspondence to: Vignesh Kothapalli (vk2115@nyu.edu)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

is common to continue optimizing the networks’ parameters beyond the zero training error point
[9, 28, 39], a stage that was referred to in [48] as the “terminal phase of training” (TPT). Papyan,
Han, and Donoho [25, 48] have empirically shown that a phenomenon, dubbed Neural Collapse
(NC), occurs during the TPT of plain DNNs2 on standard instance-wise classification datasets. NC
encompasses several simultaneous properties: (NC1) The within-class variability of the deepest
features decreases (i.e., outputs of the penultimate layer for training samples from the same class
tend to their mean); (NC2) After subtracting their global mean, the mean features of different classes
become closer to a geometrical structure known as a simplex equiangular tight frame; (NC3) The last
layer’s weights exhibit alignment with the classes’ mean features. A consequence of NC1-3 is that
the classifier’s decision rule becomes similar to the nearest class center in the feature space. We refer
to [34] for a review on this topic.

The common approach to theoretically study the NC phenomenon is the “Unconstrained Features
Model” (UFM) [31, 43]. The core idea behind this “optimistic” mathematical model is that the
deepest features are considered to be freely optimizable. This idea has facilitated a recent surge of
theoretical works in an effort to understand the global optimality conditions and gradient dynamics
of these features and the last layer’s weights in DNNs [18, 25, 37, 43, 54–56, 61, 65, 71, 74]. In
our work, we extend NC analysis to settings where relational information in data is paramount, and
creates a tension with the ‘freeness’ associated with the UFM model. In essence, we highlight the key
differences when analyzing NC in GNNs by identifying structural conditions on the graphs, under
which the global minimizers of the training objective exhibit full NC1. Interestingly, the structural
conditions that we rigorously establish in this paper are aligned with the neighborhood conditions on
heterophilic graphs that have been empirically hypothesized to facilitate learning by Ma et al. [40].

Our main contributions can be summarized as follows:

• We conduct an extensive empirical study that shows that a decrease in within-class variability
is prevalent also in the deepest features of GNNs trained for node classification on SBMs.
However, not to the extent observed in the instance-wise setting.

• We propose and analyze a graph-based UFM to understand the role of node neighborhood
patterns and their community labels on NC dynamics. We prove that even this optimistic
model requires a strict structural condition on the graphs in order to possess a minimizer
with exact variability collapse. Then, we show that satisfying this condition is a rare event,
which theoretically justifies the distinction between observations for GNNs and plain DNNs.

• Nevertheless, by studying the gradient dynamics of the graph-based UFM, we provide
theoretical reasoning for the partial collapse during GNNs training.

• Finally, we study the evolution of features across the layers of well-trained GNNs and
contrast the decrease in NC1 metrics along depth with a NC1 decrease along power iterations
in spectral clustering methods.

2 Preliminaries and Problem Setup

We focus on supervised learning on graphs for inductive community detection. Formally, we consider
a collection of K undirected graphs {Gk = (Vk, Ek)}Kk=1, each with N nodes, C non-overlapping
balanced communities and a node labelling ground truth function yk : Vk → {e1, . . . , eC}. Here,
∀c ∈ [C], ec ∈ R

C indicates the standard basis vector, where we use the notation [C] = {1, · · · , C}.
The goal is to learn a parameterized GNN model ψΘ(.) which minimizes the empirical risk given by:

min
Θ

1

K

K∑

k=1

L(ψΘ(Gk), yk (Vk)) +
λ

2
∥Θ∥2F , (1)

where ∥·∥F represents the Frobenius norm, L is the loss function that is invariant to label permutations
[16], and λ > 0 is the penalty parameter. We choose L based on the mean squared error (MSE) as:

L(ψΘ(Gk), yk) = min
π∈SC

1

2N
∥ψΘ (Gk)− π (yk (Vk))∥22 , (2)

where π belongs to the permutation group over C elements. Using the MSE loss for training
DNN classifiers has become increasingly popular recently. For example, Hui and Belkin [30] have

2Throughout the paper, by (plain) DNNs we mean networks that output an instance-wise prediction (e.g.,
image class rather than pixel class), while by GNNs we mean networks that output node-wise predictions.

2

performed an extensive empirical study that shows that training with MSE loss yields performance
that is similar to (and sometimes even better than) training with CE loss. This choice also facilitates
theoretical analyses [25, 55, 71].

2.1 Data model

We employ the Symmetric Stochastic Block Model (SSBM) to generate graphs {Gk = (Vk, Ek)}Kk=1.
Stochastic block models (originated in [29]) are classical random graph models that have been
extensively studied in statistics, physics, and computer science. In the SSBM model that is considered
in this paper, each graph Gk is associated with an adjacency matrix Ak ∈ R

N×N , degree matrix
Dk = diag(Ak1) ∈ R

N×N , and a random node features matrix Xk ∈ R
d×N , with entries sampled

from a normal distribution. Formally, if P ∈ R
C×C represents a symmetric matrix with diagonal

entries p and off-diagonal entries q, a random graph Gk is considered to be drawn from the distribution
SSBM(N,C, p, q) if an edge between vertices vi, vj is formed with probability (P)yk(vi),yk(vj)

3.

We choose the regime of exact recovery [1–3, 45] in sparse graphs where p = a ln(N)
N , q = b ln(N)

N

for parameters a, b ≥ 0 such that |√a −
√
b| >

√
C. The need for exact recovery (information-

theoretically) stems from the requirement that ψΘ should be able to reach TPT (Appendix B).

2.2 Graph neural networks

Inspired by the widely studied model of higher-order GNNs by Morris et al. [44], we design ψΘ

based on a family of graph operators F = {I, Âk}, ∀k ∈ [K], and denote it as ψF
Θ . Formally, for a

GNN ψF
Θ with L layers, the node features H

(l)
k ∈ R

dl×N at layer l ∈ [L] is given by:

X
(l)
k = W

(l)
1 H

(l−1)
k +W

(l)
2 H

(l−1)
k Âk,

H
(l)
k = σ(X

(l)
k),

(3)

where H
(0)
k = Xk, and σ(·) represents a point-wise activation function such as ReLU. W

(l)
1 ,W

(l)
2 ∈

R
dl×dl−1 are the weight matrices and Âk = AkD

−1
k is the normalized adjacency matrix, also

known as the random-walk matrix. We also consider a simpler family without the identity operator

F ′ = {Âk}, ∀k ∈ [K] and analyze the GNN ψF ′

Θ with only graph convolution functionality.

Formally, the node features H
(l)
k ∈ R

dl×N for ψF ′

Θ is given by:

X
(l)
k = W

(l)
2 H

(l−1)
k Âk,

H
(l)
k = σ(X

(l)
k).

(4)

Here, the subscript for the weight matrix W
(l)
2 is retained to highlight that it acts on H

(l−1)
k Âk.

Finally, we employ the training strategy of Chen et al. [16] and apply instance-normalization [58] on

σ(X
(l)
k), ∀l ∈ {1, · · · , L− 1} to prevent training instability.

2.3 Tracking neural collapse in GNNs

In our setup, reaching zero training error (TPT) implies that the network perfectly classifies all
the nodes (up to label permutations) in all the training graphs. To this end, we leverage the NC
metrics introduced in [48, 55, 56, 74] and extend them to GNNs in an inductive setting. To begin

with, let us consider a single graph Gk = (Vk, Ek), k ∈ [K] with a normalized adjacency matrix Âk.

Additionally, we denote H
(l)
k ∈ R

dl×N as the output of layer l ∈ [L− 1], irrespective of the GNN
design. Now, by dropping the subscript and superscript for notational convenience, we define the
class means and the global mean of H as follows:

hc :=
1

n

n∑

i=1

hc,i , ∀c ∈ [C], hG :=
1

Cn

C∑

c=1

n∑

i=1

hc,i, (5)

where n = N/C represents the number of nodes in each of the C balanced communities, and hc,i

is the feature vector (a column in H) associated with vc,i ∈ V , i.e., the ith node belonging to class

3In our setup, the nodes of sampled SSBM graphs are allowed to have self-edges.

3

c ∈ [C]. Next, let N (vc,i) denote all the neighbors of vc,i and let Nc′(vc,i) denote only the neighbors

of vc,i that belong to class c′ ∈ [C]. We define the class means and global mean of HÂ, which is
unique to the GNN setting as follows:

h
N
c :=

1

n

n∑

i=1

hN
c,i , ∀c ∈ [C], h

N
G :=

1

Cn

C∑

c=1

n∑

i=1

hN
c,i, (6)

where hN
c,i =

(∑
vc,j∈Nc(vc,i)

hc,j +
∑

vc′,j∈Nc′ ̸=c(vc,i)
hc′,j

)
/|N (vc,i)|.

• Variability collapse in features H: For a given features matrix H, let us define the within- and
between-class covariance matrices, ΣW (H) and ΣB(H), as:

ΣW (H) :=
1

Cn

C∑

c=1

n∑

i=1

(
hc,i − hc

) (
hc,i − hc

)⊤
, (7)

ΣB(H) :=
1

C

C∑

c=1

(
hc − hG

) (
hc − hG

)⊤
. (8)

To empirically track the within-class variability collapse with respect to the between-class variability,
we define two NC1 metrics:

NC1(H) =
1

C
Tr
(
ΣW (H)Σ†

B(H)
)
, Ñ C1(H) =

Tr (ΣW (H))

Tr (ΣB(H))
, (9)

where † denotes the Moore-Penrose pseudo-inverse and Tr(·) denotes the trace of a matrix. Although

NC1 is the original NC1 metric used by Papyan et al. [48], we consider also Ñ C1, which has been
proposed by Tirer et al. [56] as an alternative metric that is more amenable to theoretical analysis.

• Variability collapse in neighborhood-aggregated features HÂ: Similarly to the above, we track

the within- and between-class variability of the “neighborhood-aggregated” features matrix HÂ

by ΣW (HÂ) and ΣB(HÂ) (computed using h
N
c and h

N
G), as well as NC1(HÂ) and Ñ C1(HÂ).

(See Appendix C for formal definitions.) Finally, we follow a simple approach and track the mean

and variance of NC1(H), Ñ C1(H),NC1(HÂ), Ñ C1(HÂ) across all K graphs in our experiments.

As the primary focus of our paper is the analysis of feature variability during training and inference,
we defer the definition and examination of metrics based on NC2 and NC3 to Appendix C, H.

3 Evolution of penultimate layer features during training

In this section, we explore the evolution of the deepest features of GNNs during training. In
Section 3.1, we present empirical results of GNNs in the setup that is detailed in Section 2, showing
that a decrease in within-class feature variability is present in GNNs that reach zero training error,
but not to the extent observed with plain DNNs. Then, in Section 3.2, we theoretically study a
mathematical model that provides reasoning for the empirical observations.

3.1 Experiments

Setup. We focus on the training performance of GNNs ψF
Θ , ψ

F ′

Θ on sparse graphs and generate
a dataset of K = 1000 random SSBM graphs with C = 2, N = 1000, p = 0.025, q = 0.0017.

The networks ψF
Θ , ψ

F ′

Θ are composed of L = 32 layers with graph operator, ReLU activation, and
instance-normalization functionality. The hidden feature dimension is set to 8 across layers. They are
trained for 8 epochs using stochastic gradient descent (SGD) with a learning rate 0.004, momentum
0.9, and a weight decay of 5× 10−4. During training, we track the NC1 metrics for the penultimate

layer features H
(L−1)
k , by computing their mean and standard deviation across k ∈ [K] graphs after

every epoch. To measure the performance of the GNN, we compute the ‘overlap’ [16] between
predicted communities and ground truth communities (up to permutations):

overlap(ŷ, y) := max
π∈SC

(
1

N

N∑

i=1

δŷ(vi),π(y(vi)) −
1

C

)
/

(
1− 1

C

)
(10)

4

(a) loss (b) overlap (c) NC1: H (d) NC1: HÂ

Figure 1: GNN ψF
Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

(a) loss (b) overlap (c) NC1: H (d) NC1: HÂ

Figure 2: GNN ψF ′

Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training.

where ŷ is the node labelling function based on GNN design and 1
N

∑N
i=1 δŷ(vi),π(y(vi)) is the training

accuracy (δ denotes the Kronecker delta). The overlap allows us to measure the improvements in
performance over random guessing while retaining the indication that the GNN has reached TPT.

Formally, when 1
N

∑N
i=1 δŷ(vi),π(y(vi)) = 1 (zero training error), then overlap(ŷ, y) = 1. We

illustrate the empirical results in Figures 1 and 2, and present extensive experiments (showing similar
behavior) along with infrastructure details in Appendix H4.

Observation: The key takeaway is that NC1(H(L−1)
k), Ñ C1(H(L−1)

k) tend to reduce and plateau

during TPT in ψF
Θ and ψF ′

Θ . Notice that even though we consider a controlled SSBM-based setting,
the NC1 values observed here are higher than the values observed in the case of plain DNNs on real-

world instance-wise datasets [48, 74]. Additionally, we can observe that trends for NC1(H(L−1)
k Âk),

Ñ C1(H(L−1)
k Âk) are similar to those of NC1(H(L−1)

k), Ñ C1(H(L−1)
k).

3.2 Theoretical analysis

In this section, we provide a theory for this empirical behavior. Most, if not all, of the theoretical
papers on NC, adopt the UFM approach, which treats the features as free optimization variables –
disconnected from data [18, 25, 43, 55, 56, 74]. Here, we consider a graph-based adaptation of this

approach, that we dubbed as gUFM. We consider GNNs of the form of ψF ′

Θ , which is more tractable

for mathematical analysis. Formally, by considering L to be the MSE loss, treating {H(L−1)
k }Kk=1 as

freely optimizable variables, and representing W
(L)
2 ∈ R

C×dL−1 ,H
(L−1)
k ∈ R

dL−1×N as W2,Hk

(for notational convenience), the empirical risk based on the gUFM can be formulated as follows:

R̂F ′

(W2, {Hk}Kk=1) :=
1

K

K∑

k=1

(
1

2N

∥∥∥W2HkÂk −Y

∥∥∥
2

F
+
λHk

2
∥Hk∥2F

)
+
λW2

2
∥W2∥2F

(11)

where Y ∈ R
C×N is the target matrix, which is composed of one-hot vectors associated with the

different classes, and λW2
, λHk

> 0 are regularization hyperparameters. To simplify the analysis, let

us assume that Y = IC ⊗ 1⊤
n , where ⊗ denotes the Kronecker product. Namely, the training data

is balanced (a common assumption in UFM-based analyses in literature) with n = N/C nodes per

4Code is available at: https://github.com/kvignesh1420/gnn_collapse

5

class in each graph and (without loss of generality) organized class-by-class. Note that for K = 1

(which allows omitting the graph index k) and no graphical structure, i.e., Â = I (since A = I), (11)
reduces to the plain UFM that has been studied in [25, 55, 71]. In this case, it has been shown that
any minimizer (W∗

2,H
∗) is collapsed, i.e., its features have exactly zero within-class variability:

h∗
c,1 = · · · = h∗

c,n = h
∗
c , ∀c ∈ [C], (12)

which implies ΣW (H∗) = 0. We will show now that the situation in gUFM is significantly different.

Considering the K = 1 case, we start by showing that, to have minimizers of (11) that possess the
property in (12), the graph must obey a strict structural condition. For K > 1, having a minimizer
(W∗

2, {H∗
k}) where, for some j ∈ [K], H∗

j is collapsed directly follows from having the structural
condition satisfied by the j-th graph (as shown in our proof, the sufficiency of the condition does not
depend on the shared weights W2). On the other hand, generalizing the necessity of the structural
condition to the case of K > 1 is technically challenging (see the appendix for details). For that
reason, we state the condition in the following theorem only for K = 1. Note also that, showing that
the condition is unlikely to be satisfied per graph is enough for explaining the plateaus above zero of
NC metrics (computed over multiple graphs), which are demonstrated in Section 3.1.

Theorem 3.1. Consider the gUFM in (11) with K = 1 and denote the fraction of neighbors of node

vc,i that belong to class c′ as scc′,i =
|Nc′ (vc,i)|
|N (vc,i)| . Let the condition C based on scc′,i be given by:

(sc1,1, · · · , scC,1) = · · · = (sc1,n, · · · , scC,n), ∀c ∈ [C]. (C)

If a graph G satisfies condition C, then there exist minimizers of the gUFM that are collapsed

(satisfying (12)). Conversely, when either
√
λHλW2 = 0, or

√
λHλW2 > 0 and G is regular (so

that Â = Â⊤), if there exists a collapsed non-degenerate minimizer5 of gUFM, then condition C

necessarily holds.

Remark: The proof is presented in Appendix D. The symmetry assumption on Â (which implies
that G is a regular graph) in the second part of the theorem has been made to pass technical obstacles
in the proof rather than due to a true limitation. Thus, together with the results of our experiments
(where no symmetry is enforced), we believe that this assumption can be dropped. Accordingly, we
state the following conjecture.

Conjecture 3.1. Consider the gUFM in (11) with K = 1 and condition C as stated in theorem 3.1.
The minimizers of the gUFM are collapsed (satisfying (12)) iff the graph G satisfies condition C.

Let us dwell on the implication of Theorem 3.1. The stated condition C essentially holds when any
node i ∈ [n] of a certain class c obeys (sc1,i, · · · , scC,i) = (sc1, · · · , scC) for some (sc1, · · · , scC),
a tuple of the ratio of neighbors (

∑C
c′=1 scc′ = 1) independent of i. That is, (sc1, · · · , scC) must be

the same for nodes within the same class but can be different for nodes belonging to different classes.

For example, for a plain UFM this condition trivially holds, as Â = I. Under the SSBM distribution,

it is also easy to see that EÂ satisfies this condition. However, for more practical graphs, such as
those drawn from SSBM, the probability of having a graph that obeys condition C is negligible. This
is shown in the following theorem.

Theorem 3.2. Let G = (V, E) be drawn from SSBM(N,C, p, q). For N >> C, we have

P (G obeys C) <

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

. (13)

The proof is presented in Appendix E. It is not hard to see that as the number of per-class nodes n
increases, the probability of satisfying condition C decreases,6 as numerically exemplified below.

Numerical example. Let’s consider a setting with C = 2, N = 1000, a = 3.75, b = 0.25. This
gives us n = N/C = 500, p = 0.025, q = 0.0017, for which P(G obeys C) < 2.18× 10−188.

In Appendix E we further show by exhaustive computation of P(G obeys C) that its value is negligible
even for smaller scale graphs. Thus, the probability of sampling a graph structure for which the
gUFM minimizers exhibit exact collapse is practically 0.

6

(a) loss (b) overlap (c) NC1: H (d) NC1: HÂ

Figure 3: gUFM for ψF ′

Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on
10 SSBM graphs satisfying condition C.

(a) loss (b) overlap (c) NC1: H (d) NC1: HÂ

Figure 4: gUFM for ψF ′

Θ : Illustration of loss, overlap, and NC1 plots for H,HÂ during training on
10 SSBM graphs which do not satisfy condition C.

gUFM experiments. For a better understanding of these results, we present small-scale experiments
using the gUFM model on graphs that satisfy and do not satisfy condition C. By training the gUFM

(based on ψF ′

Θ) on K = 10 graphs that satisfy condition C, we can observe from Figure 3 that NC1

metrics on H,HÂ reduce significantly. On the other hand, these metrics plateau after sufficient
reduction when the graphs fail to satisfy condition C, as shown in Figure 4. In both the cases, the
SSBM parameters are C = 2, N = 1000, p = 0.025, q = 0.0017, and the gUFM is trained using
plain gradient descent for 50000 epochs with a learning rate of 0.1 and L2 regularization parameters
λW1

= λW2
= λH = 5× 10−3. Extensive experiments with varying choices of N,C, p, q, feature

transformation based on ψF
Θ and additional NC metrics are provided in Appendix H. (The additional

NC metrics measure the alignment of the classes’ mean features with simplex Equiangular Tight
Frame (ETF) and Orthogonal Frame (OF) structures.)

Remark. Note that previous papers consider UFM configurations for which the minimizers possess
exact NC, typically without any condition on the number of samples or on the hyperparameters of the
settings. As the UFMs are “optimistic” models, in the sense that they ignore all the limitations on
modifying the features that exist in the training of practical DNNs, such results can be understood
as “zero-order” reasoning for practical NC behavior. On the other hand, here we show that even the
optimistic gUFM will not yield perfectly collapsed minimizers for graph structures that are not rare.
This provides a purer understanding of the gaps in GNNs’ features from exact collapse and why these
gaps are larger than for plain DNNs. We also highlight the observation that condition C applies to
homophilic as well as heterophilic graphs, as the constraint on neighborhood ratios is independent of
label similarity. Thus providing insights on the effectiveness of GNNs on highly heterophilic graphs
as empirically observed by Ma et al. [40].

Gradient flow: By now, we have provided a theory for the distinction between the deepest features
of GNNs and plain DNNs. Next, to provide reasoning for the partial collapse in GNNs, which is
observed empirically, we turn to study the gradient dynamics of our gUFM.

We consider the K = 1 case and, following the common practice [25, 56], analyze the gradient flow

along the “central path” — i.e., when W2 = W∗
2(H) is the optimal minimizer of R̂F ′

(W2,H)

5Non-degenerate minimizers in the sense that W∗

2H
∗ ∈ R

C×N is full-rank. This eliminates degenerate
‘zero’-solutions which are obtained when the regularization hyper-parameters are large.

6Each term in each of the sums is the nth power of a number smaller than 1 (a binomial probability).

7

w.r.t. W2, which has a closed-form expression as a function of H. The resulting gradient flow is:

dHt

dt
= −∇R̂F ′

(W∗
2(Ht),Ht). (14)

Similarly to [25, 56], we aim to gain insights on the evolution of ΣW (Ht) and ΣB(Ht) (in particular,

their traces) along this flow. Yet, the presence of the structure matrix Â significantly complicates the

analysis compared to existing works (which are essentially restricted to Â = I). Accordingly, we
focus on the case of two classes, C = 2, and adopt a perturbation approach, analyzing the flow for a

graph Â = EÂ+E, where the expectation is taken with respect to the SSBM distribution and E is a
sufficiently small perturbation matrix. Our results are stated in the following theorem.

Theorem 3.3. Let K = 1, C = 2 and λW2 > 0. There exist α > 0 and E > 0, such that
for 0 < λH < α and 0 < ∥E∥ < E, along the gradient flow stated in (14) associated with the

graph Â = EÂ + E, we have that: (1) Tr(ΣW (Ht)) decreases, and (2) Tr(ΣB(Ht)) increases.

Accordingly, Ñ C1(Ht) decreases.

The proof is presented in Appendix F. The importance of the theorem comes from showing that
even graphs that do not satisfy condition C (in the context of the analysis: perturbations around

EÂ) exhibit reduction in the within-class covariance and increase in the between-class covariance of
the features. This implies a reduction of NC1 metrics (to some extent), which is aligned with the
empirical results in Section 3.1. Additionally, we highlight that since an increase in Tr(ΣB(Ht)) and
decrease in Tr(ΣW (Ht)) is desirable for NC, this behavior of the penultimate layer’s features can
potentially serve as a remedy for the over-smoothing problem in GNNs (more details in Appendix A).

4 Feature separation across layers during inference

Till now, we have analyzed the feature evolution of the deepest GNN layer during training. In this
section, we use these well-trained GNNs to classify nodes in unseen SSBM graphs and explore the
depthwise evolution of features. In essence, we take an NC perspective on characterizing the weights
of these well-trained networks that facilitate good generalization. To this end, we present empirical
results demonstrating a gradual decrease of NC1 metrics along the network’s depth. The observations
hold a resemblance to the case with plain DNNs (shown empirically in [20, 55] and more recently in
[26], and theoretically in [56]). To gain insights into this depthwise behavior we also compare it with
the behavior of spectral clustering methods along their projected power iterations.

4.1 Experiments

Setup. We consider the 32−layered networks ψF
Θ , ψ

F ′

Θ which have been designed and trained as per
the setup in section 3.1 and have reached TPT. These networks are now tested on a dataset ofK = 100
unseen random SSBM graphs with C = 2, N = 1000, p = 0.025, q = 0.0017. Additionally, we
perform spectral clustering using projected power iterations on the Normalized Laplacian (NL) and
Bethe-Hessian (BH) matrices [51] for each of the test graphs. The motivation behind this approach is
to obtain an approximation of the Fiedler vector of NL/BH that sheds light on the hidden community
structure [1, 4, 46, 67]. Formally, for a test graph G = (V, E), the NL and BH matrices are given by:

NL(G) = I−D−1/2AD−1/2, (15)

BH(G, r) = (r2 − 1)I− rA+D, (16)

where r ∈ R is the BH scaling factor. Now, by treating B to be either NL or BH matrix, a projected

power iteration to estimate the second largest eigenvector of B̃ = ∥B∥ I−B is given by:

x(l) = B̃w(l−1), where w(l−1) =
x(l−1) − ⟨x(l−1),v⟩v∥∥x(l−1) − ⟨x(l−1),v⟩v

∥∥
2

, (17)

with the vector v ∈ R
N denoting the largest eigenvector of B̃. Thus, we start with a random normal

vector w0 ∈ R
N and iteratively compute the feature vector x(l) ∈ R

N , which represents the 1-D
feature for each node after l iterations7.

7Interestingly, the connection between message passing in GNNs and power iterations without the normaliza-
tion has been explored in [36]. However, projection and normalization are paramount to our setup (with random
features) for approximating the Fiedler vector.

8

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 5: NC1(H), Ñ C1(H) metrics (top) and traces of covariance matrices (bottom) across pro-

jected power iterations for NL and BH (a,b), and across layers for GNNs ψF
Θ and ψF ′

Θ (c,d).

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 6: Ratio of traces of covariance matrices across projected power iterations for NL and BH

(a,b), and across layers for GNNs ψF
Θ and ψF ′

Θ (c,d).

4.2 Towards understanding depthwise behavior

From Figure 5, we can observe that the rate of decrease in NC1 metrics is much higher in ψF
Θ and

ψF ′

Θ (avg test overlap = 1) when compared to the baseline spectral approaches (avg test overlap

NL= 0.04, BH= 0.15) with random normal feature initialization. For ψF
Θ and ψF ′

Θ , the NC1
metrics and traces of covariance matrices are tracked after each of the components of a layer: graph
operator, ReLU and instance normalization. For spectral methods, the components are: the operator

B̃ and the normalization. Interestingly, this rate seems to be relatively higher in ψF ′

Θ than in ψF
Θ ,

and the variance of metrics tends to reduce significantly across all the test graphs after a certain

depth in ψF ′

Θ and ψF
Θ . Intuitively, the presence of W1 in ψF

Θ seems to delay this reduction across
layers. On the other hand, owing to the non-parametric nature of the spectral approaches, observe

that the ratios Tr(ΣB(x
(l)))/Tr(ΣB(w

(l−1))),Tr(ΣW (x(l)))/Tr(ΣW (w(l−1))) tend to be constant

throughout all iterations. However, the GNNs behave differently as Tr(ΣB(X
(l)))/Tr(ΣB(H

(l−1))),
Tr(ΣW (X(l)))/Tr(ΣW (H(l−1))) tend to decrease across depth (Figure 6).

For a better understanding of this phenomenon, we consider the case of C = 2 (without loss of

generality) and assume that the (l − 1)th-layer features H(l−1) of nodes belonging to class c = 1, 2
are drawn from distributions D1,D2 respectively. We do not make any assumptions on the nature

of the distributions and simply consider µ
(l−1)
1 ,µ

(l−1)
2 ∈ R

dl−1 and Σ
(l−1)
1 ,Σ

(l−1)
2 ∈ R

dl−1×dl−1

as their mean vectors and covariance matrices, respectively. In the following theorem, we present
bounds on the ratio of traces of feature covariance matrices after the graph operator is applied.

9

Theorem 4.1. Let C = 2, λi(·), λ−i(·) indicate the ith largest and smallest eigenvalue of a matrix,

β1 = p−q
p+q , β2 = p

n(p+q) , β3 = p2+q2

n(p+q)2 , and denote

TW = W
∗(l)⊤
1 W

∗(l)
1 + β2

[
W

∗(l)⊤
2 W

∗(l)
1 +W

∗(l)⊤
1 W

∗(l)
2

]
+ β3W

∗(l)⊤
2 W

∗(l)
2 ,

TB =
(
W

∗(l)
1 + β1W

∗(l)
2

)⊤ (
W

∗(l)
1 + β1W

∗(l)
2

)
.

Then, the ratios of traces
Tr(ΣB(X(l)))

Tr(ΣB(H(l−1)))
, Tr(ΣW (X(l)))
Tr(ΣW (H(l−1)))

for layer l ∈ {2, · · · , L} of a network ψF
Θ

are bounded as follows:
∑dl−1

i=1 λ−i

(
ΣB(H

(l−1))
)
λi (TB)∑dl−1

i=1 λi
(
ΣB(H(l−1))

) ≤ Tr(ΣB(X
(l)))

Tr(ΣB(H(l−1)))
≤
∑dl−1

i=1 λi
(
ΣB(H

(l−1))
)
λi (TB)∑dl−1

i=1 λi
(
ΣB(H(l−1))

) ,

∑dl−1

i=1 λ−i

(
ΣW (H(l−1))

)
λi (TW)

∑dl−1

i=1 λi
(
ΣW (H(l−1))

) ≤ Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
≤
∑dl−1

i=1 λi
(
ΣW (H(l−1))

)
λi (TW)

∑dl−1

i=1 λi
(
ΣW (H(l−1))

) .

The proof is presented in Appendix G. To understand the implications of this result, first observe

that by setting W∗
1 = 0 and modifying TW = β3W

∗(l)⊤
2 W

∗(l)
2 ,TB = β2

1W
∗(l)⊤
2 W

∗(l)
2 , we can

obtain a similar bound formulation for ψF ′

Θ . To this end, as TW ,TB depend on the spectrum of

W
∗(l)
2 , the ratios

Tr(ΣB(X(l)))
Tr(ΣB(H(l−1)))

, Tr(ΣW (X(l)))
Tr(ΣW (H(l−1)))

are highly dependent on β1, β3. Notice that since

W
∗(l)⊤
1 W

∗(l)
1 in TW is not scaled by any factor that is inversely dependent on n, it tends to act as a

spectrum controlling mechanism and the reduction in within-class variability of features in ψF
Θ is

relatively slow when compared to ψF ′

Θ . Thus, justifying the empirical behavior that we observed in
subplots 6c and 6d in Figure 6.

5 Conclusion

In this work, we studied the feature evolution in GNNs for inductive node classification tasks.
Adopting a Neural Collapse (NC) perspective, we analyzed both empirically and theoretically the
within- and between-class variability of features along the training epochs and along the layers during
inference. We showed that a partial decrease in within-class variability (and NC1 metrics) is present
in the GNNs’ deepest features and provided theory that indicates that greater collapse is not expected
when training GNNs on practical graphs (as it requires strict structural conditions). We also showed a
depthwise decrease in variability metrics, which resembles the case with plain DNNs. Especially, by
leveraging the analogy of feature transformation across layers in GNNs with spectral clustering along
projected power iterations, we provided insights into this GNN behavior and distinctions between
two GNN architectures.

Interestingly, the structural conditions on graphs for exact collapse, which we rigorously established
in this paper, are aligned with those that have been empirically hypothesized to facilitate GNNs
learning in [40] (outside the context of NC). As a direction for future research, one may try to
use this connection to link NC behavior with the generalization performance of GNNs. Moreover,
note that a reduction in NC1 metrics of the deepest features implies not only that the within-class
variability decreases but also that the between-class variability is bounded from below. Therefore,
methods that are based on promoting NC (e.g., by utilizing the established structural conditions) can
potentially mitigate the over-smoothing problem in GNNs. See Appendix A for a formal statement
on the relation of NC and over-smoothing and additional discussions on the potential usage of graph
rewiring strategies for this goal.

Acknowledgments and Disclosure of Funding

The authors would like to thank Jonathan Niles-Weed, Soledad Villar, Teresa Huang, Zhengdao
Chen, Lei Chen and the anonymous reviewers for informative discussions and feedback. The authors
acknowledge the NYU High Performance Computing services for providing the computing resources
to run the experiments reported in this manuscript. V.K and J.B are partially supported by NSF DMS
2134216, NSF CAREER CIF 1845360, NSF IIS 1901091, and the Alfred P Sloan Foundation. T.T is
partially supported by ISF grant no. 1940/23.

10

References

[1] Emmanuel Abbe. Community detection and stochastic block models: recent developments. The
Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 670–688. IEEE, 2015.

[3] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on information theory, 62(1):471–487, 2015.

[4] Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector
analysis of random matrices with low expected rank. Annals of statistics, 48(3):1452, 2020.

[5] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021.

[6] Adrián Arnaiz-Rodrıguez, Ahmed Begga, Francisco Escolano, and Nuria M Oliver. Diffwire:
Inductive graph rewiring via the lovász bound. In Learning on Graphs Conference, pages 15–1.
PMLR, 2022.

[7] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.
Oversquashing in gnns through the lens of information contraction and graph expansion. In
2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1–8. IEEE, 2022.

[8] Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions
in deep networks. arXiv preprint arXiv:2204.09297, 2022.

[9] Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation
contradict statistical optimality? In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 1611–1619. PMLR, 2019.

[10] Ravi B Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pages 280–285. IEEE, 1987.

[11] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017.

[12] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[13] Thang Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algorithins with good
average case behavior. In 25th Annual Symposium onFoundations of Computer Science, 1984.,
pages 181–192, 1984. doi: 10.1109/SFCS.1984.715914.

[14] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv preprint
arXiv:2006.13318, 2020.

[15] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pages 3438–3445, 2020.

[16] Zhengdao Chen, Joan Bruna, and Lisha Li. Supervised community detection with line graph
neural networks. In 7th International Conference on Learning Representations (ICLR), 2019.

[17] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung.
acad. sci, 5(1):17–60, 1960.

[18] Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via
layer-peeled model: Minority collapse in imbalanced training. Proceedings of the National
Academy of Sciences, 118(43), 2021.

11

[19] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[20] Tomer Galanti. A note on the implicit bias towards minimal depth of deep neural networks.
arXiv preprint arXiv:2202.09028, 2022.

[21] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

[22] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[23] Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew:
dynamically rewired message passing with delay. In International Conference on Machine
Learning, pages 12252–12267. PMLR, 2023.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[25] XY Han, Vardan Papyan, and David L Donoho. Neural collapse under mse loss: Proximity to
and dynamics on the central path. arXiv preprint arXiv:2106.02073, 2021.

[26] Hangfeng He and Weijie J Su. A law of data separation in deep learning. arXiv preprint
arXiv:2210.17020, 2022.

[27] Nicholas J Higham and Hyun-Min Kim. Numerical analysis of a quadratic matrix equation.
IMA Journal of Numerical Analysis, 20(4):499–519, 2000.

[28] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. Advances in neural information
processing systems, 30, 2017.

[29] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[30] Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss
vs cross-entropy in classification tasks. In The Ninth International Conference on Learning
Representations (ICLR), 2021.

[31] Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and Weijie J Su. An unconstrained
layer-peeled perspective on neural collapse. arXiv preprint arXiv:2110.02796, 2021.

[32] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
arXiv preprint arXiv:2205.12156, 2022.

[33] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[34] Vignesh Kothapalli. Neural collapse: A review on modelling principles and generaliza-
tion. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=QTXocpAP9p.

[35] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[36] Xue Li and Yuanzhi Cheng. Understanding the message passing in graph neural networks via
power iteration clustering. Neural Networks, 140:130–135, 2021.

[37] Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. Applied and
Computational Harmonic Analysis, 2022.

12

[38] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

[39] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325–3334. PMLR, 2018.

[40] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? In International Conference on Learning Representations (ICLR), 2022.

[41] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization
and its applications. 1979.

[42] Nikhil Mehta, Lawrence Carin Duke, and Piyush Rai. Stochastic blockmodels meet graph
neural networks. In International Conference on Machine Learning, pages 4466–4474. PMLR,
2019.

[43] Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
arXiv preprint arXiv:2011.11619, 2020.

[44] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[45] Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for binary symmetric
block models. arXiv preprint arXiv:1407.1591, 3(5), 2014.

[46] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the
national academy of sciences, 103(23):8577–8582, 2006.

[47] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. arXiv preprint arXiv:1905.10947, 2019.

[48] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences, 117
(40):24652–24663, 2020.

[49] Luana Ruiz, Soledad Villar, et al. Graph neural networks for community detection on sparse
graphs. arXiv preprint arXiv:2211.03231, 2022.

[50] T Konstantin Rusch, Michael Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. SAM Research Report, 2023, 2023.

[51] Alaa Saade, Florent Krzakala, and Lenka Zdeborová. Spectral clustering of graphs with the
bethe hessian. Advances in Neural Information Processing Systems, 27, 2014.

[52] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[53] Kathrin Schacke. On the kronecker product. Master’s thesis, University of Waterloo, 2004.

[54] Christos Thrampoulidis, Ganesh R Kini, Vala Vakilian, and Tina Behnia. Imbalance trouble:
Revisiting neural-collapse geometry. arXiv preprint arXiv:2208.05512, 2022.

[55] Tom Tirer and Joan Bruna. Extended unconstrained features model for exploring deep neural
collapse. In International Conference on Machine Learning, pages 21478–21505. PMLR, 2022.

[56] Tom Tirer, Haoxiang Huang, and Jonathan Niles-Weed. Perturbation analysis of neural collapse.
arXiv preprint arXiv:2210.16658, 2022.

[57] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In International Conference on Learning Representations, 2022.

13

[58] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[59] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

[60] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[61] Stephan Wojtowytsch et al. On the emergence of simplex symmetry in the final and penultimate
layers of neural network classifiers. Proceedings of Machine Learning Research, 145:1–21,
2021.

[62] Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. arXiv preprint arXiv:2212.10701, 2022.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[64] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022
IEEE International Conference on Data Mining (ICDM), pages 1287–1292. IEEE, 2022.

[65] Yibo Yang, Liang Xie, Shixiang Chen, Xiangtai Li, Zhouchen Lin, and Dacheng Tao. Do
we really need a learnable classifier at the end of deep neural network? arXiv preprint
arXiv:2203.09081, 2022.

[66] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in neural information processing
systems, 33:5812–5823, 2020.

[67] Se-Young Yun and Alexandre Proutiere. Accurate community detection in the stochastic block
model via spectral algorithms. arXiv preprint arXiv:1412.7335, 2014.

[68] Fuzhen Zhang and Qingling Zhang. Eigenvalue inequalities for matrix product. IEEE Transac-
tions on Automatic Control, 51(9):1506–1509, 2006.

[69] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks
for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

[70] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

[71] Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. In
International Conference on Machine Learning, pages 27179–27202. PMLR, 2022.

[72] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020.

[73] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pages 11168–11176, 2021.

[74] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu.
A geometric analysis of neural collapse with unconstrained features. Advances in Neural
Information Processing Systems, 34:29820–29834, 2021.

14

A Discussion on Oversmoothing and Graph Rewiring

In this appendix, we briefly discuss oversmoothing and graph rewiring from a neural collapse
perspective along with some limitations and scope for future efforts.

A.1 Oversmoothing

Repeated message-passing operations on the node features across the depth of a GNN lead to the
‘oversmoothing’ phenomenon, which leads to poor node classification performance [14, 15, 32, 47,
62, 64]. We adopt the formal definition of oversmoothing by Rusch et al. [50] to our setup as follows:

Definition A.1. (Oversmoothing): For an undirected, connected graph G = (V, E) with |V| = N
and l-th layer hidden features Hl ∈ R

dl×N , a function µ : Rdl×N → R≥0 is called a node-similarity
measure if it satisfies:

1. ∃c ∈ R
dl with Hi = c for all nodes i ∈ V ⇐⇒ µ(H) = 0, for H ∈ R

dl×N

2. µ(H+T) ≤ µ(H) + µ(T), for all H,T ∈ R
dl×N .

Oversmoothing with respect to µ is now defined as the layer-wise exponential convergence of the
node-similarity measure µ to zero, i.e,

µ(Hl) ≤ C1e
−C2l, for l = 1, · · · , L with some constants C1, C2 > 0.

Observe from the definition that as the depth l increases, all the node features converge to a single
feature vector c. This implies that both ΣW (HL−1),ΣB(H

L−1) → 0. In this context, if the
penultimate layer features exhibit neural collapse during training, then ΣW (HL−1) decreases, and
ΣB(H

L−1) is bounded from below. Thus, potentially addressing the oversmoothing problem.

To this end, in the unconstrained features setting, Theorem 3.1 indicates that the graph must satisfy a
strict structural condition for having an exact neural collapse solution as a minimizer of the empirical
risk. Additionally, we obtained conditions on the amount of regularization needed for ΣB(H

L−1) to
increase along the gradient flow in Theorem 3.3 (also see Appendix F). However, since we cannot
expect graphs to satisfy this condition (Theorem 3.2), a potential alternative is to explore graph
rewiring techniques, which are discussed below.

A.2 Graph Rewiring

Graph rewiring techniques aim to propagate messages between nodes via computational graphs that
are suitable for the task [5–7, 19, 21, 23, 24, 57]. One of the popular examples is the Personalized
PageRank (PPR) and Heat kernel (HK) based diffusion on graphs by Gasteiger et al. [21]. This
approach leverages the diffusion matrix to facilitate message-passing between nodes many hops apart
in the actual graph. However, the graph resulting from the diffusion operations tends to be quite
dense. On the other hand, recent works on addressing over-squashing in long-range dependent tasks
leverage the “curvature” information for rewiring [57].

In the context of our paper, one can aim to design a rewiring technique that can modify the input graph
to satisfy condition C. In previous work, Ma et al. [40] generate synthetic graphs based on CORA by
ignoring the original graph and adding edges between nodes to satisfy certain uniform neighborhood
distributions. Alternatively, exploring an edge re-weighting scheme as proposed by Yan et al. [64]
can also be an interesting research direction. From a scalability perspective, a neighborhood sampling
technique based on condition C can also aid in better representation learning. Additionally, note that
condition C is not limited to homophilic graphs and can be extended to heterophilic settings as well

[38, 73], provided the sum of slices of the columns in Â ∈ R
N×N are the same for all nodes in a

class/community (refer to the necessity condition in the proof of Theorem 3.1 in Appendix D for
more details). We believe that further research in this direction can shed some light on Conjecture 3.1
and improve our understanding of the nature of global minimizers.

15

A.2.1 Measuring neighborhood similarity

A key question that pops up when rewiring a graph to achieve condition C is a trackable metric for
node neighborhoods. The ‘Cross-Class Neighborhood Similarity (CCNS)’ metric by Ma et al. [40]
serves as a good starting point to numerically track the cosine similarity in intra-class neighborhoods
and dissimilarity of inter-class neighborhoods of nodes. The definition from Ma et al. [40] is given as:

Definition A.2. Cross-Class Neighborhood Similarity (CCNS): Given a graph G and labels y for all
nodes, the CCNS between classes c, c′ is s(c, c′) = 1

|Vc||Vc′ |
∑

i∈Vc,j∈Vc′
cos(d(i), d(j)) where Vc

indicates the set of nodes in class c and d(i) indicates the empirical histogram (over C classes) of
node i′s neighbors’ labels, and the function cos(.; .) measures the cosine similarity.

A limitation of this metric is that the CCNS between two classes is measured as an average of
the cosine similarity of node neighborhood histograms while failing to incorporate the variance of
these neighborhood similarities. Now, note that when condition C in Theorem 3.1 is combined
with CCNS, we can ensure that the variance of the cosine similarities is zero for any pair of classes
c, c′ ∈ [C]. Overall, better metrics based on different similarity measures and the condition C, along
with efficient rewiring techniques to maximize/minimize such metrics can be a valuable future effort
in the community.

B A Brief Note on Exact Recovery of Planted Communities

Phase transitions in recovering the planted communities of the Stochastic Block Model (SBM) graphs
have been extensively studied in the literature. In this context, ‘exact recovery’ indicates a perfect
assignment of nodes to their respective communities/clusters. For the bi-clustering problem (i.e.,
C = 2), one can date back to the works of Bui et al. [13] for min-cut based clustering, and Boppana
[10] for a spectral clustering based approach (Refer to [1, 2] for a historical perspective and additional
references on this topic). Along these series of developments to find thresholds in terms of p, q for
the exact recovery of communities, the seminal work of Abbe et al. [3] leveraged an information
theoretic perspective to identify sharp thresholds in the logarithmic degree settings. The requirement
for logarithmic degree can be understood from the following observation. If we consider p = q, then
the SBM is essentially an Erdos-Renyi (ER) random graph model with edge-connection probability

p. Based on the results by Erdős et al. [17], if p = c logN
N , then a randomly sampled ER graph from

ER(N, c logN
N) is connected with high probability if and only if c > 1 (see section 2.5 in [1]). Thus,

in order to achieve exact recovery, one must ensure that the SBM graph is connected along with some

over-sampling of edges. In the Symmetric SBM case, when p = a logN
N , q = b logN

N this condition

can be represented using the |√a−
√
b| >

√
C inequality (see Theorem 13 and the following remarks

in [1]). Finally, observe that from a Neural Collapse perspective, we sample SSBM graphs in this
regime to ensure that a GNN can achieve zero node-classification error and reach TPT.

16

C Additional neural collapse metrics

In this appendix, we define additional NC metrics pertaining to NC1-3 for our problem setup.

• Variability collapse in neighborhood-aggregated features HÂ: We track the within- and

between-class variability of the “neighborhood-aggregated” features matrix HÂ by defining the

covariance matrices ΣW

(
HÂ

)
,ΣB

(
HÂ

)
as:

ΣW

(
HÂ

)
:=

1

Cn

C∑

c=1

n∑

i=1

(
hN
c,i − h

N
c

)(
hN
c,i − h

N
c

)⊤

ΣB

(
HÂ

)
:=

1

C

C∑

c=1

(
h
N
c − h

N
G

)(
h
N
c − h

N
G

)⊤

To this end, we define the NC1
(
HÂ

)
, Ñ C1

(
HÂ

)
metrics as follows:

NC1
(
HÂ

)
=

1

C
Tr
(
ΣW

(
HÂ

)
Σ

†
B

(
HÂ

))
, Ñ C1

(
HÂ

)
=

Tr
(
ΣW

(
HÂ

))

Tr
(
ΣB

(
HÂ

)) . (18)

Their primary purpose is to track the within-class variability of neighborhood aggregated features

HÂ relative to their between-class variability, both now dependent on the topological structure of
graph G. The motivation to track these features arises from the P2 condition in the proof of theorem
3.1 in Appendix B. Essentially, this condition states that the neighborhood aggregated features should
collapse to their respective class means for the minimizer to satisfy NC.

• SNR for variance collapse: We track the following ‘Signal-to-Noise’ ratios pertaining to variability

collapse of H and HÂ:

SNR(NC1) :=
∥∥W1

(
H⊗ 1⊤

n

)∥∥
F∥∥W1

(
H−H⊗ 1⊤

n

)∥∥
F

(19)

SNR(NCN
1) :=

∥∥∥W2

(
H

N ⊗ 1⊤
n

)∥∥∥
F∥∥∥W2

(
HÂ−H

N ⊗ 1⊤
n

)∥∥∥
F

(20)

These SNR metrics provide an alternate perspective for us to empirically analyze the desirability

of variance collapse. Here H :=
[
h1 · · · hC

]
∈ R

dl×C and H
N

:=
[
h
N
1 · · · h

N
C

]
∈ R

dl×C

are the class-mean matrices without and with neighborhood aggregation respectively.

• Convergence of weights to a simplex ETF: To track the convergence of the weights W1,W2 to a
simplex ETF structure, we define NCETF

2 (W1),NCETF
2 (W2) as:

NCETF
2 (W1) :=

∥∥∥∥∥
W1W

⊤
1∥∥W1W
⊤
1

∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥
F

(21)

NCETF
2 (W2) :=

∥∥∥∥∥
W2W

⊤
2∥∥W2W
⊤
2

∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥
F

(22)

• Convergence of weights to an Orthogonal Frame (OF): To track the convergence of the weights
W1,W2 to an orthogonal frame structure, we define NCOF

2 (W1),NCOF
2 (W2) as:

NCOF
2 (W1) :=

∥∥∥∥∥
W1W

⊤
1∥∥W1W
⊤
1

∥∥
F

− IC√
C

∥∥∥∥∥
F

(23)

NCOF
2 (W2) :=

∥∥∥∥∥
W2W

⊤
2∥∥W2W
⊤
2

∥∥
F

− IC√
C

∥∥∥∥∥
F

(24)

17

• Convergence of features to a simplex ETF: To track the convergence of the features H,HÂ to a

simplex ETF structure, we define NCETF
2 (H),NCETF

2 (HÂ) as:

NCETF
2 (H) :=

∥∥∥∥∥∥
H̃⊤H̃∥∥∥H̃⊤H̃

∥∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥∥
F

(25)

NCETF
2 (HÂ) :=

∥∥∥∥∥∥
H̃N⊤H̃N

∥∥∥H̃N⊤H̃N
∥∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥∥
F

(26)

where H̃ :=
[
h1 − hG · · · hC − hG

]
∈ R

dl×C and H̃N :=
[
h
N
1 − h

N
G · · · h

N
C − h

N
G

]
∈

R
dl×C are the re-centered class-means without and with neighborhood aggregation respectively.

• Convergence of features to an OF: To track the convergence of the features H,HÂ to an OF

structure, we define NCOF
2 (H),NCOF

2 (HÂ) as:

NCOF
2 (H) :=

∥∥∥∥∥∥
H

⊤
H∥∥∥H⊤
H

∥∥∥
F

− IC√
C

∥∥∥∥∥∥
F

(27)

NCOF
2 (HÂ) :=

∥∥∥∥∥∥
H

N⊤
H

N
∥∥∥HN⊤

H
N∥∥∥

F

− IC√
C

∥∥∥∥∥∥
F

(28)

• Generic alignment of weights and features: To track the alignment of W1 with its dual H, we
define NC3(W1,H) as:

NC3(W1,H) :=

∥∥∥∥∥
W1

∥W1∥F
− H

⊤
∥∥H
∥∥
F

∥∥∥∥∥
F

(29)

Similarly, to track the alignment of W2 with its dual HÂ, we define NC3(W2,HÂ) as:

NC3(W2,HÂ) :=

∥∥∥∥∥∥
W2

∥W2∥F
− H

N⊤
∥∥∥HN∥∥∥

F

∥∥∥∥∥∥
F

(30)

• Alignment of weights and features with respect to simplex ETF: To track the alignment of W1

and its dual H with respect to a simplex ETF, we define NCETF
3 (W1,H) as:

NCETF
3 (W1,H) :=

∥∥∥∥∥∥
W1H̃∥∥∥W1H̃

∥∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥∥
F

(31)

Similarly, we track the alignment of W2 and its dual HÂ with respect to a simplex ETF using:

NCETF
3 (W2,HÂ) :=

∥∥∥∥∥∥
W2H̃

N
∥∥∥W2H̃N

∥∥∥
F

− 1√
C − 1

(
IC − 1

C
1C1

⊤
C

)∥∥∥∥∥∥
F

(32)

• Alignment of weights and features with respect to OF: To track the alignment of W1 and its
dual H with respect to an OF, we define NCOF

3 (W1,H) as:

NCOF
3 (W1,H) :=

∥∥∥∥∥
W1H∥∥W1H

∥∥
F

− IC√
C

∥∥∥∥∥
F

(33)

Similarly, we track the alignment of W2 and its dual HÂ with respect to an OF using:

NCOF
3 (W2,HÂ) :=

∥∥∥∥∥∥
W2H

N
∥∥∥W2H

N∥∥∥
F

− IC√
C

∥∥∥∥∥∥
F

(34)

18

D Proof of Theorem 3.1

In this appendix, we present the proof for Theorem 3.1 by analyzing the sufficiency and necessity
conditions of the graph structure given by:

(sc1,1, · · · , scC,1) = · · · = (sc1,n, · · · , scC,n), ∀c ∈ [C], (C)

where the fraction of neighbors of node vc,i that belong to class c′ as scc′,i =
|Nc′ (vc,i)|
|N (vc,i)| .

Proof sketch: Our aim is to identify the structural properties of a graph G (especially Â), such that
the features H, which exhibit neural collapse are indeed the minimizers of the risk. First, we obtain
a lower bound for the risk using Jensen’s inequality and show that, for a ‘collapsed’ H to be the
minimizer, it is sufficient if the graph G satisfies condition C. However, the inequality is applied on
a convex function of {ec,i} (standard basis vectors) that is not strictly convex, and so, this analysis
does not imply necessity. Thus, we show the necessity of condition C for a ‘collapsed’ H to be a
minimizer of the risk by analyzing the optimality conditions of the stationary points. Additional
details of the sketch for the ‘necessity’ argument are also presented.

Sufficiency: We begin by revisiting the risk R̂F ′

for K = 1. For simplicity, we drop the superscript
F ′, subscript k, and treat the unconstrained features of the corresponding graph G = (V, E) as H,

and denote Â = AD−1. The risk R̂(W2,H) is now given by:

R̂(W2,H) :=
1

2N

∥∥∥W2HÂ−Y

∥∥∥
2

F
+
λH
2

∥H∥2F +
λW2

2
∥W2∥2F (35)

=: L̂(W2,H) +
λW2

2
∥W2∥2F .

Now, by denoting ec,i ∈ R
N as the one-hot vector associated with the index of the feature column

hc,i (among the N feature columns), we lower bound L̂(W2,H) as follows8:

L̂(W2,H) =
1

2N

∥∥∥W2HÂ−Y

∥∥∥
2

F
+
λH
2

∥H∥2F

=
1

2N

C∑

c=1

n∑

i=1

∥∥∥W2HÂec,i − yc

∥∥∥
2

F
+
λH
2

C∑

c=1

n∑

i=1

∥Hec,i∥22

=
1

2N

C∑

c=1

n

n

n∑

i=1

∥∥∥W2HÂec,i − yc

∥∥∥
2

F
+
λH
2

C∑

c=1

n

n

n∑

i=1

∥Hec,i∥22

≥ 1

2N

C∑

c=1

n

∥∥∥∥∥W2HÂ
1

n

n∑

i=1

ec,i − yc

∥∥∥∥∥

2

F

+
λH
2

C∑

c=1

n

∥∥∥∥∥H
1

n

n∑

i=1

ec,i

∥∥∥∥∥

2

2

=
1

2N

C∑

c=1

n

∥∥∥∥∥W2
1

n

n∑

i=1

hN
c,i − yc

∥∥∥∥∥

2

F

+
λH
2

C∑

c=1

n

∥∥∥∥∥
1

n

n∑

i=1

hc,i

∥∥∥∥∥

2

2

.

(36)

Note that Jensen’s inequality, which we used above, is applied on a convex function of ec,i’s that
is not strictly convex. Therefore, the lower-bound in equation 36 can be attained despite having
different ec,i’s, e.g., when the properties P1 and P2, which are stated below, hold ∀c ∈ [C]:

• P1: hc,1 = · · · = hc,n = hc

• P2: hN
c,1 = · · · = hN

c,n = h
N
c

The first property P1 indicates zero intra-class variability of H, i.e., ΣW (H) → 0, and the second

property P2 indicates zero intra-class variability of HÂ i.e, ΣW (HÂ) → 0.

Recall condition C:

8When K > 1, observe that R̂(W2, {H}Kk=1) =
∑

K

k=1
L̂(W2,Hk) +

λW2
2

∥W2∥
2

F
. Thus, each of the

L̂(W2,Hk) terms can be lower-bounded independently, resulting in a lower-bound for R̂(W2, {H}Kk=1) itself.

19

• C: (sc1,1, · · · , scC,1) = · · · = (sc1,n, · · · , scC,n) = (sc1, · · · , scC),

where (sc1, · · · , scC) (shared by any node i ∈ [n] in class c) represents any suitable tuple of the ratio
of neighbors per class9.

We just need to show that if C is satisfied then H with both P1 and P2 exists. Equivalently, we
can assume P1 (which is in the “feasible set” of the optimization) and show that then C implies P2.
Indeed, in this case

hN
c,i =

∑
Nc(vc,i)

hc,j +
∑

Nc′ ̸=c(vc,i)
hc′,j

|N (vc,i)|
(37)

=

∑
Nc(vc,i)

hc +
∑

Nc′ ̸=c(vc,i)
hc′

|N (vc,i)|
=

C∑

c′=1

scc′hc′ . (38)

Therefore P2 holds: hN
c,1 = · · · = hN

c,n = h
N
c . Accordingly, C is sufficient for having H that obeys

P1 and P2, and thus minimizes the risk.

Sketch for ‘Necessity’: The goal of this analysis is to nullify the possibility of having a minimizer
that exhibits collapse (i.e., H which satisfies P1) for a graph that does not satisfy condition C. We
do so by analyzing the optimality conditions of the stationary points satisfying P1, and obtaining

conditions on the Â matrix. Specifically, we obtain a system of linear equations that is shared by all
n nodes within a class, which in turn leads to condition C. Thus, proving its necessity.

Necessity: Analysing the necessity of condition C is relatively more complicated than the sufficiency
case. Nonetheless, we prove the necessity by considering K = 1, and by leveraging the idea of

a tight-convex alternative for R̂(W2,H) as been used in [55, 74] for the conventional UFMs10.
Formally, assuming dL−1 ≥ C, we minimize:

R̂(Z) :=
1

2N
∥ZÂ−Y∥2F + λZ∥Z∥∗, (39)

where λZ =
√
λHλW2 , Z ∈ R

C×N , and ∥ · ∥∗ denotes the nuclear norm. Namely, if W2 and H
minimize the former, then Z = W2H minimizes the latter, which follows from:

√
λHλW2

∥Z∥∗ = min
W2,H s.t. W2H=Z

(
λW2

2
∥W2∥2F +

λH
2

∥H∥2F
)
. (40)

We start with providing necessity analysis for the case λZ = 0. Later, we generalize this analysis to
address the case λZ > 0.

Analysis for λZ = 0: When λZ = 0, observe that ZÂ = Y = [y1, . . . ,yC]⊗ 1⊤
n = IC ⊗ 1⊤

n gives

us the minimum value for R̂(Z). Here yc ∈ R
C represent the one-hot label vectors corresponding to

nodes of class c ∈ [C].

Now, note that NC1 implies H = H ⊗ 1⊤
n ⇐⇒ Z = Z ⊗ 1⊤

n (where H ∈ R
dL−1×C and Z =

W2H ∈ R
C×C). Thus, by leveraging this Kronecker structure of Z = Z⊗ 1⊤

n = [z1, . . . , zC]⊗ 1⊤
n

and Y = [y1, . . . ,yC]⊗ 1⊤
n , we formulate:

[
z1 ⊗ 1⊤

n · · · zC ⊗ 1⊤
n

]



a11,1 · · · an1,1 · · · a1C,1 · · · anC,1

...
...

...
. . .

...
...

...

a11,C · · · an1,C · · · a1C,C · · · anC,C




=
[
y1 ⊗ 1⊤

n · · · yC ⊗ 1⊤
n

]
(41)

where aic,c′ ∈ R
n represents the slice of columns in Â corresponding to node i ∈ [n] belonging

to class c ∈ [C] and forming edges with nodes from class c′ ∈ [C]. Additionally, since Â is the

9Note that the tuple can be different for nodes belonging to different classes, but must be the same for nodes
within the same class.

10The K = 1 setting allows us to employ analysis strategies based on a tight convex formulation, which is not
applicable for K > 1 settings. Specifically, we cannot generalize the problem stated for Z = W2H to multiple
{Hk} as they share the same W2.

20

normalized adjacency matrix, we have scc′,i = 1⊤
n a

i
c,c′ ∈ R, which represents the sum of elements

in aic,c′ . This gives us:

C∑

c′=1

scc′,i = 1, (42)

because Â = AD−1 is the degree-normalized adjacency matrix. Now, multiplying the matrix

Z = Z⊗ 1⊤
n with the first column of Â gives us:

s11,1z1 + · · ·+ s1C,1zC = y1 (43)

Similarly, due to the block structure of Z,Y, we get for all i ∈ [n] and c = 1:

s11,iz1 + · · ·+ s1C,izC = y1 (44)

where s11,iz1 + · · ·+ s1C,izC = y1 itself can be written as C linear equations (one for each of the
vector components) as formulated below:


z1,1 · · · zC,1

...
. . .

...
z1,C · · · zC,C






s11,i

...
s1C,i


 = y1 (45)

Now, by treating {s11,i, · · · , s1C,i} as the C unknowns which satisfy equation 42, observe that the
solution to this linear system remains the same for all nodes belonging to class c = 1. This implies:

s1c′,1 = · · · = s1c′,n, ∀c′ ∈ [C], (46)

The generalization of this result for all C classes essentially indicates that:

(sc1,1, · · · , scC,1) = · · · = (sc1,n, · · · , scC,n), ∀c ∈ [C], (47)

which exactly represents condition C as stated above.

Analysis for λZ > 0: When H exhibits neural collapse, we have the optimality condition for the
minimizer of equation 39 based on the sub-differential of the nuclear norm as follows:

1

N

(
ZÂ−Y

)
Â⊤ + λZUZV

⊤
Z = 0

=⇒ 1

N

(
(Z⊗ 1⊤

n)Â− IC ⊗ 1⊤
n

)
Â⊤ + λZUZV

⊤
Z
⊗ 1√

n
1⊤
n = 0.

(48)

Where Z ∈ R
C×C is the matrix of “collapsed” columns of Z, and UZ ∈ R

C×C ,VZ ∈ R
N×C

represent the left and right singular vectors of Z. Additionally, since Z holds a “block” structure, we
represent V⊤

Z = V⊤
Z
⊗ 1√

n
1⊤
n , where VZ ∈ R

C×C .

• Matrix Quadratic Form: By considering −NλZUZV
⊤
Z
⊗ 1√

n
1⊤
n = B, we get:

(ZÂ−Y)Â⊤ = B, (49)

as our optimality condition. Analyzing this condition along the same lines as λZ = 0 is non-trivial

due to the outer product of ÂÂ⊤. To address this complication, we leverage the fact that SSBM

graphs tend to be regular with a high probability as N increases. Thus, by assuming that Â is
symmetric, we obtain the following matrix quadratic form:

ZÂ2 −YÂ−B = 0. (50)

As Z is rectangular, we can take the pseudo-inverse and obtain:

Â2 − Z†YÂ− Z†B = 0. (51)

Since Z†Y,Z†B ∈ R
N×N , we can treat Â as the variable matrix and leverage the results on

quadratic matrix equations by Higham and Kim [27]. Especially, we leverage theorem 3 in Higham
and Kim [27] and employ a generalized Schur decomposition technique to obtain a condition on

Â (as shown in the following lemma). This condition on Â allows us to obtain a system of linear
equations that are shared by all n nodes within a class (similar to the λZ = 0 case). Thus, establishing
the necessity of condition C.

21

Lemma D.1. Let F =

[
0 I

Z†B Z†Y

]
,G =

[
I 0
0 I

]
= I ∈ R

2N×2N , and the generalized Schur

decomposition of F,G be given by:

Q⊤FK = T, Q⊤GK = E,

where Q,K are unitary and T,E are upper triangular. K =

[
K11 K12

K21 K22

]
∈ R

2N×2N is a 2× 2

block matrix with blocks of size N ×N . Then Â satisfies: K11Â = K21.

Proof. The proof is relatively straightforward once we observe that Â satisfies:

F

[
I

Â

]
= G

[
I

Â

]
Â. (52)

Now, the condition K11Â = K21 is a direct consequence of theorem 3 in [27], which leverages the

QR decomposition of

[
I

Â

]
using K as the orthogonal matrix.

• Kronecker structure of F: To leverage the relationship between Â and K as per Lemma D.1, a
closer look at F is required. Observe that:

F =

[
0 I

Z†B Z†Y

]
=

[
Z†0 Z†Z
Z†B Z†Y

]
=

[
Z† 0

0 Z†

] [
0 Z
B Y

]
. (53)

By expanding the Kronecker structures of Z,B,Y, we get:

F =

[
Z† 0

0 Z†

] [
0⊗ 1⊤

n Z⊗ 1⊤
n

B⊗ 1⊤
n IC ⊗ 1⊤

n

]

=

[
0 · · · 0 Z†z1 · · · Z†zC

Z†b1 · · · Z†bC Z†e1 · · · Z†eC

]
⊗ 1⊤

n .

(54)

Observe that the pseudo-inverse Z† can be represented by:

Z† = (VZ ⊗ 1√
n
1n)S

†
ZU

⊤
Z (55)

which also holds a “block” structure (but with respect to rows, instead of columns):

Z† =
1√
n



v⊤
1
...

v⊤
C


S

†
ZU

⊤
Z =

1√
n



v⊤
1 S

†
ZU

⊤
Z

...

v⊤
CS

†
ZU

⊤
Z




N×C

. (56)

Where vj ∈ R
C , ∀j ∈ [C] and v⊤

j is the jth row of VZ ∈ R
C×C . With this formulation, a

matrix-vector product term in F, for instance Z†bi, i ∈ [C], can be given as:

Z†bi =
1√
n



v⊤
1 S

†
ZU

⊤
Zbi

...

v⊤
CS

†
ZU

⊤
Zbi




N×1

= (VZS
†
ZU

⊤
Zbi)⊗

1√
n
1n. (57)

By considering the following notational simplifications:

b̃i = VZS
†
ZU

⊤
Zbi

z̃i = VZS
†
ZU

⊤
Zzi

ẽi = VZS
†
ZU

⊤
Zei,

(58)

22

we can represent F as:

F =

[
0 · · · 0 Z†z1 · · · Z†zC

Z†b1 · · · Z†bC Z†e1 · · · Z†eC

]
⊗ 1⊤

n

=

[
0 · · · 0 z̃1 ⊗ 1√

n
1n · · · z̃C ⊗ 1√

n
1n

b̃1 ⊗ 1√
n
1n · · · b̃C ⊗ 1√

n
1n ẽ1 ⊗ 1√

n
1n · · · ẽ1 ⊗ 1√

n
1n

]
⊗ 1⊤

n

=

[
0 · · · 0 z̃1 · · · z̃C

b̃1 · · · b̃C ẽ1 · · · ẽ1

]

2C×2C

⊗ 1√
n
1n ⊗ 1⊤

n .

(59)

• Schur decomposition of F: For notational simplicity, let :

F = F̃⊗ 1√
n
1n ⊗ 1⊤

n

Where: F̃ =

[
0 · · · 0 z̃1 · · · z̃C

b̃1 · · · b̃C ẽ1 · · · ẽ1

]

2C×2C

.

(60)

Since G = I, the diagonal entries of S must equal the eigenvalues of I. This condition is satisfied
when Q = K. This also simplifies the generalized Schur decomposition for square matrices F,G

to the standard Schur decomposition of F. Now, let the schur decomposition of F ∈ R
2N×2N , F̃ ∈

R
2C×2C be given as:

F = KTK⊤, F̃ = K̃T̃K̃⊤. (61)

Here K,T ∈ R
2N×2N and K̃, T̃ ∈ R

2C×2C . To find a relation between K,T, K̃, T̃, we can
leverage the Schur decomposition properties of Kronecker products [53, 59] and obtain:

F = F̃⊗ 1√
n
1n ⊗ 1⊤

n (62)

= F̃⊗ 1√
n
1n1

⊤
n (63)

KTK⊤ =
(
K̃T̃K̃⊤

)
⊗
(
JOJ⊤) (64)

=
(
K̃⊗ J

)(
T̃⊗O

)(
K̃⊤ ⊗ J⊤

)
. (65)

Where J,O ∈ R
n×n are unitary and upper triangular respectively, and are the Schur decomposition

factors of 1√
n
1n1

⊤
n ∈ R

n×n.

• Linear systems: In matrix form, K = K̃⊗ J can be represented as:

K =

[
K̃11 ⊗ J K̃12 ⊗ J

K̃21 ⊗ J K̃22 ⊗ J

]

2N×2N

. (66)

Where K̃11, K̃12, K̃21, K̃22 ∈ R
C×C . Now, observe that K11Â = K21 (based on Lemma D.1) can

be reformulated as:
(
K̃11 ⊗ J

)
Â =

(
K̃21 ⊗ J

)
. (67)

Now, as per equation 41, we leverage the same line of analysis that we followed for the λZ = 0 case.
For notational simplicity, we represent the unitary matrix J ∈ R

n×n in column format as follows:

J = [j1 · · · jn] , (68)

where ji ∈ R
n, i ∈ [n] are linearly independent vectors. Now, by multiplying the first row of K̃11⊗J

and the first column of Â, we get:

23

[
(K̃11)1,1 [j1 · · · jn] · · · (K̃11)1,C [j1 · · · jn]

]




a1,1
...

an,1
...

a(C−1)n+1,1

...
aCn,1




= (K̃21)1,1j1.

This translates to the following linear equation:

a1,1(K̃11)1,1j1 + · · ·+ an,1(K̃11)1,1jn + · · ·
+a(C−1)n+1,1(K̃11)1,Cj1 + · · ·+ aCn,1(K̃11)1,Cjn = (K̃21)1,1j1.

(69)

Due to linear independence of vectors ji, i ∈ [n], we obtain the following n equations pertaining to
the coefficients of ji:

a1,1(K̃11)1,1 + · · ·+ a(C−1)n+1,1(K̃11)1,C = (K̃21)1,1

a2,1(K̃11)1,1 + · · ·+ a(C−1)n+2,1(K̃11)1,C = 0

...

an,1(K̃11)1,1 + · · ·+ aCn,1(K̃11)1,C = 0.

By adding all these equations, we get:

s11,1(K̃11)1,1 + · · ·+ s1C,1(K̃11)1,C = (K̃21)1,1. (70)

By following the same approach for the other rows of K̃11 ⊗K1n and the first column of Â, we get
the following system of equations for node v1,1:



(K̃11)1,1 · · · (K̃11)1,C

...
. . .

...

(K̃11)C,1 · · · (K̃11)C,C






s11,1

...
s1C,1


 =



(K̃21)1,1

...

(K̃21)C,1


 . (71)

The same line of analysis can be applied for all the rows of K̃11 ⊗K1n and the second column of Â,
to get the following system of equations for node v1,2:



(K̃11)1,1 · · · (K̃11)1,C

...
. . .

...

(K̃11)C,1 · · · (K̃11)C,C






s11,2

...
s1C,2


 =



(K̃21)1,1

...

(K̃21)C,1


 (72)

Thus, it is straightforward that the systems of equations are the same for all n nodes belonging to
class c = 1, as the procedure of row and column multiplication remains the same. Thus, the C
unknowns in these linear systems have the same solution for all n nodes belonging to class c = 1. It
is straightforward to extend this to any class c ∈ [C] and obtain:

(sc1,1, · · · , scC,1) = · · · = (sc1,n, · · · , scC,n), ∀c ∈ [C], (73)

which exactly represents the condition C as per the theorem.

24

E Proof of Theorem 3.2

In this appendix, we derive the upper bound on the probability of sampling the desired neighborhood
for condition C.

Recall that to satisfy condition C, the requirement w.r.t Â is for

(
|N1(vc,i)|
|N (vc,i)| , · · · ,

|NC(vc,i)|
|N (vc,i)|

)
, ∀i ∈ [n]

to be the same for a given c ∈ [C]. To this end, we are primarily concerned with the probabilities of
edges between nodes vi, vj , 1 ≤ i ≤ j ≤ N . Thus, as per preliminaries, the probability matrix P can
be given in block form as:

P =




p1n1
⊤
n q1n1

⊤
n · · · q1n1

⊤
n

... p1n1
⊤
n · · · q1n1

⊤
n

...
. . .

. . .
...

... · · · · · · p1n1
⊤
n



N×N

Where we are only concerned with the diagonal and upper triangular values11. Now, for a pair of
classes c, c′ ∈ [C], we are concerned with the block probability matrix p1n1

⊤
n when c = c′ and

q1n1
⊤
n when c ̸= c′ for sampling edges between nodes. Observe that sampling edges within a

community based on diagonal block matrix p1n1
⊤
n is the same as sampling an Erdos-Renyi graph

with edge probability p. Similarly, sampling edges between communities based on off-diagonal block
matrix q1n1

⊤
n is the same as sampling a bipartite graph with edge probability q.

Concentration of pairwise neighbor ratios: To begin with, consider the set of nodes belonging
to class c ∈ [C] as Ωc = {vc,1, · · · , vc,n}. Now, to satisfy condition C, the fraction of neighbors of
nodes vc,i, vc,j , i ̸= j ∈ [n] that belong to class c′ ∈ [C] should be equal, i.e scc′,i = scc′,j . Formally,
this leads to:

|Nc′(vc,i)|
|N (vc,i)|

=
|Nc′(vc,j)|
|N (vc,j)|

=⇒ |Nc′(vc,i)|
|Nc′(vc,j)|

=
|N (vc,i)|
|N (vc,j)|

Without loss of generality, observe that |Nc′(vc,i)| is the sum of n independent Bernoulli random

variables γc
′,l

c,i , ∀l ∈ [n] with P(γc
′,l

c,i = 1) = q. This implies that E|Nc′(vc,i)| = nq. Now, we apply
the Chernoff bound to obtain:

P (||Nc′(vc,i)| − nq| ≥ δnq) ≤ 2e−tnqδ2

Where δ ∈ [0, 1] and t > 0 is a constant. By choosing δ =
√

(r+1) lnn
tnq for sufficiently large

r > 0, N >> C, we get δ = O(1) as q = b lnN
N . Now, by taking a union bound over all the nodes

in the class, we get:

P (∀i ∈ [n], ||Nc′(vc,i)| − nq| ≥ δnq) ≤ 2ne−(r+1) lnn

Thus, with a probability at-least 1− 2n−r, we get:

|Nc′(vc,i)| = nq (1±O(1))

By applying the same line of argument to |Nc′(vc,j)| and assuming a sufficiently large value of n, we
get with a probability at-least 1− 4n−r that:

|Nc′(vc,i)|
|Nc′(vc,j)|

→ 1

To this end, we assume that |Nc′(vc,i)| = |Nc′(vc,j)|, ∀c ∈ [C], i ̸= j ∈ [n] with a high probability
for the rest of the analysis. The consequence of this assumption is that all the nodes belonging to the
same class have the same degree. However, it is not necessary that the graph itself is regular.

Off-diagonal blocks: Without loss of generality, consider the set of nodes belonging to a pair of
classes c ̸= c′ ∈ [C] as Ωc = {vc,1, · · · , vc,n},Ωc′ = {vc′,1, · · · , vc′,n} respectively. Now, we need

11Due to symmetry, one can equivalently consider the lower triangular values and proceed with sums of
columns instead of sums of rows.

25

to ensure that every node vc,i ∈ Ωc is connected to (say) exactly tcc′ ∈ R, 0 ≤ tcc′ ≤ n, nodes in Ωc′ .

IfEc′

c,i(tcc′) indicates that such an event occurs for node vc,i ∈ Ωc with respect to Ωc′ , we can formally

represent it as the sum of n independent Bernoulli random variables γc
′,j

c,i , i ∈ [n], ∀j ∈ {1, . . . , n}
with P(γc

′,j
c,i = 1) = q sum to tcc′ as follows:

P(Ec′

c,i(tcc′)) =

(
n

tcc′

)
qtcc′ (1− q)n−tcc′ .

Now, we are concerned with an intersection of events pertaining to all nodes in Ωc, which ensures that

each node has exactly tcc′ neighbors in Ωc′ . By considering the event Ec′

c (tcc′) =
⋂n

i=1E
c′

c,i(tcc′)
and leveraging the fact that edges are sampled independently, we obtain:

P

(
Ec′

c (tcc′)
)
= P

(
n⋂

i=1

Ec′

c,i(tcc′)

)
=

[(
n

tcc′

)
qtcc′ (1− q)n−tcc′

]n
.

Now, to account for all possible values of 0 ≤ tcc′ ≤ n, we compute the probability of the union of

events Ẽc′

c =
⋃n

tcc′=0E
c′

c (tcc′) as:

P

(
Ẽc′

c

)
≤

n∑

tcc′=0

[(
n

tcc′

)
qtcc′ (1− q)n−tcc′

]n
.

Note that this result can be applied to any distinct pair of classes c ̸= c′ ∈ [C] based on the

characteristics of the SSBM. Since we have
(
C
2

)
= C(C−1)

2 combinations of distinct communities,
the probability of occurrence of all the corresponding events is given by:

P

(
C−1⋂

c=1

C⋂

c′=c+1

Ẽc′

c

)
≤

C−1∏

c=1

C∏

c′=c+1

n∑

tcc′=0

[(
n

tcc′

)
qtcc′ (1− q)n−tcc′

]n
. (74)

Observe that the binomial expansion of (q + 1− q)n is given by:

1 = (q + 1− q)n =

n∑

tcc′=0

(
n

tcc′

)
qtcc′ (1− q)n−tcc′ , (75)

where each term, say f(tcc′) =
(

n
tcc′

)
qtcc′ (1− q)n−tcc′ in the sum is strictly less than 1. Additionally,

1n =




n∑

tcc′=0

f(tcc′)




n

=
∑

k0+···+kn=n,k0,··· ,kn≥0

(
n

k0, · · · , kn

) n∏

tcc′=0

f(tcc′)
kt

cc′ (76)

=

n∑

tcc′=0

f(tcc′)
n +

∑

k0+···+kn=n,0≤k0,··· ,kn<n

(
n

k0, · · · , kn

) n∏

tcc′=0

f(tcc′)
kt

cc′ .

(77)

This gives us:

n∑

tcc′=0

f(tcc′)
n = 1−

∑

k0+···+kn=n,0≤k0,··· ,kn<n

(
n

k0, · · · , kn

) n∏

tcc′=0

f(tcc′)
kt

cc′ . (78)

Observe that there are n+ 1 terms in
∑n

tcc′=0 f(tcc′) = 1 and the maximum value that f(tcc′) can

take is < 1. Thus, each of the f(tcc′) terms tend to zero after taking the nth power, as n → ∞,
leading to

∑n
tcc′=0 f(tcc′)

n → 0.

Diagonal blocks: Handling the exact event probabilities when c = c′ ∈ [C] is not so straightforward
due to symmetry constraints. To begin with, observe that the sum of n independent Bernoulli random

variables γc,jc,i , i ∈ [n], ∀j ∈ {1, . . . , n} with P(γc,jc,i = 1) = p sum to tcc is given by:

P
(
Ec

c,i(tcc)
)
= P




n∑

j=1

γc,jc,i = tcc


 =

(
n

tcc

)
ptcc(1− p)n−tcc

26

Since P(Ec
c,j(tcc)) for j > i ∈ [n] is conditional on P(Ec

c,i(tcc)), the desired probability for the

event Ec
c(tcc) =

⋂n
i=1E

c
c,i(tcc) can be formulated as:

P (Ec
c(tcc)) = P

(
n⋂

i=1

Ec
c,i(tcc)

)

= P
(
Ec

c,1(tcc)
)
· P
(
Ec

c,2(tcc)
∣∣Ec

c,1(tcc)
)
· · ·P

(
Ec

c,n(tcc)

∣∣∣∣∣

n−1⋂

i=1

Ec
c,i(tcc)

)

Obtaining a clean expression for the diagonal case is complicated by the fact that the events
Ec

c,1(tcc), E
c
c,2(tcc), · · · , Ec

c,n(tcc) are not independent. Since we have already shown in the off-

diagonal case that the P

(⋂C−1
c=1

⋂C
c′=c+1 Ẽ

c′

c

)
→ 0 as n → ∞, we proceed with the simpler

inequality P (Ec
c(tcc)) < 1 to convey the message of this theorem. Thus, we estimate the probability

of the intersection of all events pertaining to c, c′ ∈ [C] as:

P

(
C⋂

c=1

C⋂

c′=c

Ẽc′

c

)
<

(C−1∏

c=1

C∏

c′=c+1

n∑

tcc′=0

[(
n

tcc′

)
qtcc′ (1− q)n−tcc′

]n)

=⇒ P

(
C⋂

c=1

C⋂

c′=c

Ẽc′

c

)
<

(
n∑

t=0

[(
n

t

)
qt(1− q)n−t

]n)C(C−1)
2

(79)

E.1 Illustration with exhaustive combinations for a small graph

A key assumption in our theoretical analysis has been N >> C, which allowed us to assume that
nodes belonging to the same class have the same degree. However, for an intuitive understanding
of condition C, let us consider an extremely simple graph with N = 4, C = 2. This leads to the
following adjacency matrix formulation:

A =



γ11 γ12 γ13 γ14
γ12 γ22 γ23 γ24
γ13 γ23 γ33 γ34
γ14 γ24 γ34 γ44


 (80)

Where γij represents a Bernoulli random variable depending on p, q. We defer assigning values to p, q
until the end as we are interested in the ‘realizations’ of A that satisfy condition C. Observe that there
are only 10 random variables in A due to symmetry (4 on the diagonal and 6 on the upper-triangular
part). Since each can either take a value of 0, 1, there are 1024 unique realizations of A. To this end,
condition C can be represented as:

γ11 + γ12
γ11 + γ12 + γ13 + γ14

=
γ12 + γ22

γ12 + γ22 + γ23 + γ24
and

γ13 + γ14
γ11 + γ12 + γ13 + γ14

=
γ23 + γ24

γ12 + γ22 + γ23 + γ24
and

γ13 + γ23
γ13 + γ23 + γ33 + γ34

=
γ14 + γ24

γ14 + γ24 + γ34 + γ44
and

γ33 + γ34
γ13 + γ23 + γ33 + γ34

=
γ34 + γ44

γ14 + γ24 + γ34 + γ44
.

(81)

Based on our simulations for graphs with self-edges, less than 1/10 of the 1024 realizations satisfy
this property. A few are illustrated below:

A =



1 1 0 1
1 1 1 0
0 1 1 0
1 0 0 1


 , A =



1 1 0 1
1 1 1 0
0 1 0 1
1 0 1 0




A =



1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 , A =



1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0




27

By considering p = 0.2, q = 0.05, the probability of sampling such A is ≈ 0.046. Interestingly,
when p = 0.05, q = 0.2, the probability increases to ≈ 0.06. Now, by increasing the density of
edges in the graph, i.e., when p = 0.4, q = 0.1 and p = 0.1, q = 0.4, we get probability values
≈ 0.166, 0.178 respectively. Now, let us consider the case where N = 8, C = 2. In this case, we
have 36 Bernoulli random variables γij , i ≤ j ∈ {1, · · · , 8}. The number of possible values for A

turns out to be 236 = 68, 719, 476, 736, for which the brute force approach to validate condition C is
not efficient. To this end, we follow a simple Monte-Carlo approach and draw 1, 000, 000 random
graphs from SSBM(N = 8, C = 2, p = 0.5, q = 0.2). We observed that only ≈ 800 graphs out of
1, 000, 000 satisfied condition C, i.e., a probability of ≈ 0.0008. A few are illustrated below:

A =




0 1 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0




, A =




1 1 1 1 0 1 0 0
1 1 1 1 0 0 1 0
1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 1
0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 0




A =




0 1 1 0 0 1 0 1
1 1 0 1 0 1 1 1
1 0 1 1 1 1 1 0
0 1 1 1 1 0 1 1
0 0 1 1 0 1 0 1
1 1 1 0 1 0 1 1
0 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0




, A =




1 1 1 0 1 1 0 0
1 0 1 1 1 0 1 0
1 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1
1 1 0 0 1 1 1 0
1 0 1 0 1 0 1 1
0 1 0 1 1 1 0 1
0 0 1 1 0 1 1 1




Thus, the takeaway is that, even for small-medium scale homophilic and heterophilic SSBM graphs,
random graphs that satisfy condition C are rarely sampled.

28

F Proof of Theorem 3.3

In this appendix, we analyse the gradient flow stated in (14) and establish the results stated in
Theorem 3.3. Our analysis is inspired by the one in [56], but significantly differs from it, as we need
to overcome the complexity introduced by the graph structure matrix.

Based on the setup of gUFM for GNN ψF ′

, we analyze the risk R̂F ′

given as follows:

R̂F ′

(W2, {Hk}Kk=1) :=
1

K

K∑

k=1

(
1

2N

∥∥∥W2HkÂk −Y

∥∥∥
2

F
+
λHk

2
∥Hk∥22

)
+
λW2

2
∥W2∥22

By taking the derivatives of R̂F ′

with respect to (W2,Hk), we get:

∂R̂F ′

∂W2
=

1

KN

K∑

k=1

(W2HkÂk −Y)(HkÂk)
⊤ + λW2

W2

∂R̂F ′

∂Hk
=

1

KN

[
W⊤

2 (W2HkÂk −Y)Â⊤
k

]
+

1

K
λHk

Hk

Now, by setting ∂R̂F′

∂W2
= 0 we get the closed form representation of W2 in terms of H.

∂R̂F ′

∂W2
=

1

KN

K∑

k=1

(W2HkÂk −Y)(HkÂk)
⊤ + λW2W2 = 0

=⇒ 1

K

K∑

k=1

(
W2HkÂkÂ

⊤
k H

⊤
k −YÂ⊤

k H
⊤
k

)
+ λW2

NW2 = 0

=⇒ W2

[
1

K

K∑

k=1

HkÂkÂ
⊤
k H

⊤
k + λW2

NI

]
=

1

K

K∑

k=1

YÂ⊤
k H

⊤
k

Thus, the ideal value of W∗
2 is given by:

W∗
2 =

[
1

K

K∑

k=1

YÂ⊤
k H

⊤
k

][
1

K

K∑

k=1

HkÂkÂ
⊤
k H

⊤
k + λW2

NI

]−1

Now, under the assumption that K = 1, C = 2, we drop the subscript for Hk, Âk to get:

W∗
2 =

(
YÂ⊤H⊤

)(
HÂÂ⊤H⊤ + λW2

NI
)−1

(82)

To this end, we return to our risk minimization formulation for a single graph with these optimal
values as follows:

R̂F ′

(H) =
1

2N

∥∥∥W∗
2HÂ−Y

∥∥∥
2

F
+
λW2

2
∥W∗

2∥22 +
λH
2

∥H∥22 (83)

F.1 Â as a perturbation of EÂ

Since we are dealing with SSBM graphs, we can formulate Â as the perturbed version of its expected

value. Formally, Â = EÂ+ E where EÂ ∈ R
N×N is the expected normalized adjacency matrix

and E ∈ R
N×N is the perturbation matrix. EÂ can be written in block matrix form as:

EÂ =
1

np+ nq

[
p1n1

⊤
n q1n1

⊤
n

q1n1
⊤
n p1n1

⊤
n

]

N×N

(84)

29

Where the EÂ has eigenvalues 1, p−q
p+q associated with eigenvectors 1√

N
1 and c = 1√

N

[
1n

−1n

]

N

respectively. Thus, we can represent EÂ using its spectral information as follows:

EÂ =
2

N(p+ q)

(
p+ q

2
1N1⊤

N +
p− q

2
cc⊤

)

= [1N c]

[
α1 0
0 α2

]
[1N c]

⊤

= [1N c]

[√
α1 0
0

√
α2

] [√
α1 0
0

√
α2

]⊤
[1N c]

⊤

= QQ⊤

(85)

Where α1 = 1
N , α2 = p−q

(p+q)N , and Q = [1N c]

[√
α1 0
0

√
α2

]
∈ R

N×2 is the factor matrix.

F.2 Preliminary results

Let us recall the definitions of the within- and between-class covariance matrices, ΣW (H) and
ΣB(H), for computing the preliminary results:

ΣW (H) :=
1

Cn

C∑

c=1

n∑

i=1

(
hc,i − hc

) (
hc,i − hc

)⊤
,

ΣB(H) :=
1

C

C∑

c=1

(
hc − hG

) (
hc − hG

)⊤
.

Here, the class means hc, ∀c ∈ [C] and the global mean hG of H are given as follows:

hc :=
1

n

n∑

i=1

hc,i , ∀c ∈ [C], hG :=
1

Cn

C∑

c=1

n∑

i=1

hc,i.

F.2.1 Relating Σ̃B(H),ΣB(H)

Since C = 2 in our analysis and hG = h1+h2

2 due to balanced communities, note that:

ΣB(H) =
1

2

2∑

c=1

(
hc − hG

) (
hc − hG

)⊤

=
1

2

((
h1 − hG

) (
h1 − hG

)⊤
+
(
h2 − hG

) (
h2 − hG

)⊤)

=
1

4

(
h1 − h2

) (
h1 − h2

)⊤

=
1

4

(
h1h

⊤
1 + h2h

⊤
2 − h1h

⊤
2 − h2h

⊤
1

)

=
1

4

(
2Σ̃B(H)− h1h

⊤
2 − h2h

⊤
1

)

Thus, we get the following relation between Σ̃B(H),ΣB(H):

2Σ̃B(H)− 4ΣB(H) = h1h
⊤
2 + h2h

⊤
1 (86)

Additionally, we can extend this result to the following:

2Σ̃B(H)− 4ΣB(H) = h1h
⊤
2 + h2h

⊤
1

=
(
2hG − h2

)
h
⊤
2 +

(
2hG − h1

)
h
⊤
1

= 2hG

(
h
⊤
1 + h

⊤
2

)
− h1h

⊤
1 − h2h

⊤
2

= 4ΣG(H)− 2Σ̃B(H)

30

Where ΣG = hGh
⊤
G. This gives us:

Σ̃B(H)−ΣG(H) = ΣB(H) (87)

F.2.2 Expanding HÂH⊤

Based on the perturbed representation of Â = EÂ+E, we can modify HÂH⊤ and HÂ⊤H⊤ as:

HÂH⊤ = H
[
EÂ
]
H⊤ +HEH⊤

= [HQ] [HQ]
⊤
+HEH⊤

HÂ⊤H⊤ = H
[
EÂ
]⊤

H⊤ +HE⊤H⊤

= H
[
EÂ
]
H⊤ +HE⊤H⊤

= [HQ] [HQ]
⊤
+HE⊤H⊤

Observe that HQ can be broken down in terms of hc,i, c ∈ [C], i ∈ [n] as follows:

HQ = [h1,1 · · · h1,n h2,1 · · · h2,n]dL−1×N [1N c]N×2

[√
α1 0
0

√
α2

]

2×2

=
[√
α1

∑2
c=1

∑n
i=1 hc,i

√
α2 (

∑n
i=1 h1,i −

∑n
i=1 h2,i)

]

=
[
2n

√
α1hG n

√
α2

(
h1 − h2

)]

This leads to the following expansion of [HQ] [HQ]
⊤

:

[HQ] [HQ]
⊤
=
[
2n

√
α1hG n

√
α2

(
h1 − h2

)]
[

2n
√
α1h

⊤
G

n
√
α2

(
h1 − h2

)⊤

]

= 4n2α1hGh
⊤
G + n2α2

(
h1 − h2

) (
h1 − h2

)⊤

= 4n2α1hGh
⊤
G + 4n2α2

(
h1 − hG

) (
h1 − hG

)⊤

(88)

Since hG = h1+h2

2 (due to balanced classes). This also implies that:

[HQ] [HQ]
⊤
= 4n2α1hGh

⊤
G + 4n2α2

(
h2 − hG

) (
h2 − hG

)⊤
(89)

Thus, by taking the average of values in equation 88, 89, we get:

[HQ] [HQ]
⊤
= 4n2α1ΣG(H) + 4n2α2ΣB(H)

= 4n2

[
1

N
ΣG(H) +

(p− q)

(p+ q)N
ΣB(H)

]

= 2n

[
Σ̃B(H)−ΣB(H) +

(p− q)

(p+ q)
ΣB(H)

]

= 2n

[
Σ̃B(H)− 2q

(p+ q)
ΣB(H)

]

Finally, HÂH⊤ can be simplified to:

HÂH⊤ = 2n

[
Σ̃B(H)− 2q

(p+ q)
ΣB(H)

]
+∆1 (90)

Where ∆1 = HEH⊤ corresponds to the first order perturbation term. Similarly,

HÂ⊤H⊤ = 2n

[
Σ̃B(H)− 2q

(p+ q)
ΣB(H)

]
+∆⊤

1 (91)

31

F.2.3 Expanding HÂÂ⊤H⊤

Expanding ÂÂ⊤ can be done along the same lines:

ÂÂ⊤ =
[
EÂ+E

] [
EÂ+E

]⊤
=
[
EÂ
]2

+EE⊤ +E
[
EÂ
]
+
[
EÂ
]
E⊤

[
EÂ
]2

= [1N c]

[
α1 0
0 α2

]
[1N c]

⊤
[1N c]

[
α1 0
0 α2

]
[1N c]

⊤

= [1N c]

[
α1 0
0 α2

] [
Nα1 0
0 Nα2

]
[1N c]

⊤

= Q

[√
α1N 0
0

√
α2N

] [√
α1N 0
0

√
α2N

]⊤
Q⊤

Based on the formulations above, H
[
EÂ
]2

H⊤ can be given by:

H
[
EÂ
]2

H⊤ =

[
HQ

[√
α1N 0
0

√
α2N

]] [
HQ

[√
α1N 0
0

√
α2N

]]⊤

=
[
2nα1

√
NhG nα2

√
N
(
h1 − h2

)]
[

2nα1

√
Nh

⊤
G

nα2

√
N
(
h1 − h2

)⊤

]

= 4n2α2
1NhGh

⊤
G + n2α2

2N
(
h1 − h2

) (
h1 − h2

)⊤

= 4n2α2
1NhGh

⊤
G + 4n2α2

2N
(
h1 − hG

) (
h1 − hG

)⊤

(92)

Since hG = h1+h2

2 (due to balanced classes). This also implies that:

H
[
EÂ
]2

H⊤ = 4n2α2
1NhGh

⊤
G + 4n2α2

2N
(
h2 − hG

) (
h2 − hG

)⊤
(93)

Thus, based on taking the average of values in equation 92, 93, we get:

H
[
EÂ
]2

H⊤ = 4n2α2
1NΣG(H) + 4n2α2

2NΣB(H)

= 8n3
[

1

N2
ΣG(H) +

(p− q)2

N2(p+ q)2
ΣB(H)

]

= 2n

[
Σ̃B(H)− 4pq

(p+ q)2
ΣB(H)

]

Finally, HÂÂ⊤H⊤ can be simplified to:

HÂÂ⊤H⊤ = 2n

[
Σ̃B(H)− 4pq

(p+ q)2
ΣB(H)

]
+∆2 (94)

Where ∆2 = H
[
EE⊤ +E

[
EÂ
]
+
[
EÂ
]
E⊤
]
H⊤ is a symmetric matrix corresponding to the

first and second order perturbation terms.

F.2.4 Expanding YÂ⊤H⊤,YH⊤

We follow similar line of expansions for YÂ⊤H⊤ to get:

YÂ⊤H⊤ = Y
[
EÂ
]
H⊤ +YE⊤H⊤ = (I2 ⊗ 1⊤

n)
[
EÂ
]
H⊤ +YE⊤H⊤

= (I2 ⊗ 1⊤
n)

1

np+ nq




nph
⊤
1 + nqh

⊤
2

...

nqh
⊤
1 + nph

⊤
2

...



+YE⊤H⊤

=
n

p+ q

[
ph

⊤
1 + qh

⊤
2

qh
⊤
1 + ph

⊤
2

]
+∆3

(95)

32

Where ∆3 = YE⊤H⊤ is the first order perturbation term. Next, observe that:

YH⊤ = (I2 ⊗ 1⊤
n)H

⊤ = nH
⊤

(96)

F.2.5 Expanding HÂY⊤YÂ⊤H⊤

HÂY⊤YÂ⊤H⊤ = H
[
EÂ+E

]
Y⊤Y

[
EÂ+E

]⊤
H⊤

=


 n

p+ q

[
ph

⊤
1 + qh

⊤
2

qh
⊤
1 + ph

⊤
2

]⊤
+∆⊤

3



(

n

p+ q

[
ph

⊤
1 + qh

⊤
2

qh
⊤
1 + ph

⊤
2

]
+∆3

)

=
n2

(p+ q)2
[
ph1 + qh2 qh1 + ph2

]
[
ph

⊤
1 + qh

⊤
2

qh
⊤
1 + ph

⊤
2

]
+ ∆̃3

=
n2

(p+ q)2

[
(p2 + q2)

(
h1h

⊤
1 + h2h

⊤
2

)
+ (2pq)

(
h1h

⊤
2 + h2h

⊤
1

)]
+ ∆̃3

(a)
=

n2

(p+ q)2

[
2(p2 + q2)Σ̃B(H) + (2pq)

(
2Σ̃B(H)− 4ΣB(H)

)]
+ ∆̃3

= 2n2

[
Σ̃B(H)− 4pq

(p+ q)2
ΣB(H)

]
+ ∆̃3

(97)

Where ∆̃3 = H
(
EY⊤YE⊤ +

[
EÂ
]
Y⊤YE⊤ +EY⊤Y

[
EÂ
])

H⊤ and the equality (a) is

based on equation 86.

F.3 Trace formulation of risk

Now, note that the risk can be formulated in terms of matrix traces as follows:

R̂F ′

(H) =
1

2N
Tr

{(
W∗

2HÂ−Y
)(

W∗
2HÂ−Y

)⊤}
+
λW2

2
Tr
{
W∗

2W
∗⊤
2

}
+

λH
2

Tr
{
HH⊤}

(98)

Where the term
(
W∗

2HÂ−Y
)(

W∗
2HÂ−Y

)⊤
can be expanded as follows:

(
W∗

2HÂ−Y
)(

W∗
2HÂ−Y

)⊤
= W∗

2HÂÂ⊤H⊤W∗⊤
2 −W∗

2HÂY⊤

−YÂ⊤H⊤W∗⊤
2 +YY⊤

Since W∗
2

[
HÂÂ⊤H⊤ + λW2NI

]
= YÂ⊤H⊤, we can multiply W∗⊤

2 on both sides and get:

W∗
2HÂÂ⊤H⊤W∗⊤

2 = YÂ⊤H⊤W∗⊤
2 − λW2

NW∗
2W

∗⊤
2

Using these simplifications and matrix trace properties, the risk can be modified as:

=
1

2N
Tr

{(
W∗

2HÂ−Y
)(

W∗
2HÂ−Y

)⊤}
+
λW2

2
Tr
{
W∗

2W
∗⊤
2

}
+
λH
2

Tr
{
HH⊤}

=
1

2N
Tr
{
−W∗

2HÂY⊤ +YY⊤
}
+
λH
2

Tr
{
HH⊤}

=
1

2N
Tr

{
−YÂ⊤H⊤

[
HÂÂ⊤H⊤ + λW2

NI
]−1

HÂY⊤ +YY⊤
}
+
λH
2

Tr
{
HH⊤}

=
1

2N
Tr

{
−HÂY⊤YÂ⊤H⊤

[
HÂÂ⊤H⊤ + λW2

NI
]−1
}

+
1

2N
Tr
{
YY⊤}+ λH

2
Tr
{
HH⊤}

33

Where the covariance matrix formulations for HÂÂ⊤H⊤,HÂY⊤YÂ⊤H⊤ can be leveraged to
formulate the risk as:

R̂F ′

(H) = − 1

2N
Tr

{[
2n2

(
Σ̃B(H)− 4pq

(p+ q)2
ΣB(H)

)
+ ∆̃3

]

[
2n

(
Σ̃B(H)− 4pq

(p+ q)2
ΣB(H)

)
+∆2 + λW2

NI

]−1
}

+
1

2

+
λH
2

Tr
{
NΣ̃T (H)

}

(99)

F.4 Trace evolution of covariance matrices

Now, we analyze the traces of dΣW

dt , dΣB

dt along the gradient flow:

dHt

dt
= −∇R̂F ′

(Ht). (100)

Let ∂kjl represent the derivative of lth entry of hk,j . For notational simplicity, we also consider

ΣW = ΣW (H),ΣB = ΣB(H), Σ̃B = Σ̃B(H), Σ̃T = Σ̃T (H). This leads to:

∂kjlΣB =
1

2n

(
el
(
hk − hG

)⊤
+
(
hk − hG

)
e⊤l
)

∂kjlΣ̃B =
1

2n

(
elh

⊤
k + hke

⊤
l

)

∂kjlΣW =
1

2n

(
el
(
hk,j − hk

)⊤
+
(
hk,j − hk

)
e⊤l
)

∂kjlΣ̃T =
1

2n

(
elh

⊤
k,j + hk,je

⊤
l

)

(101)

Now, considering J = 2n
(
Σ̃B − 4pq

(p+q)2ΣB

)
, we formulate ∂kjlR̂F ′

(H) as:

∂kjlR̂F ′

(H) =
−n
2N

Tr

{
∂kjl

([
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1

)}
+
NλH
4n

(
2e⊤l hk,j

)

Since C = 2 in our analysis, the derivative expands into:

∂kjlR̂F ′

(H) = −1

4
Tr

{
∂kjl

(
J+

∆̃3

n

)
[J+∆2 + λW2

NI]
−1

}

− 1

4
Tr

{[
J+

∆̃3

n

]
∂kjl

(
[J+∆2 + λW2NI]

−1
)}

+ λHe⊤l hk,j

Where the second term can be expanded as:

1

4
Tr

{[
J+

∆̃3

n

]
∂kjl

(
[J+∆2 + λW2

NI]
−1
)}

= −1

4
Tr

{[
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1
∂kjl (J+∆2) [J+∆2 + λW2

NI]
−1

}

= −1

4
Tr

{
[J+∆2 + λW2

NI]
−1

[
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1
∂kjl (J+∆2)

}

34

Now, by expanding ∂kjl (J) in terms of covariance matrix derivatives, we get:

∂kjl (J) = ∂kjl2n

(
Σ̃B − 4pq

(p+ q)2
ΣB

)

=
(
elh

⊤
k + hke

⊤
l

)
− 4pq

(p+ q)2

(
el
(
hk − hG

)⊤
+
(
hk − hG

)
e⊤l
)

= el

((
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

)⊤

+

((
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

)
e⊤l

This leads to the following formulation for ∂kjlR̂F ′

(H):

∂kjlR̂F ′

(H) = −1

4
Tr
{
[J+∆2 + λW2

NI]
−1
∂kjl(J)

}

+
1

4
Tr

{
[J+∆2 + λW2

NI]
−1

[
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1
∂kjl (J)

}

+ λHe⊤l hk,j + Pkjl

= −1

2
Tr



[J+∆2 + λW2

NI]
−1


el

((
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

)⊤





+
1

2
Tr

{
[J+∆2 + λW2

NI]
−1

[
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1

·


el

((
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

)⊤



+ λHe⊤l hk,j + Pkjl

Where Pkjl represents the remaining trace terms pertaining to the partial derivatives of ∆2, ∆̃3:

Pkjl = −1

4
Tr

{
[J+∆2 + λW2

NI]
−1
∂k,j,l

(
∆̃3

n

)}

+
1

4
Tr

{
[J+∆2 + λW2

NI]
−1

[
J+

∆̃3

n

]
[J+∆2 + λW2

NI]
−1
∂kjl (∆2)

}

We now denote M := [J+∆2 + λW2
NI]

−1
to obtain:

∂kjlR̂F ′

(H) = −1

2

([
M−M

[
J+

∆̃3

n

]
M

][(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j

)⊤

el

+ Pkjl

(102)

Without loss of generality, since Pkjl ∈ R, we consider Pkjl = p⊤
k,jel where pk,j ∈ R

dL−1 is a

random vector which represents the overall perturbation effect of Pkjl. Note that the randomness is

associated with the E matrix in ∆2, ∆̃3. We can now represent ∂kjlR̂F ′

(H) = ⟨Rk,j , el⟩, where:

Rk,j = −1

2

(
M̃

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j − 2pk,j

)

M̃ =

[
M−M

[
J+

∆̃3

n

]
M

] (103)

35

• Derivative of ΣB: By denoting ΣB(a, b) = e⊤a ΣBeb as the (a, b)-element of ΣB , we use the

above result for ∂kjlR̂F ′

(H) and the chain rule to compute dΣB

dt along the flow (14), as follows:

dΣB(a, b)

dt
=
∑

k,j,l

∂k,j,lΣB(a, b)
dhk,j [l]

dt
=
∑

k,j,l

∂k,j,lΣB(a, b)
(
−∂k,j,lR̂F ′

(H)
)

=
∑

k,j

∑

l

− 1

2n

(
⟨ea, el⟩⟨eb,hk − hG⟩+ ⟨ea,hk − hG⟩⟨el, eb⟩

)
⟨Rk,j , el⟩

=
∑

k,j

− 1

2n

(
⟨ea,Rk,j⟩⟨eb,hk − hG⟩+ ⟨ea,hk − hG⟩⟨Rk,j , eb⟩

)

=
1

2n
e⊤a


∑

k,j

−Rk,j

(
hk − hG

)⊤ −
(
hk − hG

)
R⊤

k,j


 eb

=
1

4n
e⊤a


∑

k,j

(
M̃

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j − 2pk,j

)
(
hk − hG

)⊤

 eb

+
1

4n
e⊤a


∑

k,j

(
hk − hG

)
(
M̃

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j − 2pk,j

)⊤
 eb

For further simplification, let’s consider the following term:

∑

k,j

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
[
hk − hG

]⊤

=
1

(p+ q)2

∑

k,j

[
(p− q)

2
hk + 4pqhG

] [
hk − hG

]⊤

=
1

(p+ q)2

∑

k,j

[
(p− q)2hkh

⊤
k − (p− q)2hkh

⊤
G + 4pqhGh

⊤
k − 4pqhGh

⊤
G

]

=
1

(p+ q)2

[
(p− q)22nΣ̃B − 8npqΣG − 2nΣG

(
(p− q)2 − 4pq

)]

=
1

(p+ q)2
[
2n(p− q)2ΣB + 2n(p− q)2ΣG − 8npqΣG − 2nΣG

(
(p− q)2 − 4pq

)]

= 2n

(
p− q

p+ q

)2

ΣB

Next, we proceed with the simplification of
∑

k,j −λHhk,j(hk − hG)
⊤ − λH(hk − hG)h

⊤
k,j :

− λH(
∑

k,j

hk,j(hk − hG)
⊤ + (hk − hG)h

⊤
k,j)

= −λH(nh1(h1 − hG)
⊤ + nh2(h2 − hG)

⊤ + n(h1 − hG)h
⊤
1 + n(h2 − hG)h

⊤
2)

= −λH(2nh1h
⊤
1 + 2nh2h

⊤
2 − nh1h

⊤
G − nh2h

⊤
G − nhGh

⊤
1 − nhGh

⊤
2)

= −λH(2nh1h
⊤
1 + 2nh2h

⊤
2 − 4nhGh

⊤
G) = −λH(4nΣ̃B − 4nΣG) = −4nλHΣB

These results now simplify dΣB

dt as:

dΣB

dt
=

1

4n
e⊤a

(
2n

(
p− q

p+ q

)2

M̃ΣB + 2n

(
p− q

p+ q

)2

ΣBM̃− 8nλHΣB − P̃B

)
eb (104)

36

Where P̃B = 2
∑

k,j pk,j(hk − hG)
⊤ + (hk − hG)p

⊤
k,j .

• Derivative of ΣW : By denoting ΣW (a, b) = e⊤a ΣWeb as the (a, b)-element of ΣW , we use a

similar line of analysis as above to compute dΣW

dt as follows:

dΣW (a, b)

dt
=
∑

k,j,l

∂k,j,lΣW (a, b)
dhk,j [l]

dt
=
∑

k,j,l

∂k,j,lΣW (a, b)
(
−∂k,j,lR̂F ′

(H)
)

=
∑

k,j

∑

l

− 1

2n

(
⟨ea, el⟩⟨eb,hk,j − hk⟩+ ⟨ea,hk,j − hk⟩⟨el, eb⟩

)
⟨Rk,j , el⟩

=
∑

k,j

− 1

2n

(
⟨ea,Rk,j⟩⟨eb,hk,j − hk⟩+ ⟨ea,hk,j − hk⟩⟨Rk,j , eb⟩

)

=
1

2n
e⊤a


∑

k,j

−Rk,j

(
hk,j − hk

)⊤ −
(
hk,j − hk

)
R⊤

k,j


 eb

=
1

4n
e⊤a


∑

k,j

(
M̃

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j − 2pk,j

)
(
hk,j − hk

)⊤

 eb

+
1

4n
e⊤a


∑

k,j

(
hk,j − hk

)
(
M̃

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
− 2λHhk,j − 2pk,j

)⊤
 eb

For further simplification, let’s consider the following term:

∑

k,j

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
[
hk,j − hk

]⊤

=
∑

k

[(
p− q

p+ q

)2

hk +
4pq

(p+ q)2
hG

]
∑

j

(
hk,j − hk

)


⊤

= 0

Next, we simplify
∑

k,j −λHhk,j(hk,j − hk)
⊤ − λH(hk,j − hk)h

⊤
k,j as follows:

− λH
∑

k,j

(
hk,j(hk,j − hk)

⊤ + (hk,j − hk)h
⊤
k,j

)

= −λH
∑

k,j

(
hk,jh

⊤
k,j − hk,jh

⊤
k + hk,jh

⊤
k,j − hkh

⊤
k,j

)

= −λH
∑

k,j

(
hk,jh

⊤
k,j − hk,jh

⊤
k + hk,jh

⊤
k,j − hkh

⊤
k,j + hkh

⊤
k − hkh

⊤
k

)

= −λH
(
2nΣW + 2nΣ̃T − 2nΣ̃B

)
= −4nλHΣW

Where the last inequality is based on the fact that Σ̃T = ΣW + Σ̃B . These results simplify dΣW

dt as:

dΣW

dt
=

1

4n
e⊤a
(
−8nλHΣW − P̃W

)
eb (105)

Where P̃W = 2
∑

k,j pk,j(hk,j − hk)
⊤ + (hk,j − hk)p

⊤
k,j .

• Trace of covariance matrices along the flow: Taking the derivative of Tr (ΣW) gives us:

dTr (ΣW)

dt
= −2λHTr(ΣW)− 1

4n
Tr
(
P̃W

)

= −2λHTr(ΣW)− 1

n
Tr


∑

k,j

pk,j(hk,j − hk)
⊤




(106)

37

Similarly, the derivative of Tr (ΣB) gives us:

dTr (ΣB)

dt
= −2λHTr(ΣB) +

1

4n
Tr

(
2n

(
p− q

p+ q

)2

M̃ΣB + 2n

(
p− q

p+ q

)2

ΣBM̃− P̃B

)

= −2λHTr(ΣB) +
1

2n
Tr


2n

(
p− q

p+ q

)2

M̃ΣB − 2
∑

k,j

pk,j(hk − hG)
⊤




= −2λHTr(ΣB) + Tr

((
p− q

p+ q

)2

M̃ΣB

)
− 1

n
Tr


∑

k,j

pk,j(hk − hG)
⊤




= Tr

([(
p− q

p+ q

)2

M̃− 2λHI

]
ΣB

)
− 1

n
Tr


∑

k,j

pk,j(hk − hG)
⊤




(107)

Observe that for small enough perturbation matrix E, formally for ∥E∥ < E for sufficiently small E,

the sign of
dTr(ΣW)

dt and
dTr(ΣB)

dt depends on the first term in each of them, and not on the second
term that depends on E. Therefore, since λH > 0, we have that Tr (ΣW) decreases. It is left to show
that Tr (ΣB) increases in this regime.

Since the trace of the product of a positive definite matrix and a non-zero positive semidefinite matrix

is positive by Von-Neumann trace inequality, we aim for conditions that allow

[(
p−q
p+q

)2
M̃− 2λHI

]

to be positive definite. First, observe that M̃ is symmetric:

M̃ =

[
M−M

[
J+

∆̃3

n

]
M

]

M = [J+∆2 + λW2
NI]

−1

J = 2n

(
Σ̃B − 4pq

(p+ q)2
ΣB

)

Since Σ̃B ,ΣB , I,∆2 and ∆̃3 are symmetric.

Observe that 4pq
(p+q)2 ≤ 1, because

0 ≤ (p− q)2 = p2 + 2pq + q2 − 4pq = (p+ q)2 − 4pq.

Thus,

J = 2n

(
Σ̃B − 4pq

(p+ q)2
ΣB

)
≥ 2n

(
Σ̃B −ΣB

)
= 2nΣG ≥ 0

Thus also M > 0 for small ∆2. Note also that [J+ λW2NI]
−1

J < I. Therefore, for small enough

E (and thus small ∆2, ∆̃3), we have that

M̃ = M−M

[
J+

∆̃3

n

]
M > 0.

Thus,

[(
p−q
p+q

)2
M̃− 2λHI

]
is positive definite when:

2λH <

(
p− q

p+ q

)2

λmin

(
M̃
)

(108)

Here λmin

(
M̃
)

represents the smallest eigenvalue of M̃.

38

G Proof of Theorem 4.1

Let’s begin by calculating the expected value and covariance of features X(l), which are obtained
after the graph convolution operation based on equation 3.

• Case c = 1:

We begin by considering the features of a node belonging to class c = 1 as follows:

x
(l)
1,i = W

∗(l)
1 h

(l−1)
1,i +W

∗(l)
2 H(l−1)Âte1,i (109)

By expanding the H(l−1)Ât term based on neighbors from all classes, we get:

x
(l)
1,i = W

∗(l)
1 h

(l−1)
1,i +W

∗(l)
2

(∑
v1,j∈N1(v1,i)

h1,j +
∑

v2,j∈N2(v1,i)
h2,j

|N (v1,i)|

)
(110)

Now, by taking expectations on both sides with respect to features h
(l−1)
1,i and structure Ât, we get:

E
Â,hx

(l)
1,i = W

∗(l)
1 E

Â,hh
(l−1)
1,i +W

∗(l)
2 E

Â,h

(∑
v1,j∈N1(v1,i)

h1,j +
∑

v2,j∈N2(v1,i)
h2,j

|N (v1,i)|

)

= W
∗(l)
1 µ

(l−1)
1 +W

∗(l)
2

(
npµ

(l−1)
1 + nqµ

(l−1)
2

n(p+ q)

)

=

(
W

∗(l)
1 +

p

p+ q
W

∗(l)
2

)
µ

(l−1)
1 +

(
q

p+ q
W

∗(l)
2

)
µ

(l−1)
2

(111)

Similarly, the covariance E
Â,h

([
x
(l)
1,i − E

Â,hx
(l)
1,i

] [
x
(l)
1,i − E

Â,hx
(l)
1,i

]⊤)
is based on:

[
W

∗(l)
1 h

(l−1)
1,i +W

∗(l)
2 H(l−1)Âte1,i − E

Â,hx
(l)
1,i

]

·
[
W

∗(l)
1 h

(l−1)
1,i +W

∗(l)
2 H(l−1)Âte1,i − E

Â,hx
(l)
1,i

]⊤

=

[
W

∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)
+W

∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)]

·
[
W

∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)
+W

∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)]⊤

= W
∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1

+W
∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2

+W
∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1

+W
∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2

(112)

The expectation of the term W
∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1 is given by:

E
Â,h

[
W

∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1

]

= W
∗(l)
1 E

Â,h

[(
h
(l−1)
1,i − µ

(l−1)
1

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤]
W

∗(l)⊤
1

= W
∗(l)
1 Σ

(l−1)
1 W

∗(l)⊤
1

(113)

39

The expectation of W
∗(l)
1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
H(l−1)Âte1,i − pµ

(l−1)
1 +qµ

(l−1)
2

p+q

)⊤
W

∗(l)⊤
2 is given

by the following:

E
Â,h


W∗(l)

1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= E
Â,h


W∗(l)

1 h
(l−1)
1,i

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




− E
Â,h


W∗(l)

1 µ
(l−1)
1

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= W
∗(l)
1 Eh


h(l−1)

1,i

(
p
∑n

j=1 h
(l−1)
1,j + q

∑n
j=1 h

(l−1)
2,j

n(p+ q)
− pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

= W
∗(l)
1 Eh

[
h
(l−1)
1,i

(
p

n(p+ q)
h
(l−1)⊤
1,i

)]
W

∗(l)⊤
2

+W
∗(l)
1 Eh


h(l−1)

1,i

(
p
∑n

j=1, ̸=i h
(l−1)
1,j + q

∑n
j=1 h

(l−1)
2,j

n(p+ q)
− pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

Since the features are independent draws from their normal distributions, we can simplify the
expectation as follows:

E
Â,h


W∗(l)

1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= W
∗(l)
1

[
p

n(p+ q)

(
Σ

(l−1)
1 + µ

(l−1)
1 µ

(l−1)⊤
1

)]
W

∗(l)⊤
2

+W
∗(l)
1


µ(l−1)

1

(
(n− 1)pµ

(l−1)
1 + nqµ

(l−1)
2

n(p+ q)
− pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

= W
∗(l)
1

[
p

n(p+ q)
Σ

(l−1)
1

]
W

∗(l)⊤
2

(114)

Similarly, the expectation of W
∗(l)
2

(
H(l−1)Âte1,i − pµ

(l−1)
1 +qµ

(l−1)
2

p+q

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1

is given by the following:

E
Â,h

[
W

∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)(
h
(l−1)
1,i − µ

(l−1)
1

)⊤
W

∗(l)⊤
1

]

= E
Â,h


W∗(l)

1

(
h
(l−1)
1,i − µ

(l−1)
1

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2



⊤

= W
∗(l)
2

[
p

n(p+ q)
Σ

(l−1)
1

]
W

∗(l)⊤
1

(115)

40

Next, the expectation of: W
∗(l)
2

(
H(l−1)Âte1,i − pµ

(l−1)
1 +qµ

(l−1)
2

p+q

)(
H(l−1)Âte1,i − pµ

(l−1)
1 +qµ

(l−1)
2

p+q

)⊤
W

∗(l)⊤
2

can be computed as follows:

E
Â,h

[
W

∗(l)
2

(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)

·
(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= E
Â,h


W∗(l)

2

(
H(l−1)Âte1,i

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




− E
Â,h


W∗(l)

2

(
pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




Where the second term reduces to 0. On expanding the first term, we get:

E
Â,h


W∗(l)

2

(
H(l−1)Âte1,i

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= W
∗(l)
2 E

Â,h

[(
H(l−1)Âte1,i

)(
H(l−1)Âte1,i

)⊤]
W

∗(l)⊤
2

−W
∗(l)
2 E

Â,h



(
H(l−1)Âte1,i

)(pµ(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

= W
∗(l)
2 Eh



(
p
∑n

j=1 h
(l−1)
1,j + q

∑n
j=1 h

(l−1)
2,j

n(p+ q)

)(
p
∑n

j=1 h
(l−1)
1,j + q

∑n
j=1 h

(l−1)
2,j

n(p+ q)

)⊤
W

∗(l)⊤
2

−W
∗(l)
2



(
pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)(
pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

= W
∗(l)
2 Eh

[(
p2
∑n

j=1 h
(l−1)
1,j h

(l−1)⊤
1,j + q2

∑n
j=1 h

(l−1)
2,j h

(l−1)⊤
2,j

n2(p+ q)2

)]
W

∗(l)⊤
2

+W
∗(l)
2 Eh

[(
p2
∑n

j=1

∑n
j′=1, ̸=j h

(l−1)
1,j h

(l−1)⊤
1,j′ + q2

∑n
j=1

∑n
j′=1, ̸=j h

(l−1)
2,j h

(l−1)⊤
2,j′

n2(p+ q)2

)]
W

∗(l)⊤
2

+W
∗(l)
2 Eh

[(
pq
∑n

j=1

∑n
j′=1 h

(l−1)
1,j h

(l−1)⊤
2,j′ + pq

∑n
j=1

∑n
j′=1 h

(l−1)
2,j h

(l−1)⊤
1,j′

n2(p+ q)2

)]
W

∗(l)⊤
2

−W
∗(l)
2



(
pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)(
pµ

(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤
W

∗(l)⊤
2

Due to the independence of the features, we can simplify the expectation as follows:

41

E
Â,h


W∗(l)

2

(
H(l−1)Âte1,i

)(
H(l−1)Âte1,i −

pµ
(l−1)
1 + qµ

(l−1)
2

p+ q

)⊤

W
∗(l)⊤
2




= W
∗(l)
2





np2

(
Σ

(l−1)
1 + µ

(l−1)
1 µ

(l−1)⊤
1

)
+ nq2

(
Σ

(l−1)
2 + µ

(l−1)
2 µ

(l−1)⊤
2

)

n2(p+ q)2




W

∗(l)⊤
2

+W
∗(l)
2

[(
p2(n2 − n)µ

(l−1)
1 µ

(l−1)⊤
1 + q2(n2 − n)µ

(l−1)
2 µ

(l−1)⊤
2

n2(p+ q)2

)]
W

∗(l)⊤
2

+W
∗(l)
2

[(
pqn2µ

(l−1)
1 µ

(l−1)⊤
2 + pqn2µ

(l−1)
2 µ

(l−1)⊤
1

n2(p+ q)2

)]
W

∗(l)⊤
2

−W
∗(l)
2

[(
p2µ

(l−1)
1 µ

(l−1)⊤
1 + pqµ

(l−1)
1 µ

(l−1)⊤
2 + pqµ

(l−1)
2 µ

⊤
1 + q2µ

(l−1)
2 µ

(l−1)⊤
2

(p+ q)2

)]
W

∗(l)⊤
2

= W
∗(l)
2

[
p2Σ

(l−1)
1 + q2Σ

(l−1)
2

n(p+ q)2

]
W

∗(l)⊤
2

(116)

Putting these results together, the covariance E
Â,h

([
x
(l)
1,i − E

Â,hx
(l)
1,i

] [
x
(l)
1,i − E

Â,hx
(l)
1,i

]⊤)
is:

E
Â,h

([
x
(l)
1,i − E

Â,hx
(l)
1,i

] [
x
(l)
1,i − E

Â,hx
(l)
1,i

]⊤)

= W
∗(l)
1 Σ

(l−1)
1 W

∗(l)⊤
1 +

p

n(p+ q)
W

∗(l)
1 Σ

(l−1)
1 W

∗(l)⊤
2

+
p

n(p+ q)
W

∗(l)
2 Σ

(l−1)
1 W

∗(l)⊤
1 +W

∗(l)
2

[
p2Σ

(l−1)
1 + q2Σ

(l−1)
2

n(p+ q)2

]
W

∗(l)⊤
2

(117)

To summarize, the means and covariance matrices for X(l) can be given by:

µ̃
(l)
1 =

(
W

∗(l)
1 +

p

p+ q
W

∗(l)
2

)
µ

(l−1)
1 +

(
q

p+ q
W

∗(l)
2

)
µ

(l−1)
2

Σ̃
(l)
1 = W

∗(l)
1 Σ

(l−1)
1 W

∗(l)⊤
1 +

p

n(p+ q)
W

∗(l)
1 Σ

(l−1)
1 W

∗(l)⊤
2

+
p

n(p+ q)
W

∗(l)
2 Σ

(l−1)
1 W

∗(l)⊤
1 +W

∗(l)
2

[
p2Σ

(l−1)
1 + q2Σ

(l−1)
2

n(p+ q)2

]
W

∗(l)⊤
2

(118)

• Case c = 2:

The analysis presented above can be extended for c = 2 in a straightforward fashion to get µ̃
(l)
2 , Σ̃

(l)
2

as follows:

µ̃
(l)
2 =

(
W

∗(l)
1 +

p

p+ q
W

∗(l)
2

)
µ

(l−1)
2 +

(
q

p+ q
W

∗(l)
2

)
µ

(l−1)
1

Σ̃
(l)
2 = W

∗(l)
1 Σ

(l−1)
2 W

∗(l)⊤
1 +

p

n(p+ q)
W

∗(l)
1 Σ

(l−1)
2 W

∗(l)⊤
2

+
p

n(p+ q)
W

∗(l)
2 Σ

(l−1)
2 W

∗(l)⊤
1 +W

∗(l)
2

[
p2Σ

(l−1)
2 + q2Σ

(l−1)
1

n(p+ q)2

]
W

∗(l)⊤
2

(119)

42

G.1 Modelling an increase/decrease in between-class variability

Let Σ
(l−1)
B =

(
µ

(l−1)
1 − µ

(l−1)
2

)(
µ

(l−1)
1 − µ

(l−1)
2

)⊤
indicate the between-class covariance matrix

for features at layer l − 1. Based on the equations 118, 119, we analyze ΣB(X
(l)) to understand the

effect of the convolution layer on feature separation. First, observe that:

ΣB(X
(l)) =

(
µ̃

(l)
1 − µ̃

(l)
2

)(
µ̃

(l)
1 − µ̃

(l)
2

)⊤

=

(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)(
µ

(l−1)
1 − µ

(l−1)
2

)

·
(
µ

(l−1)
1 − µ

(l−1)
2

)⊤(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)⊤

=

(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)
ΣB(H

(l−1))

(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)⊤

(120)

By taking the trace on both sides, we get:

Tr
(
ΣB(X

(l))
)
= Tr

((
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)
ΣB(H

(l−1))

(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)⊤)

= Tr

(
ΣB(H

(l−1))

(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

)⊤(
W

∗(l)
1 +

p− q

p+ q
W

∗(l)
2

))

(121)

Where
(
W

∗(l)
1 + p−q

p+qW
∗(l)
2

)⊤ (
W

∗(l)
1 + p−q

p+qW
∗(l)
2

)
∈ R

dl−1×dl−1 is a symmetric and positive

semi-definite matrix. This matrix product formulation allows us to leverage the eigenvalue-based

trace inequalities [41, 68]. Formally, let TB =
(
W

∗(l)
1 + p−q

p+qW
∗(l)
2

)⊤ (
W

∗(l)
1 + p−q

p+qW
∗(l)
2

)
. We

now leverage Corollary.6 in Zhang and Zhang [68], and get the following inequality based on the

eigenvalues of ΣB(H
(l−1)),TB as:

dl−1∑

i=1

λdl−1−i+1

(
ΣB(H

(l−1))
)
λi (TB)

≤ Tr
(
ΣB(H

(l−1))TB

)

≤
dl−1∑

i=1

λi

(
ΣB(H

(l−1))
)
λi (TB)

(122)

Where λi(.) represents the ith largest eigenvalue of a matrix. Additionally, based on the standard trace

equality: Tr
(
ΣB(H

(l−1))
)
=
∑dl−1

i=1 λi
(
ΣB(H

(l−1))
)
, the increase/decrease in Tr

(
ΣB(X

(l))
)

with respect to Tr
(
ΣB(H

(l−1))
)

boils down to:

dl−1∑
i=1

λdl−1−i+1

(
ΣB(H

(l−1))
)
λi (TB)

dl−1∑
i=1

λi
(
ΣB(H(l−1))

) ≤ Tr(ΣB(X
(l)))

Tr(ΣB(H(l−1)))
≤

dl−1∑
i=1

λi
(
ΣB(H

(l−1))
)
λi (TB)

dl−1∑
i=1

λi
(
ΣB(H(l−1))

)

(123)

G.2 Modelling an increase/decrease in within-class variability

Let ΣW (H(l−1)) = 1
2

(
Σ

(l−1)
1 +Σ

(l−1)
2

)
represent the within-class covariance matrix for features

H(l−1) in our balanced class setting. Similar to the previous analysis, we leverage the results in

43

equations 118,119 to model ΣW (X(l)) as follows:

ΣW (X(l)) =
1

2

(
Σ̃

(l)
1 + Σ̃

(l)
2

)

=
1

2

(
W

∗(l)
1

(
Σ

(l−1)
1 +Σ

(l−1)
2

)
W

∗(l)⊤
1

)

+
1

2

(
p

n(p+ q)
W

∗(l)
1

(
Σ

(l−1)
1 +Σ

(l−1)
2

)
W

∗(l)⊤
2

)

+
1

2

(
p

n(p+ q)
W

∗(l)
2

(
Σ

(l−1)
1 +Σ

(l−1)
2

)
W

∗(l)⊤
1

)

+
1

2


W

∗(l)
2



(p2 + q2)

(
Σ

(l−1)
1 +Σ

(l−1)
2

)

n(p+ q)2


W

∗(l)⊤
2




(124)

By taking trace on both sides, we get:

Tr
(
ΣW (X(l))

)
= Tr

(
ΣW (H(l−1))W

∗(l)⊤
1 W

∗(l)
1

)

+ Tr

(
p

n(p+ q)
ΣW (H(l−1))W

∗(l)⊤
2 W

∗(l)
1

)

+ Tr

(
p

n(p+ q)
ΣW (H(l−1))W

∗(l)⊤
1 W

∗(l)
2

)

+ Tr

(
(p2 + q2)

n(p+ q)2
ΣW (H(l−1))W

∗(l)⊤
2 W

∗(l)
2

)

= Tr

(
ΣW (H(l−1))

[
W

∗(l)⊤
1 W

∗(l)
1 +

p

n(p+ q)

[
W

∗(l)⊤
2 W

∗(l)
1 +W

∗(l)⊤
1 W

∗(l)
2

]

+
(p2 + q2)

n(p+ q)2
W

∗(l)⊤
2 W

∗(l)
2

])

(125)

Let TW = W
∗(l)⊤
1 W

∗(l)
1 + p

n(p+q)

[
W

∗(l)⊤
2 W

∗(l)
1 +W

∗(l)⊤
1 W

∗(l)
2

]
+ (p2+q2)

n(p+q)2W
∗(l)⊤
2 W

∗(l)
2 .

Then, observe that TW ∈ R
dl−1×dl−1 is symmetric and positive semi-definite. To this end, the

increase/decrease in Tr
(
ΣW (X(l))

)
with respect to Tr

(
ΣW (H(l−1))

)
boils down to:

dl−1∑
i=1

λdl−1−i+1

(
ΣW (H(l−1))

)
λi (TW)

dl−1∑
i=1

λi
(
ΣW (H(l−1))

) ≤ Tr(ΣW (X(l)))

Tr(ΣW (H(l−1)))
≤

dl−1∑
i=1

λi
(
ΣW (H(l−1))

)
λi (TW)

dl−1∑
i=1

λi
(
ΣW (H(l−1))

)

(126)

44

H Addition Experiments

• Infrastructure details: We perform experiments on a virtual machine with 8 Intel(R) Xeon(R)
Platinum 8268 CPUs, 32GB of RAM, and 1 Quadro RTX 8000 GPU with 32GB of allocated memory.
Our Python package ‘gnn_collapse’ leverages PyTorch 1.12.1 and PyTorch-Geometric (PyG) 2.1.0
frameworks. For reproducible experiments and consistency with previous research, we extend the
SBM generator by Chen et al. [16] and NC metrics by Zhu et al. [74].

H.1 Experiments with GNNs to track penultimate layer features

• Datasets: We consider a variety of SSBM graph datasets as follows:

D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 1000

D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 1000

• GNNs: In our experiments, we empirically track the NC metrics of penultimate layer features

during training for both the GNN designs ψF
Θ , ψ

F ′

Θ . The number of layers is set to 32 and the hidden
dimension is set to 8 across layers for datasets with C = 2 and set to 16 for datasets with C = 4.

• Optimization: The GNNs are trained for 8 epochs using stochastic gradient descent (SGD) with
momentum 0.9, weight decay 5× 10−4, and a learning rate set to 0.004 for D1 and 0.006 for D2.

• Observations: Figures 7, 8 illustrate the training loss, overlap and all the NC metrics that we

defined in our setup for ψF
Θ , ψ

F ′

Θ on dataset D1. Note that when C = 2, the re-centering of the 2 class-
means by subtracting the global mean, always leads to separation with maximal angle, irrespective of
the configuration of the non-centered class-means. Thus, we skip the corresponding NC2 plots for

H,HÂ when C = 2. Additionally, we can observe similar trends in NC metrics from Figures 9, 10
even after increasing N,C in dataset D2.

Additionally, in all these experiments, notice that NC2, NC3 metrics do not show a significant
reduction. In this context, a reduction indicates that a simplex equiangular tight-frame (simplex ETF)
or an orthogonal frame (OF) is the desired configuration for weights and penultimate layer feature

(re-centered) class-means. This behaviour can be linked to the presence of Â in the risk formulation.

However, our understanding of the role of Â in determining these alignments towards simplex ETF
or an OF is still unclear and would be a valuable future effort.

Figure 7: GNN ψF
Θ on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 1000. Illustration of

training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ, Frobenius norms of

W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

45

Figure 8: GNN ψF ′

Θ on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 1000. Illustration

of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius norms of

W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

Figure 9: GNN ψF
Θ on D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 1000. Illustration of

training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ, Frobenius norms of

W1,W2,H,HÂ, NC2 plots for W1,W2,H,HÂ, NC3 plots for W1,H and W2,HÂ.

46

Figure 10: GNN ψF ′

Θ on D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 1000. Illustration

of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius norms of

W2,H,HÂ, NC2 plots for W2,H,HÂ, and NC3 plots for W2,HÂ.

H.2 Experiments with UFM to model penultimate layer behavior

To improve our understanding of the empirical behavior of GNNs and to validate our theoretical
results with the gUFM, we prepare datasets based on two strategies:

• Case C+: This case represents a graph that satisfies condition C. Without loss of generality,
we leverage the expected degrees of nodes and consider tcc = ⌈n ∗ p⌉, c ∈ [C] and
tcc′ = ⌈n ∗ q⌉, c ̸= c′ ∈ [C]. Based on our notation, recall that Ωc,Ωc′ represents the set of
nodes belonging to classes(communities) c, c′ ∈ [C] respectively. To this end, observe that
the following conditions should be satisfied12:

1. The sub-graph formed by nodes Ωc should be tcc-regular, for all c ∈ [C].

2. The bipartite sub-graph formed by Ωc,Ωc′ should be tcc′ -regular, for all c, c′ ∈ [C].

• Case C−: This case represents a graph that does not satisfy condition C. Since any random
graph sampled from SSBM(N,C, p, q) satisfies this requirement with a high probability (as
per theorem 3.2), we simply use this randomly sampled graph. As a simple sanity check,
one can verify if the sampled graph satisfies the condition C and re-sample.

Especially, we consider the C+,C− variants of SSBM graphs with following parameters:

D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 10

D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 10

• Optimization: The gUFMs are trained using plain gradient descent for 50000 epochs with a
learning rate of 0.1 and L2 regularization parameters λW1 = λW2 = λH = 5× 10−3.13

• Observations: Figures 12, 14, and 16, 18 illustrate the training loss, overlap and the NC metrics for
the gUFM acting on C− variants of datasets D1, D2 respectively. Although gUFM is an optimistic
mathematical model, we can observe a close resemblance of the values and trends of NC metrics to
those of the penultimate layer features of the actual GNNs. This observation is justified as any random
SSBM graph fails to satisfy condition C with a high probability. To this end, observe from Figures
11, 13, 15, 17 that when graphs satisfy condition C, the NC1 metrics tend to reduce drastically (for

gUFM designs based on ψF
Θ , ψ

F ′

Θ and C = 2, 4). Thus proving our theoretical results. Furthermore,

12We utilize NetworkX python libraries to generate SSBM graphs that satisfy these conditions.
13λW1 is not applicable for gUFM based on ψF

′

Θ .

47

observe from Figures 15, 17 that the (re-centered) class means for H,HÂ tend to align very closely
to a simplex ETF and tend to converge at such a configuration. Based on our previous observations
for GNN training, we underscore this observation for gUFM and emphasize that a rigorous theoretical

analysis on the role of Â in determining the structures of H can be a crucial future effort.

Figure 11: gUFM ψF
Θ on C+ variant of D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K =

10. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

Figure 12: gUFM ψF
Θ on C− variant of D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K =

10. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

48

Figure 13: gUFM ψF ′

Θ on C+ variant of D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 10.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

Figure 14: gUFM ψF ′

Θ on C− variant of D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 10.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

49

Figure 15: gUFM ψF
Θ on C+ variant of D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K =

10. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2,H,HÂ, NC3 plots for W1,H and

W2,HÂ.

Figure 16: gUFM ψF
Θ on C− variant of D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K =

10. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2,H,HÂ, NC3 plots for W1,H and

W2,HÂ.

50

Figure 17: gUFM ψF ′

Θ on C+ variant of D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 10.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2,H,HÂ, and NC3 plots for W2,HÂ.

Figure 18: gUFM ψF ′

Θ on C− variant of D2: C = 4, N = 1500, p = 0.072, q = 0.0048,K = 10.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2,H,HÂ, and NC3 plots for W2,HÂ.

H.3 Experiments with GNNs and Spectral Methods

The main focus of this section is to emphasize the differences between power iterations-based spectral
methods and GNNs. To this end, we consider the following datasets and GNNs as follows:

D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K(train) = 1000,K(test) = 100

D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K(train) = 1000,K(test) = 100

• GNNs: In our experiments, we empirically track the NC metrics of penultimate layer features during

training for both the GNN designs ψF
Θ , ψ

F ′

Θ . The number of layers is varied based on L = 64, 128
and the hidden dimension is set to 8 across layers.

51

• Spectral methods: The number of projected power-iterations are varied based on L = 64, 128 for
a fair comparison with GNNs.

• Optimization: The GNNs are trained for 8 epochs using stochastic gradient descent (SGD) with
learning rate of 0.004, momentum 0.9 and a weight decay of 5× 10−4.

• Observations: For the dataset D1 with homophilic graphs, we first plot the

training metrics for GNNs ψF
Θ , ψ

F ′

Θ with L = 64 in Figures 19, 20 respectively
and ensure that they reach TPT. Now, from Figures 21, 22 observe that the ratios

Tr(ΣB(x
(l)))/Tr(ΣB(w

(l−1))),Tr(ΣW (x(l)))/Tr(ΣW (w(l−1))) tend to be constant through-
out the power iterations for spectral methods, whereas, the GNNs behave differently as

Tr(ΣB(X
(l)))/Tr(ΣB(H

(l−1))), Tr(ΣW (X(l)))/Tr(ΣW (H(l−1))) tend to decrease across depth.

We make similar observations for GNNs ψF
Θ , ψ

F ′

Θ with L = 128 in Figures 23,24,25,26 and
note that the behaviour is the same as L = 32 case illustrated in the main text. However,
when considering the dataset D2 with heterophilic graphs, even though the GNNs reach TPT

during training (Figures 27,28,29,30), the evolution of ratios Tr(ΣB(X
(l)))/Tr(ΣB(H

(l−1))),

Tr(ΣW (X(l)))/Tr(ΣW (H(l−1))) tends to differ especially for the GNN ψF ′

Θ when L = 64 (Figures
31,32) and L = 128 (Figures 33,34). Thus, highlighting the empirical role of depth in GNN design
which requires further investigations in future efforts.

Figure 19: GNN ψF
Θ with L = 64 on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K =

1000. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

52

Figure 20: GNN ψF ′

Θ with L = 64 on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K = 1000.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 21: NC1(H), Ñ C1(H) metrics (top) and traces of covariance matrices (bottom) across 64

projected power iterations for NL and BH (a,b), and across 64 layers for GNNs ψF
Θ and ψF ′

Θ (c,d) on
D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K(test) = 100.

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 22: Ratio of traces of covariance matrices across 64 projected power iterations for NL and BH

(a,b), and across 64 layers for GNNs ψF
Θ and ψF ′

Θ (c,d) on D1: C = 2, N = 1000, p = 0.025, q =
0.0017,K(test) = 100.

53

Figure 23: GNN ψF
Θ with L = 128 on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K =

1000. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

Figure 24: GNN ψF ′

Θ with L = 128 on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K(train) =

1000. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ,

Frobenius norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

54

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 25: NC1(H), Ñ C1(H) metrics (top) and traces of covariance matrices (bottom) across 128

projected power iterations for NL and BH (a,b), and across 128 layers for GNNs ψF
Θ and ψF ′

Θ (c,d)
on D1: C = 2, N = 1000, p = 0.025, q = 0.0017,K(test) = 100.

(a) Normalized Laplacian (b) Bethe Hessian (c) GNN ψF

Θ (d) GNN ψF
′

Θ

Figure 26: Ratio of traces of covariance matrices across 128 projected power iterations for NL and BH

(a,b), and across 128 layers for GNNs ψF
Θ and ψF ′

Θ (c,d) on D1: C = 2, N = 1000, p = 0.025, q =
0.0017,K(test) = 100.

Figure 27: GNN ψF
Θ with L = 64 on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K =

1000. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

55

Figure 28: GNN ψF ′

Θ with L = 64 on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K = 1000.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

Figure 29: GNN ψF
Θ with L = 128 on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K =

1000. Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for H,HÂ,

Frobenius norms of W1,W2,H,HÂ, NC2 plots for W1,W2, NC3 plots for W1,H and W2,HÂ.

56

Figure 30: GNN ψF ′

Θ with L = 128 on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K = 1000.

Illustration of training loss, training overlap, NC1 plots for H,HÂ, SNR(NC1) for HÂ, Frobenius

norms of W2,H,HÂ, NC2 plots for W2, and NC3 plots for W2,HÂ.

(a) GNN ψF

Θ (b) GNN ψF
′

Θ

Figure 31: NC1(H), Ñ C1(H) metrics (top) and traces of covariance matrices (bottom) across 64

layers for ψF
Θ and ψF ′

Θ (a,b) on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K(test) = 100.

57

(a) GNN ψF

Θ (b) GNN ψF
′

Θ

Figure 32: Ratio of traces of covariance matrices across 64 layers for GNNs ψF
Θ and ψF ′

Θ (a,b) on
D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K(test) = 100.

(a) GNN ψF

Θ (b) GNN ψF
′

Θ

Figure 33: NC1(H), Ñ C1(H) metrics (top) and traces of covariance matrices (bottom) across 128

layers for ψF
Θ and ψF ′

Θ (a,b) on D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K(test) = 100.

(a) GNN ψF

Θ (b) GNN ψF
′

Θ

Figure 34: Ratio of traces of covariance matrices across 128 layers for GNNs ψF
Θ and ψF ′

Θ (a,b) on
D2: C = 2, N = 1000, p = 0.0017, q = 0.025,K(test) = 100.

58

	Introduction
	Preliminaries and Problem Setup
	Data model
	Graph neural networks
	Tracking neural collapse in GNNs

	Evolution of penultimate layer features during training
	Experiments
	Theoretical analysis

	Feature separation across layers during inference
	Experiments
	Towards understanding depthwise behavior

	Conclusion
	Discussion on Oversmoothing and Graph Rewiring
	Oversmoothing
	Graph Rewiring
	Measuring neighborhood similarity

	A Brief Note on Exact Recovery of Planted Communities
	Additional neural collapse metrics
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Illustration with exhaustive combinations for a small graph

	Proof of Theorem 3.3
	A"0362A as a perturbation of EA"0362A
	Preliminary results
	Relating "0365B(H), B(H)
	Expanding HA"0362AH
	Expanding HA"0362AA"0362AH
	Expanding YA"0362AH, YH
	Expanding HA"0362AYYA"0362AH

	Trace formulation of risk
	Trace evolution of covariance matrices

	Proof of Theorem 4.1
	Modelling an increase/decrease in between-class variability
	Modelling an increase/decrease in within-class variability

	Addition Experiments
	Experiments with GNNs to track penultimate layer features
	Experiments with UFM to model penultimate layer behavior
	Experiments with GNNs and Spectral Methods

