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ABSTRACT. Sparse high-dimensional functions have arisen as a rich framework to study the

behavior of gradient-descent methods using shallow neural networks, showcasing their ability

to perform feature learning beyond linear models. Amongst those functions, the simplest are

single-index models f(x) = φ(x · θ∗), where the labels are generated by an arbitrary non-linear

scalar link function φ applied to an unknown one-dimensional projection θ∗ of the input data.

By focusing on Gaussian data, several recent works have built a remarkable picture, where

the so-called information exponent (related to the regularity of the link function) controls the

required sample complexity. In essence, these tools exploit the stability and spherical symmetry of

Gaussian distributions. In this work, building from the framework of [Ben Arous et al., 2021], we

explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry

might be violated. Focusing on the planted setting where φ is known, our main results establish

that Stochastic Gradient Descent can efficiently recover the unknown direction θ∗ in the high-

dimensional regime, under assumptions that extend previous works [Yehudai and Shamir, 2020,

Wu, 2022].
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1. INTRODUCTION

Over the past years, there has been sustained effort to enlarge our mathematical understanding

of high-dimensional learning, particularly when using neural networks trained with gradient-

descent methods — highlighting the interplay between algorithmic, statistical and approximation

questions. An essential, distinctive aspect of such models is their ability to perform feature

learning, or to extract useful low-dimensional features out of high-dimensional observations.

An appealing framework to rigorously analyze this behavior are sparse functions of the form

f(x) = ϕ(Θ⊤
∗ x), where the labels are generated by a generic non-linear, low-dimensional

function ϕ : Rk → R of linear features Θ⊤
∗ x, with Θ∗ ∈ R

d×k with k ≪ d. While the statistical

and approximation aspects of such function classes are by now well-understood [Barron, 1993,

Bach, 2017], the outstanding challenge remains computational, in particular in understanding

the ability of gradient-descent methods to succeed. Even in the simplest setting of single-index

models (k = 1), and assuming that ϕ is known, the success of gradient-based learning depends

on an intricate interaction between the data distribution x ∼ ν and the ‘link’ function ϕ; and in

fact computational lower bounds are known for certain such choices [Yehudai and Shamir, 2020,

Song et al., 2021, Goel et al., 2020, Diakonikolas et al., 2017, Shamir, 2018].

Positive results thus require to make specific assumptions, either about the data, or about the link

function, or both. On one end, there is a long literature, starting at least with [Kalai and Sastry, 2009,

Shalev-Shwartz et al., 2010, Kakade et al., 2011], that exploits certain properties of ϕ, such as

invertibility or monotonicity, under generic data distributions satisfying mild anti-concentration

properties [Soltanolkotabi, 2017, Frei et al., 2020, Yehudai and Shamir, 2020, Wu, 2022]. On

the other end, by focusing on canonical high-dimensional measures such as the Gaussian dis-

tribution, the seminal works [Ben Arous et al., 2021, Dudeja and Hsu, 2018] built a harmonic

analysis framework of SGD, resulting in a fairly complete picture of the sample complexity

required to learn generic link functions ϕ, and revealing a rich asymptotic landscape beyond the

proportional regime n ≍ d, characterized by the number of vanishing moments, or information

exponent s of ϕ, whereby n ≍ ds−1 samples are needed for recovery. Since then, several authors

have built and enriched this setting to multi-index models [Abbe et al., 2022, Abbe et al., 2023,

Damian et al., 2022, Arnaboldi et al., 2023], addressing the semi-parametric learning of the

link function [Bietti et al., 2022], as well as exploring SGD-variants [Ben Arous et al., 2022,

Barak et al., 2022, Berthier et al., 2023, Chen et al., 2023]. This harmonic analysis framework

relies on two key properties of the Gaussian measure and their interplay with SGD: its spherical

symmetry and its stability by linear projection. Together, they provide an optimization landscape

that is well-behaved in the limit of infinite data, and enable SGD to escape the ‘mediocrity’ of

initialisation, where the initial direction θ0, in the high-dimensional setting, has vanishingly

small correlation |θ0 · θ∗| ≃ 1/
√
d with the planted direction θ∗.

In this work, we study to what extent the ‘Gaussian picture’ is robust to perturbations, focusing

on the planted setting where ϕ is known. Our motivation comes from the fact that real data

is rarely Gaussian, yet amenable to being approximately Gaussian via CLT-type arguments.

We establish novel positive results along two main directions: (i) when spherical symmetry
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is preserved but stability is lost, and (ii) when spherical symmetry is lost altogether. In the

former, we show that spherical harmonics can be leveraged to provide a benign optimization

landscape for SGD under mild regularity assumptions, for initialisations that can be reached

with constant probability with the same sample complexity as in the Gaussian case. In the latter,

we quantify the lack of symmetry with robust projected Wasserstein distances, and show that

for ‘quasi-symmetric’ measures with small distance to the Gaussian reference, SGD efficiently

succeeds for link functions with information exponent s ≤ 2. Finally, using Stein’s method, we

address substantially ‘non-symmetric’ distributions, demonstrating the strength and versatility of

the harmonic analysis framework.

2. PRELIMINARIES AND PROBLEM SETUP

The focus of this work is to understand regression problems with input/output data (x, y) ∈
R
d × R generated by single-index models. This is a class of problems where the data labels are

produced by a non-linear map of a one-dimensional projection of the input, that is

y = ϕ(x · θ∗),(1)

where ϕ : R → R is also known as the link function, and θ∗ ∈ Sd−1, the sphere of Rd, is the

hidden direction that the models wants to learn. Quite naturally, the learning is made through the

family of generalized linear predictors H = {ϕθ : x → ϕ(x · θ), for θ∈ Sd−1}, built upon the

link function (which is assumed known) and parametrized by the sphere.

Loss function. We assume that the input data is distributed according to a probability ν ∈ P(Rd).
Equation (1) implies that the target function that produces the labels, ϕθ∗ , lies in this parametric

class. The overall loss classically corresponds to the average over all the data of the square

penalisation l(θ, x) := (ϕθ(x)− ϕθ∗(x))
2 so that the population loss writes

L(θ) := Eν

[(
ϕ(x · θ)− ϕ(x · θ∗)

)2]
= ∥ϕθ − ϕθ∗∥2L2

ν
,(2)

where we used the notation ∥f∥p
Lp
ν
= Eν [|f |p], valid for all p ∈ N

∗. Let us put emphasis on the

fact that the loss L is a non-convex function of the parameter θ, hence it is not a priori guaranteed

that gradient-based method are able to retrieve the ground-truth θ∗. This often requires a precise

analysis of the loss landscape, and where the high-dimensionality can play a role of paramount

importance: we place ourselves in this high-dimensional setting for which the dimension is fixed

but considered very large d ≫ 1. Finally, we assume throughout the article that ϕθ belongs to

the weighted Sobolev space W 1,4
ν := {ϕ, such that supθ∈Sd−1

[
∥ϕθ∥L4

ν
+ ∥ϕ′

θ∥L4
ν

]
< ∞}.

Stochastic gradient descent. To recover the signal given by θ∗ ∈ Sd−1, we run online stochastic

gradient descent (SGD) on the sphere Sd−1. This corresponds to having at each iteration t ∈ N
∗

a fresh sample xt drawn from ν and independent of the filtration Ft = σ(x1, . . . , xt−1) and

performing a spherical gradient step, with step-size δ > 0, with respect to θ → l(θ, xt):

θt+1 =
θt − δ∇S

θ l(θt, xt)

|θt − δ∇S
θ l(θt, xt)|

, with initialization θ0 ∼ Unif(Sd−1),(3)
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An important scalar function that enables to track the progress of the SGD iterates is the

correlation with the signal mθ := θ · θ∗ ∈ [−1, 1]. We will drop the subscript in case there is no

ambiguity. Note that, due to the high-dimensionality of the setup, we have the following lemma:

Lemma 2.1. For all a > 0, we have Pθ0(mθ0 ≥ a/
√
d) ≤ a−1e−a

2/4. Additionally, for any δ > 0

such that max{a, δ} ≤
√
d/4, we have the lower bound: Pθ0(mθ0 ≥ a/

√
d) ≥ δ

4
e−(a+δ)2 .

This fact implies that, when running the algorithm in practice, it is initialized with high probability

near the equator of Sd−1, or at least in a band of typical size 1/
√
d (see Figure 1 for a schematic

illustration of this fact). Finally, we use the notation ∇S
θ to denote the spherical gradient, that

is ∇S
θ l(θ, x) = ∇θl(θ, x)− (∇θl(θ, x) · θ)θ. As ∇S

θ l(·, xt) is an unbiased estimate of ∇S
θL, it is

expected that the latter gradient field rules how the SGD iterates travel across the loss landscape.

Loss landscape in the Gaussian case. As stressed in the introduction, this set-up has been

studied by [Dudeja and Hsu, 2018, Ben Arous et al., 2021] in the case where ν is the standard

Gaussian, noted as γ here to avoid any confusion for later. Let us comment a bit this case

to understand what can be the typical landscape of this single-index problem. Thanks to the

spherical symmetry, the loss admits a scalar summary statistic, given precisely by the correlation

mθ. Moreover, the loss admits an explicit representation in terms of the Hermite decomposition

of the link function ϕ: if {hj}j denotes the orthonormal basis of Hermite polynomials of L2
γ ,

then L(θ) = 2
∑

j |⟨ϕ, hj⟩|2(1−mj) := ℓ̄(m). As a result, the gradient field projected along the

signal is a (locally simple) positive function of the correlation that behaves similarly to

−∇S
θL(θ) · θ∗ ≃ Cms−1(1−m),(4)

where s ∈ N
∗ is the index of the first non-zero of the Hermite coefficients {⟨ϕ, hj⟩}j . This

has at least three important consequences for the gradient flow: (i) if initialized positively, the

correlation is an increasing function along the dynamics and there is no bad local minima in

the loss landscape, (ii) the parameter s ∈ N
∗ controls the flatness of the loss landscape near the

origin and therefore controls the optimization speed of SGD in this region (iii) as soon as m is

large enough, the contractive term 1−m makes the dynamics converge exponentially fast.

Loss landscape in general cases. Obviously for general distributions ν, the calculation presented

in Eq.(4) is no-longer valid. However, the crux of the present paper is that properties (i)-(ii)-(iii)

are robust to the change of distribution and can be shown to be preserved under small adaptations.

More precisely, we have the following definition.

Definition 2.2 (Local Polynomial Growth). We say that L has the local polynomial growth of

order k ∈ N
∗ and scale b ≥ 0, if there exists C > 0 such that for all mθ ≥ b,

(5) −∇S
θL(θ) · θ∗ ≥ C(1−mθ) (mθ − b)k−1 .

In such a case we say that L satisfies LPG(k, b).

In this definition, and as showed later in specific examples given in Section 4, the scale parameter

b should be thought as a small parameter proportional to 1/
√
d. If ν is Gaussian, we can rewrite

Eq.(4) and show that L verifies LPG(s, 0) for s ∈ N
∗, referred to as the information exponent
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of the problem in [Ben Arous et al., 2021]. An important consequence of satisfying LPG(k, b)
is that the the population landscape is free of bad local minima outside the equatorial band

Σb := {θ ∈ Sd−1 , mθ ≤ b}. Therefore, when b is of scale 1/
√
d, Lemma 2.1 indicates that

one can efficiently produce initializations that avoid it. Hence, this property is the fundamental

ingredient that enables the description of the path taken by SGD that we derive it in the next

Section. Section 4 is devoted to showcasing generic examples when this property is satisfied.

3. STOCHASTIC GRADIENT DESCENT UNDER LPG

In this section, we derive the main results on the trajectory of the stochastic gradient descent.

They state that the property LPG(s, b/
√
d) is in fact sufficient to recover the same quantitative

guarantees as the one depicted in [Ben Arous et al., 2021], despite the lack of Gaussianity of

the distribution ν. Recall that the recursion satisfied by the SGD iterates is given by Eq.(3). To

describe their movement, let us introduce the following notations: for all t ∈ N
∗, we denote the

normalization by rt :=
∣∣θt − δ∇S

θ ℓ(θt, xt)
∣∣ and the martingale induced by the stochastic gradient

descent as Mt := l(θt, xt)− Eν [l(θt, x)].

Moment growth assumptions. To be able to analyse the SGD dynamics, we make the following

assumptions on the moments of the martingale increments induced by the random sampling. To

shorten notations, let us denote for all θ ∈ R
d, xθ = x · θ ∈ R and C(u, v) = ϕ′(u)ϕ(v), for

u, v ∈ R.

Assumption 3.1 (Moment Growth Assumption). There exists a constant K > 0, independent of

the dimension d, such that

sup
θ∈Sd−1

Ex

[
x2
θ∗C

2(xθ, xθ∗)
]
∨ Ex

[
x2
θ C

2(xθ, xθ∗)
]
≤ K, and ,(6)

sup
θ∈Sd−1

Ex

[
|x|2kC2(xθ, xθ∗)

]
≤ Kdk, for k = 1, 2.(7)

A precise care is given to the dependency in the dimension in the upper bound to match the

practical cases that we later discuss in Section 4. Note that these assumptions are typically true

for sub-gaussian random variables if ϕ belongs to a Sobolev regularity class. These assumptions

are similar to the one given in Eqs. (1.3)-(1.4) in [Arous et al., 2021] for the Gaussian case. In

all the remainder of the section we assume that Assumption 3.1 is satisfied.

Tracking the correlation. Recall that the relevant signature of the dynamics is the one-dimensional

correlation mt = θt · θ∗. For infinitesimal step-sizes δ → 0, it is expected that θt follow the

spherical gradient flow θ̇t = −∇S
θL(θt), that translates naturally on the summary statistics mt as

the following time evolution

ṁt = −∇S
θL(θt) · θ∗.(8)

The main idea behind the result of this section is to show that, even if the energy landscape near

m = m0 is rough at scale 1/
√
d, the noise induced by SGD does not prevent m to grow as the
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idealized dynamics described by the ODE (8). Let us write the iterative recursion followed by

(mt)t≥0: with the notation recalled above, for t ∈ N
∗, we have

mt+1 =
1

rt

(
mt − δ∇S

θL(θt) · θ∗ − δ∇S
θMt · θ∗

)
.(9)

With this dynamics at hand, the proof consists in controlling both the discretization error through

rt and the directional martingale induced by the term δ∇S
θMt · θ∗.

Weak recovery. As it is the case for the gradient flow, most of the time spent by the SGD

dynamics is near the equator, or more precisely in a band of the type Σb,c = {θ ∈ Sd−1, b/
√
d ≤

mθ ≤ c/
√
d}, where b < c are constants independent of the dimension. Hence, the real first step

of the dynamics is to go out any of these bands. This is the reason why it is natural to define

Sa := {θ ∈ Sd−1, mθ ≥ a}, the spherical cap of level a ∈ (0, 1) as well as the hitting time

τ+a := inf{t ≥ 0, mθt ≥ a},(10)

which corresponds to the first time (θt)t≥0 enters in Sa. We arbitrarily choose a numerical

constant independent of dimension, say a = 1/2, and refer to the related hitting time τ+1/2 as the

weak recovery time of the algorithm.

Theorem 3.2 (Weak Recovery). Let (θt)t≥0 follow the SGD dynamics of Eq.(3) and let L satisfy

LPG(s, b/
√
d), with b > 0 and s ∈ N

∗, then, conditionally on the fact that m0 ≥ 5b/
√
d, for any

0 < ε ≤ ε∗, we have

τ+1/2 ≤





d · K/ε when s = 1, and with the choice δ = ε/d
d log2(d) · K/ε when s = 2, and with the choice δ = ε/(d log d)
ds−1 · K/ε when s ≥ 3, and with the choice δ = εd−s/2

(11)

with probability at least 1− Kε, for generic constants K, ε∗ > 0 that depend solely on the link

function ϕ and the distribution ν.

Let us comment on this result. It says that that the integer s coming from the growth condition

controls the hardness of exiting the equator of the sphere. Indeed, as can be seen in LPG(s, b/
√
d),

the larger the s, the smaller the gradient projection is and hence the less information the SGD

dynamics has to move from the initialization. This result can be seen as an extension of

[Ben Arous et al., 2021, Theorem 1.3] valid only in the Gaussian case (b = 0). Furthermore,

the Gaussian case shows that Theorem 3.2 is tight up to log(d) factors. Finally, note that the

result is conditional to the fact that the initialization is larger that some constant factor of 1/
√
d,

which has at least constant probability to happen in virtue of Lemma 2.1. This probability can be

lowered by any constant factor by sampling offline a constant factor (independent of d) of i.i.d.

initializations and keeping the one that maximizes its correlation with θ∗. Finally, note that in all

the cases covered by the analysis, it is possible to keep track of the constant C, and show that

overall it depends only (i) on the property of ν w.r.t. the Gaussian on the one hand and (ii) on the

Sobolev norm of the link function ∥ϕ∥W 1,4
ν

on the other hand.
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Strong recovery. We place ourselves after the weak recovery time described in the previous

question and want to understand if the (θt)t≥0 dynamics goes to θ∗ and if yes, how fast it does

so. This is what we refer to as the strong recovery question, captured by the fact that the

one-dimensional summary statistics m go towards 1. Thanks to the Markovian property of the

SGD dynamics, we have the equality between all time s > 0 marginal laws of
(
θτ+1/2+s

∣∣∣∣ τ
+
1/2, θτ+1/2

)
Law
=

(
θs

∣∣∣∣ θs = θτ+
1/2

)
,

and hence the strong recovery question is equivalent to study the dynamics with initialization

that has already weakly recovered the signal, i.e. such that mθ = 1/2. We show that this part of

the loss landscape is very different that the equator band in which the dynamics spends most of

its times: in all the cases, we can choose stepsizes independent of the dimension and show that

the time to reach the vicinity of θ∗ will be independent of d.

Theorem 3.3 (Strong Recovery). Let (θt)t≥0 follow the SGD dynamics of Eq.(3) and let L satisfy

LPG(s, b/
√
d), with b > 0 and s ∈ N

∗, then, for any ε > 0, taking δ = ε/d, we have that there

exists a time T > 0, such that

|1−mT | ≤ ε, and |T − τ+1/2| ≤ Kd log(1/ε)ε−1(12)

with probability at least 1− Kε, for some generic K > 0 that depends solely of the link function

ϕ.

As introduced above, the important messages conveyed by this theorem are that (i) there is no

difference between the different parameters setups captured by the information exponent s, and

(ii) the time it takes to reach an ε-vicinity of θ∗ is always strictly smaller than the one needed

to exit the weak recovery phase (e.g. d compared to ds−1 when s ≥ 3). This means that the

dynamics spends most of its time escaping the mediocrity. Remark that we decided to present

Theorem 3.3 resetting the step-size δ to put emphasis on the intrinsic difference between the two

phases. Yet, we could have kept the same stepsize as in the weak recovery case: this obviously

would slow down unnecessarily the second phase.

4. TYPICAL CASES OF LOSS LANDSCAPE WITH LPG PROPERTY

In this section, we showcase two prototypical cases where the LPG holds true: the section 4.1

deals with the spherically symmetric setting, whereas the section 4.2 describes a perturbative

regime where the distribution is approximately Gaussian is a quantitative sense.

4.1. The symmetric case. We start our analysis with the spherically symmetric setting. We show

that a spherical harmonic decomposition provides a valid extension of the Hermite decomposition

in the Gaussian case, leading to essentially the same quantitative performance up to constant (in

dimension) factors.
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•
θw

θ∗

θ0

b/
√
d

FIGURE 1. Sketch of the SGD dynamics. After a long time spent in a band of

typical size 1/
√
d, the dynamics escapes at weak recovery point θw and then goes

rapidly to the ground-truth θ∗.

Spherical Harmonic Representation of the Population Loss. We express the data distribution

ν as a mixture of uniform measures ν =
´∞
0

τr,d ρ(dr), where τr,d = Unif(rSd−1). Let τd = τ1,d
and ud ∈ P([−1, 1]) be the projection of τd onto one direction, with density given in close

form by ud(dt) = Z−1(1 − t2)(d−3)/2
1(|t| ≤ 1)dt, where Z is a normarlizing factor. Let

{Pj,d}j∈N be the orthogonal basis of Gegenbauer polynomials of L2
ud
([−1, 1]), normalized such

that Pj,d(1) = 1 for all j, d. For each r > 0, consider

lr(θ) := ⟨ϕθ, ϕθ∗⟩τr,d = ⟨ϕ(r)
θ , ϕ

(r)
θ∗ ⟩τd ,

where we define ϕ(r) : [−1, 1] → R such that ϕ(r)(t) := ϕ(rt). We write its decomposition

in L2
ud
([−1, 1]) as ϕ(r) =

∑
j αj,r,dPj,d , with αj,r,d =

⟨φ(r),Pj,d⟩
∥Pj,d∥2 . Let Ωd be the Lebesgue mea-

sure of Sd−1, and N(j, d) = 2d+j−2
d

(
d+j−3
d−1

)
the so-called dimension on the spherical harmonics of

degree j in dimension d. From the Hecke-Funk representation formula [Frye and Efthimiou, 2012,

Lemma 4.23] and the chosen normalization Pj,d(1) = 1, we have ∥Pj,d∥2 =
(

Ωd−1

Ωd−2N(j,d)

)1/2

[Frye and Efthimiou, 2012, Proposition 4.15] and obtain finally

lr(θ) =
∑

j
ᾱ2
j,r,dPj,d(θ · θ∗) ,(13)

where we defined for convenience ᾱj,r,d = αj,r,d/
√
N(j, d). As a result, it follows that the

overall loss writes as solely the correlaton mθ = θ · θ∗ as

L(θ) = 2∥ϕ∥2L2
ν
− 2

∑
j
βj,dPj,d(mθ) := ℓ(m) ,(14)

where βj,d =
´∞
0

ᾱ2
j,r,dρ(dr) ≥ 0. Unsurprisingly, we observe that, thanks to the spherical

symmetry and analogous to the Gaussian case, the loss still admits m = θ · θ∗ as a summary

statistics. Yet, it is represented in terms of Gegenbauer polynomials, rather than monomials
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as in the Gaussian case. The monomial representation is a consequence of the stability of

the Gaussian measure, as seen by the fact that ⟨ϕθ, ϕθ̃⟩γd = ⟨ϕ,Aθ·θ̃ϕ⟩γ , where (Amf)(t) =

Ez∼γ[f(mt+
√
1−m2z)] has a semi-group structure (it is even known in fact as the Ornstein-

Ulhenbeck semi-group).

Let η ∈ P(R) be the marginal of ν along any direction. The following proposition gives a closed

form formula of the coefficients βj,d, represented as integrals over the radial distribution ρ and

projections of the link function ϕ:

Proposition 4.1 (Loss representation). The βj,d defined in (14) have the integral representation

(15) βj,d = ⟨ϕ,Kjϕ⟩L2
η
,

where Kj is a positive semi-definite integral operator of L2
η that depends solely on ρ and ϕ.

Note that a closed form expression of Kj can be found in Appendix C.2. The above proposition

is in fact the stepping stone to calculate properly the information exponent that plays a crucial

role in the property LPG. This is given through the link between the spectrum βj,d and the

decomposition of ϕ in the L2
η orthogonal basis of polynomials, that we denote by {qj}j .

Proposition 4.2. Let s = inf{j; βj,d > 0} and s̃ = inf{j; ⟨ϕ, qj⟩η ̸= 0}. Then s ≤ s̃.

Thus, the number of vanishing moments of ϕ with respect to the data marginal η provides an

upper bound on the ‘effective’ information exponent of the problem s, as we will see next.

Local Polynomial Growth. From (14), and as ∇S
θL(θ) = ℓ′(m)(θ∗ −mθ) , we directly obtain

(16) −∇S
θL(θ) · θ∗ = −(1−m2)ℓ′(m) = 2(1−m2)

∑
j
βj,dP

′
j,d(m) ,

which is the quantity we want to understand to exhibit the property LPG in this case. Hence,

we now turn into the question of obtaining sufficient guarantees on the coefficients (βj,d)j that

ensure local polynomial growth. Since the typical scale of initialization for m is Θ(1/
√
d), our

goal is to characterize sufficient conditions of local polynomial growth with b = O(1/
√
d).

For that purpose, let us define two key quantities of Gegenbauer polynomials:

υj,d := − min
t∈(0,1)

Pj,d(t) , (smallest value)(17)

zj,d := argmax {t ∈ (0, 1);Pj,d(t) = 0} . (largest root)(18)

We have the following sufficient condition based on the spectrum (βj,d)j:

Proposition 4.3 (Spectral characterization of LPG). Suppose there exist constants K,C > 0
and s ∈ N such that we both have βs,d ≥ C and

∑
j>s βj,dj(j + d − 2)υj−1,d+2 ≤ Kd(3−s)/2 .

Then, taking s∗ as the infimum of such s, L has the property LPG(s∗ − 1, zs∗,d). In particular,

whenever s∗ ≪ d, we have zs∗,d ≤ 2
√

s∗/d.

This proposition thus establishes that, modulo a mild regularity assumption expressed though

the decay of the coefficients βj,d, the spherically symmetric non-Gaussian setting has the same
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geometry as the Gaussian setting, for correlations slightly above the equator. Crucially, the

required amount of correlation to ‘feel’ the local polynomial growth is a O(
√
s) factor from the

typical initialization, and can be thus obtained with probability ≃ e−s over the initialization,

according to Lemma 2.1, a lower bound which is independent of d.

The sufficient condition for βj,d appearing in Proposition 4.3 involves the minimum values υj,d of

Gegenbauer polynomials Pj,d, as well as sums of the form
∑

j j
2βj,d. In order to obtain a more

user-friendly condition, we now provide an explicit control of υj,d, and leverage mild regularity

of ϕ to control
∑

j j
2βj,d. This motivates the following assumption on ϕ and ν:

Assumption 4.4. The link function ϕ satisfies ϕ ∈ L2
η and ϕ′ ∈ L4

η, and the radial distribution ρ

has finite fourth moment Eρ[r
4] < ∞.

Theorem 4.5 (LPG for symmetric distributions). Assume that ϕ and ν satisfy Assumption 4.4,

and let s∗ = inf{j; ⟨ϕ, qj⟩η ̸= 0}. Then L has the property LPG(s∗ − 1, 2
√

s∗/d).

The proof is provided in Appendix C.5. At a technical level, the main challenge in proving

Theorem 4.5 is to achieve a uniform control of υj,d in j, a result which may be of independent

interest. We address it by combining state-of-the-art bounds on the roots of the Gegenbauer

polynomials, allowing us to cover the regime where j is small or comparable to d, together with

integral representations via the Cauchy integral formula, providing control in the regime of large

j. On the other hand, we relate the sum
∑

j j
2βj,d to a norm of ϕ′ using a Cauchy-Schwartz

argument, where we leverage the fourth moments from Assumption 4.4.

Remark 4.6. Since we are in a setting where ϕ is known, an alternative to the original recovery

problem from Eq (2) is to consider a pure Gegenbauer ‘student’ link function of the form ϕ̃ = Ps,d,
where s is the information exponent from Proposition 4.2. Indeed, the resulting population loss

L̃(θ) = E[(ϕ̃(x · θ)− ϕ̃(x · θ∗))2] satisfies the LPG property, as easily shown in Fact C.5.

For the sake of completeness, we describe more precisely two concrete case studies below.

Example 4.7 (Uniform Measure on the Sphere). When ν = Unif(
√
dSd−1), we have ρ = δ√d,

and therefore βj,d = ᾱ2
j,
√
d,d

. In that case, the orthogonal polynomial basis {qj(t)}j of L2
η

coincides with the rescaled Gegenbauer polynomials, qj(t) = Pj,d(t/
√
d). Consider now a link

function ϕ with s− 1 vanishing moments with respect to L2
η, i.e. such that ᾱj,d = ⟨ϕ, qj⟩η = 0

for j < s and ᾱs,d = ⟨ϕ, qs⟩η ̸= 0; and with sufficient decay in the higher harmonics as to satisfy

the bound on the sum presented in Proposition 4.3 (for example, ϕ(t) = qs(t) trivially satisfies

this condition). Then Proposition 4.3 applies and we conclude that the resulting population

landscape satisfies LPG(s− 1, O(
√
s/d)).

In [Yehudai and Shamir, 2020, Wu, 2022] it is shown that monotonically increasing link func-

tions1 lead to a benign population landscape, provided the data distribution ν satisfies mild

anti-concentration properties. We verify that in our framework.

1or link functions where their monotonic behavior dominates; see [Wu, 2022].
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Example 4.8 (Non-decreasing ϕ). Indeed, Proposition 4.3 is verified with s = 1, provided

ϕ′ ∈ L2
η. Indeed, if ϕ ̸= 0 is monotonic, then we have β1 = ⟨ϕ,K1ϕ⟩η = Cd (Eη[tϕ(t)])

2 ̸= 0 ,
since we can assume without loss of generality that ϕ(t) ≥ 0 for t ≥ 0 and ϕ(t) ≤ 0 for t ≤ 0.

We emphasize that the results of [Yehudai and Shamir, 2020, Wu, 2022] extend beyond the

spherically symmetric setting, which is precisely the focus of next section.

4.2. Non-Spherically Symmetric Case. We now turn to the setting where ν is no longer

assumed to have spherical symmetry. By making further regularity assumptions on ϕ, our main

insight is that distributions that are approximately symmetric (defined in an appropriate sense)

still benefit from a well-behaved optimization landscape.

Two-dimensional Wasserstein Distance. When ν is not spherically symmetric, the machin-

ery of spherical harmonics does not apply, and we thus need to rely on another structural

property. Consider a centered and isometric data distribution ν ∈ P2(R
d), i.e. such that

Eνx = 0 and Σν = Eν [xx
⊤] = Id. We consider the two-dimensional 1-Wassertein distance

[Niles-Weed and Rigollet, 2022, Definition 1] –see also [Paty and Cuturi, 2019]– between a pair

of distributions νa, νb ∈ P(Rd), defined as

(19) W̃1,2(νa, νb) := sup
P∈Gr(2,d)

W1(P#νa, P#νb) ,

where the supremum runs for any two-dimensional subspace P ∈ Gr(2, d), and P#ν ∈ P(R2) is

the projection (or marginal) of ν onto the span of P . W̃1,2 is a distance ([Paty and Cuturi, 2019,

Proposition 1]) and measures the largest 1-Wasserstein distance between any two-dimensional

marginals.

We are in particular interested in the setting where νa = ν is our data distribution, and νb is a

reference symmetric measure – for instance the standard Gaussian measure γd. Consider the

fluctuations

∆L(θ) := |L(θ)− ℓ̄(mθ)| and ,(20)

∆∇L(θ) := |∇S
θL(θ) · θ∗ − ℓ̄′(mθ)(1−m2

θ)| ,(21)

where ℓ̄(m) is the Gaussian loss defined in Section 2 and L(θ) = Eν [|ϕ(x · θ) − ϕ(x · θ∗)|2].
∆L and ∆∇L thus measure respectively the fluctuations of the population loss and the relevant

(spherical) gradient direction. By making additional mild regularity assumptions on the link

function ϕ, we can obtain a uniform control of the population loss geometry using the dual

representation of the 1-Wasserstein distance.

Assumption 4.9 (Regularity of link function). We assume that ϕ, ϕ′ are both B-Lipschitz, and

that ϕ′′(t) = O(1/t).

Assumption 4.10 (Subgaussianity). The data distribution ν is M -subgaussian: for any v ∈ Sd−1,

we have ∥x · v∥ψ2 ≤ M , where ∥z∥ψ2 := inf{t > 0; E[exp(z2/t2) ≤ 2} is the Orlitz-2 norm.
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Proposition 4.11 (Uniform gradient approximation). Under Assumptions 4.9 and 4.10, for

all θ ∈ Sd−1,

(22) ∆∇L(θ) = (1−m2)O
(
W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)
)

where the O(·) notation only hides constants appearing in Assumptions 4.9 and 4.10.

In words, the population gradient under ν is viewed as a perturbation of the population gra-

dient under γ, which has the well-behaved geometry already described in Section 2. These

perturbations can be uniformly controlled by the projected 1-Wasserstein distance, thanks to the

subgaussian tails of ν.

Our focus will be in situations where W̃1,2(ν, γ) = O(1/
√
d). This happens to be the ‘natural’

optimistic scale for this metric in the class of isotropic distributions Σν = Id, as can be seen for

instance when ν = Unif(
√
dSd−1). Under such conditions, it turns out that link functions with

information exponent s ≤ 2 can be recovered with simple gradient-based methods, by paying an

additional polynomial (in d) cost in time complexity.

Assumption 4.12. The Gaussian information exponent of ϕ, s := argmin{j; ⟨ϕ,Hj⟩ ≠ 0}
satisfies s ≤ 2.

Assumption 4.13. The projected Wasserstein distance satisfies W̃1,2(ν, γ) ≤ M ′/
√
d.

Proposition 4.14 (LPG, non-symmetric setting). Under Assumptions 4.9, 4.10, 4.12 and 4.13, L

verifies LPG

(
1, O

(√
(log dκ)

d

))
, where κ depends only on B,M,M ′.

This proposition illustrates the cost of breaking spherical symmetry in two aspects: (i) it requires

additional regularity on ϕ, and notably restricts its (Gaussian) information exponent to s = 2, and

(ii) the scale to reach LPG is now no longer dimension-free, but has a polynomial dependency on

dimension, since from Lemma 2.1, picking δ any positive constant we have

Pθ0

(
mθ0 ≥

√
log dκ/

√
d
)
≥ δ

4
e−(

√
log dκ+δ)2 ≥ Ω

(
d−(1+o(1))κ

)
.

At present, we are not able to rule this out as a limitation of our proof; establishing whether

this polynomial dependency on dimension is an inherent cost of the symmetry breaking is an

interesting question for future work.

While assumptions 4.9, 4.10 and 4.12 are transparent and impose only mild conditions on

the link function and tails of ν, the ‘real’ assumption of Proposition 4.14 is the concentra-

tion of W̃1,2(ν, γ) (Assumption 4.13). The ball {ν; W̃1,2(ν, γ) = O(1/
√
d)} contains many

non-symmetric measures, for instance empirical measures sampled from γ with n = ω(d2)
[Niles-Weed and Rigollet, 2022, Proposition 8], and we suspect it contains many other exam-

ples, such as convolutions of the form ν ∗ γσ arising for instance in diffusion models. That said,

one should not expect the distance W̃1,2(ν, γ) to be of order 1/
√
d for generic ‘nice’ distributions
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ν; for instance, log-concave distributions are expected to satisfy W1(P#ν, γ) ≃ 1/
√
d for most

subspaces P , as captured in Klartag’s CLT for convex bodies [Klartag, 2007]. In summary, many

situations of interest fall outside this regime, which motivates us to relax the uniform Wasserstein

criterion.

Localized Growth via Stein’s method. To illustrate the mileage of the previous techniques

beyond this ‘quasi-symmetric’ case, we consider now an idealised setting where the data is

drawn from a product measure ν = η⊗d, with η ∈ P(R) and W1(η, γ1) = Θ(1). In other words,

x = (x1, . . . , xd) ∼ ν if xi ∼ η are i.i.d. In this setting, the distances W1(P#ν, γ) reflect a CLT

phenomena, which requires the subspace P to ‘mix’ across independent variables. Consequently,

one may expect the expression of the hidden direction θ∗ in the canonical basis to play a certain

role. For that purpose, we make the following additional regularity assumption on the tails of ϕ
to simplify the quantitative bounds:

Assumption 4.15 (Additional Regularity in third derivatives). ϕ admits four derivatives bounded

by L, with |ϕ(3)(t)| = O(1/t) and |ϕ(4)(t)| = O(1/t2). Moreover, the third moment of the data

distribution is finite: τ3 = Et∼η[t
3] < ∞.

Stein’s method provides a powerful control on ∆L(θ) and ∆∇L(θ), as shown by the following

result:

Proposition 4.16 (Stein’s method for product measure). Let χ(θ, θ∗) := ∥θ∥24 + ∥θ∗∥24. Under

Assumptions 4.9, 4.10 and 4.15, there exists a universal constant C = C(M,B, τ3) such that

(23) ∆L(θ) ≤ Cχ(θ, θ∗) , and ∆∇L(θ) ≤ C
√
1−m2χ(θ, θ∗) .

The proof is based on the Stein’s method for multivariate variables [Röllin, 2013, Theorem

3.1] with independent entries, which provides a quantitative CLT bound. Contrary to the quasi-

symmetric case, here the concentration is not uniform over the sphere, but crucially depends on

the sparsity of both θ and θ∗, measured via the ℓ4 norms ∥θ∥4, ∥θ∗∥4: for incoherent, non-sparse

directions, we have ∥θ∥24 ≃ 1/
√
d, recovering the concentration rate that led to Proposition 4.14,

while for sparse directions we have ∥θ∥24 = Θ(1), indicating an absence of concentration to the

Gaussian landscape.

Therefore, the natural conclusion is to assume a planted model where θ∗ is incoherent with the

data distribution, i.e. ∥θ∗∥4 = O(d1/4). While the LPG property does not directly apply in this

setting, we outline an argument that suggests that the single-index model can still be efficiently

solved using gradient-based methods. For that purpose, we assume that θ∗ is drawn uniformly in

Sd−1, which implies that its squared-L4 norm ∥θ∗∥24 is of order d−1/2 with high probability:

Fact 4.17. Assume θ∗ ∼ Unif(Sd−1). Then P(∥θ∗∥24 ≤ C/
√
d) ≥ 1− C ′ exp(−C).

Because θ0 is also drawn uniformly on the sphere, the typical value of χ(θ, θ∗) is of order d−1/2.

For Gaussian information exponent s = 2, the population gradient under Gaussian data satisfies

−∇Sd−1

θ Lγ(θ) · θ∗ ≥ Cmθ. As a consequence, by Proposition 4.16, whenever |θ0 · θ∗| > c
√
d
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(which happens with constant probability lower bounded by e−c), we enter a ‘local’ LPG region

where −∇Sd−1

θ L(θ) · θ∗ ≥ C(m − c/
√
d) > 0. While this condition is sufficient in the quasi-

symmetric setting to start accumulating correlation (Theorem 3.2), now this event is conditional

on θ being dense, ie so that χ(θ, θ∗) = O(1/
√
d).

Since the typical value of χ(θ, θ∗) is of scale 1/
√
d, one would expect that SGD will rarely visit

sparse points where χ(θ, θ∗) ≫ O(1/
√
d), and thus that the local LPG property will be valid for

most times during the entropic phase of weak recovery — and therefore that the correlation mθ

will pile-up as in the quasi-symmetric setting.

We summarise this property in the following conjecture:

Conjecture 4.18 (SGD avoids sparse points). Assume θ∗, θ0 are drawn from the uniform measure,

and let θt be the t-th iterate of SGD with δ ≃ 1/(d log d). There exists a universal constant C
such that for any ξ > 0, we have

(24) P

(
sup
t≤T

∥θt∥24 ≥
√

ξ log T

d

)
≤ C exp(−ξ2d) .

Since the time to escape mediocrity in the case s = 2 is T ≃ d log(d)2, this conjecture would

imply that SGD does not effectively ‘see’ any sparse points, and thus escapes mediocrity. If

one assumed that in this phase the dynamics is purely noisy, now pretending that θi were drawn

independently from the uniform measure, and that ∥θ∥44 is approximately Gaussian with mean

d−1 and variance d−3, the result follows by simple concentration. The challenging aspect of

Conjecture 4.18 is precisely to handle the dependencies across iterates, as well as the spherical

projection steps.

5. EXPERIMENTS

In order to validate our theory, and inspect the degree to which our bounds may be pessimistic,

we consider empirical evaluation of the training process in our two primary settings. Specifically,

we consider random initialization on the half-sphere (with the sign chosen to induce positive

correlation as in [Arous et al., 2021]), and investigate how often strong recovery occurs relative

to the information exponent of the link function.

Symmetric Case. For the spherically symmetric setting, we experiment with the input distri-

bution that is uniform on the sphere. We are primarily interested in verifying that, unlike the

Gaussian case, strong recovery depends on whether the initial correlation is sufficiently high to

avoid local minima and benefit from the LPG guarantee. This is not evident in the 2nd degree

Gegenbauer case, which is monotonic and quickly reaches strong recovery, but it is clear from

the 4th degree Gegenbauer link function.

In the infinite sample setting, Figure 3 exactly characterizes the loss landscape when learning

the 4th degree Gegenbauer under inputs uniform on Sd−1 for different values of d. Note that the

largest zero for d = 50 occurs at ≈ ±0.31, and the loss is monotonic for m values initialized
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spherical symmetry, the situation becomes more dire, motivating a perturbative analysis that we

have shown is effective via projected Wasserstein and Stein couplings.

That said, there are several open and relevant avenues that our work has barely touched upon,

such as understanding whether the robustness can be transferred to other algorithms beyond SGD,

or addressing the semi-parametric problem when the link function is unknown, along the lines of

[Bietti et al., 2022, Abbe et al., 2023, Damian et al., 2022, Berthier et al., 2023]. A particularly

interesting direction of future work is to extend the analysis of product measures to ‘weakly

dependent’ distributions, motivated by natural images where locality in pixels captures most (but

not all) of the statistical dependencies. Stein’s method appears to be a powerful framework that

can accommodate such weak dependencies, and deserves future investigation.

Acknowledgements. This work was partially supported by NSF DMS 2134216, NSF CAREER

CIF 1845360, NSF IIS 1901091 and the Alfred P Sloan Foundation.

REFERENCES

[Abbe et al., 2022] Abbe, E., Boix-Adsera, E., and Misiakiewicz, T. (2022). The merged-staircase property: a

necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks. arXiv

preprint arXiv:2202.08658. 2

[Abbe et al., 2023] Abbe, E., Boix-Adsera, E., and Misiakiewicz, T. (2023). Sgd learning on neural networks: leap

complexity and saddle-to-saddle dynamics. arXiv preprint arXiv:2302.11055. 2, 17

[Area et al., 2004] Area, I., Dimitrov, D. K., Godoy, E., and Ronveaux, A. (2004). Zeros of gegenbauer and hermite

polynomials and connection coefficients. Math. Comput., 73:1937–1951. 34

[Arnaboldi et al., 2023] Arnaboldi, L., Stephan, L., Krzakala, F., and Loureiro, B. (2023). From high-dimensional

& mean-field dynamics to dimensionless odes: A unifying approach to sgd in two-layers networks. arXiv preprint

arXiv:2302.05882. 2

[Arous et al., 2021] Arous, G. B., Gheissari, R., and Jagannath, A. (2021). Online stochastic gradient descent on

non-convex losses from high-dimensional inference. The Journal of Machine Learning Research, 22(1):4788–4838.

5, 14, 22, 33

[Bach, 2017] Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks. The Journal of

Machine Learning Research, 18(1):629–681. 2

[Barak et al., 2022] Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E., and Zhang, C. (2022). Hidden

progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural Information

Processing Systems, 35:21750–21764. 2

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Transactions on Information theory, 39(3):930–945. 2

[Ben Arous et al., 2021] Ben Arous, G., Gheissari, R., and Jagannath, A. (2021). Online stochastic gradient descent

on non-convex losses from high-dimensional inference. Journal of Machine Learning Research (JMLR), 22:106–1.

1, 2, 4, 5, 6, 23

[Ben Arous et al., 2022] Ben Arous, G., Gheissari, R., and Jagannath, A. (2022). High-dimensional limit theorems

for sgd: Effective dynamics and critical scaling. arXiv preprint arXiv:2206.04030. 2

[Berthier et al., 2023] Berthier, R., Montanari, A., and Zhou, K. (2023). Learning time-scales in two-layers neural

networks. arXiv preprint arXiv:2303.00055. 2, 17

[Bietti et al., 2022] Bietti, A., Bruna, J., Sanford, C., and Song, M. J. (2022). Learning single-index models with

shallow neural networks. In Advances in Neural Information Processing Systems. 2, 17

[Chen et al., 2023] Chen, S., Dou, Z., Goel, S., Klivans, A. R., and Meka, R. (2023). Learning narrow one-hidden-

layer relu networks. arXiv preprint arXiv:2304.10524. 2



18 ON SINGLE INDEX MODELS BEYOND GAUSSIAN DATA

[Damian et al., 2022] Damian, A., Lee, J., and Soltanolkotabi, M. (2022). Neural networks can learn representations

with gradient descent. In Conference on Learning Theory. 2, 17

[De Carli, 2008] De Carli, L. (2008). Local lp inequalities for gegenbauer polynomials. In Topics in classical

analysis and applications in honor of Daniel Waterman, pages 73–87. World Scientific. 40

[Diakonikolas et al., 2017] Diakonikolas, I., Kane, D. M., and Stewart, A. (2017). Statistical query lower bounds

for robust estimation of high-dimensional gaussians and gaussian mixtures. In 2017 IEEE 58th Annual Symposium

on Foundations of Computer Science (FOCS), pages 73–84. IEEE. 2

[Dimitrov and Nikolov, 2010] Dimitrov, D. K. and Nikolov, G. P. (2010). Sharp bounds for the extreme zeros of

classical orthogonal polynomials. Journal of Approximation Theory, 162(10):1793–1804. Special Issue dedicated

to the memory of Borislav Bojanov. 41

[DLMF, 2022] DLMF (2022). NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,

Release 1.1.10 of 2023-06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,

C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. 41

[Driver and Jordaan, 2012] Driver, K. and Jordaan, K. (2012). Bounds for extreme zeros of some classical orthogo-

nal polynomials. Journal of Approximation Theory, 164(9):1200–1204. 42

[Dudeja and Hsu, 2018] Dudeja, R. and Hsu, D. (2018). Learning single-index models in gaussian space. In Bubeck,

S., Perchet, V., and Rigollet, P., editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of

Proceedings of Machine Learning Research, pages 1887–1930. PMLR. 2, 4

[Freedman, 1975] Freedman, D. A. (1975). On tail probabilities for martingales. the Annals of Probability, pages

100–118. 32

[Frei et al., 2020] Frei, S., Cao, Y., and Gu, Q. (2020). Agnostic learning of a single neuron with gradient descent.

Advances in Neural Information Processing Systems, 33:5417–5428. 2

[Frye and Efthimiou, 2012] Frye, C. and Efthimiou, C. J. (2012). Spherical harmonics in p dimensions. arXiv

preprint arXiv:1205.3548. 8, 33, 34

[Gautschi, 1959] Gautschi, W. (1959). Some elementary inequalities relating to the gamma and incomplete gamma

function. J. Math. Phys, 38(1):77–81. 20

[Goel et al., 2020] Goel, S., Gollakota, A., Jin, Z., Karmalkar, S., and Klivans, A. (2020). Superpolynomial lower

bounds for learning one-layer neural networks using gradient descent. In International Conference on Machine

Learning, pages 3587–3596. PMLR. 2

[Kakade et al., 2011] Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. (2011). Efficient learning of generalized

linear and single index models with isotonic regression. Advances in Neural Information Processing Systems, 24. 2

[Kalai and Sastry, 2009] Kalai, A. T. and Sastry, R. (2009). The isotron algorithm: High-dimensional isotonic

regression. In COLT. 2

[Klartag, 2007] Klartag, B. (2007). A central limit theorem for convex sets. Inventiones mathematicae, 168(1):91–

131. 13

[Laforgia and Natalini, 2013] Laforgia, A. and Natalini, P. (2013). On some inequalities for the gamma function.

Advances in Dynamical Systems and Applications, 8(2):261–267. 20

[Niles-Weed and Rigollet, 2022] Niles-Weed, J. and Rigollet, P. (2022). Estimation of wasserstein distances in the

spiked transport model. Bernoulli, 28(4):2663–2688. 11, 12

[Paty and Cuturi, 2019] Paty, F.-P. and Cuturi, M. (2019). Subspace robust wasserstein distances. In International

conference on machine learning, pages 5072–5081. PMLR. 11

[Röllin, 2013] Röllin, A. (2013). Stein’s method in high dimensions with applications. In Annales de l’IHP

Probabilités et statistiques, volume 49, pages 529–549. 13, 47

[Shalev-Shwartz et al., 2010] Shalev-Shwartz, S., Shamir, O., and Sridharan, K. (2010). Learning kernel-based

halfspaces with the zero-one loss. arXiv preprint arXiv:1005.3681. 2

[Shamir, 2018] Shamir, O. (2018). Distribution-specific hardness of learning neural networks. The Journal of

Machine Learning Research, 19(1):1135–1163. 2



ON SINGLE INDEX MODELS BEYOND GAUSSIAN DATA 19

[Soltanolkotabi, 2017] Soltanolkotabi, M. (2017). Learning relus via gradient descent. Advances in neural informa-

tion processing systems, 30. 2

[Song et al., 2021] Song, M. J., Zadik, I., and Bruna, J. (2021). On the cryptographic hardness of learning single

periodic neurons. Advances in Neural Processing Systems (NeurIPS). 2

[Stam, 1982] Stam, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional euclidean

spaces. Journal of Applied probability, 19(1):221–228. 20

[Szego, 1939] Szego, G. (1939). Orthogonal polynomials, volume 23. American Mathematical Soc. 41

[Ursell, 2007] Ursell, F. (2007). Integrals with nearly coincident branch points: Gegenbauer polynomials of large

degree. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2079):697–710.

43

[Watson, 1922] Watson, G. N. (1922). A treatise on the theory of Bessel functions, volume 3. The University Press.

43

[Wu, 2022] Wu, L. (2022). Learning a single neuron for non-monotonic activation functions. In International

Conference on Artificial Intelligence and Statistics, pages 4178–4197. PMLR. 1, 2, 10, 11

[Yehudai and Shamir, 2020] Yehudai, G. and Shamir, O. (2020). Learning a single neuron with gradient methods.

In Conference on Learning Theory, pages 3756–3786. PMLR. 1, 2, 10, 11, 16



20 ON SINGLE INDEX MODELS BEYOND GAUSSIAN DATA

APPENDIX

We gather in the appendix the proofs of the theorems, propositions and lemmas stated in the

main text. In Section A, the reader will find a short proof of Lemma 2.1. In Section B, we prove

Theorems 3.2 and 3.3 on the SGD dynamics. Sections C and D are respectively devoted to prove

that the LPG property holds in some spherical symmetric case and under some perturbative

regime.

APPENDIX A. PROOF OF LEMMA 2.1

Let us first recall the Lemma before writing a proof of it.

Lemma. For all a > 0, we have Pθ0(mθ0 ≥ a/
√
d) ≤ a−1e−a

2/4. Additionally, for any δ > 0

such that max{a, δ} ≤
√
d/4, we have the lower bound: Pθ0(mθ0 ≥ a/

√
d) ≥ δ

4
e−(a+δ)2 .

Proof. By rotation invariance of the uniform distribution of the sphere, mθ0 is distributed

according to θ0[1], the first coordinate of the vector θ0 ∈ Sd−1. By a particular case of Stam’s

formula [Stam, 1982, relation (3)], we know that for d ≥ 3, both are distributed according to the

probability of density, ∀t ∈ R,

τ(t) :=
Γ(d/2)√

πΓ((d− 1)/2)

(
1− t2

)(d−3)/2
1[−1,1].

First, note that we can upper and lower bound the constant by the following:
√

d

3
≤ Γ(d/2)

Γ((d− 1)/2)
≤
√

d

2
,

for d ≥ 6 by [Laforgia and Natalini, 2013, equality 3.2], which was already proved in [Gautschi, 1959].

Hence, in terms of the upper bound, we have:

Pθ0(mθ0 ≥ a/
√
d) ≤

√
d

2π

ˆ 1

a/
√
d

(
1− t2

)(d−3)/2
dt

≤
√

d

2π

ˆ 1

a/
√
d

e−
d−3
2
t2dt

≤ 1√
2π

d

a

ˆ 1

a/
√
d

te−
d−3
2
t2dt

≤ 1

2a
e−a

2/4 ,

which concludes the first part of the result.
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Second, let a ≤
√
d/4 and take any 0 < δ <

√
d/4. We have,

Pθ0(mθ0 ≥ a/
√
d) ≥

√
d

3π

ˆ 1

a/
√
d

(
1− t2

)(d−3)/2
dt

≥
√

d

3π

ˆ (a+δ)/
√
d

a/
√
d

(
1− t2

)(d−3)/2
dt

≥
√

d

3π

δ√
d

(
1− (a+ δ)2

d

)(d−3)/2

,

where the last inequality simply comes from the fact that t → (1− t2)(d−3)/2 is non-increasing.

Going further, if we lower bound the term with the negative −3/2 power by 1, we have

Pθ0(mθ0 ≥ a/
√
d) ≥ δ

4
exp

(
d

2
log

(
1− (a+ δ)2

d

))

≥ δ

4
exp

(
− (a+ δ)2

2 (1− (a+ δ)2/d)

)
,

where the last inequality come from the classical bound log(1 + x) ≥ x/(1 + x), for x > −1.

Furthermore, as, (a+ δ)2 ≤ d/2, we have finally

Pθ0(mθ0 ≥ a/
√
d) ≥ δ

4
e−(a+δ)2 ,

which finalizes the proof of the Lemma. ■

APPENDIX B. PROOFS ON THE SGD DYNAMICS: SECTION 3

We first recall the notations useful to fully describe the dynamics. In Section B.3, we prove

Theorem 3.2 about weak recovery. In Section B.4, we prove Theorem 3.3 about strong recovery.

Finally,

B.1. Recalling the dynamics. For the sake of clarity, let us recall the notations and facts

developed in the main text. The overall loss classically corresponds to the average over all the

data of a square penalisation l(θ, x) = (ϕθ(x)− ϕθ∗(x))
2 so that

L(θ) = Eν [(ϕθ(x)− ϕθ∗(x))
2].

To recover the signal given by θ∗, we run online stochastic gradient descent on the sphere Sd−1.

This corresponds to have at each iteration t ∈ N
∗ a fresh sample xt independent of the filtration

Ft = σ(x1, . . . , xt−1) and perform a spherical gradient step, with step-size δ > 0, with respect

to θ → l(θ, xt):

θt+1 =
θt − δ∇S

θ l(θt, xt)

|θt − δ∇S
θ l(θt, xt)|

,(25)
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initialized at θ0 uniformly on the sphere: θ0 ∼ Unif(Sd−1). Recall that we use the notation ∇S
θ

to denote the spherical gradient, that is

∇S
θ l(θ, x) = ∇θl(θ, x)− (∇θl(θ, x) · θ)θ.

Let us introduce the following frequently used notations: for all t ∈ N
∗, we denote the normal-

ization by rt := r(θt, xt) =
∣∣θt − δ∇S

θ l(θt, xt)
∣∣ and the martingale induced by the stochastic

gradient descent as Mt = M(θt, xt) = l(θt, xt)− Eν [l(θt, x)].

B.2. Tracking the correlation. Recall that the relevant signature of the dynamics is the one-

dimensional correlation: mt = θt · θ∗. Let us re-write the iterative recursion followed by (mt)t≥0,

with the notation recalled above, for t ∈ N
∗,

mt+1 =
1

rt

(
mt − δ∇Sl(θt, xt) · θ∗

)
=

1

rt

(
mt − δ∇SL(θt) · θ∗ − δ∇SMt · θ∗

)
.(26)

We want to lower bound the right hand side of (26). We begin by a lower bound on 1/rt.

Lemma B.1 (Bound on rt). For all t ∈ N
∗, we have 1/rt ≥ 1− δ2 |∇θl(θt, xt)|2.

Proof. For all t ∈ N
∗, we have, by orthogonality of as θt and ∇S

θ l(θt, xt), that

r2t =
∣∣θt − δ∇S

θ l(θt, xt)
∣∣2 = 1 + δ2

∣∣∇S
θ l(θt, xt)

∣∣2 ≤ 1 + δ2 |∇θl(θt, xt)|2 .

Hence, from the inequality (1 + u)−1/2 ≥ 1− u for all u > 0, we conclude the proof. ■

Thanks the fact that L satisfies LPG(s, b/
√
d), ie −∇SL(θ) · θ∗ ≥ C(1 −m)(m − b/

√
d)s−1,

we have that the dynamics satisfies the following inequality between iterates:

mt+1 ≥ mt + Cδ (1−mt)

(
mt −

b√
d

)s−1

− δ∇SMt · θ∗ − δ2|mt| |∇θl(θt, xt)|2 − δ3ξt,

(27)

where ξt = |∇θl(θt, xt)|2 |∇Sl(θt, xt) · θ∗|. All the terms of the inequality have a natural origin:

the second term is the ideal term coming from the gradient flow and the growth condition, the

third term corresponds to the martingale increments coming form the noise induced by SGD and

the two final terms are simply discretization errors coming from discrete nature of the procedure

and the projection step.

However, to have a tight dependency with respect to the dimension, we need to be extra careful.

This is why, following [Arous et al., 2021], we decompose this term introducing a threshold

M > 0, to be fixed later, such that:

|mt| |∇θl(θt, xt)|2 = |mt| |∇θl(θt, xt)|2 1{|∇θl(θt,xt)|2≤M} + |mt| |∇θl(θt, xt)|2 1{|∇θl(θt,xt)|2>M}
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With the same notations and summing all these terms until time T ∈ N
∗, we can write

mT ≥ m0 + Cδ

T−1∑

t=0

(1−mt)(mt − b/
√
d)s−1 − δ

T−1∑

t=0

∇SMt · θ∗ − δ2
T−1∑

t=0

|mt| |∇θlt|2 1{|∇θlt|2≤M}

− δ2
T−1∑

t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} − δ3
T−1∑

t=0

ξt,

where we use, for the sake of compactness, the shortcut notation lt = l(xt, θt). The strategy of

the proof is the following: the first term is the drift term that makes the correlation grow, the

second term is simply a martingale term that we deal with via standard martingale inequality,

and the forth and fifth term are discretization error that we will bound loosely. The difficulty

comes from the third term: the proof is based on the fact that we use a “part” of the drift term

(say half) to control it. This is why we decide to rewrite finally our inequality as,

mT ≥ m0 + δ
C

2

T−1∑

t=0

(1−mt)(mt − b/
√
d)s−1 − δ

T−1∑

t=0

∇SMt · θ∗ − δ

T−1∑

t=0

Dt(28)

− δ2
T−1∑

t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} − δ3
T−1∑

t=0

ξt,

where we have defined Dt :=
C
2
(1 − mt)(mt − b/

√
d)s−1 − δ|mt| |∇θlt|2 1{|∇θlt|2≤M}. The

following section show how to control these five terms in a quantitative way.

B.3. Weak recovery.

Good initialization. During all this section, we condition on the event {m0 ≥ 5b/
√
d}.

Before stating these lemmas, let us introduce some new notations. As already introduce, we

recall that we denote Sη := {θ ∈ Sd−1, mθ ≥ η}, the spherical cap of level η ∈ (0, 1). Moreover

for α ∈ (−1, 1), similarly to what is done in [Ben Arous et al., 2021], we define the following

stopping times τ+α := inf{t ≥ 0, mθt ≥ α} and τ−α := inf{t ≥ 0, mθt ≤ α} reciprocally as the

first time when (θt)t≥0 enters in Sα or leaves Sα.

B.3.1. Proof of Theorem 3.2. Thanks to Lemmas B.2, B.3, B.4, B.5 and B.6, that serve bounding

all the terms in the mT inequality, there exists a constant K that depend solely on the model such

that we have the following lower bound: for all λ > 0, conditionally to the event on the events

{T ≤ τ+1/2 ∧ τ−
2b/

√
d
} ,

mT ≥ m0 +
C

2s+1
δ
T−1∑

t=0

ms−1
t − 4λ,
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with probability larger that 1−
(
KTδ2

λ2
+ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
+

KTd2δ2

λM
+

KTdδ3

λ

)
.

Now we choose λ = b/
√
d and M = d3/2 so that

mT ≥ b√
d
+

C

2s+1
δ

T−1∑

t=0

ms−1
t ,

with probability at least 1− pδ,M(T ), where we defined naturally

pδ,M(T ) :=

(
KTdδ2

b2
+ exp

(
− b2

2K2dδ2T + b
√
dδ(C + δM)

)
+

KTd5/2δ2

bM
+

KTd3/2δ3

b

)
.

Let us upper bound the probability pδ,M(T ). Let us set ε > 0 a small constant. First, in the

exponential term, the term b
√
dδ(C + δd3/2) is negligible in virtue of the fact that in any of the

cases of Theorem 3.2, we have δ ≤ ε/d. Moreover, for the sake of clarity, we gather all constant

K,C, b as one constant generic K, as these depend only on the data distribution and the link

function. Hence, for d large enough,

pδ,M(T ) ≤ K

(
dTδ2 + exp

(
− 1

dTδ2

)
+ dTδ2 + d3/2Tδ3

)
,

and as d3/2Tδ3 ≲ dTδ2 for the range of δ we choose, we have pδ,M(T ) ≤ K
(
dTδ2 + exp

(
− 1
dTδ2

))
,

and considering that we will take in any case dTδ2 ≤ 1, as we have the inequality exp
(
− 1
dTδ2

)
≤

dTδ2, so that finally

pδ,M(T ) ≤ KdTδ2

We divide the proof into the three cases s = 1, s = 2, s ≥ 3.

Case s = 1, δ = ε/d. In this case, we have that with probability 1− pδ,M(T ),

mT ≥ b√
d
+

Cδ

2s
T.

The right and side is larger than 1/2 as soon as δT ≥ 2s/C. From this we have that with

probability at least 1− pδ,M(T ), the hitting time is upper bounded by

τ+1/2 ≤
2s

Cδ
.

Now, taking δ = εd−1, we can check that for ε small enough, dTδ2 ≤ 2sε/C = εO(1) so that

we have that with probability at least 1− Kε, we have

τ+1/2 ≤
K

ε
d.
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Case s = 2, δ = ε/(d log d). Now by a discrete version of Grönwall inequality, recalled in

Lemma B.10, we have with probability at least 1− pδ,M(T ),

mT − b√
d
≥ b√

d

(
1 + δ

C

2

)T
≥ b√

d
eCδT ,

for d large enough. And as the right hand side is larger than 1/2 + b/
√
d whenever,

δT ≥ 1

C
log(

√
d/4b),

for d large enough compared to b. Then taking such a T , with probability at least 1− pδ,M(T ) ,

the hitting time is upper bounded by

τ+1/2 ≤
2

Cδ
log (d) .

Now, taking δ = εd−1(log d)−1, we can check that for ε small enough, dTδ2 ≤ ε
C
= εO(1) so

that we have that with probability at least 1− Kε, we have

τ+1/2 ≤
K

ε
d log(d)2.

Case s ≥ 3, δ = εd−s/2. Now by the discrete version of Bihari-LaSalle inequality, recalled in

Lemma B.10, we have with probability at least 1− pδ,M(T ),

mT − b√
d
≥ b√

d

(
1− δ

C(s− 2)

2

(
b√
d

)s−2

T

)− 1
s−2

.

And as the right hand side is larger than 1/2 + b/
√
d whenever,

δT ≥ d(s−2)/2

C(s− 2)bs−2
,

for d large enough compare to b. Then taking such a T , with probability at least 1− pδ,M(T ),
the hitting time is upper bounded by

τ+1/2 ≤
1

Cbs−2

d
s−2
2

δ
.

Now, taking δ = εd−s/2, we can check that for ε small enough, dTδ2 ≤ ε
C(s−2)bs−2 = εO(1) so

that we have that with probability at least 1− Kε, we have

τ+1/2 ≤
K

ε
ds−1.
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B.3.2. Technical intermediate result to lower bound each term of Eq. (28).

Lemma B.2 (ODE term). Conditioned to the event {T ≤ τ+1/2 ∧ τ−
2b/

√
d
} , we have the inequality

T−1∑

t=0

(1−mt)(mt − b/
√
d)s−1 ≥ 1

2s

T−1∑

t=0

ms−1
t .

Proof. This simply results from the fact that for all t ≤ T − 1, we have {t ≤ τ+1/2 ∧ τ−
2b/

√
d
} ⊂

{T ≤ τ+1/2 ∧ τ−
2b/

√
d
} , so that we can use the inequalities 1−m ≥ 1/2 and m− b/

√
d ≥ m/2.

Summing these terms until T − 1 gives the proof of the lemma. ■

Lemma B.3 (First martingale term). For all λ > 0, we have that

P

(
sup
t≤T

δ

∣∣∣∣∣

t−1∑

k=0

∇SMk · θ∗
∣∣∣∣∣ ≥ λ

)
≤ KTδ2

λ2
,(29)

where K > 0, that depends solely on the model through f, ν.

Proof. This is a consequence of Doob’s maximal inequality for (sub)martingale. Indeed, for

t ≤ T , let Ht−1 =
∑t−1

k=0 ∇SMk · θ∗. We have that Ht is a Ft-adapted martingale and we have

the following upper bounded on its variance:

E[H2
t−1] = E



(

t−1∑

k=0

∇SMk · θ∗
)2



= E

[
t−1∑

k=0

(
∇SMk · θ∗

)2
]

≤ t sup
θ

Ex

[(
∇SMk · θ∗

)2]

≤ Kt,

where the last inequality comes from the Lemma B.8. Now, thanks to Doob’s maximal inequality,

we have for all λ > 0,

P

(
sup
t≤T

δ|Ht−1| ≥ λ

)
≤ E[H2

T−1]δ
2

λ2
≤ KTδ2

λ2
,

and this concludes the proof of the lemma. ■

Lemma B.4 (Submartingale term). For all λ > 0, if for all t ≤ T , mt ∈ [2b/
√
d, 1/2], and δ is

such that δ ≤ ε/d, with a small enough constant ε > 0, we have that

P

(
δ

T−1∑

t=0

Dt ≤ −λ

)
≤ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
(30)

where K > 0, that depends solely on the model through f, ν.
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Proof. First, recall that we have defined Dt =
C
2
(1−mt)(mt−b/

√
d)s−1−δ|mt| |∇θlt|2 1{|∇θlt|2≤M}.

Let us notice that if mt ∈ [2b/
√
d, 1/2], then 1−mt ≥ 1/2 and (mt − b/

√
d)s−1 ≥ ms−1

t /2s−1.

Hence, if mt lies in such an interval,

Dt ≥
C

2s+1
ms−1
t − δ|mt| |∇θlt|2 1{|∇θlt|2≤M}

≥ C

2s+1
ms−1
t

(
1− 2s+1δ

|∇θlt|2 1{|∇θlt|2≤M}

Cms−2
t

)
.

Now, for δ such that E

[
1− 2s+1δ

|∇θlt|21{|∇θlt|2≤M}

Cms−2
t

| Ft−1

]
≥ 0,

(∑t
k=1 Dk

)
t≥0

is a submartin-

gale, which is true as soon as

δ ≤ Cms−2
t

2s+1 supθ E
[
|∇θlt|2 1{|∇θlt|2≤M} | Ft−1

] ,

which is itself true if

δ ≤ C

4s supθ E
[
|∇θlt|2

] ,

which is implied by the condition required in the lemma given the upper bound on E[|∇θlt|2]
provided in Lemma B.8. In order to apply Freedman tail inequality for this submartingale, let us

provide upper bound on the increments as well as their variance. Indeed, we have, for all t ≥ 0,

|Dt| ≤
C|1−mt||mt − b

√
d|s−1

2
+ δ|mt| |∇θlt|2 1{|∇θlt|2≤M}

≤ C + δM

2
,

and in virtue of the inequality (a+ b)2 ≤ 2(a2 + b2), we have

E
[
D2
t | Ft−1

]
≤ 2

(
C2|1−mt|2|mt − b

√
d|2(s−1)

4
+ δ2|mt|2E

[
|∇θlt|4 1{|∇θlt|2≤M}

])

≤ C2 + δ2E
[
|∇l|4

]

2

≤ C2 +Kδ2d2

2
≤ K2.

Hence, by the Freedman tail inequality recalled in Theorem B.9, for all λ > 0,

P

(
δ
T−1∑

t=0

Dt ≤ −λ

)
≤ exp

(
− λ2

2K2δ2T + λδ(C + δM)

)
,

which concludes the proof of the Lemma. ■
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Lemma B.5 (First discretization term). We have that, almost surely

P

(
sup
t≤T

δ2
T−1∑

t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} ≥ λ

)
≤ KTδ2d2

λM
,(31)

where K > 0 depends solely on the model through f, ν.

Proof. This term is handled via a combination of Markov and Cauchy-Schwartz inequalities.

First, notice that,

sup
t≤T

δ2
T−1∑

t=0

|mt| |∇θlt|2 1{|∇θlt|2>M} ≤ Tδ2 sup
t≤T

{
|mt| |∇θlt|2 1{|∇θlt|2>M}

}
.

Furthermore, for all t ≤ T , all λ > 0, via Markov inequality, then Cauchy-Schwartz inequality,

P

(
|mt| |∇θlt|2 1{|∇θlt|2>M} ≥ λ

)
≤

E

[
|mt| |∇θlt|2 1{|∇θlt|2>M}

]

λ

≤

√
E
[
|∇θlt|4

]√
P
(
|∇θlt|2 > M

)

λ

≤

√
E
[
|∇θlt|4

]√
E
[
|∇θlt|4

]
/M2

λ

≤ E
[
|∇θlt|4

]

λM

≤ Kd2

λM
,

where the last inequality is due to Lemma B.8. Multiplying this bound by Tδ2 ends the proof the

lemma. ■

Lemma B.6 (Second discretization term). For all λ > 0, we have that

P

(
sup
t≤T

δ3
t−1∑

k=0

ξk ≥ λ

)
≤ KTdδ3

λ
,(32)

where K > 0 depends solely on the model through f, ν.

Proof. Recall that ξk = |∇θl(θk, xk)|2 |∇Sl(θk, xk) · θ∗|. The bound follows from an application

of Markov’s inequality. Indeed, since all the terms of the sum are positive, the supremum is
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attained in t = T − 1, and we shall only consider this case. For λ > 0,

P

(
δ3

T−1∑

t=0

ξt ≥ λ

)
≤ δ3

λ
E

[
T−1∑

t=0

ξt

]

≤ Tδ3

λ
sup
θ

{
Ex[|∇θl(θ, x)|2 |∇Sl(θ, x) · θ∗|]

}

≤ Tδ3

λ
sup
θ

{√
Ex

[
[|∇θl(θ, x)|4

]√
Ex [|∇Sl(θ, x) · θ∗|2]

}

≤ Tδ3

λ

√
sup
θ

Ex

[
[|∇θl(θ, x)|4

]√
sup
θ

Ex [|∇Sl(θ, x) · θ∗|2]

≤ Tδ3

λ

√
sup
θ

Ex

[
[|∇θl(θ, x)|4

]√
sup
θ

Ex [|∇Sl(θ, x) · θ∗|2]

≤ Tδ3

λ

√
Kd2

√
K

≤ KTdδ3

λ
,

where the penultimate inequality comes from Lemma B.8. ■

B.4. Strong recovery. The reasoning is almost identical to the one of the previous section,

except from the fact that instead of tracking the growing movement on (mt)t≥0, we will track the

decaying movement of (1−mt)t≥0.

B.4.1. Upper bound on the residual. As said in the main text, we place ourselves after the weak

recovery time. Thanks to the Markovian property of the SGD dynamics, we have the equality

between all time s > 0 marginal laws of
(
θτ+1/2+s

∣∣∣∣ τ
+
1/2, θτ+1/2

)
Law
=

(
θs

∣∣∣∣ θs = θτ+
1/2

)
,

and hence the strong recovery question is equivalent to study the dynamics with initialization

such that mθ = 1/2. As demonstrated before we have that P(τ+1/2 < ∞) ≥ 1−Kε so that up to ε
terms, this conditioning does not hurt the probability of the later events. In fact this conditioning

seems even artificial as it seems provable that τ+1/2 is almost surely finite. Yet, we leave this more

precise study for another time.

B.4.2. A (slightly) different decomposition. Let us define for all t ∈ N, the residual ut =
1−mt+τ+

1/2
> 0, and thanks to the lower bound given by Eq. (27), we have

ut+1 ≤ ut − Cδut(mt − b/
√
d)s−1 + δ∇SMt · θ∗ + δ2|mt||∇l(xt, θt)|2 + δ3ξt,
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From there, the proof is similar to the weak recovery case, except that the extra-care we used for

the term δ2|mt||∇l(xt, θt)|2 is not necessary. We use simply the decomposition of this term in a

second martingale term

Nt = |mt||∇l(xt, θt)|2 − E
[
|mt||∇l(xt, θt)|2|Ft−1

]

and the drift that we directly upper bound as E [|mt||∇l(xt, θt)|2|Ft−1] ≤ Kd. Now similarly to

Lemma B.3, we have the upper bound:

Lemma B.7 (New martingale term). For all λ > 0, we have that

P

(
sup
t≤T

δ2

∣∣∣∣∣

t−1∑

k=0

Nk

∣∣∣∣∣ ≥ λ

)
≤ Kd2Tδ4

λ2
,(33)

where K > 0, that depends solely on the model through f, ν.

Proof. This is a consequence of Doob’s maximal inequality for the martingale. Indeed, for t ≤ T ,

let Ht−1 =
∑t−1

k=0 Nk. We have that Nt is a Ft-adapted martingale and we have the following

upper bounded on its variance:

E[N2
t−1] = E



(

t−1∑

k=0

∇SMk · θ∗
)2



= E

[
t−1∑

k=0

N2
k

]

≤ t sup
θ

Ex (Nk)
2

≤ Kd2t,

where the last inequality comes from the Lemma B.8. Now, thanks to Doob’s maximal inequality,

we have for all λ > 0,

P

(
sup
t≤T

δ2|Ht−1| ≥ λ

)
≤ E[H2

T−1]δ
4

λ2
≤ Kd2Tδ4

λ2
,

and this concludes the proof of the lemma. ■

Now, everything is in order to prove the Theorem 3.3.

B.4.3. Proof of Theorem 3.3. Let us fix a small number ε > 0. As previously, thanks to

Lemmas B.3, B.6, B.7, there exists K > 0 that depends solely on the model such that we have

the following upper bound: for all λ, and t ≤ τ−1/3 ∧ τ+1−ε summing between times 0 and t,

ut ≤ u0 −
Cδ

4s−1

t−1∑

k=0

uk +Kδ2d+ 3λ,
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with probability larger that 1−
(
Ktδ2

λ2
+

Kd2tδ4

λ2
+

Ktdδ3

λ

)
and d large enough. Let us choose

λ = 1/16 and δ small enough so that Kδ2d ≤ λ. Hence, realizing that u0 ≤ 1/2, we have

ut ≤
3

4
− Cδ

4s−1

t−1∑

k=0

uk ,

with probability at least 1−Ktδ2(1+d2δ2+dδ) ≳ 1−Ktδ2, as we choose in any case δ = εO(1).
Note that we used the same convention as in the weak recovery case that K denotes any constant

that simply depend on the model. We have by Grönwall inequality (Lemma B.10)

ut ≤
3

4

(
1− Cδ

4s−1

)t
≤ 3

4
e−

Cδ
4s−1 t.

Hence, as the right end side is smaller than ε for the time

tδ ≥ 4s−1

C
log(1/ε),

we choose such a t, so that with probability at least 1 − Kδ log(1/ε), the delayed hitting time

τ+1−ε := inf{t ≥ 0, ut ≤ ε} satisfies

τ+1−ε ≤
4s−1

Cδ
log(1/ε),

and taking δ = ε/d gives that with a probability at least 1− Kε log(1/ε)/d, we have

τ+1−ε ≤
4s−1

Cε
d log(1/ε).

Considering that d is large and ε is simply a constant we get that 1− Kε log(1/ε)/d ≥ 1− Kε
and and this concludes the proof of Theorem 3.3.

B.5. Some technical bounds. We end this section by providing (i) some necessary technical

technical bound on the quantities appearing in the SGD controls (ii) some discrete versions of

Grönwall-type lemmas.

B.5.1. Technical bounds on models expectations.

Lemma B.8 (Technical bounds). We have that there exists a constant K > 0 solely depending

on the function ϕ and the distribution ν such that:

sup
θ∈Sd−1

Ex

[
⟨∇S

θM(x, θ), θ∗⟩2
]
≤ K , and sup

θ
Ex

[
|∇Sl(θ, x) · θ∗|2

]
] ≤ K(34)

sup
θ∈Sd−1

Ex[|∇θl(θ, x)|2] ≤ Kd,(35)

sup
θ∈Sd−1

Ex[|∇θl(θ, x)|4] ≤ Kd2.(36)
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Proof. In all the following proof we consider any θ ∈ Sd−1. Notice that we have the following

calculation that is common to all the bounds we cover

∇l(θ, x) = xϕ′(x · θ)ϕ(x · θ∗)

We treat the three bounds separately.

First terms. We have that for all x ∈ R
d,

M(x, θ) = l(x, θ)− Eν [l(x, θ)],

hence

∇S
θM(x, θ) = ∇S

θ l(x, θ)− Eν [∇S
θ l(x, θ)]

= ∇θl(x, θ)− Eν [∇θl(x, θ)]− (θ · ∇θl(x, θ))θ + Eν [(θ · ∇θl(x, θ))θ],

and finally,

∇S
θM(x, θ) · θ∗ = ∇θl(x, θ) · θ∗ − Eν [∇θl(x, θ) · θ∗]− (θ · ∇θl(x, θ))m+ Eν [(θ · ∇θl(x, θ))m].

hence thanks to applying the inequality (a+ b)2 ≤ 2a2 + 2b2, this amounts to bound first

Ex (∇θl(x, θ) · θ∗)2 = Ex

[
(x · θ∗)2 ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ K,

and second

Ex ((∇θl(x, θ) · θ)m)2 ≤ Ex

[
(x · θ)2 ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ K.

Second term. We have

Ex |∇θl(x, θ)|2 = Ex

[
|x|2ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ Kd .

Third term. We have similarly

Ex |∇θl(x, θ)|4 = Ex

[
|x|4ϕ′2(x · θ)ϕ2(x · θ∗)

]
≤ Kd2 .

■

B.5.2. Standard tail probabilities for submartingales. We recall here a theorem on submartin-

gales from Freedman. This is an adaptation from Theorem 4.1 stated in [Freedman, 1975].

Theorem B.9 (Submartinagle tail bound). Suppose that (Xt)t∈N is random sequence adapted

to a filtration (Ft)t∈N. For T ≥ 1, suppose there exist a, b > 0 such that E[Xt | Ft−1] ≥ 0,

the almost sure upper-bound supt≤T |Xt| ≤ a as well as supt≤T E[X
2
t | Ft−1] ≤ b, then for all

λ > 0,

P

(
T∑

k=1

Xk ≤ −λ

)
≤ exp

(
− λ2

2(Tb+ λa)

)
(37)
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B.5.3. Discrete Grönwall and Bihari-Lasalle bounds. We now turn to stating a classical com-

parison lemma for recursive inequalities.

Lemma B.10 (Grönwall and Bihari-Lasalle). We have the bounds for the recursive inequalities:

Case s = 2. Suppose (mt)t∈N satisfies for s ≥ 3, and positives numbers a, b > 0, and b < a/2∧1,

mt ≥ a+ b
t−1∑

k=0

mk, then, mt ≥ a (1 + b)t(38)

mt ≤ a− b

t−1∑

k=0

mk, then, mt ≤ a (1− b)t .(39)

Case s ≥ 3. Suppose (mt)t∈N satisfies for s ≥ 3, and positives numbers a, b > 0:

mt ≥ a+ b

t−1∑

k=0

ms−1
k , then, mt ≥ a

(
1− (s− 2)bas−2t

)− 1
s−2 .(40)

Proof. The case s = 2 is known to be the discrete version of the Grönwall lemma and is treated in

all standard textbooks, the case s ≥ 3 referred to as the Bihari-Lasalle inequality is for example

proven in Appendix C of [Arous et al., 2021]. ■

APPENDIX C. THE LPG PROPERTY IN THE SYMMETRIC CASE: PROOFS OF SECTION 4.1

C.1. Useful Facts about Gegenbauer Polynomials. We recall known facts on Gegenbauer

Polynomials.

Definitions. Recall that Pj,d denotes the Gegenbauer polynomial of degree j and dimension d,

normalized so that Pj,d(1) = 1 for all j, d. We denote also P̄j,λ the Gegenbauer polynomials

normalized so that ∥P̄j,λ∥2L2(R,u2λ+2)
= π21−2λ Γ(j+2λ)

(j+λ)Γ2(λ)Γ(j+1)
. Throughout the proof, we will

use either d, and from time to time the mute symbol λ to denote the dimension variable of

Gegenbauer polynomials. They satisfy the following recurrence:

(j + 1)P̄j+1,λ(t) = 2(j + λ)tP̄j,λ(t)− (j + 2λ− 1)P̄j−1,λ(t) ,(41)

with first terms: P̄0,λ(t) = 1 and P̄1,λ(t) = 2λt.

Rodrigues Formula for Gegenbauer Polynomials. The Gegenbauer polynomials can be repre-

sented as repeated derivatives of a simple polynome.

Proposition C.1 ([Frye and Efthimiou, 2012, Proposition 4.19]). We have the formula

(42) Pj,d(t) =
(−1)j

2j(j + (d− 3)/2)j
(1− t2)(3−d)/2

(
d

dt

)j
(1− t2)j+(d−3)/2 ,

where (x)j =
∏j−1

k=0(x− k) is the falling factorial.
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Hecke-Funk Formula. Recall that we use the notation τd to denote the uniform distribution on

the sphere and ud the distribution of, e.g., its first coordinate: ud ∝ (1− t2)(d−3)/2
1[−1,1].

Theorem C.2 ([Frye and Efthimiou, 2012, Theorem 4.24]). For θ, θ′ ∈ Sd−1, f ∈ L2
ud
(R) and

j ∈ N,

⟨fθ, (Pj,d)θ′⟩τd = Ωd−2Pj,d(θ · θ′)⟨f, Pj,d⟩ud

= Ωd−2Pj,d(θ · θ′)
ˆ 1

−1

f(t)Pj,d(t)(1− t2)(d−3)/2dt .(43)

Fact C.3. [Derivative Representation] We have the following derivation property for all j, d:

P ′
j,d =

j(j + d− 2)

(d− 1)
Pj−1,d+2 .(44)

Proof. Recall the normalization relationships λ = d
2
− 1, P̄j,λ(1) = Γ(j+2λ)

Γ(j+1)Γ(2λ)
, Pj,d =

Γ(j+1)Γ(d−2)
Γ(j+d−2)

P̄j, d
2
−1, as well as the identity P̄ ′

j,λ = 2λP̄j−1,λ+1. Thus,

P ′
j,d =

Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)
P̄ ′
j, d

2
−1

= 2
Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)
(
d

2
− 1)P̄j−1, d

2

= (d− 2)
Γ(j + 1)Γ(d− 2)

Γ(j + d− 2)

Γ(j − 1 + d)

Γ(j)Γ(d)
Pj−1,d+2

=
j(j + d− 2)

(d− 1)
Pj−1,d+2(45)

■

We have the following bound of the location of the largest root zj,d of Pj,d:

Fact C.4 (Bound on the Largest Root,[Area et al., 2004, Corollary 2.3]).

(46) zj,d ≤
√

(j − 1)(j + d− 4)

(j + d/2− 3)(j + d/2− 2)
cos(π/(j + 1)) .

And we have the following bound on the Taylor expansion of the Gegenbauer polynomials:

Fact C.5 (Taylor Upper bound beyond largest root).

Pj,d(t) ≥ (t− zj,d)
j , for t ≥ zj,d ,

Proof. Note that all families of orthogonal polynomials have exclusively real, simple roots.

Therefore, by Rolle’s theorem, the j − 1 critical points of Pj,d must be interlaced with the j
zeroes. So all zeroes of P ′

j,d are upper bounded by zj,d. Futhermore, by Fact C.3, P ′
j,d is itself
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an orthogonal polynomial. So applying this argument recursively, we see the zeros of P
(k)
j,d for

k ≤ j are all upper bounded by zj,d.

Note also by Fact C.3 that, because Pj,d(1) = 1 for any choice of j and d, it follows that

P
(k)
j,d (1) > 0. This implies P

(k)
j,d (zj,d) > 0, as in order to flip signs there would need to be a zero

in the range [zj,d, 1] which we’ve confirmed above cannot exist.

Now, consider a Taylor expansion

Pj,d(t) =

j∑

i=0

ci(t− zj,d)
i(47)

Observe that P
(k)
j,d (zj,d) = k!ck, and therefore by the above argument we have ck > 0. So it

remains to show that cj ≥ 1.

Consider applying Fact C.3 repeatedly, then we have:

P
(j)
j,d (1) =

j!
∏j

l=1(j + d− 3 + l)∏j
l=1(d− 3 + 2l)

(48)

= j!

j∏

l=1

j + d− 3 + l

d− 3 + 2l
(49)

≥ j!(50)

And from the fact that P
(j)
j,d (1) = j!cj , we conclude cj ≥ 1. ■

C.2. Proof of Proposition 4.1.

Proposition C.6 (Loss representation, restated). The βj,d defined in (14) have the integral

representation

(51) βj,d = ⟨ϕ,Kjϕ⟩L2(R,η) ,

where Kj is a positive semi-definite integral operator of L2
η that depend solely on ρ and ϕ, with

kernel

Kj(t, t
′) =

Ωd−2N(j, d)

Ωd−1

ˆ ∞

0

Pj(r
−1t)Pj(r

−1t′)ūd(r
−1t)ūd(r

−1t′)ρ(dr) ,(52)

where we defined the conditional density

ūd(r
−1t) =

r−1ud(r
−1t)

´∞
0
(r′)−1ud((r′)−1t)ρ(dr′)

.
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Moreover, we have

(53) Eη[ϕ
2] =

Ωd−2

Ωd−1

∑

j

βj,d =
Γ((d− 2)/2)√
πΓ((d− 1)/2)

∑

j

βj,d .

Proof. The marginal conditioned on ∥x∥ = r is precisely given by η(x1 = t | ∥x∥ = r) =
r−1ud(r

−1t), so

η(t) =

ˆ ∞

0

r−1ud(r
−1t)ρ(dr) .

We have

αj,r = ∥Pj∥−2

ˆ 1

−1

Pj(t)ϕ
(r)(t)τd(dt) = ∥Pj∥−2

ˆ 1

−1

Pj(t)ϕ(rt)ud(t)dt

=
Ωd−2N(j, d)

Ωd−1

r−1

ˆ ∞

−∞
ϕ(t)Pj(r

−1t)(1− r−2t2)
(d−3)/2
+ dt ,(54)

so

βj,d =
Ωd−2N(j, d)

Ωd−1

ˆ ∞

0
r−2

¨ ∞

−∞
φ(t)Pj(r

−1t)(1− r−2t2)
(d−3)/2
+ φ(t′)Pj(r

−1t′)(1− r−2(t′)2)(d−3)/2
+ dtdt′ρ(dr)

= ⟨φ,Kjφ⟩L2(R,η) ,

(55)

with the L2(R, η) positive semi-definite integral kernel operator

Kj(t, t
′) =

Ωd−2N(j, d)

Ωd−1
η(t)−1η(t′)−1

ˆ ∞

0
r−2Pj(r

−1t)(1− r−2t2)
(d−3)/2
+ Pj(r

−1t′)(1− r−2(t′)2)(d−3)/2
+ ρ(dr)

=
Ωd−2N(j, d)

Ωd−1

ˆ ∞

0
Pj(r

−1t)Pj(r
−1t′)ūd(r

−1t)ūd(r
−1t′)ρ(dr) ,

(56)

where we defined the conditional density

ūd(r
−1t) =

r−1ud(r
−1t)

´∞
0
(r′)−1ud((r′)−1t)ρ(dr′)

.
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Finally, let us establish (57). We have

Eηϕ
2 = Eρ[Ex1|∥x∥=rEϕ(x1)

2]

= Eρ[Eud(ϕ
(r))2]

= Eρ

∑

j

α2
j,d,r∥Pj∥2

= Eρ

∑

j

α2
j,d,r

Ωd−1

Ωd−2N(j, d)

=
Ωd−1

Ωd−2

Eρ

∑

j

ᾱ2
j,r,d =

Ωd−1

Ωd−2

∑

j

βj,d .(57)

■

C.3. Proof of Proposition 4.2.

Proof. If βj,d = 0 for j < s, then αj,r,d = 0 for j < s and ρ-ae r. We want to show that for any

polynomial Q of degree j′ < s, we must have ⟨ϕ,Q⟩η = 0.

For each r, consider Q(r)(t) = Q(rt), which is also a polynomial of degree j′ < s, and its

decomposition as Q(r) =
∑j′

j=0 bj,j′,rPj,d, which only involves terms of degree j′ < s since

Gegenbauer polynomials of degree up to r span all polynomials of degree up to r. We have

⟨ϕ,Q⟩η = Eη[ϕ(x)Q(x)]

= EρEx1|∥x∥=r[ϕ(x)Q(x)]

= EρEud [ϕ
(r)(x)Q(r)(x)]

= Eρ[
∑

j≤j′
bj,j′,rαj,r,d] = 0 .(58)

■

C.4. Proof of Proposition 4.3.

Proposition 4.3 (Spectral characterization of LPG). Suppose there exist constants K,C > 0
and s ∈ N such that we both have βs,d ≥ C and

∑
j>s βj,dj(j + d − 2)υj−1,d+2 ≤ Kd(3−s)/2 .

Then, taking s∗ as the infimum of such s, L has the property LPG(s∗ − 1, zs∗,d). In particular,

whenever s∗ ≪ d, we have zs∗,d ≤ 2
√

s∗/d.

Proof. Assume first that there are C̄, ζ̄ such that

(59) P ′
s,d(t) ≥ C̄(t− ζ̄)s−1 , for t ≥ ζ̄ .
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Now, let

(60) B =
1

d− 1

∑

j≥s
βj,dj(j + d− 2)υj−1,d+2 < 1 ,

and define

(61) ζ∗ :=

(
B

βs,dC̄

)1/(s−1)

+ ζ̄ .

From (59), (60) and (61) we verify that ℓ′(m) =
∑

j βj,dP
′
j,d(m) satisfies, for m ≥ ζ∗,

ℓ′(m) ≥ βs,dC̄
(
(m− ζ̄)s−1 − (m− ζ∗)s−1

)
≥ βs,dC̄

[(
1− ζ̄

1− ζ∗

)s−1

− 1

]
(m− ζ∗)s−1 .

Finally, we have that for any j, d, the largest root zj,d satisfies zj,d ≤
√

(j−1)(j+2d−2)
(j+d−2)(j+d−1)

≃ j/
√
d

and

Pj,d(t) ≥
1

2
(t− zj,d)

s , for t ≥ zj,d ,

which implies that

(62) P ′
s,d(t) ≥

s(s+ d− 2)

2(d− 1)
(t− zs−1,d+2)

s−1 , for t ≥ zs−1,d+2 .

We thus have C̄ = s(s+d−2)
2(d−1)

with ζ̄ = zs−1,d+2.

Finally, we verify that

d(s−1)/2

s(s+ d− 2)

∑

j>s

βj,dj(j + d− 2)υj−1,d+2 ≤ K(63)

ensures a local polynomial growth of order s− 1 at scale O(1/
√
d). Indeed, plugging (63) into

(60), together with βs,d ≥ C yields
(

B

βs,dC̄

)1/(s−1)

≤ (CK)1/(s−1)d−1/2 ,(64)

which shows that ζ∗ = O(1/
√
d). Finally, we observe that C̄ ≥ s = Θ(1) if s < d.

■

C.5. Proof of Theorem 4.5.

Proof. To prove the theorem, we will establish the sufficient conditions of Proposition 4.3 under

our mild assumptions. The key technical results we need are explicit bounds for υj,d and for the

sum
∑

j j
2βj,d, established in the following two lemmas. Since the parameter λ = d/2− 1 is

more convenient to express many relationships in Gegenbauer polynomials, we will adopt it in

this proof instead of d, without loss of generality.
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Lemma C.7 (Control of υj,λ). We have

(65) υj,λ ≲





[
1−

(
λ
j+λ

)2]j/2
if j = Ω(1) ,

λ
(α−1)λα

2 if j = Θ(λα), with 0 < α < 1 ,

e−
1
2
λ2−α

if j = Θ(λα) with 1 ≤ α < 3/2 ,

e−λ if j = Ω(λ3/2) .

Lemma C.8 (Decomposition of derivative). If ϕ ∈ L2(R, µ) is such that ϕ′ ∈ L4(R, η) and

Eρ[r
4] < ∞, then βj = ⟨ϕ,Kjϕ⟩ satisfies

(66)
∑

j

j2βj,d ≤
Ωd−2

Ωd−1

Eρ[r
4]1/2∥ϕ′∥2L4(η) = O(1/d) .

Let s = inf{j; βj,d ̸= 0}. We need to verify that there exists a constant K > 0 such that

(67)
∑

j>s

βj,dj(j + d− 2)υj−1,d+2 ≤ Kd(3−s)/2 .

We will control the LHS by splitting it into appropriate regions, determined by Ji, i ∈ {1, 2, 3}.

Let α = 4
1+s

and J1 =
λα

2
. From Lemma C.7, part (i) we have that υj,λ ≤ C

(
j(j+2λ)
(j+λ)2

)j/2
, and in

particular υj,λ ≤ Cλ(α−1)j/2 for j ≤ J1. As a result, using Lemma C.8,

J1∑

j=s+1

βjj(j + λ)υj−1,λ+1 ≤ λ(α−1)(s+1)/2

J1∑

j=s+1

βjj(j + λ)

≤ λ(α−1)(s+1)/2(C1λ
−1 + λ

J1∑

j=s+1

βjj)

≤ λ(α−1)(s+1)/2(C1λ
−1 + λ

J1∑

j=s+1

βjj
2)

≤ λ(α−1)(s+1)/2C2

≤ C2λ
(3−s)/2 .(68)

Let J2 = λ. We have

J2∑

j=J1+1

βjj(j + λ)υj−1,λ+1 ≤ λ
(α−1)λα

2 C3

≤ C3λ
(3−s)/2 .(69)
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Let J3 = λ3/2. We have

J3∑

j=J2+1

βjj(j + λ)υj−1,λ+1 ≤ e−
1
2

√
λC4

≤ C4λ
(3−s)/2 .(70)

Finally, the remainder satisfies
∑

j>J3

βjj(j + λ)υj−1,λ+1 ≤ C5(e/2)
−λ

≤ C5λ
(3−s)/2 ,(71)

which proves (67).

■

Proof of Lemma C.7. We prove this result by analysing different regimes for j and λ. Concretely,

we claim the following:

Claim C.9. We have the following regimes:

(1) For j = Ω(1), we have

(72) υj,λ ≲

[
1−

(
λ

j + λ

)2
]j/2

.

(2) For j = Θ(λα), with 0 < α < 1, we have

(73) υj,λ ≲ λ
(α−1)λα

2 .

(3) For j = Θ(λα), with 1 ≤ α < 2, we have

(74) υj,λ ≲ e−
1
2
λ2−α

.

(4) For j = Ω(λα), with α > 3/2, we have

(75) υj,λ ≲ e−λ .

To prove the first three regimes of Claim C.9, we control υj,λ based on the distribution of the roots

of Pj,λ. We recall that (zk,j,λ)k≤j denotes the roots of Pj,λ in increasing order, and zj,λ = zj,j,λ
its largest root.

Lemma C.10 (Representation of Pj,λ in terms of its roots, [De Carli, 2008, Lemma 2.1]). We

have

(76) Pj,λ(t) =





∏j
k=j/2

t2−z2k,j,λ
1−z2k,j,λ

if j even,

t
∏j

k=(j+1)/2

t2−z2k,j,λ
1−z2k,j,λ

if j odd .
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From this representation, we deduce that υj,λ can be calculated explicitly. Indeed, as the local

maxima of |Pj,λ(t)| are increasing [Szego, 1939], [DLMF, 2022, Eq (18.14.15)], we have the

following equation:

(77) υj,λ = −Pj,λ(zj−1,λ+1) = −





∏j
k=j/2

z2j−1,λ+1−z2k,j,λ
1−z2k,j,λ

if j even,

zj−1,λ+1

∏j
k=(j+1)/2

z2j−1,λ+1−z2k,j,λ
1−z2k,j,λ

if j odd .

Let us focus first on the case j even, for simplicity. We can rewrite (77) more conveniently as

υj,λ =
z2j,λ − z2j−1,λ+1

1− z2j,λ

j−1∏

k=j/2

z2j−1,λ+1 − z2k,j,λ
1− z2k,j,λ

.

For δ ∈ (0, zj−1,λ+1) let

m(δ, j, λ) := |{k ∈ {j/2, j}; zk,j,λ ≥ δ}|

denote the number of zeros of Pj,λ in the interval (δ, 1). Since the function t 7→ a2−t2
1−t2 is

decreasing in t ∈ (0, a), we have

Fact C.11. We have the upper bound:

(78) υj,λ ≤
z2j,λ − z2j−1,λ+1

1− z2j,λ
inf
δ

(
z2j−1,λ+1 − δ2

1− δ2

)m(δ,j,λ)

.

Letting δ = zj/2,j,λ the smallest positive root of Pj,λ we have

(79) υj,λ ≤
z2j,λ − z2j−1,λ+1

1− z2j,λ

(
z2j−1,λ+1 − z2j/2,j,λ

1− z2j/2,j,λ

)j/2

.

We can thus obtain an explicit control on υj,λ from bounds on the zeros of the Gegenbauer poly-

nomials. We complement the upper bound on the largest root (Fact C.4) with lower bounds for all

positive roots, as well as a sharp lower bound for its largest root [Dimitrov and Nikolov, 2010]:

Theorem C.12 (Upper and Lower bounds for Gegenbauer roots, [Dimitrov and Nikolov, 2010,

Theorem 2]). Let

bj,λ = j3 + 2(λ− 1)j2 − (3λ− 5)j + 4(λ− 1) ,

aj,λ = 2(j + λ− 1)(j2 + j(λ− 1) + 4(λ+ 1)) and

cj,λ = j2(j + 2λ)2 + (2λ+ 1)(j2 + 2(λ+ 3)j + 8(λ− 1)) .

Then for every k, j, λ we have

(80)
bj,λ − (j − 2)

√
cj,λ

aj,λ
≤ z2k,j,λ ≤

bj,λ + (j − 2)
√
cj,λ

aj,λ
.
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Theorem C.13 (Lower bound for largest root, [Driver and Jordaan, 2012, Section 2.3]).

(81) z2j,λ > 1− (2λ+ 1)(2λ+ 3)

(j − 1)(j + 2λ+ 1) + (2λ+ 1)(2λ+ 3)
:= 1− gj,λ

hj,λ
.

Rewriting Fact C.4 as z2j,λ ≤
ej,λ
fj,λ

, with

ej,λ = (j − 1)(j + 2λ− 2) , fj,λ = (j + λ− 2)(j + λ− 1) ,

and using again the monotonocity of t 7→ t−p
1−t we can bound the first term in the RHS of (79) as

(82)
z2j,λ − z2j−1,λ+1

1− z2j,λ
≤ ej,λ/fj,λ + gj−1,λ+1/hj−1,λ+1 − 1

1− ej,λ/fj,λ
.

For j, λ = ω(1), we have

aj,λ ≃ 2j(j + λ)2, bj,λ ≃ j2(j + 2λ) ,
√
cj,λ ≃ j(j + 2λ) ,

ej,λ ≃ j(j + 2λ), fj,λ ≃ (j + λ)2 ,

gj,λ ≃ 4λ2, hj,λ ≃ j(j + 2λ) + 4λ2 ,

and thus

(83)
z2j,λ − z2j−1,λ+1

1− z2j,λ
≲

3j(j + 2λ)

j(j + 2λ) + 4λ2
≤ 3 .

Therefore,

υj,λ ≤ 3




ej−1,λ+1

fj−1,λ+1
− bj,λ−(j−2)

√
cj,λ

aj,λ

1− bj,λ−(j−2)
√
cj,λ

aj,λ



j/2

≤ 3

(
aj,λej−1,λ+1 − fj−1,λ+1(bj,λ − (j − 2)

√
cj,λ)

fj−1,λ+1(aj,λ − bj,λ + (j − 2)
√
cj,λ)

)j/2

= 3

(
2j(j + λ)2j(j + 2λ)− (j + λ)2(j2(j + 2λ)− j2(j + 2λ))

(j + λ)2(2j(j + λ)2 − j2(j + 2λ) + j2(j + 2λ))
· (1 + oj,λ(1))

)j/2

≲

(
j(j + 2λ)

(j + λ)2

)j/2

=

[
1−

(
λ

j + λ

)2
]j/2

.(84)

As a direct consequence of (84), we immediately obtain Eqs (72), (73) and (74). The case where

j is odd is treated analogously.
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Let us now study the regime j = ω(λ3/2). Given z ∈ C with |z| < 1, Gegenbauer polynomials

admit the following generating function [Watson, 1922, Section 3.32]:

(85)
1

(1− 2z cos θ + z2)λ
=
∑

j≥0

P̄j,λ(cos θ)z
j .

From this generating function, the Cauchy integral formula leads to the following integral

representation:

Fact C.14 ([Ursell, 2007, Eq (1.2)]). For any 0 < ρ < 1, we have

(86) P̄j,λ(cos θ) =
1

2πi

˛

|z|=ρ

dz

(1− 2z cos θ + z2)λzj+1
.

Assume j = Θ(λα), with α > 3/2. We are interested in the above representation for θ̄ =
arccos(zj−1,λ+1). From Theorem C.13, we have z2j−1,λ+1 ≥ 1− dj,λ/(2cj,λ), and thus

θ̄2 ≲
dj,λ
2cj,λ

≃ 32λ2j4

16j6
=

2λ2

j2
,

so θ̄ = O(λ/j). Combining this upper bound with the lower bound obtained from Fact C.4 we

have θ̄ = Θ(λ/j).

Using 1− cos θ ≃ θ2/2 ≃ λ2/j2 and

|1− 2z cos θ + z2| =
∣∣(1− z)2 + 2z(1− cos θ)

∣∣
≥ |1− z|2 − 2|z|(1− cos θ)

≥ 1− ρ

(
2 + Θ

(
λ2

j2

))
+ ρ2 ,(87)

we have

|P̄j,λ(cos θ)| ≤ inf
0<ρ<1

|ρ|−(j+1)
(
1− ρ(2 + cλ2/j2) + ρ2

)−λ
:= g(ρ) .(88)

Optimizing the RHS over ρ we obtain ρ∗ = j−(
√
2−1)λ

j+2λ
; substituting, we obtain

g(ρ∗) ≃ e−(1+
√
2)λ

(
j + 2λ

λ(1 +
√
2)

)2λ

.(89)

As a result, it follows that

Pj,λ(cos θ) = P̄j,λ(cos θ)
j!(2λ− 1)!

(2λ+ j − 1)!
(90)
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satisfies, for θ = Θ(λ/j) and j = ω(λ3/2),

log |Pj,λ(cos θ)| ≃j log j − j + 2λ log(2λ)− 2λ− (j + 2λ) log(2λ+ j) + 2λ+ j

− (1 +
√
2)λ+ 2λ log(j + 2λ)− 2λ log(λ(1 +

√
2))

≃− (1 +
√
2)λ ,(91)

where we have used Stirling’s approximation. This proves Eq (75) and completes the proof of

Lemma C.7. ■

Proof of Lemma C.8. We have, using Fact C.3, that

Eρ[Eud(ϕ
(r)′)2] =

Ωd−1

(d− 1)2Ωd−2

∑

j

Eρ

[
ᾱ2
j,d,r (j(j + d− 2))2

]

≥ Ωd−1

Ωd−2

∑

j

j2Eρ
[
ᾱ2
j,d,r

]
.(92)

And we can upper bound via

Eρ[Eud(ϕ
(r)′)2] = Eρ[r

2
Eud((ϕ

′)(r))2]

= EρEx1|∥x∥=r[r
2(ϕ(x1)

′)2]

≤
√

Eρ[r4]Eη(ϕ′)4 ,(93)

where this last line is finite by our assumptions on ϕ and ρ,

so from (92) we conclude that

(94)
∑

j

j2βj,d ≤
Ωd−2

Ωd−1

√
Eρ[r4]Eη(ϕ′)4 .

■

APPENDIX D. THE LPG PROPERTY IN THE NON-SYMMETRIC CASE: PROOFS OF SECTION

4.2

D.1. Proof of Proposition 4.11.

Assumption 4.9 (Regularity of link function). We assume that ϕ, ϕ′ are both B-Lipschitz, and

that ϕ′′(t) = O(1/t).

Assumption 4.10 (Subgaussianity). The data distribution ν is M -subgaussian: for any v ∈ Sd−1,

we have ∥x · v∥ψ2 ≤ M , where ∥z∥ψ2 := inf{t > 0; E[exp(z2/t2) ≤ 2} is the Orlitz-2 norm.

Proposition 4.11 (Uniform gradient approximation). Under Assumptions 4.9 and 4.10, for

all θ ∈ Sd−1,

(22) ∆∇L(θ) = (1−m2)O
(
W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)
)
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where the O(·) notation only hides constants appearing in Assumptions 4.9 and 4.10.

Proof. Recall the notation ϕθ(x) = ϕ(⟨x, θ⟩). Let v = θ∗ −mθ. From the definition, we have

that

⟨∇S

θL(θ), θ
∗⟩ = 2Eν [ϕ

′
θ(ϕθ − ϕθ∗) (x · v)]

:= Eν [gθ,θ∗ ] .(95)

Since Eγ[gθ,θ∗ ] is precisely ℓ̄′(m)(1−m2), we need to establish that

(96) sup
θ

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ C
√
1−m2W̃1,2(ν, γ)

(
log W̃1,2(ν, γ)

)2
.

Fix θ and let Pθ,θ∗ be the orthogonal projection onto the subspace spanned by θ, θ∗. For R > 0
we consider AR = {x ∈ R

d; ∥Pθ,θ∗x∥ ≤ R}.

|Eνgθ,θ∗ − Eγgθ,θ∗| =
∣∣∣∣
ˆ

gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣

≤
∣∣∣∣
ˆ

x∈AR

gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣
︸ ︷︷ ︸

Ta

+

∣∣∣∣
ˆ

x/∈AR

gθ,θ∗(x)(ν(dx)− γ(dx))

∣∣∣∣
︸ ︷︷ ︸

Tb

.(97)

Let us first bound Ta. Denote by v = θ∗ −mθ, with ∥v∥2 = 1−m2 Since ϕ and ϕ′ are Lipschitz

and |ϕ′′| ≤ O((1 + t)−1) by Assumption 4.9, we have that

∇xgθ,θ∗(x) = ϕ′′
θ(ϕθ − ϕθ∗)x

⊤vθ + ϕ′
θ(ϕ

′
θθ − ϕ′

θ∗θ
∗)x⊤v + ϕ′

θ(ϕθ − ϕθ∗)v(98)

satisfies

∥∇xgθ,θ∗(x)∥ ≤ 2∥v∥CLip(ϕ)R + 4∥v∥Lip(ϕ)2R
≤ C∥v∥R ,(99)

and as a result we have that gθ,θ∗ is C∥v∥R-Lipschitz when restricted to AR, and thus

(100) Ta ≤ CR∥v∥W̃1,2(ν, µ) .

Let us now control the tail Tb. Since x⊤v is
√
2M∥v∥-subgaussian and ϕ is Lipschitz, we have

that z = |gθ,θ∗(x)| is M̃∥v∥-subexponential where M̃ only depends on M and L. It follows that

Tb ≤ R(Pν(z ≥ R) + Pγ(z ≥ R))

≤ R exp

(
− β

∥v∥R
)

,(101)

where β is a constant that depends only on M̃ . As a result, we have

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ inf
R>0

(
CR∥v∥W̃1,2(ν, µ) +R exp

(
− β

∥v∥R
))

.(102)
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Setting

R = −∥v∥β−1 log((C∥v∥W̃1,2(ν, γ)))

we obtain

|Eνgθ,θ∗ − Eγgθ,θ∗| ≤ 2C(1−m2)β−1
∣∣∣log(C∥v∥W̃1,2(ν, γ))

∣∣∣ W̃1,2(ν, γ)

≤ (1−m2)O
(
W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)
)

,(103)

as claimed.

■

D.2. Proof of Proposition 4.14. We leverage Proposition 4.11 and the fact that if ϕ has infor-

mation exponent s = 2, then ℓ̄′(m) ≃ m for small m.

We need to show that for b = Θ(log d) we have

(104) ⟨∇θL(θ), θ
∗⟩ ≥ C

(
m− b√

d

)
, for

b√
d
≤ m ≤ 1

2
,

as well as

(105) ⟨∇θL(θ), θ
∗⟩ ≥ C ′(1−m2)

for m ≥ 1
2
.

From (103) and W̃1,2(ν, γ) ≤ C/
√
d, we obtain

⟨∇θL(θ), θ
∗⟩ = ℓ̄′(m)(1−m2) + ⟨∇θL(θ), θ

∗⟩ − ℓ̄′(m)(1−m2)

≥ 2α2
2m(1−m2)− (1−m2)C̃W̃1,2(ν, γ) log(W̃1,2(ν, γ)

−1)

≥
(
α2
2m− C̃

C√
d
log(

√
d/C)

)
(1−m2)

≥ α2
2

(
m− C̃

C

α2
2

√
d
log(

√
d/C)

)
(1−m2)

≥ α2
2

(
m− log dC

′

√
d

)
(1−m2) ,(106)

which proves (104) and (105).

D.3. Proof of Proposition 4.16.

Assumption 4.15 (Additional Regularity in third derivatives). ϕ admits four derivatives bounded

by L, with |ϕ(3)(t)| = O(1/t) and |ϕ(4)(t)| = O(1/t2). Moreover, the third moment of the data

distribution is finite: τ3 = Et∼η[t
3] < ∞.
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Proposition 4.16 (Stein’s method for product measure). Let χ(θ, θ∗) := ∥θ∥24 + ∥θ∗∥24. Under

Assumptions 4.9, 4.10 and 4.15, there exists a universal constant C = C(M,B, τ3) such that

(23) ∆L(θ) ≤ Cχ(θ, θ∗) , and ∆∇L(θ) ≤ C
√
1−m2χ(θ, θ∗) .

Proof. Recall the notation ϕθ(x) = ϕ(⟨x, θ⟩), and, using v = θ∗ −mθ,

hθ,θ∗(x) := ϕ2
θ − 2ϕθϕθ∗ ,(107)

gθ,θ∗(x) := 2ϕ′
θ(ϕθ − ϕθ∗)(x · v) ,(108)

so that

∆L(θ) = Eν [hθ,θ∗(x)]− Eγ[hθ,θ∗(x)] ,(109)

∆∇L(θ) = Eν [gθ,θ∗(x)]− Eγ[gθ,θ∗(x)] .(110)

The result is obtained via the following Stein coupling method for product measures:

Theorem D.1 (Stein Coupling, [Röllin, 2013, Theorem 3.1]). Let X be a d-dimensional random

vector of independent coordinates, such that EX = 0, E[XX⊤] = Id and E|Xi|3 = τ 3i < ∞. If

Z is a standard Gaussian random vector, and h : Rd → R is three-times differentiable, then

(111) |Eh(X)− Eh(Z)| ≤ 5

6

d∑

i=1

τ 3i ∥∂3
xi
h∥∞ .

We verify that, thanks to the decay assumptions in Assumption 4.15, we have

∂3
xi
gθ,θ∗(x) = λ1(x)θ

3
i + λ2(x)θ

2
i θ

∗
i + λ3(x)θi(θ

∗
i )

2 + λ4(x)(θ
∗
i )

3 ,(112)

∂3
xi
hθ,θ∗(x) = λ5(x)θ

3
i + λ6(x)θ

2
i θ

∗
i + λ7(x)θi(θ

∗
i )

2 + λ8(x)(θ
∗
i )

3 ,(113)

where

(114) sup
k∈{1,2,3,4}

|λk(x)| ≤ C∥v∥ , sup
k∈{5,6,7,8}

|λk(x)| ≤ C̃ .

Observing by Cauchy-Schwartz that

max

{
∑

i

|θi|2|θ∗i |,
∑

i

|θi|3
}

≤ ∥θ∥24 ,

max

{
∑

i

|θ∗i |2|θi|,
∑

i

|θ∗i |3
}

≤ ∥θ∗∥24 ,

we obtain from Theorem D.1 that

∆L(θ) ≤ Cχ(θ, θ∗) , ∆∇L(θ) ≤ C ′∥v∥χ(θ, θ∗) ,
as claimed. ■
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