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ABSTRACT. Sparse high-dimensional functions have arisen as a rich framework to study the
behavior of gradient-descent methods using shallow neural networks, showcasing their ability
to perform feature learning beyond linear models. Amongst those functions, the simplest are
single-index models f(z) = ¢(x - 8*), where the labels are generated by an arbitrary non-linear
scalar link function ¢ applied to an unknown one-dimensional projection §* of the input data.
By focusing on Gaussian data, several recent works have built a remarkable picture, where
the so-called information exponent (related to the regularity of the link function) controls the
required sample complexity. In essence, these tools exploit the stability and spherical symmetry of
Gaussian distributions. In this work, building from the framework of [Ben Arous et al., 2021], we
explore extensions of this picture beyond the Gaussian setting, where both stability or symmetry
might be violated. Focusing on the planted setting where ¢ is known, our main results establish
that Stochastic Gradient Descent can efficiently recover the unknown direction 6* in the high-
dimensional regime, under assumptions that extend previous works [Yehudai and Shamir, 2020,
Wu, 2022].
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1. INTRODUCTION

Over the past years, there has been sustained effort to enlarge our mathematical understanding
of high-dimensional learning, particularly when using neural networks trained with gradient-
descent methods — highlighting the interplay between algorithmic, statistical and approximation
questions. An essential, distinctive aspect of such models is their ability to perform feature
learning, or to extract useful low-dimensional features out of high-dimensional observations.

An appealing framework to rigorously analyze this behavior are sparse functions of the form
f(x) = ¢(O]x), where the labels are generated by a generic non-linear, low-dimensional
function ¢ : R¥ — R of linear features © z, with ©, € R¥* with k < d. While the statistical
and approximation aspects of such function classes are by now well-understood [Barron, 1993,
Bach, 2017], the outstanding challenge remains computational, in particular in understanding
the ability of gradient-descent methods to succeed. Even in the simplest setting of single-index
models (k = 1), and assuming that ¢ is known, the success of gradient-based learning depends
on an intricate interaction between the data distribution = ~ v and the ‘link’ function ¢; and in
fact computational lower bounds are known for certain such choices [ Yehudai and Shamir, 2020,
Song et al., 2021, Goel et al., 2020, Diakonikolas et al., 2017, Shamir, 2018].

Positive results thus require to make specific assumptions, either about the data, or about the link
function, or both. On one end, there is a long literature, starting at least with [Kalai and Sastry, 2009,
Shalev-Shwartz et al., 2010, Kakade et al., 2011], that exploits certain properties of ¢, such as
invertibility or monotonicity, under generic data distributions satisfying mild anti-concentration
properties [Soltanolkotabi, 2017, Frei et al., 2020, Yehudai and Shamir, 2020, Wu, 2022]. On
the other end, by focusing on canonical high-dimensional measures such as the Gaussian dis-
tribution, the seminal works [Ben Arous et al., 2021, Dudeja and Hsu, 2018] built a harmonic
analysis framework of SGD, resulting in a fairly complete picture of the sample complexity
required to learn generic link functions ¢, and revealing a rich asymptotic landscape beyond the
proportional regime n < d, characterized by the number of vanishing moments, or information
exponent s of ¢, whereby n < d*~! samples are needed for recovery. Since then, several authors
have built and enriched this setting to multi-index models [Abbe et al., 2022, Abbe et al., 2023,
Damian et al., 2022, Arnaboldi et al., 2023], addressing the semi-parametric learning of the
link function [Bietti et al., 2022], as well as exploring SGD-variants [Ben Arous et al., 2022,
Barak et al., 2022, Berthier et al., 2023, Chen et al., 2023]. This harmonic analysis framework
relies on two key properties of the Gaussian measure and their interplay with SGD: its spherical
symmetry and its stability by linear projection. Together, they provide an optimization landscape
that is well-behaved in the limit of infinite data, and enable SGD to escape the ‘mediocrity’ of
initialisation, where the initial direction 6y, in the high-dimensional setting, has vanishingly
small correlation |6, - 6*| ~ 1/+/d with the planted direction 6*.

In this work, we study to what extent the ‘Gaussian picture’ is robust to perturbations, focusing
on the planted setting where ¢ is known. Our motivation comes from the fact that real data
is rarely Gaussian, yet amenable to being approximately Gaussian via CLT-type arguments.
We establish novel positive results along two main directions: (i) when spherical symmetry
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is preserved but stability is lost, and (i1) when spherical symmetry is lost altogether. In the
former, we show that spherical harmonics can be leveraged to provide a benign optimization
landscape for SGD under mild regularity assumptions, for initialisations that can be reached
with constant probability with the same sample complexity as in the Gaussian case. In the latter,
we quantify the lack of symmetry with robust projected Wasserstein distances, and show that
for ‘quasi-symmetric’ measures with small distance to the Gaussian reference, SGD efficiently
succeeds for link functions with information exponent s < 2. Finally, using Stein’s method, we
address substantially ‘non-symmetric’ distributions, demonstrating the strength and versatility of
the harmonic analysis framework.

2. PRELIMINARIES AND PROBLEM SETUP

The focus of this work is to understand regression problems with input/output data (x,y) €
R? x R generated by single-index models. This is a class of problems where the data labels are
produced by a non-linear map of a one-dimensional projection of the input, that is

o)) y = o(x-07),

where ¢ : R — R is also known as the link function, and 6* € S;_1, the sphere of R, is the
hidden direction that the models wants to learn. Quite naturally, the learning is made through the
family of generalized linear predictors H = {¢g : © — ¢(x - ), for € S;_,}, built upon the
link function (which is assumed known) and parametrized by the sphere.

Loss function. We assume that the input data is distributed according to a probability v € P(R?).
Equation (1) implies that the target function that produces the labels, ¢y-, lies in this parametric
class. The overall loss classically corresponds to the average over all the data of the square
penalisation [(6, z) := (¢g(x) — ¢g-(x))? so that the population loss writes

@ L(O) =B, [ (6(x - 0) = oz 09)°] = lI66 — 60

where we used the notation || f||, = E, [| f|"], valid for all p € N*. Let us put emphasis on the
fact that the loss L is a non-convex function of the parameter , hence it is not a priori guaranteed
that gradient-based method are able to retrieve the ground-truth #*. This often requires a precise
analysis of the loss landscape, and where the high-dimensionality can play a role of paramount
importance: we place ourselves in this high-dimensional setting for which the dimension is fixed
but considered very large d > 1. Finally, we assume throughout the article that ¢y belongs to
the weighted Sobolev space W,* := {¢, such that supyes, | [[|d0llrs + [|l|za] < oo}

2
L2>

Stochastic gradient descent. To recover the signal given by 6* € S;_1, we run online stochastic
gradient descent (SGD) on the sphere S;_;. This corresponds to having at each iteration ¢ € N*
a fresh sample x; drawn from v and independent of the filtration F; = o(z1,...,7;_1) and
performing a spherical gradient step, with step-size § > 0, with respect to 0 — (6, x;):

Ht — 5Vgl(9t, .',Ut)

0, — oVS1(0,, 20)| with initialization 6y ~ Unif(S;—1),

3) Ore1 = |
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An important scalar function that enables to track the progress of the SGD iterates is the
correlation with the signal my := 6 - 0* € [—1, 1]. We will drop the subscript in case there is no
ambiguity. Note that, due to the high-dimensionality of the setup, we have the following lemma:

Lemma 2.1. Forall a > 0, we have Py, (mg, > a/\/d) < a~'e~%/4. Additionally, for any 6 > 0
such that max{a, 8} < \/d/4, we have the lower bound: Pg,(mg, > a//d) > Ze—(a+5)2_

This fact implies that, when running the algorithm in practice, it is initialized with high probability
near the equator of S;_1, or at least in a band of typical size 1/ V/d (see Figure 1 for a schematic
illustration of this fact). Finally, we use the notation V§ to denote the spherical gradient, that
is VS1(0,2) = Vol(0, 1) — (Vol(0,x) - 0)0. As V5I(-, z;) is an unbiased estimate of V5 L, it is
expected that the latter gradient field rules how the SGD iterates travel across the loss landscape.

Loss landscape in the Gaussian case. As stressed in the introduction, this set-up has been
studied by [Dudeja and Hsu, 2018, Ben Arous et al., 2021] in the case where v is the standard
Gaussian, noted as 7y here to avoid any confusion for later. Let us comment a bit this case
to understand what can be the typical landscape of this single-index problem. Thanks to the
spherical symmetry, the loss admits a scalar summary statistic, given precisely by the correlation
my. Moreover, the loss admits an explicit representation in terms of the Hermite decomposition
of the link function ¢: if {%,}; denotes the orthonormal basis of Hermite polynomials of L%,
then L(0) = 23 [(¢, h;)|>(1 —m?) := £(m). As aresult, the gradient field projected along the
signal is a (locally simple) positive function of the correlation that behaves similarly to

4) V5 L(0) - 6" ~ Cm* (1 —m),

where s € N* is the index of the first non-zero of the Hermite coefficients {(¢, h;)};. This
has at least three important consequences for the gradient flow: (i) if initialized positively, the
correlation is an increasing function along the dynamics and there is no bad local minima in
the loss landscape, (ii) the parameter s € N* controls the flatness of the loss landscape near the
origin and therefore controls the optimization speed of SGD in this region (iii) as soon as m is
large enough, the contractive term 1 — m makes the dynamics converge exponentially fast.
Loss landscape in general cases. Obviously for general distributions v, the calculation presented
in Eq.(4) is no-longer valid. However, the crux of the present paper is that properties (i)-(ii)-(iii)
are robust to the change of distribution and can be shown to be preserved under small adaptations.
More precisely, we have the following definition.

Definition 2.2 (Local Polynomial Growth). We say that L has the local polynomial growth of
order k € N* and scale b > 0, if there exists C > 0 such that for all my > b,

(5) —VSL(O) - 0° > C(1 —my) (mg —b)" "
In such a case we say that L satisfies LPG(k, b).
In this definition, and as showed later in specific examples given in Section 4, the scale parameter

b should be thought as a small parameter proportional to 1/ Vd. If v is Gaussian, we can rewrite
Eq.(4) and show that L verifies LPG(s, 0) for s € N*, referred to as the information exponent
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of the problem in [Ben Arous et al., 2021]. An important consequence of satisfying LPG(k, b)
is that the the population landscape is free of bad local minima outside the equatorial band
Yy := {0 € S4_1, my < b}. Therefore, when b is of scale 1/\/3, Lemma 2.1 indicates that
one can efficiently produce initializations that avoid it. Hence, this property is the fundamental
ingredient that enables the description of the path taken by SGD that we derive it in the next
Section. Section 4 is devoted to showcasing generic examples when this property is satisfied.

3. STOCHASTIC GRADIENT DESCENT UNDER LPG

In this section, we derive the main results on the trajectory of the stochastic gradient descent.
They state that the property LPG(s, b/+/d) is in fact sufficient to recover the same quantitative
guarantees as the one depicted in [Ben Arous et al., 2021], despite the lack of Gaussianity of
the distribution v. Recall that the recursion satisfied by the SGD iterates is given by Eq.(3). To
describe their movement, let us introduce the following notations: for all ¢ € N*, we denote the
normalization by r; := ‘Ht — 6V5L(0;, a:t)} and the martingale induced by the stochastic gradient
descent as M, := [(0;, x;) — E,[1(6;, x)].

Moment growth assumptions. To be able to analyse the SGD dynamics, we make the following
assumptions on the moments of the martingale increments induced by the random sampling. To
shorten notations, let us denote for all § € R, 2y = z- 0 € R and C(u,v) = ¢'(u)p(v), for
u,v € R.

Assumption 3.1 (Moment Growth Assumption). There exists a constant K > 0, independent of
the dimension d, such that

(6) sup E, [x5 C* (2, 20.)] VB, [25 C* (29, 29,)] < K, and ,
0€Sy_1
(7 sup B, [|2[*C?(wg,70.)] < Kd¥,  fork=1,2.
0€S4-1

A precise care is given to the dependency in the dimension in the upper bound to match the
practical cases that we later discuss in Section 4. Note that these assumptions are typically true
for sub-gaussian random variables if ¢ belongs to a Sobolev regularity class. These assumptions
are similar to the one given in Egs. (1.3)-(1.4) in [Arous et al., 2021] for the Gaussian case. In
all the remainder of the section we assume that Assumption 3.1 is satisfied.

Tracking the correlation. Recall that the relevant signature of the dynamics is the one-dimensional
correlation m; = 6, - 8*. For infinitesimal step-sizes 0 — 0, it is expected that §; follow the

spherical gradient flow 6, = —V4§ L(0;), that translates naturally on the summary statistics m; as
the following time evolution
(8) my = —V5L(0,) - 0"

The main idea behind the result of this section is to show that, even if the energy landscape near
m = my is rough at scale 1/ \/d, the noise induced by SGD does not prevent m to grow as the
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idealized dynamics described by the ODE (8). Let us write the iterative recursion followed by
(my)s>0: with the notation recalled above, for ¢ € N*, we have

1
9) M = (my — OV L(0,) - 0F — 6V5 M, - 07) .

t
With this dynamics at hand, the proof consists in controlling both the discretization error through
r; and the directional martingale induced by the term §V35 M, - 6*.

Weak recovery. As it is the case for the gradient flow, most of the time spent by the SGD
dynamics is near the equator, or more precisely in a band of the type ¥, . = {0 € S;_1, b/ Vd <
my < c/ \/E}, where b < c are constants independent of the dimension. Hence, the real first step
of the dynamics is to go out any of these bands. This is the reason why it is natural to define
Sa =10 € S4_1, my > a}, the spherical cap of level a € (0, 1) as well as the hitting time

(10) 7= inf{t >0, my, > a},

AR
which corresponds to the first time (6;);>¢ enters in S,. We arbitrarily choose a numerical

constant independent of dimension, say a = 1/2, and refer to the related hitting time 7'172 as the
weak recovery time of the algorithm.

Theorem 3.2 (Weak Recovery). Let (6;):>0 follow the SGD dynamics of Eq.(3) and let L satisfy
LPG(s,b/\/d), withb > 0 and s € N*, then, conditionally on the fact that my > 5b//d, for any
0 <e < e, we have

d-Kj/e when s =1, and with the choice ¢ =¢/d
(11) 7172 < ¢ dlog’(d)-K/e whens =2, andwith the choice § = e/(dlogd)
d*=1-K/e when s > 3, and with the choice 6 = ed*/?

with probability at least 1 — Ke, for generic constants K, e, > 0 that depend solely on the link
Sfunction ¢ and the distribution v.

Let us comment on this result. It says that that the integer s coming from the growth condition
controls the hardness of exiting the equator of the sphere. Indeed, as can be seen in LPG(s, b/v/d),
the larger the s, the smaller the gradient projection is and hence the less information the SGD
dynamics has to move from the initialization. This result can be seen as an extension of
[Ben Arous et al., 2021, Theorem 1.3] valid only in the Gaussian case (b = 0). Furthermore,
the Gaussian case shows that Theorem 3.2 is tight up to log(d) factors. Finally, note that the
result is conditional to the fact that the initialization is larger that some constant factor of 1/+/d,
which has at least constant probability to happen in virtue of Lemma 2.1. This probability can be
lowered by any constant factor by sampling offline a constant factor (independent of d) of i.i.d.
initializations and keeping the one that maximizes its correlation with 6*. Finally, note that in all
the cases covered by the analysis, it is possible to keep track of the constant C', and show that
overall it depends only (i) on the property of  w.r.t. the Gaussian on the one hand and (ii) on the
Sobolev norm of the link function [|¢||;1.4 on the other hand.
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Strong recovery. We place ourselves after the weak recovery time described in the previous
question and want to understand if the (6;);>o dynamics goes to 8* and if yes, how fast it does
so. This is what we refer to as the strong recovery question, captured by the fact that the
one-dimensional summary statistics m go towards 1. Thanks to the Markovian property of the
SGD dynamics, we have the equality between all time s > 0 marginal laws of

+ Law —
(eff;ers 7_1/2’ 97'172) - (95 95 - 97172)7

and hence the strong recovery question is equivalent to study the dynamics with initialization
that has already weakly recovered the signal, i.e. such that my = 1/2. We show that this part of
the loss landscape is very different that the equator band in which the dynamics spends most of
its times: in all the cases, we can choose stepsizes independent of the dimension and show that
the time to reach the vicinity of #* will be independent of d.

Theorem 3.3 (Strong Recovery). Let (6;):>0 follow the SGD dynamics of Eq.(3) and let L satisfy

LPG(s,b/\/d), with b > 0 and s € N*, then, for any ¢ > 0, taking § = £/d, we have that there
exists a time T > 0, such that

(12) [1—mr| <e and |T -7, < Kdlog(1/e)e™

with probability at least 1 — Ke, for some generic K > 0 that depends solely of the link function

é.

As introduced above, the important messages conveyed by this theorem are that (i) there is no
difference between the different parameters setups captured by the information exponent s, and
(ii) the time it takes to reach an e-vicinity of 6* is always strictly smaller than the one needed
to exit the weak recovery phase (e.g. d compared to d*~* when s > 3). This means that the
dynamics spends most of its time escaping the mediocrity. Remark that we decided to present
Theorem 3.3 resetting the step-size J to put emphasis on the intrinsic difference between the two
phases. Yet, we could have kept the same stepsize as in the weak recovery case: this obviously
would slow down unnecessarily the second phase.

4. TYPICAL CASES OF LOSS LANDSCAPE WITH LPG PROPERTY

In this section, we showcase two prototypical cases where the LPG holds true: the section 4.1
deals with the spherically symmetric setting, whereas the section 4.2 describes a perturbative
regime where the distribution is approximately Gaussian is a quantitative sense.

4.1. The symmetric case. We start our analysis with the spherically symmetric setting. We show
that a spherical harmonic decomposition provides a valid extension of the Hermite decomposition
in the Gaussian case, leading to essentially the same quantitative performance up to constant (in
dimension) factors.
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9*

FIGURE 1. Sketch of the SGD dynamics. After a long time spent in a band of
typical size 1/ V/d, the dynamics escapes at weak recovery point 6,, and then goes
rapidly to the ground-truth 6*.

Spherical Harmonic Representation of the Population Loss. We express the data distribution
v as a mixture of uniform measures v = fooo 7,4 p(dr), where 7, ; = Unif(rSy_1). Let 74 = 71 4
and uy € P([—1,1]) be the projection of 7, onto one direction, with density given in close
form by ug(dt) = Z7'(1 — t?)(4=3)/21(|¢t| < 1)dt, where Z is a normarlizing factor. Let
{P} 4} jen be the orthogonal basis of Gegenbauer polynomials of L2 ([—1,1]), normalized such
that P; 4(1) = 1 for all j, d. For each r > 0, consider

1(6) = (d0: 60 )70 = (04, 04 )ra
where we define ¢(") : [—1,1] — R such that ¢(")(t) := ¢(rt). We write its decomposition
. . ") .p,
in L2 ([-1,1]) as ¢! = > ajfr’dpj’d.’ with o, 4= W . Let Qg  be the Lebesgue mea-
sure of Sy_1, and N (j, d) = 2H=2("*7"%) the so-called dimension on the spherical harmonics of
degree j in dimension d. From the Hecke-Funk representation formula [Frye and Efthimiou, 2012,

1/2
Lemma 4.23] and the chosen normalization P;,4(1) = 1, we have || P} 4|/ = (#M)
[Frye and Efthimiou, 2012, Proposition 4.15] and obtain finally

(13) 0) =) a5paPral0-07)

where we defined for convenience &;,q = a;,a/+/N(j,d). As a result, it follows that the
overall loss writes as solely the correlaton my = 6 - 6* as

(14 L(0) = 2||9ll7; — QZJ. Bi.aPja(me) = €(m),

where 3,4, = fooo 64?7T7dp(d7’) > 0. Unsurprisingly, we observe that, thanks to the spherical

symmetry and analogous to the Gaussian case, the loss still admits m = 6 - 6* as a summary
statistics. Yet, it is represented in terms of Gegenbauer polynomials, rather than monomials
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as in the Gaussian case. The monomial representation is a consequence of the stability of
the Gaussian measure, as seen by the fact that (¢g, ¢5)-, = (¢, Ay50), , Where (A, f)(t) =
E.,[f(mt + V1 — m?2z)| has a semi-group structure (it is even known in fact as the Ornstein-
Ulhenbeck semi-group).

Let n € P(R) be the marginal of v along any direction. The following proposition gives a closed
form formula of the coefficients /3, 4, represented as integrals over the radial distribution p and
projections of the link function ¢:

Proposition 4.1 (Loss representation). The [3; ; defined in (14) have the integral representation
(15) Bja = (9. Kjd)rz

where KC; is a positive semi-definite integral operator of L,ZI that depends solely on p and ¢.

Note that a closed form expression of C; can be found in Appendix C.2. The above proposition
is in fact the stepping stone to calculate properly the information exponent that plays a crucial
role in the property LPG. This is given through the link between the spectrum 3; ; and the
decomposition of ¢ in the L% orthogonal basis of polynomials, that we denote by {q;};.

Proposition 4.2. Letr s = inf{j; ;4 > 0} and § = inf{j; (¢, q;), # 0}. Then s < 3.

Thus, the number of vanishing moments of ¢ with respect to the data marginal 7 provides an
upper bound on the ‘effective’ information exponent of the problem s, as we will see next.

Local Polynomial Growth. From (14), and as V§ L(0) = ¢'(m)(0* — m#@) , we directly obtain
(16) —VSL(O) - 0" = —(1 —m?)l'(m) = 2(1 — Z Bj.aPl4(m

which is the quantity we want to understand to exhibit the property LPG in this case. Hence,
we now turn into the question of obtaining sufficient guarantees on the coefficients (3, 4); that

ensure local polynomial growth. Since the typical scale of initialization for m is ©(1/ Vd d), our
goal is to characterize sufficient conditions of local polynomial growth with b = O(1/v/d).
For that purpose, let us define two key quantities of Gegenbauer polynomials:

(17) Vjg = — tg(l(i)r%) P;a(t) , (smallest value)

(18) z;q = argmax {t € (0,1); P; 4(t) = 0} . (largest root)
We have the following sufficient condltlon based on the spectrum (/3 4);:

Proposition 4.3 (Spectral characterization of LPG). Suppose there exist constants K,C > 0
and s € N such that we both have 3,4 > C and Yy~ B;aj(j +d — 2)vj_1 442 < KdB=9)/2
Then, taking s* as the infimum of such s, L has the property LPG(s* — 1, ze 4). In particular,
whenever s* < d, we have zg 4 < 24/s* /d.

This proposition thus establishes that, modulo a mild regularity assumption expressed though
the decay of the coefficients (3, 4, the spherically symmetric non-Gaussian setting has the same
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geometry as the Gaussian setting, for correlations slightly above the equator. Crucially, the
required amount of correlation to ‘feel” the local polynomial growth is a O(y/s) factor from the
typical initialization, and can be thus obtained with probability ~ e~® over the initialization,
according to Lemma 2.1, a lower bound which is independent of d.

The sufficient condition for 3, ; appearing in Proposition 4.3 involves the minimum values v; 4 of
Gegenbauer polynomials P; 4, as well as sums of the form ) | iJ 2/3; 4. In order to obtain a more
user-friendly condition, we now provide an explicit control of v; 4, and leverage mild regularity
of ¢ to control ), j 2/3; 4. This motivates the following assumption on ¢ and v:

Assumption 4.4. The link function ¢ satisfies ¢ € L?7 and ¢' € L%, and the radial distribution p
has finite fourth moment E,[r*] < oo.

Theorem 4.5 (LPG for symmetric distributions). Assume that ¢ and v satisfy Assumption 4.4,
and let s* = inf{j; (¢, ¢;), # 0}. Then L has the property LPG(s* — 1,2,/s*/d).

The proof is provided in Appendix C.5. At a technical level, the main challenge in proving
Theorem 4.5 is to achieve a uniform control of v; 4 in 7, a result which may be of independent
interest. We address it by combining state-of-the-art bounds on the roots of the Gegenbauer
polynomials, allowing us to cover the regime where j is small or comparable to d, together with
integral representations via the Cauchy integral formula, providing control in the regime of large
j. On the other hand, we relate the sum | ; j?Bj.4 to a norm of ¢’ using a Cauchy-Schwartz
argument, where we leverage the fourth moments from Assumption 4.4.

Remark 4.6. Since we are in a setting where ¢ is known, an alternative to the original recovery
problem from Eq (2) is to consider a pure Gegenbauer ‘student’ link function of the form ¢ = P, g4,
where s is the information exponent from Proposition 4.2. Indeed, the resulting population loss

L(0) = E[(¢(z - 0) — ¢(x - 0))?] satisfies the LPG property, as easily shown in Fact C.5.

For the sake of completeness, we describe more precisely two concrete case studies below.

Example 4.7 (Uniform Measure on the Sphere). When v = Unif(v/dS;_1), we have p = )y
and therefore ;4 = 0_4]2, Jaq In that case, the orthogonal polynomial basis {q;(t)}; of L}

coincides with the rescaled Gegenbauer polynomials, q;(t) = Pj4(t/+/d). Consider now a link
function ¢ with s — 1 vanishing moments with respect to L2, i.e. such that &4 = (¢, q;), =0
forj < sand a4 = (P, qs), # 0, and with sufficient decay in the higher harmonics as to satisfy
the bound on the sum presented in Proposition 4.3 (for example, ¢(t) = qs(t) trivially satisfies
this condition). Then Proposition 4.3 applies and we conclude that the resulting population
landscape satisfies LPG(s — 1,0(y/s/d)).

In [Yehudai and Shamir, 2020, Wu, 2022] it is shown that monotonically increasing link func-
tions' lead to a benign population landscape, provided the data distribution v satisfies mild
anti-concentration properties. We verify that in our framework.

Lor link functions where their monotonic behavior dominates; see [Wu, 2022].
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Example 4.8 (Non-decreasing ¢). Indeed, Proposition 4.3 is verified with s = 1, rovzded
¢’ € L. Indeed, if g # 0 is monotonic, then we have By = (¢, K1¢), = Cq (E,[to(t ) #
since we can assume without loss of generality that ¢(t) > 0 fort > 0 and ¢(t) < 0 fort < O

We emphasize that the results of [Yehudai and Shamir, 2020, Wu, 2022] extend beyond the
spherically symmetric setting, which is precisely the focus of next section.

4.2. Non-Spherically Symmetric Case. We now turn to the setting where v is no longer
assumed to have spherical symmetry. By making further regularity assumptions on ¢, our main
insight is that distributions that are approximately symmetric (defined in an appropriate sense)
still benefit from a well-behaved optimization landscape.

Two-dimensional Wasserstein Distance. When v is not spherically symmetric, the machin-
ery of spherical harmonics does not apply, and we thus need to rely on another structural
property. Consider a centered and isometric data distribution v € Po(R?), i.e. such that
E,xr =0and X, = E, [xa:T] = I;. We consider the two-dimensional 1-Wassertein distance
[Niles-Weed and Rigollet, 2022, Definition 1] —see also [Paty and Cuturi, 2019]- between a pair
of distributions v,, v, € P(R?), defined as

(19) Wl,g(ya,yw = sup Wi(Pguv,, Pyy),
PeGr(2,d)

where the supremum runs for any two-dimensional subspace P € Gr(2, d), and Pyv € P(R?) is
the projection (or marginal) of v onto the span of P. W) 5 is a distance ([Paty and Cuturi, 2019,
Proposition 1]) and measures the largest 1-Wasserstein distance between any two-dimensional
marginals.

We are in particular interested in the setting where v, = v is our data distribution, and v, is a
reference symmetric measure — for instance the standard Gaussian measure 7,. Consider the
fluctuations

(20) Ap(9) == |L(0) — £(mp)| and

@ Avr(0) := [VGL(0) - 0" = C'(mg)(1 = mp)|

where £(m) is the Gaussian loss defined in Section 2 and L() = E,[|¢(x - 0) — ¢(z - 0%)|2].
Ay and Ay, thus measure respectively the fluctuations of the population loss and the relevant
(spherical) gradient direction. By making additional mild regularity assumptions on the link

function ¢, we can obtain a uniform control of the population loss geometry using the dual
representation of the 1-Wasserstein distance.

Assumption 4.9 (Regularity of link function). We assume that ¢, ¢’ are both B-Lipschitz, and
that ¢"(t) = O(1/t).

Assumption 4.10 (Subgaussianity). The data distribution v is M -subgaussian: for any v € Sy_1,
we have ||z - vy, < M, where |||y, := inf{t > 0; Elexp(2?/t?) < 2} is the Orlitz-2 norm.
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Proposition 4.11 (Uniform gradient approximation). Under Assumptions 4.9 and 4.10, for
alld € S4_1,

(22) Avr(0) = (1 —m2)0 (’WLQ(V, 1) log (W s (v, 7)*1))

where the O(-) notation only hides constants appearing in Assumptions 4.9 and 4.10.

In words, the population gradient under v is viewed as a perturbation of the population gra-
dient under v, which has the well-behaved geometry already described in Section 2. These
perturbations can be uniformly controlled by the projected 1-Wasserstein distance, thanks to the
subgaussian tails of v.

Our focus will be in situations where WLQ(V, ) = O(1/+/d). This happens to be the ‘natural’
optimistic scale for this metric in the class of isotropic distributions Y, = I, as can be seen for
instance when v = Unif(v/dS,_;). Under such conditions, it turns out that link functions with
information exponent s < 2 can be recovered with simple gradient-based methods, by paying an
additional polynomial (in d) cost in time complexity.

Assumption 4.12. The Gaussian information exponent of ¢, s := argmin{j; (¢, H;) # 0}
satisfies s < 2.

Assumption 4.13. The projected Wasserstein distance satisfies WLQ(V, v) < M'/V/d.

Proposition 4.14 (LPG, non-symmetric setting). Under Assumptions 4.9, 4.10, 4.12 and 4.13, L

verifies LPG (1 O ( logddﬂ)>), where k depends only on B, M, M'.

This proposition illustrates the cost of breaking spherical symmetry in two aspects: (i) it requires
additional regularity on ¢, and notably restricts its (Gaussian) information exponent to s = 2, and
(i1) the scale to reach LPG is now no longer dimension-free, but has a polynomial dependency on
dimension, since from Lemma 2.1, picking ¢ any positive constant we have

P (may > V0B @/ V) = ST 5 (g b0

At present, we are not able to rule this out as a limitation of our proof; establishing whether
this polynomial dependency on dimension is an inherent cost of the symmetry breaking is an
interesting question for future work.

While assumptions 4.9, 4.10 and 4.12 are transparent and impose only mild conditions on
the link function and tails of v, the ‘real’ assumption of Proposition 4.14 is the concentra-
tion of Wy 5(v,7) (Assumption 4.13). The ball {v; W, 5(v,7) = O(1/+/d)} contains many
non-symmetric measures, for instance empirical measures sampled from v with n = w(d?)
[Niles-Weed and Rigollet, 2022, Proposition 8], and we suspect it contains many other exam-
ples, such as convolutions of the form v * 7, arising for instance in diffusion models. That said,
one should not expect the distance W, 2(v,7y) to be of order 1/ \/d for generic ‘nice’ distributions
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v; for instance, log-concave distributions are expected to satisfy W, (Pyv,y) ~ 1/+/d for most
subspaces P, as captured in Klartag’s CLT for convex bodies [Klartag, 2007]. In summary, many
situations of interest fall outside this regime, which motivates us to relax the uniform Wasserstein
criterion.

Localized Growth via Stein’s method. To illustrate the mileage of the previous techniques
beyond this ‘quasi-symmetric’ case, we consider now an idealised setting where the data is
drawn from a product measure v = 1%, with n € P(R) and W, (n, 1) = ©(1). In other words,
r = (21,...,2q4) ~ vif z; ~ nare i.i.d. In this setting, the distances W, (Pyv, ) reflect a CLT
phenomena, which requires the subspace P to ‘mix’ across independent variables. Consequently,
one may expect the expression of the hidden direction 6* in the canonical basis to play a certain
role. For that purpose, we make the following additional regularity assumption on the tails of ¢
to simplify the quantitative bounds:

Assumption 4.15 (Additional Regularity in third derivatives). ¢ admits four derivatives bounded
by L, with |¢®)(t)| = O(1/t) and |¢M) (t)| = O(1/t%). Moreover, the third moment of the data
distribution is finite: T3 = E,,[t*] < oo.

Stein’s method provides a powerful control on Ay (6) and Ay (6), as shown by the following
result:

Proposition 4.16 (Stein’s method for product measure). Let x (0, 0*) := ||0||3 + ||0*||%. Under
Assumptions 4.9, 4.10 and 4.15, there exists a universal constant C' = C (M, B, 13) such that

(23) Ap(0) < Cx(0,0%) ;and Avp(0) < CV1—m2x(0,0%) .

The proof is based on the Stein’s method for multivariate variables [Rollin, 2013, Theorem
3.1] with independent entries, which provides a quantitative CLT bound. Contrary to the quasi-
symmetric case, here the concentration is not uniform over the sphere, but crucially depends on
the sparsity of both 6 and 6%, measured via the ¢, norms ||6||4, ||0*||4: for incoherent, non-sparse
directions, we have ||0||2 ~ 1/+/d, recovering the concentration rate that led to Proposition 4.14,
while for sparse directions we have ||6]|3 = ©(1), indicating an absence of concentration to the
Gaussian landscape.

Therefore, the natural conclusion is to assume a planted model where 6™ is incoherent with the
data distribution, i.e. [|0*|, = O(d'/*). While the LPG property does not directly apply in this
setting, we outline an argument that suggests that the single-index model can still be efficiently
solved using gradient-based methods. For that purpose, we assume that * is drawn uniformly in
S,4_1, which implies that its squared-L* norm ||6*||? is of order d~'/2 with high probability:

Fact 4.17. Assume 0* ~ Unif(Sy_,). Then P(||0*||3 < C/v/d) > 1 — C" exp(—=0C).

Because 6 is also drawn uniformly on the sphere, the typical value of x(#, 6*) is of order d~'/2.
For Gaussian information exponent s = 2, the population gradient under Gaussian data satisfies

—Vfd‘lLv(Q) - 6* > C'mgy. As a consequence, by Proposition 4.16, whenever |6, - 6*| > ¢v/d



14 ON SINGLE INDEX MODELS BEYOND GAUSSIAN DATA

(which happens with constant probability lower bounded by e~¢), we enter a ‘local’ LPG region
where —V‘;‘HL(G) -0* > C(m — ¢/+/d) > 0. While this condition is sufficient in the quasi-
symmetric setting to start accumulating correlation (Theorem 3.2), now this event is conditional
on @ being dense, ie so that x (6, 0*) = O(1/V/d).

Since the typical value of x(6, 6*) is of scale 1/+/d, one would expect that SGD will rarely visit
sparse points where x (6, 8*) > O(1/+/d), and thus that the local LPG property will be valid for
most times during the entropic phase of weak recovery — and therefore that the correlation my
will pile-up as in the quasi-symmetric setting.

We summarise this property in the following conjecture:

Conjecture 4.18 (SGD avoids sparse points). Assume 0*, 6y are drawn from the uniform measure,
and let 0, be the t-th iterate of SGD with § ~ 1/(dlogd). There exists a universal constant C
such that for any & > 0, we have

(24) P (sup 16,117 > \/ﬂodgT) < Cexp(—£2d) .
t<T

Since the time to escape mediocrity in the case s = 2 is T' ~ dlog(d)?, this conjecture would
imply that SGD does not effectively ‘see’ any sparse points, and thus escapes mediocrity. If
one assumed that in this phase the dynamics is purely noisy, now pretending that ¢; were drawn
independently from the uniform measure, and that ||0||] is approximately Gaussian with mean
d~! and variance d—3, the result follows by simple concentration. The challenging aspect of
Conjecture 4.18 is precisely to handle the dependencies across iterates, as well as the spherical
projection steps.

5. EXPERIMENTS

In order to validate our theory, and inspect the degree to which our bounds may be pessimistic,
we consider empirical evaluation of the training process in our two primary settings. Specifically,
we consider random initialization on the half-sphere (with the sign chosen to induce positive
correlation as in [Arous et al., 2021]), and investigate how often strong recovery occurs relative
to the information exponent of the link function.

Symmetric Case. For the spherically symmetric setting, we experiment with the input distri-
bution that is uniform on the sphere. We are primarily interested in verifying that, unlike the
Gaussian case, strong recovery depends on whether the initial correlation is sufficiently high to
avoid local minima and benefit from the LPG guarantee. This is not evident in the 2nd degree
Gegenbauer case, which is monotonic and quickly reaches strong recovery, but it is clear from
the 4th degree Gegenbauer link function.

In the infinite sample setting, Figure 3 exactly characterizes the loss landscape when learning
the 4th degree Gegenbauer under inputs uniform on S;_; for different values of d. Note that the
largest zero for d = 50 occurs at ~ +0.31, and the loss is monotonic for m values initialized
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FIGURE 2. Correlation with the true signal throughout training, under different

choices of link function and input distribution.

outside that region. This phenomenon persists for higher dimensions, and one may observe that
d increases, the critical points become smaller in magnitude, according to the scaling ~ /1/d.

The bottom right subplot in Figure 2 indicates training runs in this setting, where red lines
are initialized uniformly on the sphere, and blue lines are initialized uniformly conditioned
on m = 0.4, which is slightly past the last zero of the polynomial. We observe that random
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FIGURE 3. The 4th degree Gegenbauer polynomial with dimension 50, 75, 100.
Each is equivalent (up to rescaling) to the loss landscape of learning the 4th
degree Gegenbauer in the appropriate dimension. Points indicate largest zeros.

initialization infrequently exceeds the threshold necessary for strong recovery, but planting the
initialization above this threshold gives a high probability of recovery.

Non-Symmetric Case. For the non-spherically symmetric setting, we compare the performance
of Gaussian inputs with inputs that are approximately Gaussian under a two-dimensional pro-
jection. For simplicity, we loosen our assumptions slightly, and consider the input distribution
as the d dimensional product distribution of uniform random variables (rescaled to have unit
variance), and allow for a non-Lipschitz link function. Here, we are primarily interested in
whether Assumption 4.12 is tight and s < 2 is necessary for recovery, as well as whether
Conjecture 4.18 holds in practice.

To evaluate, we compare strong recovery rates when training on a "tricky" function with s = 2
(chosen to be % (ha — hs — hy + hs)) versus a function with s = 3 (simply the degree three
hermite polynomial h3). We make this choice for the s = 2 function in order to produce
a function which is not monotonic, for which learning is easy under many distributions, as
discussed in [ Yehudai and Shamir, 2020].

In Figure 2 we observe that strong recovery reliably occurs for both the Gaussian and hypercube
input distributions when s = 2. There is more variance in the Gaussian runs, likely because
the magnitude of the gradients will be larger due to the inclusion of high degree terms. But for
the s = 3 case, the Gaussian distribution converges quickly while the hypercube distribution
frequently cannot escape the equator.

6. CONCLUSION AND PERSPECTIVES

In this work, we have asked whether the remarkable properties of high-dimensional Gaussian
SGD regression of single-index models are preserved as one loses some key aspects that make
Gaussian distributions so special (and so appealing for theorists). Our results are mostly positive,
indicating a robustness of the Gaussian theory, especially within the class of spherically sym-
metric distributions, where a rich spherical harmonic structure is still available. As one loses
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spherical symmetry, the situation becomes more dire, motivating a perturbative analysis that we
have shown is effective via projected Wasserstein and Stein couplings.

That said, there are several open and relevant avenues that our work has barely touched upon,
such as understanding whether the robustness can be transferred to other algorithms beyond SGD,
or addressing the semi-parametric problem when the link function is unknown, along the lines of
[Bietti et al., 2022, Abbe et al., 2023, Damian et al., 2022, Berthier et al., 2023]. A particularly
interesting direction of future work is to extend the analysis of product measures to ‘weakly
dependent’ distributions, motivated by natural images where locality in pixels captures most (but
not all) of the statistical dependencies. Stein’s method appears to be a powerful framework that
can accommodate such weak dependencies, and deserves future investigation.
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APPENDIX

We gather in the appendix the proofs of the theorems, propositions and lemmas stated in the
main text. In Section A, the reader will find a short proof of Lemma 2.1. In Section B, we prove
Theorems 3.2 and 3.3 on the SGD dynamics. Sections C and D are respectively devoted to prove
that the LPG property holds in some spherical symmetric case and under some perturbative
regime.

APPENDIX A. PROOF OF LEMMA 2.1

Let us first recall the Lemma before writing a proof of it.

Lemma. For all a > 0, we have Py (mg, > a/V/d) < a~'e~**/%. Additionally, for any § > 0
such that max{a, 8} < \/d/4, we have the lower bound: Py,(mg, > a//d) > ge*(a+5)2_

Proof. By rotation invariance of the uniform distribution of the sphere, my, is distributed
according to y[1], the first coordinate of the vector 6y € S; 1. By a particular case of Stam’s
formula [Stam, 1982, relation (3)], we know that for d > 3, both are distributed according to the
probability of density, V¢ € R,
7(t) == L'(d/2)
Vrl((d—1)/2)

First, note that we can upper and lower bound the constant by the following:

i T2 a
\[5 STa-n/2 =V

for d > 6 by [Laforgia and Natalini, 2013, equality 3.2], which was already proved in [Gautschi, 1959].

(1=2) 1,

Hence, in terms of the upper bound, we have:

[d [! _:
Pgo(mQOZa/\/g)S %//ﬂ(l_ﬂ)(d 5)/2dt
1
< \/i/ e dt
27 a/Vd
1 d [!

d—3,2
< —= te” = Udt
V2ma /z/ﬂ

1 2
< —pat/4
> 2&6 )

which concludes the first part of the result.
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Second, let a < \/3/4 and take any 0 < § < \/3/4 We have,

Pgo (mgo Z CL/\/_ \/ / (d 3/ dt
/Vd
[d a+5)/\f
/ )(d 3)/2 dt

RTINS
3 \/_ d ’
where the last inequality simply comes from the fact that t — (1 — #2)(?=3)/2 is non-increasing.
Going further, if we lower bound the term with the negative —3/2 power by 1, we have

Py, (mg, > a/Vd) > geXp (g log <1 3 @»

ieXp( 2(1 EQ(:?SPM)) ’

where the last inequality come from the classical bound log(1 + z) > z/(1 + z), for z > —1.
Furthermore, as, (a + §)? < d/2, we have finally

)
IED90 (m90 > a/\/(_i) > 16_((1—’_6)27

which finalizes the proof of the Lemma. |

APPENDIX B. PROOFS ON THE SGD DYNAMICS: SECTION 3

We first recall the notations useful to fully describe the dynamics. In Section B.3, we prove
Theorem 3.2 about weak recovery. In Section B.4, we prove Theorem 3.3 about strong recovery.
Finally,

B.1. Recalling the dynamics. For the sake of clarity, let us recall the notations and facts
developed in the main text. The overall loss classically corresponds to the average over all the
data of a square penalisation [ (0, ) = (¢g(x) — ¢g-(2))? so that

L(0) = E, [(¢o(x) — ¢o- (2))’].
To recover the signal given by 0*, we run online stochastic gradient descent on the sphere S;_1.

This corresponds to have at each iteration t € N* a fresh sample x, independent of the filtration
Fi =o(xq,...,x,_1) and perform a spherical gradient step, with step-size 6 > 0, with respect

to 0 — (0, xy):
Ht — 5V‘gl(9t,xt)

25 0, —
(25) U0, — 6VEL(6r, )|
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initialized at 6, uniformly on the sphere: 6y ~ Unif(S;_;). Recall that we use the notation V§
to denote the spherical gradient, that is

VoI, 2) = Vol(0,2) — (Vel(0, x) - 6)6.

Let us introduce the following frequently used notations: for all ¢ € N*, we denote the normal-
ization by r; := r(0;, ;) = ‘Gt — 6V51(0;, xt)| and the martingale induced by the stochastic
gradient descent as M; = M (0;, xy) = (04, x) — E, [1(6;, x)].

B.2. Tracking the correlation. Recall that the relevant signature of the dynamics is the one-
dimensional correlation: m; = 6, - 6*. Let us re-write the iterative recursion followed by (m;):>0,
with the notation recalled above, for t € N*,

1 1
(26) = — (my — 6V51(0;, ) - 0%) = — (my — OV L(6;) - 0F — 6V M, - %) .
t t

We want to lower bound the right hand side of (26). We begin by a lower bound on 1/r;.

Lemma B.1 (Bound on ry). Forallt € N*, we have 1/r, > 1 — 6% |Vl (8, z,)|*.

Proof. For all t € N*, we have, by orthogonality of as 6; and V51(6;, z;), that
12 = |0, — SV, )" = 14 6% |V51(0,,2,)|" < 1+ 62 |Vol(6y,2,)[*.

Hence, from the inequality (1 + «)~/2 > 1 — w for all u > 0, we conclude the proof. |

Thanks the fact that L satisfies LPG(s,b/v/d), ie —VSL(6) - 6* > C(1 — m)(m — b/\/d)*~1,
we have that the dynamics satisfies the following inequality between iterates:

27)

b s—1
me+q Z my + (o) (]. - mt) (mt - ﬁ) - 5VSMt -0" — 52|mt| |VQZ(0t, It)|2 - (53&5,

where & = |Vl (0, z)|* [V51(0;, ) - 6*|. All the terms of the inequality have a natural origin:
the second term is the ideal term coming from the gradient flow and the growth condition, the
third term corresponds to the martingale increments coming form the noise induced by SGD and
the two final terms are simply discretization errors coming from discrete nature of the procedure
and the projection step.

However, to have a tight dependency with respect to the dimension, we need to be extra careful.
This is why, following [Arous et al., 2021], we decompose this term introducing a threshold
M > 0, to be fixed later, such that:

2 2 2
(el [Vl (O, 22)[ = [me [Vol (01, 2)[" Ljwiqo,. a2 <my + |mel [Vol(Or, 26) " L1000 025y
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With the same notations and summing all these terms until time 7" € N*, we can write

T-1 T-1 T-1
myp = mo+C6Y (1—my)(my —b/Vd)y*™ =6 VM- 0" =6 |ma| [Voli|* 1 yjg,2<my
t=0 t=0 t=0

Tr-1 T—1
2
= 0% ) |l [Volel* Uiy = 0° Y&
t=0 t=0

where we use, for the sake of compactness, the shortcut notation [, = I(zy, 0;). The strategy of
the proof is the following: the first term is the drift term that makes the correlation grow, the
second term is simply a martingale term that we deal with via standard martingale inequality,
and the forth and fifth term are discretization error that we will bound loosely. The difficulty
comes from the third term: the proof is based on the fact that we use a “part” of the drift term
(say half) to control it. This is why we decide to rewrite finally our inequality as,

T
28)  mp>=mg+6 Zl—mt ¢ = b/Vd)* —5ZVSMt 9*—52@

T-1
0? Z el [Vole* Ly 2my — 0% D
t=0 t=0

where we have defined D; := £(1 — m;)(m; — b/Vd)* Tt — 8my| [Vl Liv,2<my- The
following section show how to control these five terms in a quantitative way.

B.3. Weak recovery.
Good initialization. During all this section, we condition on the event {mg > 5b/+/d}.

Before stating these lemmas, let us introduce some new notations. As already introduce, we
recall that we denote S, := {6 € S4_1, my > 1}, the spherical cap of level € (0, 1). Moreover
for « € (—1, 1), similarly to what is done in [Ben Arous et al., 2021], we define the following
stopping times 7 := inf{¢t > 0, my, > a} and 7, := inf{t > 0, my, < a} reciprocally as the
first time when (6;);>¢ enters in S, or leaves .S,,.

B.3.1. Proof of Theorem 3.2. Thanks to Lemmas B.2, B.3, B.4, B.5 and B.6, that serve bounding
all the terms in the m inequality, there exists a constant K that depend solely on the model such
that we have the following lower bound: for all A > 0, conditionally to the event on the events

{TST;;Q /\7'2_b/\/a},
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with probability larger that 1— 5 +e — X U + KTdy
P yIug P\ T2K202T + A6 (C + oM) AM X\
Now we choose A = b/+/d and M = d*/? so that
c
> 7 + 95+ —0 ZO m, -,
with probability at least 1 — p; 1/(7"), where we defined naturally
(T) = (KTd§2 N ( b? ) KTd>?6 N KTd3/253)
Ponrit) »? P\ T 2K2d02T 1 0V/ds(C 1 oM) bM b )

Let us upper bound the probability ps (7). Let us set ¢ > 0 a small constant. First, in the
exponential term, the term bv/dd(C' + 6d°/?) is negligible in virtue of the fact that in any of the
cases of Theorem 3.2, we have § < £/d. Moreover, for the sake of clarity, we gather all constant
K, C,b as one constant generic K, as these depend only on the data distribution and the link
function. Hence, for d large enough,

psu(T) <K (dT52 + exp (— > +dT* + d3/2T53) :

dTé?

and as d*/2T33 < dT'6 for the range of § we choose, we have ps (T') < K (dTé2 + exp (—Flp)),

and considering that we will take in any case d7'0% < 1, as we have the inequality exp (—
dT'6?, so that finally

7z) <

po(T) < KdT§?
We divide the proof into the three cases s = 1, s =2, s > 3.
Case s = 1, 0 = ¢/d. In this case, we have that with probability 1 — ps r(7'),

>—+—T

7

The right and side is larger than 1/2 as soon as 67" > 2°/C. From this we have that with
probability at least 1 — ps 5,(7"), the hitting time is upper bounded by
28
7'172 S E

Now, taking 6 = ed !, we can check that for e small enough, dT6* < 2°¢/C' = ¢O(1) so that
we have that with probability at least 1 — Ke, we have

K
7'1/2< —d.

)
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Case s = 2, 0 = ¢/(dlogd). Now by a discrete version of Gronwall inequality, recalled in
Lemma B.10, we have with probability at least 1 — ps ar(7),

b b A
mp — — > +6= ] > —=eT,
’ m—m( ) = Vd

for d large enough. And as the right hand side is larger than 1/2 + b/ V/d whenever,
1
0T > = log(V/d/4b),

for d large enough compared to b. Then taking such a 7", with probability at least 1 — ps 5,(7) ,
the hitting time is upper bounded by

2
7-1/2 05 lOg (d)

Now, taking § = ed~!(log d)~!, we can check that for ¢ small enough, d7'6? <
that we have that with probability at least 1 — Ke, we have

=¢e0O(1) so

£
C

K
7172 < gdlog(d)Q.

Case s > 3, 6 = ed~*/2. Now by the discrete version of Bihari-LaSalle inequality, recalled in
Lemma B.10, we have with probability at least 1 — ps ar(7"),

1

b b Cls—2) b\
m‘ﬁﬁ(”T(ﬁ) T) |

And as the right hand side is larger than 1/2 + b/+/d whenever,
d(s—2)/2
> —
— C(s —2)bs %’

for d large enough compare to b. Then taking such a 7", with probability at least 1 — p; r/(7),
the hitting time is upper bounded by

1 47
(r=are

Now, taking 6 = ed—*/2, we can check that for ¢ small enough, d1'6? < m =¢e0(1) so
that we have that with probability at least 1 — Ke, we have

K

S— 1
71/2 d
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B.3.2. Technical intermediate result to lower bound each term of Eq. (28).
Lemma B.2 (ODE term). Conditioned to the event {T < 7, /2 AT, Vi }, we have the inequality

~
_

T—

(1 —my)(m; — b/Vd)*! %me_l.

t=0

t

Il
=)

Proof. This simply results from the fact that for all £ < T — 1, we have {t < 7172 A T;b o } C

{T < 7'172 ATy va }, so that we can use the inequalities 1 — m > 1/2 and m — b//d > m /2.
Summing these terms until 7" — 1 gives the proof of the lemma. |

Lemma B.3 (First martingale term). For all A > 0, we have that

2
2A> . KT

A2

t—1

> VIM -0

k=0
where K > 0, that depends solely on the model through f, v.

(29) P (sup )

t<T

Proof. This is a consequence of Doob’s maximal inequality for (sub)martingale. Indeed, for
t<T,let H_; = 2;10 VSM, - #*. We have that H, is a Fi-adapted martingale and we have
the following upper bounded on its variance:

t—1 2
E[H? | =E (Z VM, - 9*)
k=0

=E ti (stk-e*)zl

| k=0

<tsupkE, [(VSMk . 0*)2]
0

< Kt,

where the last inequality comes from the Lemma B.8. Now, thanks to Doob’s maximal inequality,
we have for all A > 0,

P <sup 0| Hi1] > A

t<T

> < E[H2 ,]6? < KT§?
and this concludes the proof of the lemma. |

Lemma B.4 (Submartingale term). Forall A > 0, if forallt <T, m; € [21)/\/3, 1/2], and ¢ is
such that 6 < ¢/d, with a small enough constant ¢ > 0, we have that

T—1
)\2
< -\ < —
30) ¥ (52 Dr < A) = &P ( 2K25°T + A6(C + 5|v|)>

t=0

where K > (0, that depends solely on the model through f, v.
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Proof. First, recall that we have defined D, = £ (1—m,)(m;—b/v/d)*~1—5|m| \Voly|” L9 02 <my-
Let us notice that if m, € [2b/v/d, 1/2], then 1 — m, > 1/2 and (m, — b/v/d)*~* > m;~1 /251,
Hence, if m, lies in such an interval,

C 5— 2
Dy > gs+1 b= dlmy| [Vl Lowon2<my

Vol,|* 1
Z Clmf_l 1 — 28—‘1—15’ 0 t| {|V_921t\2§M} )
25+ Cm;

[Vole|*1

Now, for § such that E {1 —ostl§ U9gi]* <My |]-"t1} > 0, (2221 Dk)t>0 is a submartin-

Cmf72
gale, which is true as soon as
Cm572
§ < !

Qs+l supy E |:|V9lt|2 Loy 2<my |.7-"t_1}

Y

which is itself true if

C
< 37
45 supy E [|V9lt| }

which is implied by the condition required in the lemma given the upper bound on E[|V9lt|2]
provided in Lemma B.8. In order to apply Freedman tail inequality for this submartingale, let us
provide upper bound on the increments as well as their variance. Indeed, we have, for all ¢ > 0,
C‘l — thmt — b\/a‘s_l

Dy < .

< C + oM |
- 2
and in virtue of the inequality (a + b)? < 2(a® + b*), we have

02|1 _ mt|2|mt _ b\/C_l|2(S_1)
E[D} | Fia] <2 ( 1 + 8%|my|*E [\vgztr‘ ]1{|Wt|2§M}]
C? + §°E [|VI|']

<
- 2

2 2 72
< C*+ Ké°d
- 2
< K.

Hence, by the Freedman tail inequality recalled in Theorem B.9, for all A > 0,

T—-1
)\2
P(6S D <-2) <exp (-
(; o )_eXp( 2K252T+>\5(C+5M))’

which concludes the proof of the Lemma. ]

2
+ 0lmu| [Vole|™ g0, 2<my
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Lemma B.5 (First discretization term). We have that, almost surely

T—1
KT8 d>
31 P(sup 62  |mu||Vole* 1 s >N | < ,
(31) <t§¥ ;\ el [Vole|” Lyg,,2omy = )- M

where K > 0 depends solely on the model through f,v.

Proof. This term is handled via a combination of Markov and Cauchy-Schwartz inequalities.
First, notice that,

T-1
2 2
I<T g t<T

Furthermore, for all ¢ < 7', all A > 0, via Markov inequality, then Cauchy-Schwartz inequality,

, E [|mt’ Voly|” ]1{\vgzt|2>w|}}
i ('m” Vol Lo, p5m) 2 A) = )

4 2
< VE[[Vll']\/P (19olef? > M)
= A
4 4
_ VEIVAIVE [V /w2
= A
4
_E [1Vols|"]
=T WM
Kd?
< -7
=M

where the last inequality is due to Lemma B.8. Multiplying this bound by 7'5% ends the proof the
lemma. u

Lemma B.6 (Second discretization term). For all A > 0, we have that

t—1
KTds?
2 P 3 > <
(32) (supék;fkj)_ >

t<T

where K > 0 depends solely on the model through f,v.

Proof. Recall that &, = |Vl (6), 21)|> |V51(, x1) - 6*|. The bound follows from an application
of Markov’s inequality. Indeed, since all the terms of the sum are positive, the supremum is
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attained in ¢t = T" — 1, and we shall only consider this case. For A > 0,

T—1 5 [
P(éngtZ/\> SXE th]

t=0 =0

T 2 1w .

& 1
< Thsup {8 [190006.2) ] VEL 510,277

T
<~ S (19610, 2)/' \/supEx V516, ) - 6°[2
[ 7]

75
<+ \/supEx [[1V6l(6, 2) [ \/supEm (1V51(0, z) - 0°2]
[ 0

T
<V KPVE
KTds?
< Y
- A
where the penultimate inequality comes from Lemma B.8. |

B.4. Strong recovery. The reasoning is almost identical to the one of the previous section,
except from the fact that instead of tracking the growing movement on ()0, we will track the
decaying movement of (1 — 12;);>o0.

B.4.1. Upper bound on the residual. As said in the main text, we place ourselves after the weak
recovery time. Thanks to the Markovian property of the SGD dynamics, we have the equality
between all time s > ( marginal laws of
0s =0_+ ) ;
1/2

+ Law
(HT{‘;2+S 7-1/27 97$2> - (95

and hence the strong recovery question is equivalent to study the dynamics with initialization
such that my = 1/2. As demonstrated before we have that ]P)<7'1+/2 < o0) > 1—Kesothatuptoe
terms, this conditioning does not hurt the probability of the later events. In fact this conditioning
seems even artificial as it seems provable that 7'172 is almost surely finite. Yet, we leave this more
precise study for another time.

B.4.2. A (slightly) different decomposition. Let us define for all ¢ € N, the residual u; =
1 —m, 1 > (), and thanks to the lower bound given by Eq. (27), we have

Ut 41 S Ut — C(Sut(mt - b/\/C_DSil + 5VSMt - 0" + (52’thVl(l't, 6t>’2 + 53575,
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From there, the proof is similar to the weak recovery case, except that the extra-care we used for
the term 62|my||VI(z, 0;)|? is not necessary. We use simply the decomposition of this term in a
second martingale term

Ny = |[my|[V1(2e, 0,)]* — E [[me][V(a, 0,) *| Fe-1]

and the drift that we directly upper bound as E [|m;||Vi(xy, 6;)|?|F;—1] < Kd. Now similarly to
Lemma B.3, we have the upper bound:

Lemma B.7 (New martingale term). For all A > 0, we have that

> KT
> <
- P )\2 b

t—1

>

k=0

(33) P <sup 52

t<T

where K > 0, that depends solely on the model through f,v.

Proof. This is a consequence of Doob’s maximal inequality for the martingale. Indeed, fort < T,
let H;_ 1 = ‘,;;10 Ni. We have that NV, is a F;-adapted martingale and we have the following
upper bounded on its variance:

[ /i1 2
E[N2,]=E (Z VSMk.Q*)

k=0

[t—1
=E|> N}
Lk=0

< tsup Ex (Nk)2
0

< Kd*,

where the last inequality comes from the Lemma B.8. Now, thanks to Doob’s maximal inequality,
we have for all A > 0,

A2 DGR

and this concludes the proof of the lemma. |

P (sup S| Hy_1| > A

t<T

) . E[H?_,J0' _ Kd*T6

Now, everything is in order to prove the Theorem 3.3.

B.4.3. Proof of Theorem 3.3. Let us fix a small number ¢ > (0. As previously, thanks to
Lemmas B.3, B.6, B.7, there exists i > 0 that depends solely on the model such that we have
the following upper bound: for all A, and ¢ < Ty 7, . summing between times 0 and ¢,

t—1
» wp+ K6°d+ 3,
k=0

up < U — e
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Kt§? N Kd?*ts* N Ktds?
A2 A2 A
A = 1/16 and ¢ small enough so that K 5%d < ). Hence, realizing that vy < 1/2, we have

3 0 &L
U S 7= oo Zu’“ )
k=0

with probability larger that 1 —

) and d large enough. Let us choose

— 4 45

with probability at least 1 — Ktd%(14d?5%+dd) = 1—Ktd?2, as we choose in any case § = cO(1).
Note that we used the same convention as in the weak recovery case that K denotes any constant
that simply depend on the model. We have by Gronwall inequality (Lemma B.10)

<3 - Co t<3_g_51t
Ut_4 45_1 _46 .

Hence, as the right end side is smaller than ¢ for the time
s—1

& log(1/e),

we choose such a t, so that with probability at least 1 — K§ log(1/¢), the delayed hitting time
7 i=inf{t >0, u; < e} satisfies

to >

s—1

oF log(1/e),

and taking § = ¢/d gives that with a probability at least 1 — Kelog(1/¢)/d, we have
s—1

=+
7—175 S

7. < ——dlog(1/e).

Considering that d is large and ¢ is simply a constant we get that 1 — Kelog(1/¢)/d > 1 — Ke
and and this concludes the proof of Theorem 3.3.

3

B.5. Some technical bounds. We end this section by providing (i) some necessary technical
technical bound on the quantities appearing in the SGD controls (ii) some discrete versions of
Gronwall-type lemmas.

B.5.1. Technical bounds on models expectations.

Lemma B.8 (Technical bounds). We have that there exists a constant K > 0 solely depending
on the function ¢ and the distribution v such that:

(B4 sup B, [(VEM(2,0),60.)°] <K, and supE, [[V5I(0,2) 0*]"]] < K
0

0€Sy_1
(35) sup E,[|Vol(6,2)["] < Kd,
0€Sq—1
(36) sup E,[|Vl(0,2)]"] < Kd?.

0eSq_1
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Proof. In all the following proof we consider any 6 € S;_;. Notice that we have the following
calculation that is common to all the bounds we cover

Vi, z) =x¢' (xz-0)p(x - 6,)
We treat the three bounds separately.
First terms. We have that for all z € R?,
M(z,0) =1(z,0) —E,[l(x,0)],
hence
VSM(x,0) = V5l(x,0) — E,[V51(x,0)]
= Vol(x,0) —E,[Vol(x,0)] — (0 - Vol(z,0))0 + E,[(0 - Vyl(x,0))0],
and finally,
VoM (z,0) -0, = Vl(x,0) -0, — E,[Vyl(x,0) - 0.] — (6 - Vol(x,0)m +E,[(0 - Vol(z,0))m].
hence thanks to applying the inequality (a + b)? < 2a* + 2b%, this amounts to bound first
E. (Vol(2,0) - 6.)* = E, [(z-0.)2 ¢"(z - 6)¢*(z - 6,)] < K.
and second
E, ((Vol(z,0) - 0)m)* < E, [(x-0)" ¢"(x - 0)¢*(z - 6.)] < K.
Second term. We have
E, |Vol(z,0)° = E, [|z[*¢*(z - 0)¢*(z - 0.)] < Kd.
Third term. We have similarly
E, [Vol(z,0)|" =E, [Jz[*¢"(z - 0)¢*(z - 0.)] < Kd*.

B.5.2. Standard tail probabilities for submartingales. We recall here a theorem on submartin-
gales from Freedman. This is an adaptation from Theorem 4.1 stated in [Freedman, 1975].

Theorem B.9 (Submartinagle tail bound). Suppose that (X;)icn is random sequence adapted
to a filtration (F;)ien. For T > 1, suppose there exist a,b > 0 such that B[ X, | F,_1] > 0,
the almost sure upper-bound sup,.p | X;| < a as well as sup,.p E[X? | Fy_1] < b, then for all
A >0,

T )\2
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B.5.3. Discrete Gronwall and Bihari-Lasalle bounds. We now turn to stating a classical com-
parison lemma for recursive inequalities.

Lemma B.10 (Gronwall and Bihari-Lasalle). We have the bounds for the recursive inequalities:

Case s = 2. Suppose (my)en satisfies for s > 3, and positives numbers a,b > 0, and b < a /21,

t—1

(38) me > a+ mek, then, m; > a(1l+ b)t
k=0
t—1

(39) m < a— mek, then, m;y <a(l— b)t.
k=0

Case s > 3. Suppose (my)en satisfies for s > 3, and positives numbers a,b > 0:
t—1
s—1 5—2,\ ~ 73
(40) mt2a+b2mk , then, tha(l—(s—Q)ba t) 5=2
k=0

Proof. The case s = 2 is known to be the discrete version of the Gronwall lemma and is treated in
all standard textbooks, the case s > 3 referred to as the Bihari-Lasalle inequality is for example
proven in Appendix C of [Arous et al., 2021]. |

APPENDIX C. THE LPG PROPERTY IN THE SYMMETRIC CASE: PROOFS OF SECTION 4.1

C.1. Useful Facts about Gegenbauer Polynomials. We recall known facts on Gegenbauer
Polynomials.
Definitions. Recall that P; ; denotes the Gegenbauer polynomial of degree j and dimension d,
normalized so that P; 4(1) = 1 for all j, d. We denote also P; the Gegenbauer polynomials
. 5 _ D(j+2) .
normalized so that ||-Pj,)\”%2(IR{,u2>\+2) = m2! 2’\%. Throughout the proof, we will
use either d, and from time to time the mute symbol A to denote the dimension variable of
Gegenbauer polynomials. They satisfy the following recurrence:

(41) (4 DPaa() = 20 + NEPia(t) = (G + 20 = ) Pjaa(t)
with first terms: Py, (t) = 1 and Py () = 2\t

Rodrigues Formula for Gegenbauer Polynomials. The Gegenbauer polynomials can be repre-
sented as repeated derivatives of a simple polynome.

Proposition C.1 ([Frye and Efthimiou, 2012, Proposition 4.19]). We have the formula

4
dt

@ Bl =5 +(<—d1213>/2)j(1 - e (

where (x); = [[}—y(x — k) is the falling factorial.

j
) (1-— 252)j+(d—3)/2 7
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Hecke-Funk Formula. Recall that we use the notation 7, to denote the uniform distribution on
the sphere and u, the distribution of, e.g., its first coordinate: ug oc (1 — ¢2)@=3/21_, ).

Theorem C.2 ([Frye and Efthimiou, 2012, Theorem 4.24]). For 0,0' € Sy_1, [ € Lid (R) and

JEeN,
(fo, (Pra)er)ry = Qa—2P;a(0 - 0')(f, P a)u,
1
3) — QuaPia(6-0) / FOPat)(1 — )92
-1
act C.3. [Derivative Representation] We have the following derivation property for all j, d:
Fact C.3. [Derivative R ion] We have the following derivati 1,d
jj+d-2)
(44) P]{,d = ijfl,dJﬂ .
Proof. Recall the normalization relationships A = ¢ — 1, P;,(1) = _LG+23) , Pig =
P 2 7y TG+DI(2N) J
%Pj,g—p as well as the identity P]f’/\ = 2)\15]-_17)\“. Thus,
;o rg+nrd-2) -,
a:d T(j+d—2) 551
FG+HI(d-2),d _
=2 - —1P.
T(j+d—2) (3 = DF1g
FG+DI(d—-2)T(—14+d)
=(d—2 P;_
L R T Y B
jj+d-2)
(45) - W-Pj—l,d—&-Q
[ |

We have the following bound of the location of the largest root z; 4 of P; 4:

Fact C.4 (Bound on the Largest Root,[Area et al., 2004, Corollary 2.3]).

(46) zj,ds\/( VDU /1))

jH+d/2=3)j+d/2-2)

And we have the following bound on the Taylor expansion of the Gegenbauer polynomials:

Fact C.5 (Taylor Upper bound beyond largest root).

Pia(t) > (t — zja) , fort> 24,

Proof. Note that all families of orthogonal polynomials have exclusively real, simple roots.
Therefore, by Rolle’s theorem, the j — 1 critical points of P; ; must be interlaced with the j
zeroes. So all zeroes of P; ; are upper bounded by z; 4. Futhermore, by Fact C.3, P, ; is itself
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an orthogonal polynomial. So applying this argument recursively, we see the zeros of Pj(z) for

k < j are all upper bounded by z; 4.
Note also by Fact C.3 that, because P;4(1) = 1 for any choice of j and d, it follows that
Pj(fl) (1) > 0. This implies Pj(f;) (zj.4) > 0, as in order to flip signs there would need to be a zero

in the range [z; 4, 1] which we’ve confirmed above cannot exist.

Now, consider a Taylor expansion

i
47) Pia(t) =) ci(t—zq)
=0

Observe that Pj(];)(zjvd) = k!¢, and therefore by the above argument we have ¢, > 0. So it
remains to show that ¢; > 1.

Consider applying Fact C.3 repeatedly, then we have:

MG +d=3+1)

(48) P91 .

i (1) 7 (d—3+21)

i
. J+d—3+1

49 =il
) / U d—3+2
(50 > !
And from the fact that Pj{j '(1) = jlej, we conclude ¢; > 1. [ |

C.2. Proof of Proposition 4.1.

Proposition C.6 (Loss representation, restated). The 3; 4 defined in (14) have the integral
representation

(51) Bja = (¢, Kid) L2 wm) »

where K; is a positive semi-definite integral operator of L% that depend solely on p and ¢, with
kernel

Qq_oN(j o
(52) Kt 1) = =2 é (4, d) / Pi(r~ ") Py (r 1 g (r ') g (r =) p(dr) ,
d—1 0
where we defined the conditional density
r~tug(r=1t)

Jo~ @) ua((r) "1 e)p(dr’)

ﬂd(rilt) =
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Moreover, we have

Q d 2) 2
(53) E,[¢°] = 5 ZZ@d / Zﬁjd
d—1
Proof. The marginal conditioned on ||z|| = r is precisely given by n(zy =t | ||z| = r) =

r~tug(r~'t), so

o) = [t ().

We have
1 1
o, = | P2 / R0 Omaat) = |17 | P00t

(54) _ ;;: f / o(t) (1 — 222y
SO

Q N ) — — - /! —147 —
Bia= =g~ 1‘7 / // o) P (r ) (1 — r 22V P () (1 — 2 (1)) Y Patdt p(dr)
(55)

= <¢7 Kj¢>L2(R,17) s

with the L*(R, n) positive semi-definite integral kernel operator
n(t) " ()" / PP (1= )R e ) (1= () p(dr)

_ 2a-2N(5d) oOpj(r—lt)Pj( T aa(r ) ug(r ) p(dr)
Qi1 0

where we defined the conditional density

r~tug(r=tt)

ta(rt) = IS ) ua((r) ) p(dr')
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Finally, let us establish (57). We have

En¢* = Ep[Eoyjafj—rEd(z1)’]
= EP[Eud (¢(T))2]

=E, Y o, [P
J
Qa—
=K Q
Z ]dTQd 2N J»d)

57) Qd 1IE Z &, = Qd 125”

C.3. Proof of Proposition 4.2.

Proof. 1f B; 4 = 0 for j < s, then cj, 4 = 0 for j < s and p-ae . We want to show that for any
polynomial @) of degree ;' < s, we must have (¢, @), =
For each r, consider Q™ () = Q(rt), which is also a polynomial of degree j' < s, and its

., . i’ . . . .
decomposition as Q") = ;:0 b; i+ Pj.4,» which only involves terms of degree ;' < s since

Gegenbauer polynomials of degree up to  span all polynomials of degree up to 7. We have
(6,Q)y = E,[6(2)Q(x)]
=E,E,,[¢"(2)Q"(2)]
(58) =B, bjyrr0ira] = 0.

J<g’

C.4. Proof of Proposition 4.3.

Proposition 4.3 (Spectral characterization of LPG). Suppose there exist constants K,C' > 0
and s € N such that we both have 3,4 > C and . B;aj(j +d — 2)vj_1 440 < KdB=9)/2
Then, taking s* as the infimum of such s, L has the property LPG(s* — 1, ze 4). In particular,
whenever s* < d, we have zg« 4 < 24/s* /d.

Proof. Assume first that there are C, ¢ such that

(59) PLt)>Ct— )", fort>C(.
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Now, let
1 e
(60) B = ﬁ ;Bjd] (] +d— Q)Uj—l,d+2 <1 ,
and define
1/(s=1)
(61) ‘o ( ) ic.
C Bs,dC C

From (59), (60) and (61) we verify that ¢'(m) = Zj Bj.aP; 4(m) satisfies, for m > (¥,

(8" -

Finally, we have that for any j, d, the largest root z; 4 satisfies z; 4 < M)—J;zfdi ~ j/Vd Vd

El(m) > Bs,dc_’ ((m - 5)8_1 - (m - C*)S_l) > ﬁs,dé

and |
P]d(t) é(t — Zj, d) , for ¢ Z Zjd s
which implies that
s(s+d—2 B
(62) P, 4(t) > ﬁ(t — Zs1,a12)" ", fort > ze 1440 .

We thus have C' = s;&;dlf) with ¢ = Zs—1,d+2-

Finally, we verify that
ds—1)/2

63) s(s+d—2)

Zﬁydj JH+d—2)vj_ 1440 < K

ensures a local polynomial growth of order s — 1 at scale O(1/ \/3) Indeed, plugging (63) into
(60), together with 3, ; > C'yields

B e 1/(s—1) 3—1/2
(64) ( _) < (CK)Y=Dg=12
53,5!0 ( )

which shows that (* = O(1/+/d). Finally, we observe that C' > s = O(1) if s < d.

C.5. Proof of Theorem 4.5.

Proof. To prove the theorem, we will establish the sufficient conditions of Proposition 4.3 under
our mild assumptions. The key technical results we need are explicit bounds for v; 4 and for the
sum » ; 72 Bj.a established in the following two lemmas. Since the parameter A = d/2 — 1 is
more convenient to express many relationships in Gegenbauer polynomials, we will adopt it in
this proof instead of d, without loss of generality.
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Lemma C.7 (Control of v; »). We have

( 2 3/2 o
()] ri-ow.
(65) via < AN ifj = O(\), with0 < a < 1,
e 2" ifji=0\")withl <a<3/2,
\6_)\ ifj= ()‘3/2>

Lemma C.8 (Decomposition of derivative). If ¢ € L*(R, ) is such that ¢' € L*(R,n) and
E,[r] < oo, then 8; = (¢, K;¢) satisfies

de

(66) ZJQBN Eo[r )26l 7a,) = O(1/d) .

Let s = inf{j; 8,4 # 0}. We need to verify that there exists a constant /& > 0 such that

(67) Z 6],d]<] + d - 2>Uj—1,d+2 S Kd(3—s)/2 .

j>s

We will control the LHS by splitting it into appropriate regions, determined by J;, i € {1, 2, 3}.

Let @ = - and J; = 5-. From Lemma C.7, part (i) we have that v; y < C ( ]Jj:f)’\ )> /2, and in
partlcular vjn < ON@ J/ % for j < .J;. As aresult, using Lemma C.8,
J1 J1
D Bid( + MNvjmian < AODEDRZNT 550 4+ 0
Jj=s+1 Jj=s+1

Ji
< )\(a_l)(8+1)/2(01)\_1—|—)\ Z B]])
j=s+1
Ji
S ANEDEVZOATT A Y 57
j=s+1
< Aa-DEHD/20

(68) < CyAB-9/2

Let J, = A. We have

(a—1)AY 1))&“
Z Bid(G+MNvj—iaer S A2 Gy

j=J1+1

(69) < CyAB79/2
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Let J; = A%/2. We have

J3
Z B35+ AN)vj_iag1 < e 2VAC,
j=Jo+1
(70) < ONB=9/2

Finally, the remainder satisfies

D B+ Nvjiaer < Cs(e/2)™

Jj>Js3
(71) < GBI,
which proves (67).
|

Proof of Lemma C.7. We prove this result by analysing different regimes for j and A. Concretely,
we claim the following:

Claim C.9. We have the following regimes:
(1) For j = (1), we have

A 2

(2) For j = O(AY), with0 < a < 1, we have

/2

(73) v S AT
(3) For j = ©O(\*), with 1 < a < 2, we have

(74) v e
(4) For j = Q(\Y), with a > 3/2, we have

(75) vy Se .

To prove the first three regimes of Claim C.9, we control v;  based on the distribution of the roots
of P; y. We recall that (2 ; »)x<; denotes the roots of P; ) in increasing order, and z; \ = z; ; \
its largest root.

Lemma C.10 (Representation of P; ) in terms of its roots, [De Carli, 2008, Lemma 2.1]). We
have
. 2.2
J ) 2’%37)\
k=7/2 1—22 .
(76) Pialty=q MR L
tHk:(jJrl)/Z 122, if j odd .

if j even,
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From this representation, we deduce that v; ) can be calculated explicitly. Indeed, as the local
maxima of | P; ,(t)| are increasing [Szego, 1939], [DLMF, 2022, Eq (18.14.15)], we have the
following equation:

312'71,>\+1_21%,1,A

J

: 2
. J i1, A+1 " %k,5,) e
ijl,)\+1 Hk:(j+1)/2 —1_2,]% IR lfj odd .

if 7 even,
(77 vjin=—Pjx(zj_1a11) = —

Let us focus first on the case j even, for simplicity. We can rewrite (77) more conveniently as

2 2 J—1 2 2
FIA T Ri=1a+ Zi 141 T Pk
Vin = 1—22 — 22
JsA k:j/2 kg,

For § € (0, zj_1 1) let
m(d, J,A) == [{k € {j/2, j}; zugx = 6}

denote the number of zeros of P, in the interval (J,1). Since the function ¢
decreasing in ¢ € (0, a), we have

a’—t?

12 1S

Fact C.11. We have the upper bound:

2 2 2 2\ m(d.7,))
ZIX T Fi—1 A1 . Zj g1 — 0
( ) T 5
Letting 6 = z;/2 ; » the smallest positive root of P; y we have

2 2 2 _ 2 .7/2
Zix T Ziciat1 [ Fi-1a+1 T Fi/2,5
79 Vi < .
A = 1 — 22 1 — 22
A /2.3,

We can thus obtain an explicit control on v; , from bounds on the zeros of the Gegenbauer poly-
nomials. We complement the upper bound on the largest root (Fact C.4) with lower bounds for all
positive roots, as well as a sharp lower bound for its largest root [Dimitrov and Nikolov, 2010]:

Theorem C.12 (Upper and Lower bounds for Gegenbauer roots, [Dimitrov and Nikolov, 2010,
Theorem 2]). Let
bix=7>+2(A—1)j% — (3A = 5)j +4(A — 1),
ajr=20G+A=1)(G*+jA—1)+4(A+1)) and
cin =72 +20)2 + A+ D (2 +2(A+3)j +8(A—1)) .
Then for every k, j, A we have

b‘7)\—(j—2),/0'7)\ b7>\—|—(]—2) Cjx
(80) : o << v

ajx
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Theorem C.13 (Lower bound for largest root, [Driver and Jordaan, 2012, Section 2.3]).

1) 2 o (2A+1)(2A +3) 1 9iA
3 G-=DG+22+1)+ A+ 1)(2A+3) hix
.« . 2 ej, .
Rewriting Fact C.4 as 27, < fg_i , with
=010 +2A=2), fin=0+A=2)G+A-1),
and using again the monotonocity of ¢ n—> E we can bound the first term in the RHS of (79) as
82) 2= 2 < ein/fin+ gi—ips1/hj—ipp1 — 1
1—2]2)\ - 1_ej,)\/fj,)\

For j, A = w(1), we have

ajx =~ 2j(j + A)?, bin = 25 +2XN), G~ (i +2)),

ejx =~ j(J +2X), fin= (G +A)?,

gix = 4N, hja = j(j 4+ 2\) + 427,
and thus

2 2 .

(83) A" Fan ¢ HUT2D g
Therefore,

ejoiatr  bia—(—2)y/Gx 32

f] 1A+1 ajx

o bia=(-2)VEGx (7—2)\/Cix

CL]/\

(aMeJ 11— fimiara(bja — (j—2)m)>j/2
(
J

Ujx <3

IN
w

fj 1,2+1 a]A_b]A+(]_2)\/_)

25(j + A% +2X) — (J+)\)2( 2(7+20) — 72( +2)))

’ (J+A)2(25( + )2 =320 +20) +52( +2)))

j/2
(14 Oj,A(l)))

N

G

)\ 2
= [1 -(+3)

As a direct consequence of (84), we immediately obtain Eqs (72), (73) and (74). The case where
J 1s odd is treated analogously.

/2
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Let us now study the regime j = w(\*?). Given z € C with |z| < 1, Gegenbauer polynomials
admit the following generating function [Watson, 1922, Section 3.32]:

85 (1—220059—1—22 Z salcost)z

From this generating function, the Cauchy integral formula leads to the following integral
representation:

Fact C.14 ([Ursell, 2007, Eq (1.2)]). For any 0 < p < 1, we have

_ 1 dz
86 P; 0)=— — .
(86) ia(cos 6) 2mi oy (1= 220080 + 22) 21

Assume j = O(\%), with a > 3/2. We are interested in the above representation for § =
arccos(zj_1,a41). From Theorem C.13, we have 22 |, > 1 —d;»/(2¢; ), and thus

P2 < d; 32)\2]'4 _ 2_)\2
~ 2\ 1646 J2

so 0 = O()\/j). Combining this upper bound with the lower bound obtained from Fact C.4 we
have = ©(\/j).

Using 1 — cosf ~ 62 /2 ~ \?/j% and
11— 2zcosf + 2% = (1 — 2)* + 2z(1 — cos )|
> |1 — z|* —2|z|(1 — cos®)

)\2
(87) zl—p(2+@<3))+p%
J
we have
(88) [Pia(cos6)] < inf o 0% (1= p(2+eX*/7) + %) 1= g(p)
Optimizing the RHS over p we obtain p* = 7_(]{%1», substituting, we obtain
) ) i+ 2) 2
(89) g(p") = R (—) |
(o) A1 4+2)
As a result, it follows that
_ 12\ —1)!
(90) P; \(cos @) = P; (cosb) I )

2A+j—1)!
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satisfies, for § = ©(A\/7) and j = w(A\¥/2),
log |PjA(cosf)| ~jlogj — j + 2A1og(2A) — 2A — (j + 2A) log(2A + j) + 2A + j
— (14 V2)A + 2X1og(j + 2)) — 2X log(A(1 4+ V/2))

(91) ~ — (1+V2)\
where we have used Stirling’s approximation. This proves Eq (75) and completes the proof of
Lemma C.7. |

Proof of Lemma C.S. We have, using Fact C.3, that

/ Q
E,[E.,(6")") = _f;Q“ZE $ar GG +d=2))]

Qa4
(92) > o I Es [a]
J

And we can upper bound via

/

EP[Eud(¢(T) )2] = Ep[rzEUd((¢/>(r))2]
= EpExl|||w\\:r[r2(¢(xl)/)2]

®3) < B [rEy (¢)1

where this last line is finite by our assumptions on ¢ and p,

so from (92) we conclude that
. Qg
(94) ;ﬁﬁm <, VEIME(¢)*.
[ |

APPENDIX D. THE LPG PROPERTY IN THE NON-SYMMETRIC CASE: PROOFS OF SECTION
4.2

D.1. Proof of Proposition 4.11.

Assumption 4.9 (Regularity of link function). We assume that ¢, ¢’ are both B-Lipschitz, and
that ¢"(t) = O(1/t).

Assumption 4.10 (Subgaussianity). The data distribution v is M -subgaussian: for any v € S;_1,
we have ||z - v||y, < M, where |||y, := inf{t > 0; Elexp(z?/t*) < 2} is the Orlitz-2 norm.

Proposition 4.11 (Uniform gradient approximation). Under Assumptions 4.9 and 4.10, for
alld € S4_4,

(22) Avr(8) = (1 —m2)O (Wm(y, ) log (W s (v, 7)—1))
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where the O(-) notation only hides constants appearing in Assumptions 4.9 and 4.10.

Proof. Recall the notation ¢y(x) = ¢((z,d)). Let v = 6* — mf. From the definition, we have
that

(VoL(6),0%) = 2B, [¢4(d9 — o) (2 - v)]
(95) =K, [go,0] -
Since E, [gg ¢+] is precisely ¢/ (m)(1 — m?), we need to establish that

~— — 2
96) SUp B0 — Brgogn| < OV = m?Waa(v.7) (log Wra(v27))

Fix 6 and let P ¢- be the orthogonal projection onto the subspace spanned by 0, 8*. For R > 0
we consider Ag = {z € R%; || Pyp-x| < R}.

/ 90,0+ (2)(v(d) — (dx))

\Euge,e* - E799,9*| =

97) <

/ 99,0*($)(V(d$)—7(d$))‘+ [ s @)wtdr) = 2(a)
J TEAR r¢AR

-~ -~

T. Ty

7

Let us first bound 7,,. Denote by v = 6* — m6, with ||v||> = 1 — m? Since ¢ and ¢’ are Lipschitz
and |¢”| < O((1 +t)~1) by Assumption 4.9, we have that

(98) Vagos- (1) = ¢g(do — do-)x 00 + (030 — 90" ) v + dy(dg — ¢o-)v
satisfies

IV2go.0+ ()] < 2[[0]|CLip(¢) R + 4]|v|[Lip(¢)*R
(99) < ClollR,
and as a result we have that g ¢~ is C/||v|| R-Lipschitz when restricted to A, and thus
(100) Ty < CR|[v|[Wo (v, )

Let us now control the tail 7;. Since z v is v/2M |v]|-subgaussian and ¢ is Lipschitz, we have
that z = |gg ¢~ ()| is M||v||-subexponential where M only depends on M and L. It follows that

T, < R(B,(z > R) +P, (2> R))

(101) Rexp( H H )

where (3 is a constant that depends only on M. As a result, we have

(102) E.g0.0+ — Ergoes] < }g;fo (CRHUHW1 2 (v, 1) + RGXP( Il )>
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Setting
R = —|[v]| 57" log((C[v]| Wi (v, 7))
we obtain
[Eugog = Eygoge < 20(1 = m?)5~ [log(Cllel| W2, 1) | W20, 7)
(103) < (1=m0 (Wialv, ) log(Waz(v. 1)) |
as claimed.

D.2. Proof of Proposition 4.14. We leverage Proposition 4.11 and the fact that if ¢ has infor-
mation exponent s = 2, then ¢'(m) ~ m for small m.

We need to show that for b = ©(log d) we have

(104) (VoL(6),6%) > C (m - %)  for % <m< % ,
as well as

(105) (VoL (0),0%) > C'(1 —m?)

form > 1.

From (103) and /—WVLQ(V, v) < C/\/c_l, we obtain
(VoL(0),0%) = 0'(m)(1 —m?) + (VoL(0),0") — I'(m)(1 — m?)
> 205m(1 —m?) = (1 — m*)CWy (v, 7) log(Wi (v, 7))

> (adm — C’Q log(\/g/C')) (1 —m?)

Vd
> o’ (m — éa;/c_i log(\/c_l/C’)> (1 —m?)
(106) > o2 (m - 10%;;) (1—m?),

which proves (104) and (105).

D.3. Proof of Proposition 4.16.

Assumption 4.15 (Additional Regularity in third derivatives). ¢ admits four derivatives bounded
by L, with |¢®)(t)] = O(1/t) and |¢*) (t)| = O(1/t%). Moreover, the third moment of the data
distribution is finite: T3 = E,,[t*] < oo.
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Proposition 4.16 (Stein’s method for product measure). Let x (0, 0*) := ||0||3 + ||6*]|3. Under
Assumptions 4.9, 4.10 and 4.15, there exists a universal constant C' = C (M, B, 13) such that

(23) AL() < Cx(0,6%) ;and Ag(0) < CV1—m?x(6,6") .
Proof. Recall the notation ¢y(z) = ¢({x,6)), and, using v = 6* — md,
(107) hoo () 1= &5 — 20900+ ,

(108) 9o.6- () 1= 20(dg — o) (2 - V)

so that

(109) AL(0) = Ey[ho o (x)] — Er[ho-(z)] ,

(110) Avi(0) = Ey[goo (x)] — Ey[g0,0-(x)] -

The result is obtained via the following Stein coupling method for product measures:

Theorem D.1 (Stein Coupling, [R6llin, 2013, Theorem 3.1]). Let X be a d-dimensional random
vector of independent coordinates, such that EX = 0, E[XX '] = I; and E| X,|? = 72 < oco. If
7 is a standard Gaussian random vector, and h : R — R is three-times differentiable, then
d
) 31193
(111) [BA(X) —EA(Z)| < & > 7|0 Rl -

=1

We verify that, thanks to the decay assumptions in Assumption 4.15, we have

(112) 85 goo- (1) = M (2)0] + Na(2)0707 4+ A3(2)0;(0; ) + Aa()(67)°

(113) D2 ho g+ (1) = Ns(2)67 + Ne(2)670; + M7(2)0;(67)% + As(2)(6])?

where

(114) sup  [M(@)| < Cllofl,  sup ()| < C
ke{1,2,3,4} ke{5,6,7,8}

Observing by Cauchy-Schwartz that
maX{Z !&FW;“\,Z\W} < 16113 ,
max{z |9;‘|2|9i|,2|0;‘|3} <101,

we obtain from Theorem D.1 that
AL(0) < Cx(0,07) , Agr(6) < C'lv]x(6,67) |

as claimed. |
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