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Abstract

We study a setting where Bayesian agents with a common prior have private information
related to an event’s outcome and sequentially make public announcements relating to their
information. Our main result shows that when agents’ private information is independent con-
ditioning on the event’s outcome whenever agents have similar beliefs about the outcome, their
information is aggregated. That is, there is no false consensus.

Our main result has a short proof based on a natural information theoretic framework. A
key ingredient of the framework is the equivalence between the sign of the “interaction infor-
mation” and a super/sub-additive property of the value of people’s information. This provides
an intuitive interpretation and an interesting application of the interaction information, which
measures the amount of information shared by three random variables.

We illustrate the power of this information theoretic framework by reproving two additional
results within it: 1) that agents quickly agree when announcing (summaries of) beliefs in round
robin fashion [Aaronson 2005]; and 2) results from [Chen et al 2010] on when prediction market
agents should release information to maximize their payment. We also interpret the information
theoretic framework and the above results in prediction markets by proving that the expected
reward of revealing information is the conditional mutual information of the information re-
vealed.

1 Introduction

Initially Alice thinks Democrats will win the next presidential election with probability 90% and
Bob thinks Democrats will win with 10%. The players then alternate announcing their beliefs of
the probability the Democrats will win the next presidential election. Alice goes first and declares,
“90%”. Bob, then updates his belief rationally based on some commonly held information, some
private information, and what he can infer from Alice’s declaration (e.g. to 30%) and announces
that, “30%”. Alice then updates her belief and announces it, and so forth.

Formally, we have the following definition.

Definition 1.1 (Agreement Protocol [1]). Alice and Bob share a common prior over the three
random variables W , XA, and XB. Here W denotes the event to be predicted. Variables XA = xA
and XB = xB are Alice’s and Bob’s private information respectively, which can be from a large set
and intricately correlated with each other and W .

The agents alternate announcing their beliefs of W ’s realization.
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In round 1, Alice declares her rational belief p1
A = Pr[W |XA = xA]. 1 Then Bob updates and

declares his belief p1
B = Pr[W |XB = xB,p

1
A] rationally conditioning on his private information and

what he can infer from Alice’s declaration.
Similarly, at round i, Alice announces her updated belief

piA = Pr[W |XA = xA,p
1
A,p

1
B, . . . ,p

i−1
A ,pi−1

B ];

and subsequently, Bob updates and announces his belief

piB = Pr[W |XB = xB,p
1
A,p

1
B, . . . ,p

i−1
A ,pi−1

B ,piA].

This continues indefinitely.

Two fundamental questions arise from this scenario:

1. Will Alice and Bob ever agree or at least approximately agree, and if so will they (approxi-
mately) agree in a reasonable amount of time?

2. If they (approximately) agree, will their agreement (approximately) aggregate their informa-
tion? That is, will they (approximately) agree on the posterior belief conditioning on Alice
and Bob’s private information.

Aumann [5] famously showed that rational Alice and Bob will have the same posterior belief
given that they share the same prior and their posteriors are a common knowledge. In particular,
if the agents in the agreement protocol ever stop updating their beliefs, they must agree. While
this may seem counter-intuitive, a quick explanation is that it is not rational for Alice and Bob
to both persistently believe they know more than the the other person. This result does not fully
answer the first question because the common knowledge requires a certain amount of time to be
achieved.

Both Aaronson [1] and Geanakoplos and Polemarchakis [19] answer the first question in the
affirmative. Geanakoplos and Polemarchakis [19] show that the agreement protocol will terminate
after a finite number of messages. Aaronson [1] shows that without unbounded precision require-
ment, even when Alice and Bob only exchange a summary of their beliefs, rational Alice and Bob
will take at most O( 1

δε2
) rounds to have (ε, δ)-close beliefs,2 regardless of how much they disagree

with each other initially.
Alas, it is known the second question cannot always be answered in the affirmative, and thus

agreement may not fully aggregate information.

Example 1.2 (False consensus). Say Alice and Bob each privately and independently flip a fair
coin, and the outcome is the XOR of their results. Alice and Bob immediately agree, both initially
proclaiming the probability 0.5. However, this agreement does not aggregate their information;
pooling their information, they could determine the outcome.

Nonetheless, we answer the second question affirmatively for a large class of structures in a gen-
eralized context with more than two agents that we call the Round Robin Protocol. Notice that in
the above false consensus example, Alice’s and Bob’s private information are independent but once
we condition on the outcome they are dependent. Chen et al. [10] call this independent structure
“complements” for reasons that will become clear. They also propose another independent struc-
ture, “substitutes” where both Alice and Bob’s private information are independent conditioning
on the outcome. Chen and Waggoner [9] further develop these concepts.

1Here and elsewhere we use the notation Pr[W ] to denote a vector whose w ∈W th coordinate indicates Pr[W = w].
2Pr[|Alice’s expectation− Bob’s expectation| > ε] < δ
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We will show that in the “substitutes” setting, i.e., when Alice and Bob’s information are
conditionally independent, (approximate) agreement implies (approximate) aggregation. We prove
the results in the n agents setting which is a natural extension of the Alice and Bob case. Our
proof is direct and short based on information-theoretic tools.

High Level Proof First, we denote the value of an agent’s information as the mutual information
between their private information and the outcome conditioning on the public information.

The main lemma shows that the “substitute” structure implies the sub-additivity of the values
of people’s private information.

When people approximately agree with each other conditioning on the history, the remaining
marginal value of each individual’s private information is small ≤ ε. Under the “substitutes”
structure, the sub-additive property of the main lemma implies the total value of information that
has not been aggregated is most nε where n is the number of agents (n = 2 in the Alice and Bob
case). Therefore, (approximate) agreement implies (approximate) aggregation.

To show the main lemma, a key ingredient is the equivalence between the sign of the interaction
information and the super/sub-additive property of the value of people’s information. Interaction
information is a generalized mutual information which measures the amount of information shared
by three random variables. Unlike mutual information, interaction information can be positive or
negative and thus is difficult to interpret and does not yet have a broad applications. Our framework
provides an intuitive interpretation and an interesting application of the interaction information.

We additionally illustrate the power of this information theoretic framework by reproving two
additional results within it: 1) that agents quickly agree when announcing beliefs in a round robin
fashion [1]; and 2) results from Chen et al. [10] that to maximize their payment in a prediction
market, when signals are substitutes, agents should reveal them as soon as possible, and when
signals are complements, agents should reveal them as late as possible. We also interpret our
information theoretic framework, our main result, and our quick convergence reproof in the context
of prediction markets by proving that the expected reward of revealing information is the conditional
mutual information of the information revealed.

The reproof that agents quickly agree uses the aggregated information as a potential function
and observes that each round in which their is ε disagreement, the aggregated information must
increase by ε (or a function of ε in the setting when agents only announce a summary of their
beliefs). The result of when agents should reveal information in a prediction market follows from
the sub/super-additivity of mutual information in each of these cases, which can be established
using the sign of the interaction information.

1.1 Related Work

Protocols for consensus are well-studied in many different contexts with both Bayesian and non-
Bayesian agents. Many of these are in a growing field of social learning [20].

In some sense, the Bayesian update rule, also studied in this paper, is the most canonical
and natural update rule. The social learning literature concerning Bayesian agents typically asks
questions about how Bayesian agents, each endowed with some private information, can aggregate
their information using by public declarations. When agents can only take binary (or a small
number of) actions—often conceptualized as which of two products the agents is adopting—which
depend on their beliefs, it is often discovered that agents can herd whereupon agents collectively
have enough information to take more beneficial actions, but fail to do so [7, 6, 32]. Our setting is
different, because agents can act more then once. However, herding is essentially a false consensus
concerning a beneficial action. In our setting, we ask a similar question about when the protocol
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can get stuck before aggregating the information of the agents. Other models in this literature look
at agents embedded on networks [3, 27, 16] , that only generally announce binary information. We
do not consider a network structure as is often done in these works.

As already mentioned, prediction markets have also been analyzed in the context of Bayesian
agents [10, 25, 4]. We reprove one of the results of Chen et al. [10]. Like the result we reprove, these
works study the optimal strategies for agents. Kong and Schoenebeck [25] show that sometimes
even one bit of information can behave both like complements and substitutes: the agent would
like to release part of it immediately, but part of it last.

There is also a plethora of work studying non-Bayesian update rules and when consensus occurs
or fails to occur—especially in the context of networks. In this context it is sometimes not clear,
whether agents are “learning” or just trying to arrive at a consensus (e.g. through imitation).
Typically, we think of agents as learning when there is a ground truth to which they are attempting
to converge. However, because the agents are non-Bayesian, the dynamics typically do not depend
on the existence of a ground truth, and this part of the model is often not explicitly specified.

In these models, often the agents have a discrete state [30, 28, 18]. In such a case, to interpret
the state as a belief, one has to rule out the granular beliefs of Bayesian reasoning. When these
models have continuous states, especially when the states are the [0, 1] interval, it is easy to interpret
the state as a belief. However, the updates are based on some heuristic instead of being Bayesian.
For example, in the popular Degroot model [12], agents update their state as a weighted average
of their and their neighbors’ signals in the previous round, and thus imitate their neighbors as
opposed to the more delicate Bayesian reasoning. In particular, this update rule implies correlation
neglect [14]—agents do not reason about how the information of their neighbors is linked. Other
models introduce edge weights that update[13, 18], stubborn agents [34, 17], and other modifica-
tions to more realistically model certain settings both intuitively and empirically [24]. As models
become more attuned to predicting real agents, they also become more ad hoc and less canonical
as the proliferation of models illustrates. Instead, our paper operates in the most canonical model,
understanding that this an imperfect model of human behavior, but nonetheless, can shed light on
what does happen by aiding our understanding in this idealized model.

Independent Work Frongillo et al. [15] independently prove that agreement implies aggregation
of agents’ information under similar special information structures. However, the analyses are very
different. Frongillo et al. [15] employ a very delicate analysis that allows the results to be extended
to general divergence measures. Our information-theoretic framework’s analysis provides a direct,
short, and intuitive proof.

2 Preliminaries

2.1 Complements and Substitutes

Following [10] we will be interested in two main types of signals.

Definition 2.1. (Substitutes and Complements [10]) W denotes the event to be predicted.

Substitutes Agents’ private information X1, X2, · · · , Xn are independent conditioning on W .

Complements Agents’ private information X1, X2, · · · , Xn are independent.

4



2.2 Information Theory Background

This section introduces multiple concepts in information theory that we will use to analyze the
consensus protocol and, later, prediction markets.

Definition 2.2 (Entropy [31]). We define the entropy of a random variable X as

H(X) := −
∑
x

Pr[X = x] log(Pr[X = x]).

Moreover, we define the conditional entropy of X conditioning on an additional random variable
Z = z as

H(X|Z = z) := −
∑
x

Pr[X = x|Z = z] log(Pr[X = x|Z = z])

We also define the conditional entropy of X conditioning on Z as

H(X|Z) := EZ [H(X|Z = z)].

The entropy measures the amount of uncertainty in a random variable. A useful fact is that
when we condition on an additional random variable, the entropy can only decrease. This follows
immediately from the concavity of log.

Definition 2.3 (Mutual information [31]). We define the mutual information between two random
variables X and Y as

I(X;Y ) :=
∑
x,y

Pr[X = x, Y = y] log

(
Pr[X = x, Y = y]

Pr[X = x] Pr[Y = y]

)
Moreover, we define the conditional mutual information between random variables X and Y con-
ditioning on an additional random variable Z = z as

I(X;Y |Z = z) :=
∑
x,y

Pr[X = x, Y = y|Z = z] log

(
Pr[X = x, Y = y|Z = z]

Pr[X = x|Z = z] Pr[Y = y|Z = z]

)
We also define the conditional mutual information between X and Y conditioning on Z as

I(X;Y |Z) := EZI(X;Y |Z = z).

Fact 2.4 (Facts about mutual information). [11]

Symmetry: I(X;Y ) = I(Y ;X)

Relation to entropy: H(X)−H(X|Y ) = I(X;Y ), H(X|Z)−H(X|Y,Z) = I(X;Y |Z)

Non-negativity: I(X;Y ) ≥ 0

Chain rule: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X)

Monotonicity: when X and Z are independent conditioning on Y , I(X,Z) ≤ I(X;Y ).
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Figure 1: Venn diagram

The first two facts follows immediately from the formula. The third follows from the second,
and the fact that conditioning can only decreases entropy. The first three allow one to understand
mutual information as the amount of uncertainly of one random variable that is eliminated once
knowing the other (or vice versa). The chain rule follows from the second because I(X,Y ;Z) =
H(Z) − H(Z|X,Y ) = H(Z) − H(Z|Y ) + H(Z|Y ) − H(Z|X,Y ) = I(X;Z) + I(Y ;Z|X). The
last property follows from the fact that I(X;Y,Z) = I(X;Y ) which can be proved by algebraic
calculations and the chain rule which says I(X;Y,Z) = I(X;Z) + I(X;Y |Z).

The interaction information, sometimes called co-information, is a generalization of the mutual
information for three random variables.

Definition 2.5 (Interaction information [33]). For three random variables X, Y and Z, we define
the interaction information among them as

I(X;Y ;Z) := I(X;Y )− I(X;Y |Z)

Fact 2.6 (Symmetry [33]). I(X;Y ;Z) = I(Y ;X;Z) = I(X;Z;Y )

This can be verified through algebraic manipulations.

Venn Diagram As shown in figure 1, random variables X,Y, Z can be visualized as sets H(X), H(Y ), H(Z)
where the set’s area represents the uncertainly of the random variable, and:

Mutual Information: operation “;” corresponds to intersection “ ∩” and is symmetric;

Joint Distribution: operation “,” corresponds to union “ ∪” and is symmetric;

Conditioning: operation “ |” corresponds to difference “ |”;

Disjoint Union: operation “ +” corresponds to the disjoint untion “ t”;

For example, H(X,Y ) = H(X) + H(Y |X) because the LHS is H(X) ∪ H(Y ). Note that the
interaction information corresponds to the center of the Venn diagram in figure 1. However, despite
the intuition that area is positive, the interaction information is not always positive.
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3 Information-theoretic Consensus

We will analyze the Round Robin Protocol, a multi-agent generalization of the Agreement Protocol,
and use the information-theoretic framework to show that 1) consensus is quickly achieved; and
2) the sub-additivity of “substitutes” guarantees that approximate consensus implies approximate
aggregation. We first introduce the general communication protocol where agents make declarations
in a round robin fashion.

Definition 3.1 (Round Robin Protocol). Agents A = {1 . . . , n} share a common prior over the
n+ 1 random variables W , X1, X2, ..., Xn. Let W denote the event to be predicted, and for i ∈ A,
let Xi = xi denote agent i’s private message and its realization.

In each round, the agents take turns sequentially announcing additional information. In round
t, agent 1 announces ht1 and then in sequence, for i ∈ {2, . . . , n}, agent i announces hti. The first
round is round 1 and then rounds proceed indefinitely.

Let Ht
i denote the history of declarations before agent i announces hti in round t. Thus Ht

1 =
h1

1, h
1
2, . . . , h

t−1
n and for i = 2 to n, Ht

i = h1
1, h

1
2, . . . , h

t
i−1. Also, it will be convenient to let Ht =

h1
1, h

1
2, . . . , h

1
n, . . . , h

t
1, h

t
2, . . . , h

t
n denote the history of the first t rounds, and to interpret Ht

n+1 as
Ht+1

1 . Note that Ht = Ht+1
1 = Ht

n+1.
Let pti = Pr[W |Xi = xi, H

t
i ] denote the belief of agent i as she announces hti in round t. Let

qti = Pr[W |Ht
i ] denote the belief of an outside observer (who knows the common prior but does not

have any private message) as agent i announces hti in round t.
It is required that hti be well defined based on Xi and Ht

i , that is, it should be defined on the
filtration of information released up to that time.

We state an information-theoretic definition for approximate consensus. With this definition
the analysis of consensus time and false consensus becomes intuitive.

Definition 3.2 (ε-MI consensus). Round t achieves ε-MI consensus if for all i,

I(Xi;W |Ht) ≤ ε.

We define the amount of information aggregated regarding W at any time as the mutual in-
formation between W and the historical declarations, I(H;W ). The following lemma shows two
intuitive properties: 1) the amount of information aggregated is non-decreasing and 2) the growth
rate depends on the marginal value of the agent’s declaration.

Lemma 3.3. (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,

Non-decreasing Historical Information any agent’s declaration does not decrease the amount
of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.
Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event conditioning
on the history, i.e.,

I(Ht
i+1;W )− I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

These two properties directly follow from the properties of mutual information. We defer the
detailed proof to Appendix A.
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Figure 2: Standard Consensus Protocol

3.1 Two Consensus Protocols

We first introduce the natural Standard Consensus Protocol, which is the Agreement Protocol when
there are two agents. We then introduce a discretized version of the protocol.

Definition 3.4 (Standard Consensus Protocol). The Standard Consensus Protocol is just the
Round Robin Protocol where hti = pti. That is, each agent announces her belief.

In the above protocol, agents announce their beliefs. However, the number of bits required for
belief announcement may be unbounded. Here we follow Aaronson [1] and both focus on predicting
binary events (occurs: 1; does no occur: 0) and discretize the protocol as follows: each agent
announces a summary of her current belief by comparing it to the belief of a hypothetical outsider
who shares the same prior as the agents, sees all announcements, but does not possess any private
information. The agent announces “high”, if her belief that the probability the event will happen
is far above the outsider’s current belief; “low”, if her belief is far below the outsider’s current
belief; and “medium” otherwise. Note that all the agents have enough information to compute the
outsider belief.

Definition 3.5 ( ε-Discretized Consensus Protocol). Fix ε > 0. Let DKL(p, q) = p log p
q + (1 −

p) log 1−p
1−q be the KL divergence between a Bernoulli distribution (1 − p, p) and a Bernoulli distri-

bution (1− q, q). We use pti to denote agent i’s belief for W = 1 as she announces at round t and

qti to denote the hypothetical outsider’s belief for W = 1 at that time. We define qti > qti so that

DKL(qti , q
t
i) = ε

4 , and qti < qti so that DKL(qti , q
t
i) = ε

4 . Then agent i will announce a summary of
her belief

hti =


high pti > qti
low pti < qti
medium otherwise.

8



Figure 3: Discretized Consensus Protocol

Note that each agent’s output can be mapped to R by mapping high, medium, and low to 1, 0, and
-1 respectively.

This definition has the same conceptual idea as Aaronson [1], while the qti and qti are carefully
designed so that informative private messages lead to informative declarations. We will state this
property formally in the next section.

3.2 Quick Consensus

In this section we show that both the Standard Consensus Protocol and the Discretized Consensus
Protocol quickly reach ε-MI consensus. This result will not hold for general Round-Robin protocols.
For example, agents might not announce any useful information.3

Lemma 3.3 shows that the amount of aggregated information increases and the growth rate
is the marginal value of the agent’s declaration. Disagreement implies a ≥ ε marginal value of
the agent’s private information. We will state Lemma 3.6 which shows that, in a case like this,
where some agent has valuable private information, in the two defined protocols, this agent makes
an informative declaration that will substantially increase the amount of aggregated information.
This almost immediately leads to the quick consensus result because the total amount of aggregated
information is bounded.

Lemma 3.6. (Informative Declaration). For all i and t and all possible histories Ht
i , when agent

i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ε, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ε;
3The reader has likely experienced a meeting like this.
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Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥

1

64
ε3

1

log 1
E−1( ε

2
)

where E−1(ε) ≤ 0.5 and is the solution of x log x+ (1− x) log(1− x) = −ε.

The above result in the Discretized Consensus Protocol requires delicate analysis (found in
Appendix A) and is mainly based on the fact that the mutual information is the expected KL
divergence.

Theorem 3.7 (Convergence rate). The Standard Consensus Protocol achieves ε-MI consensus
in at most 2

ε rounds. The Discretized Consensus Protocol achieves ε-MI consensus in at most
512
ε3

log 1
E−1( 1

4
ε)

rounds.

Proof of Theorem 3.7. Because mutual information is monotone, the amount of information aggre-
gated I(Ht;W ) is a non-decreasing function with respect to t. Moreover, we will show that when
a round does not achieve ε-MI consensus, I(Ht;W ) will have a non-trivial growth rate.

Formally, when a round t does not achieve ε-MI consensus, there exists an agent i such that
I(Xi;W |Ht) > ε. At round t+ 1, the expected amount of aggregated information increases at least
the marginal value of the historical declarations Ht+1

i before agent i announces at round t+ 1, plus
the marginal value of agent i’s declarations ht+1

i . This intuitively follows from monotonicity and
the chain rule, and can be derived formally as follows:

I(Ht+1;W )− I(Ht;W ) ≥I(Ht+1
i+1 ;W )− I(Ht;W ) (Ht+1 contains Ht+1

i+1 )

=I(ht+1
i , Ht+1

i ;W )− I(Ht;W ) (Ht+1
i+1 = (Ht+1

i , ht+1
i ))

=I(ht+1
i , Ht+1

i ;W |Ht)
(Based on Chain Rule and the fact that Ht+1

i contains Ht)

=I(Ht+1
i ;W |Ht) + I(ht+1

i ;W |Ht+1
i )

(Again, Based on Chain Rule and the fact that Ht+1
i contains Ht)

Thus, to analyze the growth rate, we need to show that when agent i’s private information is
informative, I(Xi;W |Ht) > ε, either agent i’s declaration ht+1

i is informative, or the historical
declarations Ht+1

i before agent i announces at round t+1 is informative, conditioning the historical
declarations Ht before round t+ 1.

When I(Xi;W |Ht) > ε, we have I(Xi, H
t+1
i ;W |Ht) > ε as well. Moreover, because

I(Xi, H
t+1
i ;W |Ht) = I(Ht+1

i ;W |Ht) + I(Xi;W |Ht+1
i )

(Chain Rule), either 1) I(Ht+1
i ;W |Ht) > ε

2 or 2) I(Xi;W |Ht+1
i ) > ε

2 .
In case 1), the historical declarations Ht+1

i is informative conditioning on Ht and we have the
growth rate I(Ht+1;W )− I(Ht;W ) ≥ I(Ht

i ;W |Ht) > ε
2 .

In case 2), for the Standard Consensus Protocol Lemma 3.6 shows that I(ht+1
i ;W |Ht+1

i ) =
I(Xi;W |Ht+1

i ) > ε
2 because agent i declares her Bayesian posterior as ht+1

i . This again guar-
antees a > ε

2 growth rate. For the Discretized Consensus Protocol, Lemma 3.6 shows that
I(ψ(Xi);W |Ht+1

i ) ≥ 1
512ε

3 1
log 1

E−1( ε4 )

.

Finally, for all t, I(Ht;W ) ≤ I(X1, X2, ..., Xn;W ) ≤ H(W ) ≤ log2 2 = 1. Therefore, with
at most 1

ε rounds, the Standard Consensus Protocol achieves ε-MI consensus, and with at most
512
ε3

log 1
E−1( 1

4
ε)

rounds, the Discretized Consensus Protocol achieves ε-MI consensus.
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3.3 No False Consensus with Substitutes

We present our main result in this section: when agents’ information is substitutes, there is no
false consensus. A key ingredient is a subadditivity property for substitutes. This result applies to
general Round Robin protocols, and, in particular, is not restricted to the two specified consensus
protocols.

In the ideal case, if we are given all agents’ private information explicitly, the amount of in-
formation we obtain regarding W is I(X1, X2, · · · , Xn;W ). When agents follow the protocol for t
rounds, the amount of information we obtain regarding W is I(Ht;W ). We care about the “loss”,
I(X1, X2, · · · , Xn;W )− I(Ht;W ).

In the Standard Consensus Protocol under substitutes structure complete agreement is obtained
after one round. The reason is that in such a situation, the information of each agent can be fully
integrated after previous agents all precisely report their beliefs (see Appendix B). The following
theorem shows a much more general results: under the substitutes structure every protocol has the
no false consensus property.

Theorem 3.8 (Convergence ⇒ Aggregation). For all priors where agents’ private information is
substitutes, if agents achieve ε-MI consensus after t rounds, then the amount of information that
has not been aggregated I(X1, X2, · · · , Xn;W )− I(Ht;W ) is bounded by nε.

We will use the following Lemma in the proof:

Lemma 3.9 (Subadditivity for substitutes). When X and Y are independent conditioning on Z:

Nonnegative Interaction Information I(X;Y ;Z) ≥ 0;

Conditioning Reduces Mutual Information I(Y ;Z|X) ≤ I(Y ;Z);

Subadditivity of Mutual Information I(X,Y ;Z) ≤ I(X;Z) + I(Y ;Z).

Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≤
n∑
i=1

I(Xi;W ).

Proof of Lemma 3.9. Note that I(X;Y |Z) = 0 because X and Y are independent after conditioning
on Z.

Nonnegative Interaction Information follows because I(X;Y ;Z) = I(X;Y ) − I(X;Y |Z) =
I(X;Y ) ≥ 0.

Next I(Y ;Z|X) ≥ I(Y ;Z) follows after adding I(Y ;Z|X) to each item in the following deriva-
tion: 0 ≤ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z) − I(Y ;Z|X) where the inequality is by nonnegative
interaction information, the first equality is from the symmetry of interaction information, and the
second equality is from the definition of interactive information.

Next, subadditivity immediately follows because: I(X,Y ;Z) = I(X;Z)+I(Y ;Z|X) ≥ I(X;Z)+
I(Y ;Z) where the equality is from the chain rule and the inequality is because conditioning reduces
mutual information.

The moreover follows by using induction and subadditivity.

We require an additional observation that no history will disrupt the special information struc-
ture.
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Observation 3.10. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn are
substitutes (complements), they are still substitutes (complements) conditioning on any history.

We defer the proof to Appendix A. Aided by the above information-theoretic properties, we are
ready to show our direct and short proof.

Proof for Theorem 3.8. If after t rounds the Round Robin Protocol achieves ε-MI consensus, then,
by definition, for all i,

I(Xi;W |Ht) ≤ ε.

After t rounds, the amount of information we have aggregated is I(Ht;W ). We can aggregate at
most I(X1, X2, ..., Xn;W ) information when all agents’ private information is revealed explicitly.
Thus, the amount of information that has not been aggregated is

I(X1, X2, ..., Xn;W )− I(Ht;W )

=I(X1, X2, ..., Xn, H
t;W )− I(Ht;W ) (The history Ht is a function of X1, . . . , Xn)

=I(X1, X2, ..., Xn;W |Ht) (Chain rule)

≤
∑
i

I(Xi;W |Ht) ≤ nε (Sub-additivity)

The inequality is from subadditivity: note that by Observation 3.10 because X1, . . . , Xn are
independent after conditioning on W , X1, . . . , Xn are still independent after conditioning on H.

4 Illuminating Prediction Markets with Information Theory

4.1 Prediction Market Overview

A prediction market is a place to trade information. For example, a market maker can open a
prediction market for the next presidential election with two kinds of shares, D-shares and R-
shares. If Democrats wins, each D-share pays out one dollar but R-shares are worth nothing. If
Republicans win, each R-share is worth one dollar and D-shares are worth nothing. People reveal
their information by trading those shares. For example, if an agent believes Democrats will win
with probability 0.7, he should buy D-shares as long as its price is strictly lower than $ 0.7. If
people on balance believe that the current price is less than the probability with which the event
will occur, the demand for shares (at that price) will outstrip the supply, driving up the price.
Similarly if the price is too high they will buy the opposite share as the prices should sum to 1
since exactly one of the two will payout 1.

Hanson [22, 23] proposes a model of prediction markets that is theoretically equivalent to the
above which we describe below. Instead of buying/selling shares to change the price, the agents
simply change the market price directly. We define this formally below.

4.2 Preliminaries for Prediction Markets

We introduce prediction markets formally and relate them to the Standard Consensus Protocol.
We focus on prediction markets which measure the accuracy of a prediction using the logarithmic
scoring rule.

12



Definition 4.1. (Logarithmic scoring rule [21]) Fix an outcome space Σ for a signal σ. Let q ∈ ∆Σ

be a reported distribution.
The Logarithmic Scoring Rule maps a signal and reported distribution to a payoff as follows:

L(σ,q) = log(q(σ)).

Definition 4.2 (Market scoring rule [22, 23, 8]). We build a market for random variable W as
follows: the market sets an initial belief p0 for W . A sequence of agents is fixed. Activity precedes
in rounds. In the ith round, the corresponding agent can change the market price from pi to pi+1,
and will be compensated L(W,pi+1)− L(W,pi) after W is revealed.

Let the signal σ be drawn from some random process with distribution p ∈ ∆Σ.
Then the expected payoff of the Logarithmic Scoring Rule is:

Eσ←p[L(σ,q)] =
∑
σ

p(σ) log q(σ) = L(p,q) (1)

It is well known (and easily verified) that this value will be uniquely maximized if and only if
q = p. Because of this, the logarithmic scoring rule is called a strictly proper scoring rule.

Agent Strategies We would like to require agents to commit to rational strategies. In such
a case, while agents may hide information, they will not try to maliciously trick other agents by
misreporting their beliefs. Formally, we assume that each agent i plays a strategy of the following
form: they change the market price to Pr[W = w|Sh(Xi), H = h] where H is the history and Sh is
a possibly random function of Xi that is allowed to depend on the history. That is, she declares the
rational belief conditioning on the realization of Sh(Xi) and what she can infer from the history.

A natural question is whether we should expect fully strategic agents to behave maliciously
rather than just hiding information. Previous work [4] studies a restricted setting and shows that
misreporting or tricking other agents does not happen in equilibrium even when agents are allowed
to.

Two additional observations: 1) the agent’s strategy might not actually reveal Sh(Xi) because
it could be that Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′i), H = h] for xi 6= x′i. 2) If the
agents’ always use Sh(Xi) = Xi, and update the market price based on their entire message, then
this essentially reduces to the Standard Consensus Protocol. In this case, the agents are playing
myopically and optimizing their payment at each step.

4.3 Expected Payment = Conditional Mutual Information

Amazingly, we show that the expected payment to an agent, is just a function of the conditional
mutual information of the random variables that he reveals. This connects the expected payment
in prediction markets and amount of information.

Lemma 4.3 (Expected payment = conditional mutual information). In a prediction market with
the log scoring rule, the agent who changes the belief from Pr[W |H] to Pr[W |X = x,H] for all x
will be paid I(X;W |H) in expectation.
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Proof of Lemma 4.3. Fix any history H:

EX,W |HL(W,Pr[W |H,X])− L(W,Pr[W |H])

=
∑
W,X

Pr[W,X|H] log

(
Pr[W |H,X]

Pr[W |H]

)
= I(X;W |H)

Interpretation of Previous Results When agents participate in the market one by one and
update the market price to Pr[W = w|Sh(Xi), H = h] , the list of market prices can be interpreted
as running a Standard Consensus Protocol. The connection between the expected payment and
conditional mutual information leads to the following interpretations.

ε-MI Consensus If round t achieves ε-MI consensus, the expected payment of any particular
agent obtained by changing the market price to her Bayesian posterior is at most ε.

Quick Consensus For any round t that does not achieve ε-MI consensus, in round t+ 1 at least
one agent will obtain at least an ε payment in expectation. However, Lemma 4.3 also implies
that the total expected payment in the prediction market is bounded by the entropy of W .
Thus, at most H(W )

ε rounds are needed for ε-MI consensus in the prediction market.

No False Consensus with Substitutes Even when the market price has noise and agents only
reveal a summary of their beliefs by participating in the markets, if round t achieves ε-MI
consensus, no agent has information with value greater than ε. Then subadditivity implies
that currently, the expected payment of all agents’ private information together is bounded
by nε, thus is not valuable.

4.4 Strategic Revelation

This section will use the above information-theoretic properties to provide an alternative proof for
the results proved in Chen et al. [10].

Definition 4.4 (Alice-Bob-Alice (ABA)). Alice and Bob hold private information XA, XB related
to event W respectively. There are three stages. Alice can change the market belief at stage 1 and
stage 3. Bob can change the market belief at stage 2.

We assume that the strategic players can hide their information but not behave maliciously.
A strategy profile is a profile of the players’ strategies. Moreover, like the original paper, we
assume that an agent not only reports their belief Pr[W = w|Sh(Xi), H = h] but also reveals their
information Sh(Xi).

4

Proposition 4.5 (ABA & Information structures [10]). In prediction market based on logarithmic
scoring rule,

Substitutes when Alice and Bob’s private information are substitutes, the strategy profile where
Alice reveals XA at stage 1 and Bob reveals XB at stage 2 is an equilibrium;

4This addresses knife-edge situations where Pr[W = w|Sh(xi), H = h] = Pr[W = w|Sh(x′i), H = h] for Sh(xi) 6=
Sh(x

′
i). That is, in the XOR case, if Bob reveals his full signal, then he will not only report the belief as 1

2
but also

announce his full signal.
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Complements when Alice and Bob’s private information are complements, the strategy profile
where Bob reveals XB at stage 2 and Alice reveals XA at stage 3 is an equilibrium.

We will use the following lemma, which is a direct analogue of Lemma 3.9

Lemma 4.6. (Superadditivity for complements). When X and Y are independent:

Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;

Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);

Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).

Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

The proof is directly analogous to that of Lemma 3.9 and we defer it to Section A.

Proof of Proposition 4.5. First, for Bob, to maximize his expected payment, it’s always optimal to
reveal XB in stage 2 because Bob is paid for his conditional mutual information which is maximized
by full revelation. It’s left to analyze Alice’s optimal strategy given that Bob reveals XB in stage
2.

If Alice reveals all her information either at the first stage or at the third stage, we only
need to compare I(XA;W ) and I(XA;W |XB). But I(XA;W ) − I(XA;W |XB) = I(XA;XB;W ).
Thus, the results immediately follow from the fact that the sign of the interaction information is
nonnegative/nonpositive when the information are substitutes/complements.

It’s left to consider the general strategy where Alice reveals part of her information at stage
1, say S1(XA), and part of her information at stage 3, say S3(XA). In this case, she will be paid
I(S1(XA);W ) + I(S3(XA);W |XB, S1(XA)) according to Lemma 4.3.

First, it is optimal for Alice to reveal all her remaining information at the last stage since
I(S3(XA);W |XB, S1(XA)) ≤ I(XA;W |XB, S1(XA)) due to monotonicity of mutual information.
Thus, Alice will reveal S3(XA) = XA.

Under the substitutes structure, Alice’s expected payment in stage 3 is

I(XA;W |XB, S1(XA)) ≤ I(XA;W |S1(XA))

because 1) fixing any S1(XA), XB and XA are still independent conditioning on W thus are
substitutes (Observation 3.10) and 2) conditioning decreases mutual information for substitutes.
Therefore,

I(S1(XA);W ) + I(XA;W |XB, S1(XA))

≤I(S1(XA);W ) + I(XA;W |S1(XA)) (conditioning decreases mutual information)

=I(XA, S1(XA);W ) = I(XA;W ). (chain rule)

Thus I(XA;W ) upper bounds Alice’s total payment, but this is what she receives if she reveals
all her information in the first round.

Under complements structure, Alice’s expected payment in stage 1 is

I(S1(XA);W ) ≤ I(S1(XA);W |XB)
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because 1) S1(XA) and XB are independent thus are complements and 2) conditioning decreases
mutual information for complements. Therefore,

I(S1(XA);W ) + I(XA;W |XB, S1(XA))

≤I(S1(XA);W |XB) + I(XA;W |XB, S1(XA)) (conditioning increases mutual information)

=I(XA, S1(XA);W |XB) = I(XA;W |XB) (chain rule)

Thus I(XA;W |XB) upper bounds Alice’s total payment, but this is what she receives if she
reveals all her information in the second round.

5 Conclusion and Discussion

We have developed an information theoretic framework to analyze the aggregation of information
both in the Round Robin protocol and prediction markets. We showed that when agents’ pri-
vate information about an event is independent conditioning on the event’s outcome, then, when
the agents are in near consensus in any Round Robin Protocol, their information is nearly aggre-
gated. We additionally reproved 1) the Standard/Discretized Consensus Protocol quickly converges
[Aaronson 2005] in the information-theoretic framework; and 2) results from Chen et al. [10] on
when prediction market agents should release information to maximize their payment.

Our analysis of the Alice Bob Alice prediction market straightforwardly extends to any sequence
of an arbitrary number of agents. By applying the same argument, it is easily shown that: 1) every
agent revealing all their information immediately is an equilibrium in the substitutes case; and 2)
every agent revealing all their information as late as possible is an equilibrium in the complements
case.

One possible extension is to study similar protocols when the agents are on networks. This
was already pioneered by Parikh and Krasucki [29] and also examined by Aaronson [1] who used
a spanning tree structure to show that a particular agreement protocol converges quickly. Perhaps
using the tools of this paper, one could analyze more general protocols.

Another possible extension is to look at generalizations of Shannon mutual information. For
example, starting with any strictly proper scoring rule one can develop a Bregman mutual informa-
tion [26] and ask whether our proofs will go through using this new mutual information definition.
When using the logarithmic scoring rule, one arrives at the standard Shannon mutual information
used in this paper. However, different scoring rules are possible as well. All such mutual informa-
tions will still obey the chain rule and non-negativity. As such, generalized versions of Lemma 3.3
will hold. However they may not be symmetric (and similarly their interactive information may
not be symmetric). Thus, our techniques cannot be straightforwardly adjusted to reprove Theo-
rem 3.8 or Proposition 4.5 in this manner. So while this generalizes our framework, finding a good
application remains future work.

We hope that our framework can analyze additional settings of agents aggregating information.
One example would be more inclusive classes of agent signals than in the settings of this paper.
However, perhaps our framework could also be applied to analyze broader settings such as social
learning [20] or rewards for improvements in machine learning outcomes [2], where either individ-
ually developed machine learning predictors are eventually combined in ensembles or the training
data is augmented by individually procured training data.
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A Additional Proofs

Lemma 3.3. (Information-theoretic Properties of the Protocol). In the Round Robin Protocol,

Non-decreasing Historical Information any agent’s declaration does not decrease the amount
of information so

I(Ht
i+1;W ) ≥ I(Ht

i ;W ), for all i ∈ A, t ∈ N.

Therefore, the information does not decrease after each round:

I(Ht+1;W ) ≥ I(Ht;W ), for all t ∈ N.

Growth Rate = Marginal Value the change in the historical information is the conditional
mutual information between the acting agent’s declaration and the predicted event conditioning
on the history, i.e.,

I(Ht
i+1;W )− I(Ht

i ;W ) = I(hti;W |Ht
i ), for all i ∈ A, t ∈ N.

Proof of Lemma 3.3. Because the (conditional) mutual information is always non-negative, once
we have established the second property of the growth rate equaling the marginal value the first
property of non-decreasing information follows immediately. Thus, we start by proving the second
property, the growth rate equals the marginal value.

I(Ht
i+1;W )− I(Ht

i ;W ) = I(Ht
i+1;W |Ht

i ) = I(hti;W |Ht
i ). (2)

The first equality holds due to chain rule and the fact that Ht
i+1 contains Ht

i . The second
equality holds due to the fact that Ht

i+1 = (Ht
i , h

t
i).

Lemma 3.6. (Informative Declaration). For all i and t and all possible histories Ht
i , when agent

i’s private information is Xi and I(Xi;W |Ht
i ) ≥ ε, in the

Standard Consensus Protocol we have

I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ε;

Discretized Consensus Protocol we have

I(hti;W |Ht
i ) ≥

1

64
ε3

1

log 1
E−1( ε

2
)

where E−1(ε) ≤ 0.5 and is the solution of x log x+ (1− x) log(1− x) = −ε.

Proof of Lemma 3.6. In the Standard Consensus protocol, I(hti;W |Ht
i ) = I(Xi;W |Ht

i ) ≥ ε because
agent i declares her Bayesian posterior as hti = pti = Pr[W |Xi = x,Ht

i = h].

Discretized Consensus Protocol Proof Summary: We will first obvserve that if the average over
all possible histories I(Xi;W |Ht

i ) ≥ ε, then there must be a set of histories with non-trivial weights
such that I(Xi;W |Ht

i = h) > ε
2 . Fixing a history h, the summary function maps the agent’s private

information to three signals: high, low, and medium. This classifies the expectations conditioning
on the private information x into three categories: the high set, the low set, and the medium

20



set. We will first show that when the private information is informative, because the medium
set’s expectations are close to the outsider’s current expectations, the medium set’s contribution to
I(Xi;W |Ht

i = h) will not be significant. Thus either the high set or the low set contributes a lot.
We then prove that after compression, the high set and the low set will still preserve a non-trivial
amount of information. We will repeatedly use the fact that the mutual information is the expected
KL divergence in the analysis.

We first show that if I(Xi;W |Ht
i ) ≥ ε then, Prh[I(Xi;W |Ht

i = h) > ε/2] ≥ ε/2. This follows
from Markov’s Inequality applied to 1 − I(Xi;W |Ht

i = h) which is always non-negative because
I(Xi;W |Ht

i = h) ≤ H(W ) ≤ 1. Formally,

Pr
h

[I(Xi;W |Ht
i = h) ≤ ε/2] = Pr

h
[1− I(Xi;W |Ht

i = h) ≥ 1− ε/2]

≤1− I(Xi;W |Ht
i )

1− ε/2
(Markov’s Inequality)

≤ 1− ε
1− ε/2

≤ 1− ε/2

We now fix any history h where I(Xi;W |Ht
i = h) ≥ ε/2. We would like to show that

I(hti;W |Ht
i = h) ≥ ε2

32

1

− log2E
−1(1

2ε)
(3)

because then

I(hti;W |Ht
i )

≥
∑

I(Xi;W |Ht
i=h)≥ ε

2

I(hti;W |Ht
i = h) · Pr[Ht

i = h]

≥ ε
2

32

1

− log2E
−1( ε2)

· Pr
h

[
I(Xi;W |Ht

i = h) ≥ ε

2

]
≥ ε

2

32

1

− log2E
−1( ε2)

· ε
2

=
1

64
ε3

1

− log2E
−1( ε2)

and this proves the lemma.
Before showing Equation 3, for notational clarity, we define

ψ(Xi) = hti =


high pti > qti
low pti < qti
medium otherwise.

Notice that once we fix a history, ψ(Xi) = hti is a function of Xi. Recall that we have defined

qti > qti so that DKL(qti , q
t
i) = ε

4 , and qti < qti so that DKL(qti , q
t
i) = ε

4 .

Additionally, let q be a shorthand for qti = Pr[W = 1|Ht
i = h]. Let px = Pr[W = 1|Ht

i =
h,Xi = x] be the Bayesian posterior for W = 1 conditioning on that agent i receives Xi = x.
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Let wx = Pr[Xi = x|Ht
i = h] be the prior probability that agent receives Xi = x. Let phi =

Pr[W = 1|Ht
i = h, ψ(Xi) = high] be the Bayesian posterior for W = 1 conditioning on that the

agent i announces ‘high’. Let whi = Pr[ψ(Xi) = high|H t
i = h] be the prior probability that agent i

announces ‘high’. Analogously, we define plo, wlo (low), pme, and wme (medium).
Our goal in Equation 3 can then be restated as

I(ψ(Xi);W |Ht
i = h) ≥ ε2

32

1

− log2E
−1( ε2)

.

Notice that:

I(Xi;W |Ht
i = h) (4)

=
∑
x

Pr[Xi = x|Ht
i = h]

∑
w

Pr[W = w|Xi = x,Ht
i = h] log2

Pr[W = w|Xi = x,Ht
i = h]

Pr[W = w|Ht
i = h]

=
∑
x

Pr[Xi = x|Ht
i = h]DKL(px, q)

=
∑
x

wxDKL(px, q) (5)

We can partition all x into three categories, ψ(x) = high, low,medium. Because when ψ(x) =
medium, DKL(px, q) ≤ ε

4 , when I(X;W |Ht
i = h) ≥ ε

2 , we have∑
ψ(x)=high,low

wxDKL(px, q) ≥
ε

4
.

Thus either the low set or the high set contributes ≥ ε
8 . Without loss of generality, we assume∑

ψ(x)=highwxDKL(px, q) ≥ ε
8 .

Recall our goal is to show that given Equation 5 was greater than ε/2 then the following is
large:

I(ψ(Xi);W |Ht
i = h) =

∑
ψ(Xi)∈{lo,me,hi}

wψ(Xi) ·DKL(pψ(Xi), q) ≥ whi ·DKL(phi, q). (6)

We can show this is large by lower-bounding both whi and DKL(phi, q).
First, we will lower bound whi by upper bounding DKL(px, q). Note that

DKL(p, q) ≤ max{log
1

q
, log

1

1− q
} = max{− log q,− log 1− q}

by recalling the formula DKL(p, q) = p log p
q + (1−p)1−p

1−q . To upper bound this, we must show that

q is not too close to 0 or 1. Because q log2
1
q + (1− q) log2

1
1−q = I(W ;W |Ht

i = h) ≥ I(X;W |Ht
i =

h) ≥ 1
2ε, we have E−1( ε2) ≤ q ≤ 1− E−1( ε2). This gives us that DKL(px, q) ≤ − log2E

−1( ε2).
We assumed that

∑
ψ(x)=highwx ·DKL(px, q) ≥ 1

8ε, so we have:

whi =
∑

ψ(x)=high

wx ≥
ε

8

1

− log2E
−1( ε2)

.

Next, we lower bound DKL(phi, q). DKL(phi, q) ≥ ε
4 because for any x where ψ(x) = high, we

have that px ≥ q and q was defined so that DKL(q, q) = ε
4 and for any q′ > q, DKL(q′, q) > ε

4 .
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Combining with Equation 6 we are now done because

I(ψ(Xi);W |Ht
i = h) ≥ whi ·DKL(phi, q) ≥

ε2

32

1

− log2E
−1( ε2)

Lemma 4.6. (Superadditivity for complements). When X and Y are independent:

Nonpositive Interaction Information I(X;Y ;Z) ≤ 0;

Conditioning Increases Mutual Information I(Y ;Z|X) ≥ I(Y ;Z);

Superadditivity of Mutual Information I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).

Moreover, when X1, . . . , Xn are independent conditioning on W ,

I(X1, . . . , Xn;W ) ≥
n∑
i=1

I(Xi;W ).

Proof of Lemma 4.6. The proof is directly analogous to that of Lemma 3.9
First, I(X;Y ) = 0 because X and Y are independent.
Nonpositive Interaction Information follows because I(X;Y ;Z) = I(X;Y ) − I(X;Y |Z) =

−I(X;Y |Z) ≤ 0.
Next I(Y ;Z|X) ≥ I(Y ;Z) because 0 ≥ I(X;Y ;Z) = I(Y ;Z;X) = I(Y ;Z)− I(Y ;Z|X) where

the inequality is by nonpostive interaction information, the first equality is from the symmetry of
interaction information, and the second equality is from the definition of interactive information.

Third, superadditivity immediately follows because: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) ≥
I(X;Z) + I(Y ;Z) where the equality is from the chain rule and the inequality is because con-
ditioning increases mutual information.

The moreover follows by using induction and superadditivity.

Observation 3.10. For any fixed history in the Round Robin Protocol, when X1, X2, · · · , Xn are
substitutes (complements), they are still substitutes (complements) conditioning on any history.

Proof of Observation 3.10. Let D be some distribution over Σn where X1, X2, · · · , Xn are all in-
dependent. We first observe that after any “independent” restrictions on the realizations of
X1, X2, · · · , Xn, they are still independent. That is, fix Σ1, . . . ,Σn where Σi ⊆ Σ for all i ∈
{1, . . . , n} and let ξ ⊂ Σn be the event where xi ∈ Σi for all i ∈ {1, . . . , n}. Then conditioning on
ξ, X1, X2, · · · , Xn are independent as well.

For all (x1, x2, · · · , xn) ∈ Σ1 × Σ2 × · · ·Σn,

Pr
D

[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] =
PrD[X1 = x1, X2 = x2, · · · , Xn = xn]

PrD[ξ]

=
Πi PrD[Xi = xi]

Πi PrD[Xi ∈ Σi]

= Πi Pr
D

[Xi = xi|Xi ∈ Σi]
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Moreover, PrD[Xi = xi|Xi ∈ Σi] = PrD[Xi = xi|ξ] because

Pr
D

[Xi = xi|ξ]

=
PrD[Xi = xi, ξ]

PrD[ξ]

=
PrD[Xi = xi, ∀j 6= i,Xj ∈ Σi]

PrD[∀j,Xj ∈ Σj ]

=
PrD[Xi = xi]Πj 6=i PrD[Xj ∈ Σj ]

PrD[Xi ∈ Σi]Πj 6=i PrD[Xj ∈ Σj ]

=
PrD[Xi = xi]

PrD[Xi ∈ Σi]
Πj 6=i

PrD[Xj ∈ Σj ]

PrD[Xj ∈ Σj ]

=
PrD[Xi = xi]

PrD[Xi ∈ Σi]

= Pr
D

[Xi = xi|Xi ∈ Σi]

Therefore, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = Πi Pr[Xi = xi|ξ]. For all
(x1, x2, · · · , xn) /∈ Σ1×Σ2×· · ·Σn, we have Pr[X1 = x1, X2 = x2, · · · , Xn = xn|ξ] = 0 = Πi Pr[Xi =
xi|ξ]. Thus conditioning on ξ, X1, X2, · · · , Xn are independent as well.

In the Round Robin Protocol, after the first agent makes her declaration h1
1 which is a function

of the prior and X1, we have a restriction for X1. The second agent’s declaration h1
2 is a function of

the prior, h1
1 and X2. For fixed h1

1, we have an independent restrictions for X2, and so forth. Thus,
for any fixed history, we will have independent restrictions for X1, X2, ..., and Xn. Therefore, when
X1, X2, ..., and Xn are independent, they are still independent given any fixed history as well.

The same analysis shows that when X1, X2, ..., and Xn are independent conditioning any
W = w, they are still independent conditioning on both W = w and any fixed history.

B Complete Agreement

Observation B.1. For all priors where agents’ private information are substitutes, in the stan-
dard consensus protocol, after one round, every agent’s belief becomes Pr[W = 1|X1 = x1, X2 =
x2, · · · , Xn = xn].

The above observation shows that when agents’ private information are substitutes, complete
agreement is obtained after one round in the standard consensus protocol.

Proof. We use p0 to denote the prior Pr[W = 1]. We use `0 to denote the prior likelihood `0 =
Pr[W=1]
Pr[W=0]

The key observation is that there is a bijection `0 = p0
1−p0 between the probability and likelihood

space. To see it is a bijection, note that p0 = `
1+` .

In the standard consensus protocol, at round 1, agent 1 reports p1
1 = Pr[W = 1|X1 = x1]. But,

because there is a bijection between the probability and likelihood space, they might just report
the likelihood:

`11 =
Pr[W = 1|X1 = x1]

Pr[W = 0|X1 = x1]
= l0 ·

Pr[X1 = x1|W = 1]

Pr[X1 = x1|W = 0]
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The second equality follows from applying Bayes rule to the numerator and denominator.
Similarly, because the signals are conditionally independent:

`21 =
Pr[W = 1|X1 = x1, X2 = x2]

Pr[W = 0|X1 = x1, X2 = x2]

=
Pr[W = 1, X1 = x1, X2 = x2]

Pr[W = 0, X1 = x1, X2 = x2]

=
Pr[W = 1] Pr[X1 = x1|W = 1] Pr[X2 = x2|W = 1]

Pr[W = 0] Pr[X1 = x1|W = 0] Pr[X2 = x2|W = 0]
(Conditional independence)

=
Pr[W = 1|X1 = x1] Pr[X2 = x2|W = 1]

Pr[W = 0|X1 = x1] Pr[X2 = x2|W = 0]

=`11 ·
Pr[X2 = x2|W = 1]

Pr[X2 = x2|W = 0]
.

Analogously, for i ≥ 3, each agent i simply updates the likelihood by multiplying by Pr[Xi=xi|W=1]
Pr[Xi=xi|W=0] .

While the are actually reporting a probability, because of the bijection, it is equilivlent that they
report a likelihood.

Notice, that the likelihood at the end of one round, captures all the agent’s information.
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