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Abstract

Deep architectures such as Transformers are

sometimes criticized for having uninterpretable

“black-box” representations. We use causal in-

tervention analysis to show that, in fact, some

linguistic features are represented in a linear,

interpretable format. Specifically, we show that

BERT’s ability to conjugate verbs relies on a

linear encoding of subject number that can be

manipulated with predictable effects on con-

jugation accuracy. This encoding is found in

the subject position at the first layer and the

verb position at the last layer, but is distributed

across positions at middle layers, particularly

when there are multiple cues to subject number.

1 Introduction

Although neural network language models (LMs)

are sometimes viewed as uninterpretable “black

boxes,” substantial progress has been made towards

understanding to which linguistic regularities LMs

are sensitive and how they represent those regulari-

ties, in particular in the case of syntactic constraints

such as subject–verb agreement. This progress in-

cludes not only the discovery that LM predictions

adhere to such constraints (e.g., Linzen et al., 2016),

but also the development of tools that have revealed

encodings of syntactic features in hidden represen-

tations (Adi et al., 2017; Giulianelli et al., 2018,

among others).

Most prior work on LMs’ internal vector repre-

sentations has demonstrated the existence of syn-

tactic information in those vectors, but has not de-

scribed how LMs use this information. This paper

addresses the latter question using a causal interven-

tion paradigm proposed by Ravfogel et al. (2021).

We first hypothesize that at least one hidden layer

of BERT (Devlin et al., 2019) encodes the gram-

matical number of third-person subjects and verbs

in a low-dimensional number subspace of the hid-

den representation space, where singular number

is linearly separable from plural number. We then

predict that intervening on the hidden space by

reflecting hidden vectors to the opposite side of

the number subspace will cause BERT to gener-

ate plural conjugations for singular subjects, and

vice versa. Our experiment confirms this predic-

tion dramatically: BERT’s verb conjugations are

91% correct before the intervention, and up to 85%

incorrect after the intervention.

In addition to these findings, our experiment

makes observations regarding the location of sub-

ject number encodings across token positions, and

how it changes throughout BERT’s forward com-

putation. We find that subject number encodings

originate in the position of the subject at the embed-

ding layer, and move to the position of the inflected

verb at the final layer. When the sentence contains

additional cues to subject number beyond the sub-

ject itself, such as an embedded verb that agrees

with the subject, subject number encodings propa-

gate to other positions of the input at middle layers.

Unlike our study, prior counterfactual interven-

tion studies have not been able to consistently pro-

duce the expected changes in LM behavior. In Fin-

layson et al. (2021) and Ravfogel et al. (2021), for

example, interventions only cause slight degrada-

tions in performance, leaving LM behavior mostly

unchanged. These numerically weaker results show

that LM behavior is influenced by linear feature

encodings, but is ultimately driven by other repre-

sentations, which may have a non-linear structure.

In contrast, our results show that the linear encod-

ing of subject number determines BERT’s ability

to conjugate verbs. The mechanism behind verb

conjugation is therefore linear and interpretable, far

from being a black box.1

2 Background and Related Work

This study contributes to a rich literature on the

representation of natural language syntax in LMs.

1Code for our experiment is available at: https://

github.com/yidinghao/causal-conjugation
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We briefly review this literature in this section; a

more comprehensive overview is offered by Lasri

et al. (2022).

LMs and Syntax. A popular approach to the

study of syntax in LMs is through the use of behav-

ioral experiments. An influential example is Linzen

et al. (2016), who evaluate English LSTM LMs on

their ability to conjugate third-person present-tense

verbs. Since verb conjugation depends on syntac-

tic structure in theory, this study can be viewed as

an indirect evaluation of the LM’s knowledge of

natural language syntax. Linzen et al.’s methodol-

ogy for evaluating verb conjugation is to compare

probability scores assigned to different verb forms,

testing whether an LM is more likely to generate

correctly conjugated verbs than incorrectly conju-

gated verbs. Follow-up studies such as Marvin and

Linzen (2018), Warstadt et al. (2019), and Gauthier

et al. (2020) have refined the behavioral approach

by designing challenge benchmarks with experi-

mental controls on the structure of example texts,

which allow for fine-grained evaluations of specific

linguistic abilities.

Probing and LM Representations. Another ap-

proach to syntax in LMs is the use of probing clas-

sifiers (Adi et al., 2017; Belinkov et al., 2017; Hup-

kes and Zuidema, 2017; Hupkes et al., 2018). By

contrast with behavioral studies, probing studies

analyze what information is encoded in LM repre-

sentations. A typical analysis attempts to train the

probing classifier to decode the value of a syntactic

feature from hidden vectors generated by an LM.

If this is successful, then the study concludes that

the hidden space contains an encoding of the rele-

vant information about the syntactic feature. When

the probing classifier is linear, the study can ad-

ditionally conclude that the encoding has a linear

structure. An overview of probing results for BERT

is provided by Rogers et al. (2020).

Counterfactual Intervention. Counterfactual in-

tervention enhances the results of a probing study

by determining whether a feature encoding discov-

ered by a linear probe is actually used by the LM, or

whether the probe has detected a spurious pattern

that does not impact model behavior. Early stud-

ies such as Giulianelli et al. (2018), Lakretz et al.

(2019), Tucker et al. (2021), Tucker et al. (2022),

and Ravfogel et al. (2021) provide evidence that

manually manipulating representations of subject

number can result in causal effects on LM verb

Counterfactual Intervention: Let λ1, λ2, . . . , λk be the

coordinates of h(l,i) along the number subspace. We mod-

ify h
(l,i) as shown below. If α ≥ 2, then the modified vec-

tor should encode the opposite subject number. If α = 1,
then the modified vector should contain no information
about subject number.

author

novel
teachers

movies

h
(l,i)

h̃ = h
(l,i)

− α

k∑

j=1

λjb
(j)

Verb Conjugation: We predict that intervention with α ≥

2 will cause BERT to conjugate verbs incorrectly.

The author that the teachers admire [MASK] happy.

BERT

Before Intervention: P[is] > P[are]
After Intervention: P[is] < P[are]

Figure 1: Illustration of our counterfactual intervention

(above) and our verb conjugation test (below).

conjugation and other linguistic abilities. The goal

of this paper is to present an instance where lin-

ear encodings fully determine the verb conjugation

behavior of an LM.

3 Methodology

Let h(l,i) ∈ R
768 be the hidden vector from layer

l of BERTBASE for position i. Our hypothesis is

that there is an orthonormal basis B = {b(1), b(2),
. . . , b(768)} such that for some k ≪ 768, the first

k basis vectors span a number subspace that lin-

early separates hidden vectors for singular-subject

sentences from hidden vectors for plural-subject

sentences. Our prediction is that the counterfactual

intervention illustrated in Figure 1, where hidden

vectors are reflected to the opposite side of the

number subspace, will reverse the subject number

encoded in the vectors when applied with sufficient

intensity (as determined by the hyperparameter α),

causing BERT to conjugate the main verb of a sen-

tence as if its subject had the opposite number. This

section describes (1) how our counterfactual inter-

vention is defined, (2) how we find the basis vectors

for the number subspace, and (3) how we measure

the effect of this intervention on verb conjugation.
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Counterfactual Intervention. Suppose that the

hidden vector h(l,i) is computed from an input con-

sisting of a single sentence. The goal of our coun-

terfactual intervention is to transform h
(l,i) into a

vector h̃ that BERT will interpret as a hidden vec-

tor representing the same sentence, but with the

opposite subject number. To do so, we first assume

that h(l,i) is written in terms of the basis B:

h
(l,i) =

768
∑

j=1

λjb
(j),

where for each j, the coordinate λj is the scalar

projection of h(l,i) onto the unit vector b(j):

λj =
(

h
(l,i)

)⊤

b
(j).

Next, we assume that the coordinates of h(l,i) along

the number subspace, λ1, λ2, . . . , λk, collectively

encode the input sentence’s subject number, and

that −λ1,−λ2, . . . ,−λk encode the opposite sub-

ject number. We compute h̃ by simply moving

these coordinates of h(l,i) towards the opposite sub-

ject number:

h̃ = h
(l,i) − α

k
∑

j=1

λjb
(j).

The variable α is a hyperparameter that determines

the intensity of the counterfactual intervention.

When α = 1, the coordinates along the number

subspace are set to 0; h̃ is then interpreted as a

vector that encodes no information about subject

number. If our hypothesis about the number sub-

space is correct, then counterfactual intervention

with α ≥ 2 should result in a vector h̃ that encodes

the opposite subject number.

Finding the Number Subspace. We use the iter-

ative nullspace projection (INLP, Ravfogel et al.,

2020; Dufter and Schütze, 2019) method to calcu-

late the basis for the number subspace. We begin by

using BERT to encode a collection of sentences and

extracting the hidden vectors h(l,i) in the positions

of main subjects. We then train a linear probe to de-

tect whether these hidden vectors came from a sin-

gular subject or a plural subject, and take b(1) to be

the probe’s weight vector, normalized to unit length.

To obtain b
(j) for j > 1, we use the same proce-

dure, but preprocess the data by applying counter-

factual intervention with α = 1 and k = j−1. This

erases the subject number information captured by

previously calculated basis vectors, ensuring that

b
(j) is orthogonal to b

(1), b(2), . . . , b(j−1).

Measuring the Effect of Intervention. We eval-

uate BERT’s verb conjugation abilities using a

paradigm based on Goldberg (2019), where masked

language modeling is performed on sentences with

a third-person subject where the main verb, is or

are, is masked out. We calculate conjugation ac-

curacy by interpreting BERT’s output as a binary

classification, where the predicted label is “singu-

lar” if P[is] > P[are] and “plural” otherwise. To

test our prediction about the causal effect of number

encoding on verb conjugation, we measure conju-

gation accuracy before and after intervention with

α ≥ 2. If intervention causes conjugation accuracy

to drop from ≈100% to ≈0%, then we conclude

that we have successfully encoded the opposite sub-

ject number into the hidden vectors. If conjugation

accuracy drops to ≈50%, then number information

has been erased, but we cannot conclude that the

opposite subject number has been encoded.

4 Experiment

We test our prediction by performing an experiment

using the bert-base-uncased instance of BERT.

For each layer, we apply counterfactual interven-

tion and measure its effect on conjugation accuracy.

We perform two versions of our experiment: one

where intervention is applied to all hidden vectors

(“global intervention”), and one where intervention

is only applied to hidden vectors in the subject po-

sition (“local intervention”). We repeat our experi-

ment five times, with each trial using linear probes

trained on a freshly sampled, balanced dataset of

4,000 hidden vectors.

Data. We use data from Ravfogel et al. (2021),

which consist of sentences with a relative clause

intervening between the main subject and the main

verb (e.g., The author that the teacher admires is

happy). We sample the INLP training vectors from

their training split, and we use their testing split to

measure conjugation accuracy.

Hyperparameters. We tune the hyperparameters

α (intensity of intervention) and k (dimensionality

of the number subspace) using a grid search over

the range α ∈ {2, 3, 5} and k ∈ {2, 4, 8}.

Main Results. Figure 2 shows our results. The

values of α and k do not affect our results quali-

tatively, but they do exhibit a direct relationship

with the magnitude of the effect of intervention on

conjugation accuracy. We focus on the results for
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Figure 2: The effect of local and global intervention

on conjugation accuracy. Error bands represent 95%

confidence intervals obtained from 5 samplings of INLP

training vectors.

Redundant Cues:
The author that admires the teachers is happy.

No Redundant Cues:
The author that the teachers admire is happy.
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Figure 3: The linear encoding of subject number spreads

to positions other than the subject when there are redun-

dant cues to subject number, such as an embedded verb.

In the “subj. + verb” condition, intervention is applied

to the subject and embedded verb positions. Error bands

represent 95% confidence intervals obtained from 5 sam-

plings of INLP training vectors.

α = 5 and k = 8, which exhibit the greatest im-

pact of intervention on conjugation accuracy. The

full hyperparameter tuning results can be found in

Appendix A.

Our prediction is confirmed when global inter-

vention, where hidden vectors across all positions

are modified, is applied to layer 8. Verb conjuga-

tions are 91.7% correct before intervention, but

84.6% incorrect after intervention. Local interven-

tion on layer 8, where only the hidden vector in the

subject position is modified, has a much weaker

effect, only causing conjugation accuracy to drop

to 57.5% (42.5% incorrect). These results show

that BERT indeed uses a linear encoding of subject

number to comply with subject–verb agreement.

The location of this linear encoding is not con-

fined to the position of the subject, but is rather

distributed across multiple positions.
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50

100

A
cc

ur
ac

y

INLP Applied to Subject

0 3 6 9 12
Layer Modified

INLP Applied to Verb

Local
No Intervention

Global
Chance

Figure 4: Conjugation accuracy drops to 7.6% when

intervening on layer 12 with INLP training vectors ex-

tracted from the verb position (right) instead of the sub-

ject position (left). Error bands represent 95% con-

fidence intervals obtained from 5 samplings of INLP

training vectors.

Redundant Cues to Number. Some sentences in

our training and testing data contain an embedded

verb that agrees with the main subject. For example,

in the sentence The author that admires the teacher

is happy, the singular verb admires agrees with the

subject author. Since we can deduce the number

of the subject from the number of this embedded

verb, even in the absence of any direct access to

a representation of the subject, in these sentences

the embedded verb serves as a redundant cue to

subject number.

Figure 3 shows the effects of intervention broken

down by the presence of cue redundancy. When

there is no redundancy, near-zero conjugation ac-

curacy is observed after both local and global in-

tervention applied to layers 0–6. This shows that

when the subject is the only word that conveys

subject number, verb conjugation depends solely

on the hidden vector in the subject position. By

contrast, local intervention has no effect on conju-

gation accuracy in the presence of redundant cues,

and neither does intervention in the positions of

the subject and the embedded verb (the “subj. +

verb” condition). This shows that the presence of a

redundant cue to subject number causes BERT to

distribute the encoding of subject number to multi-

ple positions.

Upper Layers. In layers 10–12, neither local nor

global intervention has any effect on conjugation

accuracy. We hypothesize that this is because, at

these layers, the INLP linear probe cannot iden-

tify the number subspace using training vectors

extracted from the subject position of sentences.

To test this hypothesis, we extract INLP training

vectors from the position of the main verb instead

of the subject as before, and apply local interven-
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Figure 5: Left: Similar results are obtained when re-

peating the experiment using the MultiBERT models.

Right: Intervention on number-neutral words has no

adverse effect on perplexity. Error bands represent 95%

confidence intervals obtained from 5 samplings of INLP

training vectors.

tion to the position of the masked-out main verb.

Supporting our hypothesis, both local and global

intervention result in near-zero conjugation accu-

racy (Figure 4, right), showing that at upper layers,

only the position of the main verb is used by BERT

for conjugation.

Robustness. To verify that our results are robust

to differences in model instance, we repeat our

experiment using the MultiBERTs (Sellam et al.,

2022), a collection of 25 BERTBASE models pre-

trained from different random initializations. As

shown in the left side of Figure 5, we obtain similar

results to Figure 2, indicating that our findings are

not specific to bert-base-uncased.

Side Effects. Does the number subspace encode

information beyond number? To test this, we

apply intervention to number-neutral words (i.e.,

all words other than nouns and verbs) along the

number subspace. We find that this has no ef-

fect on masked language modeling perplexity for

those words (Figure 5). In contrast, interven-

tion on number-neutral words along a random 8-

dimensional representation subspace increases per-

plexity by a factor of 52.8 on average. This shows

that the number space selectively encodes number,

such that manipulating hidden vectors along the

number subspace does not affect predictions unre-

lated to number.

5 Discussion

In this section, we discuss our results in relation to

our current knowledge about linear representations.

BERT Layers. Probing studies have found that

lower layers of BERT encode lexical features,

while middle layers encode high-level syntactic

features and upper layers encode task-specific fea-

tures (Hewitt and Manning, 2019; Jawahar et al.,

2019; Kovaleva et al., 2019; Liu et al., 2019; Ten-

ney et al., 2019). Our results confirm this in the

case of cue redundancy: at layer 8, the representa-

tion of subject number is not tied to any position;

while at layer 12, it is tied to the [MASK] posi-

tion, where it is most relevant for masked language

modeling. When there is no cue redundancy, how-

ever, subject number is tied to the subject position

until layer 9, suggesting that subject number is

treated as a lexical feature of the subject rather than

a sentence-level syntactic feature.

Effect Size. Prior counterfactual intervention

studies only report marginal changes in perfor-

mance after intervention (e.g., Kim et al., 2018;

Dalvi et al., 2019; Lakretz et al., 2019; Finlayson

et al., 2021; Ravfogel et al., 2021). For example,

the largest effect size reported by Ravfogel et al.

(2021) is no more than 35 percentage points. These

results suggest that the linear encoding is only a

relatively small part of the model’s representation

of the feature. Our results improve upon prior work

by identifying an aspect of LM behavior that is

entirely driven by linear feature encodings.

6 Conclusion

Using a causal intervention analysis, this paper

has revealed strong evidence that BERT hidden

representations contain a linear encoding of main

subject number that is used for verb conjugation

during masked language modeling. This encoding

originates from the word embeddings of the main

subject and possible redundant cues, propagates to

other positions at the middle layers, and migrates to

the position of the masked-out verb at the upper lay-

ers. The structure of this encoding is interpretable,

such that manipulating hidden vectors along this en-

coding results in predictable effects on conjugation

accuracy.

Our clean and interpretable results offer subject

number as an example of a feature that a large

language model might encode using a straight-

forwardly linear-structured representation scheme.

For future work, we pose the question of what kinds

of features may admit similarly strong results from

a causal intervention study like this one.
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Limitations

Below we identify possible limitations of our ap-

proach.

Experimental Control. By utilizing Ravfogel

et al.’s (2021) dataset, where sentences adhere to a

uniform syntactic template, we have exerted tight

experimental control over the structure of our test

examples. This control has allowed us, for instance,

to identify the qualitatively distinct results from

Figure 3 between inputs with and without a redun-

dant cue to subject number. In a more naturalistic

setting, it is possible that verb conjugation may be

conditioned by factors other than a linear encoding

of subject number, such as semantic collocations

or discourse context.

Asymmetry of Findings. Although we have

shown that BERT uses a linear encoding of subject

number to conjugate verbs, we can never prove us-

ing our approach that BERT does not use a linear

encoding of a feature to some end. In the instances

where we are unable to encode the opposite sub-

ject number, we cannot rule out the possibility that

BERT uses a linear encoding of subject number

that cannot be detected using INLP.

Ethical Considerations

We do not foresee any ethical concerns arising from

our work.
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A Hyperparameter Tuning Results

Our full hyperparameter tuning results are shown

in Figure 6.
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Figure 6: Hyperparameter tuning results for α (intensity of counterfactual intervention) k (dimensionality of the

number subspace). Error bands represent 95% confidence intervals obtained from 5 samplings of INLP training

vectors.
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