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Abstract

Knot filtered embedded contact homology was first
introduced by Hutchings in 2015; it has been computed
for the standard transverse unknot in irrational ellip-
soids by Hutchings and for the Hopf link in lens spaces
L(n,n — 1) via a quotient by Weiler. While toric con-
structions can be used to understand the ECH chain
complexes of many contact forms adapted to open books
with binding the unknot and Hopflink, they do not read-
ily adapt to general torus knots and links. In this paper,
we generalize the definition and invariance of knot
filtered embedded contact homology to allow for degen-
erate knots with rational rotation numbers. We then
develop new methods for understanding the embed-
ded contact homology chain complex of positive torus
knotted fibrations of the standard tight contact 3-sphere
in terms of their presentation as open books and as
Seifert fiber spaces. We provide Morse-Bott methods,
using a doubly filtered complex and the energy fil-
tered perturbed Seiberg-Witten Floer theory developed
by Hutchings and Taubes, and use them to compute the
T(2, q) knot filtered embedded contact homology, for g
odd and positive.
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1 | INTRODUCTION

Knot filtered embedded contact homology (ECH) is a topological spectral invariant that was first
introduced by Hutchings, who computed it for the standard transverse unknot in the irrational
ellipsoid to study the mean action of area-preserving disk maps that are rotation near the bound-
ary [39]. Knot filtered ECH was subsequently computed for the Hopf link in the lens spaces
(L(n,n —1),&,,,) (obtained as a quotient of the irrational ellipsoid) by Weiler and used to study
area-preserving diffeomorphisms of the closed annulus subject to a boundary condition [92, 93].
To understand knot filtered ECH with respect to the right handed T(p, q) torus knots in (S3, £,4),
we introduce new nontoric techniques, which also elucidate the ECH chain complexes of more
general open books and arbitrary Seifert fiber spaces.
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We also generalize the definition and invariance of knot filtered ECH, to encompass knots with
rational rotation numbers, and provide Morse-Bott methods to compute it. This involves direct
limits of doubly filtered direct systems, which is similar in spirit but more involved than our prior
work for prequantization bundles [68] and utilizes the work of Hutchings and Taubes [45].

Previously, the only well-studied ECH chain complexes were those of toric contact forms, as
initiated in [41], and prequantization bundles over closed symplectic surfaces [24, 68]. Our meth-
ods allow us to understand the ECH of T(p, q) fibrations of the standard tight 3-sphere in terms of
their associated open book decompositions and presentation as Seifert fiber spaces. Knot filtered
ECH is defined with respect to a trivialization induced by the Seifert surface of the knot, which is
best understood in terms of the open book decomposition. The main complication in the setting
at hand is the computation of the ECH index, which is more subtle than in the toric or prequan-
tization setting. This is due in part to the trivializations available for fibers projecting to points
with isotropy, as one cannot use the “constant” trivialization, which is available for all fibers of
prequantization bundles.

We begin with the p = 2 case in this paper and complete the study of all p in the sequel in [69].
For general p, an alternate family of nondegenerate perturbations is needed, which gives rise to
nonvanishing differentials, and requires a more involved adaptation of our Morse-Bott methods
previously established for prequantization bundles in [68]. The results of this paper will be used
in the sequel [69] to deduce quantitative existence results for Reeb orbits associated to any contact
form on (S3, £,;) admitting a maximal self-linking torus knot T(p, ¢) as an elliptic Reeb orbit with
(approximate) rotation number pq and whose volume is at most i.

1.1 | Overview of embedded contact homology

Let Y be a closed three-manifold with a contact form A. Let £ = ker(1) denote the associated
contact structure, and let R denote the associated Reeb vector field, which is uniquely determined

by
AR) =1, dAR,)=0.

A Reeb orbit is a map y : R/TZ—Y for some T >0 such that y'(t) = R(y(t)), mod-
ulo reparametrization.

A Reeb orbit is said to be embedded whenever this map is injective. For a Reeb orbit as above,
the linearized Reeb flow for time T defines a symplectic linear map

P, (T) : (&), dA) — (§y(0), A). (1D

The Reeb orbit y is nondegenerate if P, does not have 1 as an eigenvalue. The contact form 4
is nondegenerate if all its Reeb orbits are nondegenerate; nondegenerate contact forms form a
comeager subset of all contact forms.

A nondegenerate Reeb orbit y is elliptic if P, has eigenvalues on the unit circle and hyperbolic if
P, has real eigenvalues. If 7 is a homotopy class of trivializations of {|,,, then the Conley-Zehnder
index CZ.(y) € Z is defined in terms of the induced path of symplectic linear matrices. The parity
of the Conley-Zehnder index does not depend on the choice of trivialization 7. If y is an embedded
Reeb orbit, the Conley-Zehnder index is even when y is positive hyperbolic and odd otherwise.

We say that an almost complex structure J on R X Y is A-compatible if
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- J(§) = EandJ (@) = R;
* J rotates the contact planes positively, meaning dA(v,Jv) > 0 for nonzerov € &;
 J is invariant under translation of the R factor.

We consider J-holomorphic curves u : (2, j) = (R x Y,J), where (2, j) is a punctured possibly
disconnected Riemann surface, modding out by the usual equivalence relation, namely, composi-
tion with biholomorphic maps between domains. If y is a (possibly multiply covered) Reeb orbit,
a positive end of u at y is a puncture near which u is asymptotic to R X y as s — oo, meaning that
it admits coordinates of a positive half-cylinder (o, 7) € [0, 00) X (R/TZ) such that

Jj@,) =1, Jim 7 (u(o, 7)) = +oo, m 7y (u(o, ) =7y.

A negative end is defined analogously with ¢ € (—c0,0] and s > —c0. We assume that all
punctures are positive or negative ends.

ECH is a “symplectic shadow” of Seiberg-Witten Floer homology due to Hutchings, roughly
defined as follows; see also the survey [37]. Given a closed 3-manifold Y equipped with a non-
degenerate contact form A and a generic A-compatible J, the ECH chain complex with respect
to a fixed class I' € H(Y, Z) is the Z /2-module';' ECC,(Y,A,T,J). The chain complex is freely
generated by admissible Reeb currents, which are finite sets of Reeb currents® a = {(a;, m;)}, such
that

* the «; are distinct embedded Reeb orbits;
* the m; are positive integers and m; = 1 whenever «; is hyperbolic;
* the total homology class of a is ), m;[a;] =T

Sometimes, we use the multiplicative notation, & = [T o, "

The chain complex and its homology are relatively Z/d graded by the ECH index I (defined
momentarily), where d denotes the divisibility of ¢;(§) + 2PD(I") € H*(Y; Z) mod torsion. This
means that if ¢ and § are two admissible Reeb currents, we can define their index difference
I(a, B) by choosing an arbitrary Z € H,(Y, «a, 8) (the notation indicates 2-chains with boundary
on a — 3, modulo boundaries of 3-chains) and setting

I(a,p) = [I(a, 8, 2)] € Z/d,

which is well defined by the index ambiguity formula [34, §3.3]; see also §3.1. When the chain
complex is nonzero, we can further define an absolute Z/d grading by picking some generator 3
and declaring its grading to be zero, so that the grading of any other generator « is

la| = I, B).

(By the additivity property of the ECH index, the differential decreases this absolute grading by
1.) In particular, if I = 0, then the empty set of Reeb orbits is a generator of the chain complex,
which depends only on Y and £. As aresult, ECH (Y, &, 0) has a canonical absolute Z/d grading,
in which the empty set is assigned to have grading zero. Finally, as a result of the ECH index parity

1t is possible to define ECH with integer coefficients as explained in [43, §9], but that is not necessary for the purposes
of this paper or its sequel.

In some literature, Reeb currents are called orbit sets.
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property, for every I' € H,(Y, Z), there is a canonical absolute Z/2 grading given by the parity of
the number of positive hyperbolic Reeb orbits [34, §3.3]; also reviewed in §3.1.

Definition 1.1. If Z € H,(Y,a, 8) and 7 is a trivialization of § over the Reeb orbits {a;} and {5},
which is symplectic with respect to d4, we define the ECH index to be

I(a,B,Z) = c¢,(Z) + Q.(Z) + CZ(a, B). (1.2)

The terms c, (relative first Chern number), Q. (relative intersection pairing), and CZi (total
Conley-Zehnder index) will be defined in §3 and §4.

Let M, (a, B,J) denote the set of J-holomorphic currents from « to § with ECH index k. The
ECH differential is given by

da = 2 #2(M1(O(, B’J)/R)ﬁ’
B

the mod 2 count of ECH index 1 currents in R X Y, modulo R translation and equivalence of J-
holomorphic currents. A J-holomorphic current is a finite set of pairs C = {(Cy, d}.)}, where the C;.
are distinct, connected, somewhere injective J-holomorphic curves in (R X Y,d(e’1)) and d; €
Z.,, subject to the asymptotic condition that C “converge as a current” to a as s — +oo and to
B as s » —oo. This asymptotic convergence as a current condition means that the positive ends
of C;, are at covers of the Reeb orbits a; wherein the sum over k of d; multiplied by the total
covering amount of all ends of C; at iterates of a; is m;, and analogously for the negative ends.
The notion of a current is that of a linear functional on the space of differential forms and is due to
Federer, cf. [25, §4] and [63, §1.4]. Currents provide a natural topology on the space of real surfaces,
admitting extremely useful compactness properties, cf. [25, §4.2.17], [63, Thm. 5.5], which were
further developed and exploited by Taubes in the J-holomorphic setting [77].

The definition of the ECH index and the associated index inequality is the key nontrivial ingre-
dient used to define ECH [34]. In particular, the assumption that J is generic guarantees that the
currents of ECH index 1 consist of a single embedded Fredholm and ECH index 1J-holomorphic
curve, and possibly an ECH index O current, which must be a union of trivial cylinders R X y, with
multiplicities, where y is a Reeb orbit.

Remark 1.2 (The role of degree). A notion that will be crucial to this paper, as it was in [68], is
the degree of an ECH generator, pair of generators, or curve counted by the differential (see Def-
inition 1.11). Degree is a concept only appearing when the Reeb orbits of 1 agree with orbits of
an S' action on Y, and is not intrinsic to ECH generally. (The S' action we use in this paper is
described in §2.) Essentially, degree counts the relative algebraic multiplicity of the multisets of
fibers underlying the Reeb currents. In [68] and the sequel, we relate the degree of a pair of gen-
erators to the degree of the holomorphic covering map to the base (here Cﬂﬂ’iq) arising from any
curves between them counted by the differential. As there is no differential in this paper, we do
not need that relationship, but degree does govern both our action and knot filtrations, as is fully
explained in §6.

We denote the homology of the ECH chain complex by ECH (Y, 4,T,J). That the differential
squares to zero is rather involved and was established by Hutchings and Taubes [42, 43]; it requires
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obstruction bundle gluing as a result of the presence of an intermediate level consisting of multiply
covered trivial cylinders between two ECH index one curves. The homology does not depend
on the choice of J or on the contact form A for &, and so, defines a well-defined Z/2-module
ECH,(Y,E,D).

The proof of invariance of ECH goes through Taubes’ isomorphism with Seiberg-Witten Floer
cohomology [83-87].

Theorem 1.3 (Taubes). If Y is connected, then there is a canonical isomorphism of relatively graded
Z[U]-modules

ECH,(Y,A,T,J) ~ HM " (Y,$; + PD(I)),

which sends the ECH contact invariant c¢(§) := [@#] € ECH(Y,£,0) to the contact invariant in
Seiberg—Witten Floer cohomology.

Here, HM" denotes the “from” version of Seiberg-Witten Floer cohomology, which is fully
explained in the book by Kronheimer and Mrowka [50], and 8, denotes the canonical spin-c struc-
ture determined by the oriented 2-plane field . The contact invariant in Seiberg-Witten Floer
cohomology was defined in [49]; see also [51, §6.3] and [20]. Taubes’ isomorphism demonstrates
that ECH is a topological invariant of Y, except that one needs to shift I' when the contact struc-
ture is changed.” The original motivation for the construction of ECH was to find a symplectic
model for Seiberg-Witten Floer cohomology, so as to generalize Taubes’ theorem establishing the
equivalence between the Seiberg-Witten invariant and Gromov invariant for closed symplectic
4-manifolds [77].

There are two filtrations on ECH of interest, summarized below, with further details given
in §6. The first is by symplectic action, which provides obstructions to symplectic embed-
dings of 4-manifolds [36] and enables computations of ECH by successive approximations for
prequantization bundles [68]. The symplectic action or length of an orbit set o = {(ct;, m;)} is

Aa) = Z m; / A (1.3)

IfJ is A-compatible and there is a J-holomorphic current from « to 8, then A(a) > A(B) by Stokes’
theorem, since dA is an area form on such J-holomorphic curves. Since d counts J-holomorphic
currents, it decreases symplectic action,? that is,

(0, B) #0=> A(a) = A(B).

LetE CCf(Y, A,T;J) denote the subgroup of ECC,(Y, A,T';J) generated by admissible Reeb cur-
rents of symplectic action less than L. Since d decreases action, it is a subcomplex. By [45, Theorem
1.3], the homology of E CC*L(Y, A,T;J) is independent of J; therefore, we denote its homology by

 Given a fixed spin-c structure on a closed oriented 3-manifold Y, there is a construction establishing a one-to-one cor-
respondence between the isomorphism classes of spin-c structures and the isomorphism classes of complex line bundles
L — Y. We can replace isomorphism classes of complex line bundles with the elements of H;(Y; Z) because line bundles
L are classified by ¢;(L) € H3(Y; Z). See also [50, §1] and [71, §6].

#In fact, A(xx) = A(B) only if a« = .
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ECHﬁ(Y, A,T), which we call action filtered ECH. Action filtered ECH of (Y, 4) gives rise to the
ECH spectrum {c; (Y, A1)}, provided that the homology class of the cycle given by the empty set is
nonzero, as explained in §6.2.

The knot filtration on ECH was first defined by Hutchings in [39] for nondegenerate contact
manifolds with H,(Y, Z) = 0 and computed for the standard transverse unknot in the boundary
of the four-dimensional irrational ellipsoids.

Knot filtered ECH is defined in terms of a linking number with a fixed embedded elliptic Reeb
orbit realizing a transverse knot, denoted by b, with rotation number rot(b), defined in terms of
a trivialization” such that the push off of b with respect to the trivialization has linking number
zero with b. When H,(Y, Z) = 0, this rotation number is well defined, meaning that the push
off linking zero trivialization is in a distinguished homotopy class. In [92, Thms. 5.2 & 5.3], it is
explained how to obtain a well-defined rotation number for Y when H, (Y, Z) is torsion. Moreover,
for an elliptic Reeb orbit b, the push off linking zero trivialization can always be chosen so that
Py(t) is rotation by angle 276, for each t € [0, T], and we set rot(b) : = 6;.

Let b™a be a Reeb current where m € Z,, and « is a Reeb current not containing b. Assume
H,(Y;Z) = 0so that the linking number of knots is well defined. The knot filtration on ECH with
respect to b of the Reeb current b« is given by

Fp("a) := mrot(b) + £(a, b),
where Z(a, b) is given by

£(a,b) = ) mi(a;,b).

If b is nondegenerate, then rot(b) € R \ Q. When b is nondegenerate, 7}, is not integer-valued, but
it is true that if rot(b) > 0 (resp. rot(b) < 0) and if every Reeb orbit other than b has nonnegative
(resp. nonpositive) linking number with b, then 7, takes values in a discrete set of nonnegative
(resp. nonpositive) real numbers. The ECH differential d does not increase the knot filtration 7,
as proven in [39, Lem. 5.1].

If K is a real number, let

ECH!*X(v, 4,7, b, rot(b))

denote the homology of the subcomplex generated by admissible Reeb currents b™a where
F,(b™a) < K. Unlike action filtered ECH, which depends heavily on the choice of contact form,
knot filtered ECH is a topological spectral invariant denoted by ECH: bSK(Y, &, b, rot(b)) that
depends only on (Y, ), the Reeb orbit b with fixed rotation number rot(b), and filtration level
K by [39, Thm. 5.3]. In §7, we generalize the definition and invariance of knot filtered ECH to
allow for rational rotation angles.

Remark 1.4 (Comparison with knot ECH). Knot filtered ECH is distinct from knot embedded
contact homology, denoted by ECK. Using sutures, Colin, Ghiggini, Honda, and Hutchings [12]
defined a hat version ECK(b, Y, 1) of knot embedded contact homology for a (neighborhood of

 This is a somewhat “atypical” choice of trivialization; usually, one uses a trivialization that extends over a disk (or surface)
spanned by the orbit, cf. Remarks 4.2 and 4.3.
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a) null-homologous transverse knot b in a closed contact manifold (Y, 1). Sutured ECH has been
shown to be a topological invariant (up to isotopy of 1 and choice of embedding data of J) by
Colin, Ghiggini, and Honda [13], as well as by Kutluhan, Sivek, and Taubes [58] (who additionally
establish naturality of sutured ECH). Colin, Ghiggini, and Honda conjecture that

ECK(b,Y,7) ~ HFK(-b,-Y),

in connection with the isomorphism between ECH and Heegaard Floer homology by Colin, Ghig-
gini, and Honda [13-16] and the extension of Heegaard Floer homology to balanced sutured
manifolds by Juhdasz [46], which incorporates knot Floer homology of Ozsvath—Szabé [72] and
Rasmussen [73] as a special case. There is also an analog of this story in monopole and instan-
ton Floer homologies as developed by Kronheimer and Mrowka [52]. Work of Kutluhan, Lee, and
Taubes establishes the isomorphism between Seiberg-Witten Floer homology and Heegaard Floer
homology [53-57].

The “hat” knot contact homology is defined as the first page of a spectral sequence arising from
a filtration induced by a null-homologous transverse knot; this mirrors the filtration on Heegaard
Floer homology induced by a null-homologous topological knot. The hat version is equipped with
an equivalent of the Alexander grading in the Heegaard Floer setting, and furthermore categorifies
the Alexander polynomial. After suitably adapting the contact form to an open book decomposi-
tion of the manifold, and using the sutured formulation of ECH [12], it is shown in [13] that the
knot embedded contact homology can be computed by considering only orbits and differentials
in the complement of the binding of the open book.

Spano explains how to define a “full version” of knot embedded contact homology, which also
extends to links, and shows that ECK is a categorification of the multivariable Alexander polyno-
mial [76]. Brown generalizes these constructions to hold in rational open book decompositions,
which permits a definition of ECK for rationally null-homologous knots, and additionally estab-
lishes a large negative n-surgery formula for ECK [8]. The computation of ECK for positive T(2, q)
torus knots in (S3, &) is given in [8, §11].

J. Rasmussen has recently communicated to us that for positive T(p,q) torus knots in
(S3,&,4), our computation of knot filtered ECH with rotation number pq coincides with an
associated filtration on the corresponding positive knot Heegaard Floer homology HFK*. How-
ever, it is unclear if this correspondence holds for more general knots or what the analog of
different rotation numbers correspond to in the Heegaard Floer setting, and merits further
study.

1.2 | Main results, organization, and future directions

In §7, we prove the following theorem, which allows us to generalize the definition and invari-
ance properties of knot filtered ECH to allow for degenerate contact forms so that the rotation
number can be rational and provides Morse-Bott computational methods for appropriate Seifert
fiber spaces in the spirit of [68].

Definition 1.5. A pair of families {(4,,J,)} is said to be a knot-admissible pair for (Y, A, b, rot(b)),
where A is a degenerate contact form admitting the transverse knot b as an embedded Reeb orbit
whenever
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TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE | 9 of 74

s fo 0,0l XY = R, are smooth functions such that % >0 and lim,_, f, = 1 in the C°-
topology;

* there is a full measure set S C (0, c,] such that for each ¢ € S, f,1 is L(e)-nondegenerate and
L(e) monotonically increases toward +oo as € decreases toward 0;

* A, := f A each admit the transverse knot b as an embedded elliptic Reeb orbit (when ¢ # 0)
and {rot,(b)} is monotonically decreasing to rot(b) as € € [0, c,] decreases to 0;

* J_is an ECH™® generic A.-compatible almost complex structure (when ¢ # 0).

Sometimes, we also suppress the almost complex structure and refer to the sequence of
contact forms {A,} as a knot-admissible family, provided that it satisfies the above condi-
tions. Precise definitions of each condition can be found in the statement of Lemma 7.8.
By the discussion in Lemma 7.8 and Remark 7.9, it follows that for any ¢ € (0,¢), the
admissible Reeb currents of action less than L(e) associated to A, and A, are in bijective
correspondence.

Theorem 1.6. Let (Y, &) be a closed contact 3-manifold with H;(Y) = 0, b C Y be a transverse knot
and K € R. If 1 is degenerate, we define

A<L(e)

ECH!**(Y,2,b,rot(b)) : = lim ECH,"* (v, A_,b,rot.(b),J,),
e

where {(1,,J,)} is a knot-admissible pair for (Y, A, b,rot(b)), and the right-hand side is the action
filtered subcomplex, which has been further restricted to the knot filtered subcomplex. Then,

ECHf”sK(Y, A, b, rot(b)) is well defined and depends only on 'Y, £, b, rot(b), and K.

The proof of this result is carried out in §7. It comes by way of a doubly filtered direct limit,
where the chain maps induced by cobordisms on action filtered ECH chain complexes are
obtained from energy filtered perturbed Seiberg-Witten Floer theory via the results of Hutchings
and Taubes [45]. This is a more involved generalization of the direct systems and direct limits we
carried out in [68, §7].

In particular, this procedure also allows us to compute knot filtered ECH via successive approx-
imations involving knot-admissible families of contact forms admitting a fixed transverse knot as
a nondegenerate embedded elliptic Reeb orbit with monotonically decreasing irrational rotation
numbers converging to a rational rotation number. Our methods allow one to directly construct
a knot-admissible family of contact forms for any fiber of a Seifert fiber space with negative Euler
class, equipped with a tight S'-invariant contact structure.

We now explain our result and methods for computing positive T(2, q) filtered ECH of (S3, £,).
Consider the unit 3-sphere S* in C? and let J be the standard complex structure on C2. Then the
standard tight contact structure is given by

(gstd)lp = Tp53 nJCZ(TpS3)

and may expressed as the kernel of the 1-form
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10 of 74 | NELSON and WEILER

We can realize the right handed torus knot T(p, q) in S3 as
T(p,q) = {(Zlazz) es’cc? | Zf +Zg = 0};

the projectionmap 7 : S \ T(p,q) — S! is the Milnor fibration, cf. Remark 2.4. Etnyre shows in
[22] that positive (e.g., right handed) transversal torus knots are transversely isotopic if and only if
they have the same topological knot type and the same self-linking number. Thus, it makes sense
to refer to the standard transverse positive (right handed) T(p, q) torus knot, which we denote by
b and is of maximal self-linking number pg — p —gq.

Given p, q € R,let N(p, q) denote the sequence (pm + qn)m,nEZZO of nonnegative integer linear
combinations of p and g, written in increasing order with multiplicity. We use N, (p, q) to denote
the kth element of this sequence, including multiples and starting with N;,(p, g) = 0. We can now
state our main results.

Theorem 1.7. Let &, be the standard tight contact structure on S>. Let b, be the standard right
handed transverse T'(2, q) torus knot for q odd and positive. Then, for k € N,

Z/2 K >Ny (2,9),

Fy<K
ECH.PS™(S3,&,4,by,2q) =
2k std> 0 0 otherwise,

and in all other gradings =,
ECH, "™ (5, £4.b.2) = 0.

If & is a sufficiently small positive irrational number, then up to grading k € N and knot filtration
threshold K inversely proportional to 6,

Z/Z K > Nk(2, q) + 5($Nk(29 q) - 1),

Fr<K
ECH.PS™(S3,&,4,by, 29 + 6) =
% Sstd> Do 24 0 otherwise,

where $N,(2,q) is the number of repeats in {Nj(z, q)}jgk with value N, (2,q), and in all other
gradings *, up to the threshold inversely proportional to 6,

ECH!"¥(S3,£,,4,by,2q + 8) = 0.

Remark 1.8 (Threshold between grading and filtration with §). The relationship between the
threshold of the grading 2k and filtration level K with respect to the size of ¢ is as follows. We
require & to be small enough so that N} (2,q) + S($N(2,q9) — 1) < Ny ;,(2,q) for all k.

Remark 1.9 (Generalization to T(p, q) for p # 2). We have constructed alternate knot-admissible
families of contact forms associated to a different family of orbifold Morse functions and estab-
lished the associated ECH chain complex. We establish that the same result holds in Theorem 1.7
with 2 replaced by p and ged(p, q) = 1 using a different perturbation in [69].

Remark 1.10 (Comparison to a toric perturbation). Using a clever perturbation, cf. Figure 1, the
case p = 2 can be handled entirely combinatorially; this is fairly involved, but rewarding as we can
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TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE | 11 of 74

FIGURE 1 The construction and gradient flow of H, ; on CP%S. Left and Center: On the left is the
fundamental domain for the punctured torus, where edges are identified according to their color (with no twist).
The wedge is the fundamental domain for the action of the Reeb return map, which acts on by a clockwise 2?”
rotation. Right: We depict CP;S obtained by gluing the center picture and closing up the puncture by collapsing it
to a maximum (depicted by a black dot). Gluing in the associated solid torus produces the binding fiber b of the
open book. Linking of fibers: When glued as indicated on the left, the gray dot appears 2 = #(b, e) times, while
the pink dot appears 3 = #(b, h) times.

prove using (comparatively) elementary methods that the differential vanishes. Still, one might
ask why we use such methods, seeing as the contact form in question is contactomorphic to a
very simple one, namely, a rescaling of an ellipsoid (as can be proven via Kegel-Lange [47] and
Cristofaro-Gardiner-Mazzucchelli [18]). There are indeed convex and concave toric perturbations
of these degenerate contact forms, and their generators, ECH indices, and ECH spectra are well
understood via lattice paths in the plane. These toric perturbations have a different chain complex
than the one studied in this paper when p = 2, and are more similar to the chain complex studied
in the sequel, as detailed in [69]. However, the combinatorial toric ECH differential is not fully
understood, as we explain in a detailed comparison to a hypothetical convex toric differential,
cf. [69, §5.6]. The complication arises when including the “virtual edges” corresponding to the
covers of certain elliptic orbits. Thus, we required new nontoric methods.

While it is a priori feasible to understand the toric differential involving “virtual edges” in terms
of Taubes’ (punctured) pseudoholomorphic beasts in R x (S! x S2) [32, 78-80], our approach has
a number of advantages. It allows one to understand the ECH chain complexes of more general
Seifert fiber spaces and open books. This is not possible from a toric perspective, as toric contact
forms only exist on closed 3-manifolds that are diffeomorphic to 3-spheres, S? X S, or lens spaces.
It is also more geometrically intuitive to compute the knot filtration from the open book.

Since H,(S?,Z) = 0, we also need a detailed understanding of the ECH index of arbitrary gen-
erator sets because all orbit sets are homologous, as opposed to the case in [68] where the ordinary
homology helped us organize the admissible Reeb currents. Also, establishing formulae for the
sundry Conley-Zehnder sums of Reeb orbit fibers that project to orbifold points is a bit intense.
As a result, our derivation of a formula for the ECH index and establishing its bijective corre-
spondence to the nonnegative even integers are nontrivial combinatorial endeavors. They are
necessary to establish the behavior of the differential and our computation of knot filtered ECH.
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12 of 74 | NELSON and WEILER

In particular, in order to compute the knot filtration, one must know the ECH index and action
of every homologically essential generator in addition to its knot filtration value.

We now review the outline of our arguments, indicating where they appear in the paper.
(The interested reader may wish to additionally consult the more detailed summary of the chain
complexes and the statements of our index theorems in §5.1.)

1.21 | Reeb dynamics

In §2, we detail the Reeb dynamics in terms of the associated open book decomposition, Seifert
fibration, and prequantization orbibundle of S* realizing the transverse right handed torus knots
T(p,q) as Reeb orbits. The naturally associated contact forms 4, , are established to all be
strictly contactomorphic with each other by way of Kegel-Lange [47] and Cristofaro-Gardiner—
Mazzucchelli [18]. In particular, the Reeb vector field associated to Apq generates the Seifert
fibration; the Reeb orbits correspond to the fibers of the prequantization orbibundle. The pages
of the open book (which supports 1, ) are used to induce a trivialization along the T(p,q)
binding, with respect to which we compute knot filtered ECH. The pages also play a sup-
porting role in finding additional surfaces and trivializations used in our computation of the
ECH index.

Now specializing to the case p = 2, we perturb the degenerate contact form 4, , using the lift of
a perfect orbifold Morse-Smale function H, ; on the base orbifold C[P’iq by exploiting geometric

symmetries present in the T(2, q) fibration of S3: cf. Figure 1. This is in the spirit of [19, 67, 68],
and we define

Az’q’g = (1 + EPYHZ’q)Az’q.

Up to large action L, the only Reeb orbits of perturbed Reeb vector field R, , ;) are the fiber
iterates of:

* the binding b, an embedded elliptic orbit, which is a regular T(2, q) knotted fiber orbit that
projects to the nonsingular maximum of H, ;;

+ the embedded negative hyperbolic orbit &, a singular fiber of the Seifert fibration, which projects
to the singular index 1 critical orbifold point of H, , with isotropy Z/2;

» the embedded elliptic orbit e, a singular fiber of the Seifert fibration, which projects to the
singular minimum of H, , with isotropy Z/q.

In particular, the generators of ECCL(S3, 1, (1), J) are of the form b®h e, where B, E € 7,
and H = 0, 1. As aresult, we obtain the direct system {ECH ﬁ(Y, A5,q.61))} such that the direct limit
is the homology of the chain complex generated by the associated admissible Reeb currents.

1.2.2 | ECH index

Our computation of the ECH index, completed in §3-5, makes use of three different trivializa-
tions. Relating everything together so that we can understand the ECH index of arbitrary orbit
sets takes some care. We now sketch some of what goes into this. To understand some patterns in
the generator sets, see Table 2.
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TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE | 13 of 74

In §3, we first assemble the necessary generalities about the ECH index scattered throughout
[34, 35,37] and set up our trivializations: the constant trivialization for regular fibers, the orbibun-
dle trivialization for all fibers, and the page trivialization induced by the open book decomposition
for the binding. We also establish a change in trivialization formula for covers of simple orbits,
Proposition 3.13, which may be of independent interest, and is used to relate our trivializations in
the setting at hand.

The prequantization orbibundle description allows us to understand the monodromy angles
determining the Conley-Zehnder index and first Chern number ¢, which is carried out in §4. The
calculation of the total Conley-Zehnder indices CZi is combinatorially involved and completed
in §5. Understanding the relative intersection pairing Q, requires one to find suitable surfaces
representing classes in H,(Y, «, 8). The orbibundle is not well suited for this task, so we use the
open book and Seifert fiber space presentations, and compute the relative intersection pairing in
§4.

1.2.3 | Spectral invariants of ECH

The combinatorics detailed in §5 allow us to establish the relationship between the ECH index of
a generator and its degree (defined below). This, in turn, governs the associated spectral invariants
of ECH of interest, which we establish in §6.

Definition 1.11. Given a pair of (homologous) Reeb currents a and 3 expressed in terms of
embedded orbits realizing fibers of a prequantization orbibundle or Seifert fiber space, we define
their relative degree to be the relative algebraic multiplicity of the associated fiber sets. That is,
given (homologous) Reeb currents o = bBhHeF and g = bB hH!' e, the relative degree of the pair
is:

B+:H+:E—-B -iH -1F
2 q 2

d(a,pB) = =2qB + qH + 2E — 2qB’ — qH' — 2F’.

le]

Remark 1.12.

(i) We usually consider the degree of a single Reeb current, which is defined to be the relative
degree of the pair when 8 = @J; we will denote this degree by d(b®h'’e) or simply d when the
generator is unspecified or clear from context.

(ii) Intuitively, the degree of b is 2q because a regular fiber bounds a page of the open book decom-
position, which is a 2g-fold cover of the base CIP;’ . The g-fold cover e of e also bounds a page
(in homology; to see e? as the boundary of a surface homologous to a page, the surface S, made
up of a union of fibers must be glued to the page along b), so the homology intersection num-
ber of a surface with boundary e with a regular fiber (i.e., the degree of e) must be two (2q
divided by q). Similarly, the degree of h must be q (2q divided by 2).

Remark 1.13 (Generalization to Seifert fiber spaces). When the ECH differential does not vanish
for index reasons, the degree d of a pair of admissible Reeb currents («, 8) corresponds to the
degree of the cover of the orbifold base induced by any curves counted in (d«, 8) for Seifert fiber
spaces of negative Euler class, similar to [68, §4]. In analogy with [65, 68], the ECH of a Seifert
fiber space equipped with an S!-invariant contact structure is expected to recover the exterior
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14 of 74 | NELSON and WEILER

algebra of the orbifold Morse homology of the base. However, depending on the choice of orbifold
Morse function, there will not always be a bijective correspondence between generators at the
chain level, as evidenced in the T(2, q)-fibration of S3.

The degree allows us to compute the ECH spectrum: When the grading k is sufficiently
small relative to L(¢), the degree of the Reeb current representing the generator of the group
E CH;IEE)(S3, A3,4.) 18 Ni(2, q), which allows us to establish that

Ck(S3, /12’(1) = Nk(1/2, 1/q)

The knot filtered ECH of (S3, £,;) with respect to the standard transverse right handed T'(2, q)
knot with rotation number 2q + &, where & is either 0 or a sufficiently small positive irrational
number, is governed by the degree as well. In §6.3, we show that for any Reeb current o not
including the standard right handed transverse T(p, q) torus knot b,

Fb(bBoc) = Brot(b) + £(a,b) = d(bPa) + BS o).

Theorem 1.7 then follows from the description of the filtered chain complex in §5 via successive
approximations and the Morse-Bott direct limit arguments using the sequence of contact forms
{4, ¢}, which is a knot-admissible family by the computations preceding and summarized in
Lemma 4.9. Finally, we establish Theorem 1.6 in §7.

Remark 1.14. Since d(b?a) =2q A 1, (bBoc) knot filtered ECH is able to realize the relationship
between action and linking in this class of examples, cf. [4, Prop. 1.3]. We will elucidate this rela-
tionship further in the sequel [69]. Because our perturbation 4, , . is not toric, our work also could
be used to bound the systolic interval for a larger class of perturbations of ellipsoids by carefully
controlling the estimates on action appearing in Lemma 2.21(ii).

Remark 1.15. With additional development, knot filtered ECH can be used as a means to
obtain new obstructions of relative symplectic cobordisms between transverse knots in contact
3-manifolds. To establish results for strong symplectic cobordisms, the results of [33] will be ben-
eficial. A better understanding of how knot filtered ECH changes with respect to “large changes”
in the rotation number will be helpful. Presently, knot filtered ECH using widely varying irra-
tional rotation numbers has only been computed in S* and lens spaces L(n, n — 1) with irrational
rotation numbers in [39, 92, 93].

2 | FROM OPEN BOOKS TO ORBIBUNDLES

In this section, we review how to obtain the open book decomposition of (S?, ;) along a right
handed T(p, q) torus knot and identify the Seifert invariants. We then review why the T(p, q) fibra-
tions of (S3, &,4) are strictly contactomorphic to the prequantization orbibundles over complex
one dimensional weighted projective space C[P},’ q with Euler class ——. Using the latter descrip-
tion, we perturb the contact form induced by the orbibundle connection 1-form using (the lift
of) an appropriate Morse-Smale function on the base orbifold. We then describe the associated
perturbed Reeb dynamics.
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2.1 | Open books along right handed torus knots

The open book decompositions of S* along the right handed T(p, q) knots are obtained as “stabi-
lizations” of explicit open book decompositions of S* with annular pages and Hopf link bindings.

This process can be iterated as explained in [71, §9],[1, §2] to obtain the genus %

open book
decomposition of (S, £,;) along the right handed T(p, q) knot. Torus links correspond to rational
open books of lens spaces, see [3]. We thus only consider torus knots, so thus assume that p and
q are relatively prime.

An open book decomposition (B, 7r) of a closed oriented 3-manifold Y is an oriented link B C Y,
called the binding, together with a fibering 77 : Y \ B — S! such that 771(9), 6 € S', is a Seifert
surface for B. The closures 7—1(0) are called pages. The monodromy ¢, of (B, 7) is the isotopy
class (relative to the boundary) of the return map of the flow of any vector field that is positively
transverse to the pages and meridional near B.

An open book decomposition is entirely determined by the diffeomorphism type of its pages
and isotopy class of its monodromy: an abstract open book is a pair (Z, ) where X is an oriented
compact surface with nonempty boundary and ¢ is a diffeomorphism of X that is the identity
near 6%. An abstract open book determines an open book decomposition (By, 774) of the mani-
foldYy :=2Z X [0,1]/ ~g, Where (z,1) ~4 (¢(z),0) forall z € Zand (z, 1) ~ (z, t")forall z € 9.
The binding By is 9Z X [0,1]/ ~, and the projection map 7 is simply projection onto the [0,1]-
coordinate. Abstract open books are equivalent if there is a diffeomorphism of their pages under
which their monodromies are conjugate.

Definition 2.1. The stabilization of an abstract open book (Z, ¢) is the abstract open book whose
page ¥’ is obtained from X by attaching a 1-handle and whose monodromy ¢’ is the composition
$ot,, where c is a closed curve in ¥’ intersecting the cocore of the new 1-handle exactly once and
7, is a Dehn twist along c; if 7, is a right handed Dehn twist, then we say that (X', ¢') is a positive
stabilization of (Z, ¢) and if 7, is a left-handed Dehn twist, we say that it is a negative stabilization.
The underlying 3-manifolds determined by (Z, ¢) and (Z/, ¢") are diffeomorphic, no matter the
choice of the curve c.

One can view stabilizations (resp. destablization) as plumbing (resp. deplumbing) Hopf bands.
Since plumbing a Hopf band at the level of 3-manifolds is equal to taking a connected sum with
S3, by definition, we do not change the topology of the underlying 3-manifold. As detailed in [71,
§9], one can plumb two positive Hopf links to get the right handed trefoil T(2, 3). The resulting
monodromy will be the product of two right handed Dehn twists. Iterating this plumbing oper-
ation allows one to express the monodromy of a right handed T(2, q) torus knot as a product of
(q — 1) right handed Dehn twists.

By attaching additional positive Hopf bands, we can construct the fibered surface of a right
handed (p, q)-torus knot for arbitrary p and q. By [1, 2, Thm. 1, Figs. 4-5], the monodromy of a
right handed T(p, q) torus knot is a product of (p — 1)(q — 1) nonseparating positive Dehn twists.
We denote the corresponding abstract open book by (T(p, q), 7). The page of this open book is a
surface of genus »=D@=D and the monodromy is pg-periodic.

An open book decomposition of a 3-manifold Y and a cooriented contact structure £ on Y are
called compatible if £ can be represented by a contact form A such that the binding is a transverse
link, dA is a volume form on every page, and the orientation of the transverse binding induced
by A agrees with the boundary orientation of the pages. We will call a contact form A adapted to
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16 of 74 | NELSON and WEILER

an open book if the above conditions hold. That every open book decomposition of a closed and
oriented 3-manifold admits a compatible contact structure is due to Thurston-Winkelnkemper
[90]. Giroux substantially refined this result [26], and showed that any two contact structures
compatible with a given open book decomposition are isotopic; see also [71, §9, §11]. See also the
recent proof of Breen-Honda-Huang [7], which extends Giroux’ result to all dimensions.

As explained in [71, Rem. 9.2.12], in the case of a positive stabilization of a compatible open
book on (Y, &), the resulting open book is obtained by plumbing a positive Hopf band to a page of
the original open book. The contact structure compatible with the resulting open book is a con-
tact connected sum &#&,;, which is isotopic to . The plumbing procedure is a special case of the
Murasugi sum. Ambient stabilization is described in terms of an ambient Murasugi sum in [23].
Moreover, the contact Murasugi sum induces the connect sum of contact manifolds [10, Prop. 2.6].
Giroux’s theorem [7, 26] states that given a closed 3-manifold Y, there is a one-to-one correspon-
dence between oriented contact structures on Y up to isotopy andopen book decompositions of Y
up to stabilization.

We have the following relationship between abstract open books with periodic monodromy and
Seifert fibrations. Explicit contact forms 4,, ; and 4 adapted to the open book (T(p, q), ) are
described later.

p.q.€

Theorem 2.2 [17, Thm. 4.1]. Suppose that (Z, ¢) is an abstract open book with periodic monodromy
@. Let c; be the fractional Dehn twist coefficient of the ith boundary component and assume all ¢; >
0. Then, there is a Seifert fibration on Yy and a contact form A4 on Yy adapted to the open book
decomposition (By, m4) whose Reeb vector field generates the Seifert fibration.

The fractional Dehn twist coefficient measures the difference between a representative of the
monodromy ¢ and its Nielsen-Thurston representative (which is not necessarily the identity along
the boundary). See [17, §1.1] for a definition. In particular, when all the c; are positive, then & is an
Sl-invariant contact structure that is transverse to the S!-fibers of the Seifert fibration. Moreover,
by [17, Lem. 4.3], we have that for any Seifert fibered space Y with a fixed fibering, any two S*-
invariant transverse contact structures are isotopic. These results go through [61].

Remark 2.3. In the setting of Theorem 2.2, for the open book (T(p, q), 7), we have the following.

(i) The (right handed) pg-periodic representative ¢ of the monodromy ¢ is the return map of
the Reeb vector field Ry of 14.

(ii) R4 generates the S L-actions on S* with fundamental domain given by an orbifold 2-sphere
with two exceptional points, one with isotropy group Z/ pZ and the other with isotropy group
z/qZ.

(iii) The binding T(p, q) is a regular fiber of the Seifert fibration.

With respect to a preferred trivialization induced by the page, the inverse of the fractional Dehn
twist coefficient realizes the rotation number of the binding Reeb orbit, see §4.2.3.

To understand the associated Seifert invariants, it is helpful to recall how the open book
decomposition (T(p, q), ) can be written in coordinates.

Remark 2.4. We can realize the right handed torus knot T(p, q) as

T(p,q) = {(z1,2,) €S> c C* | 2} + zI =0},
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TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE 17 of 74

and the projection map 7 is the Milnor fibration”

D q
z] +z2

/- SS\T(p,q) d Sls (Zl,Zz) = ﬁ
|z} + 2|

There is a well-known S* action on S* inducing the associated Seifert fibration, which is the
flow of the Reeb vector field discussed in §2.4. The S'-action

eth . (ZI’ZZ) — (ezn'pltzl’eZqutzz)

is positively transverse to the pages of (T'(p, q), 7).

2.2 | Seifert fiber spaces and S'-invariant contact structures

We now provide some background on Seifert fiber spaces and S'-invariant contact structures,
primarily to fix our notational conventions, which agree with [61].

Definition 2.5 [59, §14]. A Seifert fiber space is a 3-manifold Y, which can be decomposed
into a union of disjoint circles, the fibers, such that each circle has a neighborhood that is
fiber-preserving homeomorphic to an (u,v)-fibered solid torus T, , where ged(u,v) =1 and
m=1:

v

D? x [0,27]/(z,0) ~ (ez”i”/”z, 271).

In other words, a (u, v)-fibered solid torus T/x,v is the mapping torus of a % rotation. The fiber
{0} x S! is a core circle of the solid (u, v)-torus, while the other fibers represent y-times the core
circle.* Collapsing each of the fibers of the solid (u, v)-torus defines a quotient map to a disk D?. If
v =0, then T, , is an S'-bundle over D*, but if v # 0, then T, ,, is an S'-bundle only over D* \ {0}
and the core circle is called an exceptional fiber.

There is a homeomorphism from T, ., to T, , that takes fibers to fibers, so we can always pick
v such that 0 < v < u. If v # 0, define the unnormalized Seifert invariant (a, b) by

a=u,
bvy=1 mod pu.

(Tt is possible and sometimes of interest to normalize the Seifert invariant so that 0 < b < a, but
this is not strictly necessary.) We say that the core circle of T, ,, is an exceptional fiber of type (a, b).

D. Dreibelbis created visualizations of Milnor’s fibration theorem for torus knots and links at: https://www.unf.edu/
~ddreibel/research/milnor/milnor.html H. Blanchette created an interactive model for the trefoil at: http://people.reed.
edu/~ormsbyk/projectproject/posts/milnor-fibrations.html

B. Baker created an animation for T(2, 3): https://sketchesoftopology.wordpress.com/2012/08/24/bowman/
#J. Bettencourt provides an approximate means of visualizing a fibration at: http://www.jessebett.com/TorusKnot
Fibration/index.html
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The quotient space of Y determined by collapsing each fiber to a point is a 2-orbifold Z, and the
quotient map p : Y — X is called a Seifert fibering of Y over X.

Remark 2.6. Not all Seifert fiber spaces are orientable, nor is the base of an orientable Seifert fiber
space necessarily an orientable orbifold. However, in this paper, both the base and total space
are orientable.

Definition 2.7. Let p : Y — X be an oriented three-dimensional Seifert fibration with oriented
base of genus ¢ and normalized Seifert invariants Y(g; b; (a;, b, ), ..., (a,, b,)), in the sense of [59,
70] and in agreement with [61]. The Euler class of Y is defined by the rational number e(Y) :=
-b-Y_, Z—z (One obtains the same number when using unnormalized Seifert invariants).

Remark 2.8. Since o and 8 are reserved for Reeb currents, we have had to make a slight abuse of
notation. Each (a;, b;) corresponds to the Seifert invariant (a, b) in Definition 2.7. The standalone
b indicates that there is a fiber of type (1, b) present. Moreover, the normalization convention
dictates that 0 < b; < a; with ged(a;, b;) = 1.

Remark 2.9. Lisca and Mati¢ gave a complete answer to the question of which Seifert fibered 3-
manifolds admit a contact structure transverse to their fibers in [61, Thm. 1.3, Cor. 2.2, Prop. 3.1],
which, moreover, is shown to be universally tight. In particular, an oriented Seifert 3-manifold
carries a positive, S'-invariant transverse contact structure if and only if e(Y) < 0. We use a neg-
ative Euler class, as in [59, 61], to agree with Giroux’s conventions for classifying tight contact
structures transversal to the fibration of a circle bundle over a surface in terms of the Euler class
of the fibration in [27].

The classical Seifert fibering of S* along the torus knot T(p, q), cf. [11, 64], may be described as
follows. It provides a partition of S3 into orbits over the orbifold 2-sphere with the z;- and z,-axes
given by singular fibers and each principal fiber given by a torus knot of type T(p, q).

Proposition 2.10. The S'-action e*™" - (z,,z,) = (e*™P!'z,, ™! z, ) generates the Seifert fibration
of S® given by Y (0; —1;(p, p — m),(q,n)), where m,n € Z such that qm — pn = 1, and has Euler

classe(Y) = —i.

2.3 | Prequantization orbibundles

We quickly define the notion of an orbifold and collect some calculations for weighted complex
one-dimensional projective space that will be used in our computation of the ECH index. Further
details can be found in [5, §4], which also describes complex and Kdhler structures on orbifolds.

Definition 2.11. Let O be a paracompact Hausdorff space. An orbifold chart or local uniformizing
system on O is a triple (U, T, ¢) where

« U is a connected open subset of R” containing the origin,

« T'is a finite group acting effectively on U,

* @ : U - U is a continuous map onto an open set U C O such that po{ = ¢ for all { € T and
the induced natural map of U /T onto U is a homeomorphism.
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An orbifold atlas on O is a family U = {U;,T;, ¢;} of orbifold charts subject to a compatibility
condition on overlapping charts, cf. [5, Def. 4.1.1]. A smooth orbifold is a paracompact Hausdorff
space O equipped with an equivalence class of orbifold atlases, which we denote by ~ = (O, U").

Example 2.12. Let CIP; q be the weighted complex one-dimensional projective space defined by
the quotient of the unit sphere S3 C C? by the almost free action of S* C C of the form'

eZm‘t . (Zl’zz) — (ep27ritzl,eq27ritzz)'

The following 1-form is invariant under the above S*-action

1 2

L
2 where 4, = % Z (z;dz; - z;dz;). 2.1)
=

Apyg= —————,
PEplzy 2 + qlz,)?
Thus, w pq = da paq descends to an orbifold symplectic form on CP}J, . By [31, Lem. 4.2], its coho-
wp, q] = 1n H Z(CIP’1 ,@) = Q. (The orbifold chart that gives rise to this
desired orbifold structure on C[P’}L g is spelled out in [62, Prop. 3.1]).

mology class satisfies [w

Definition 2.13. Following Boyer-Galicki [5, §4.3-4.4], we define the orbifold Euler characteristic
as

orb — dim(S) A\P/ X(S)
X = LD

where the sum is taken over all strata S of the stratification of X, y(S) is the ordinary Euler
characteristic, and I'(S) is the isotropy.

Example 2.14. Let (Z;z,, ..., z,) be a Riemann surface of genus g with k marked points. We can
give (Z; z,, ... , 2 the structure of an orbifold by defining local uniformizing systems (U i Faj %))
centered at the point z;, where F is the cyclic group of order a; and ¢; : U; -» U; = U; /Faj

is the branched covering map ¢; (z) = z%. The orbifold Chern number agrees with the orbifold
Euler characteristic:

k
c‘f’b(E;zl, s Zp) = )("rb(Z; ZyyesZp) =2—2g—k + Z L

It follows that for weighted projective space,

ol y_ P14
et )= 24 22)

pq

T Weighted projective space GS[FD1 pa is actually an algebraic variety that admits two different orbifold structures; the other
orbifold structure is realized by CP'/(Z,, X Z,), cf. [62, §3.2.2]. Typically, one decorates the algebraic variety d:[FD1
denote that it is equipped with a specific orblfold structure, but we forgo this precision as we only consider one orblfold
structure in this paper.

¥ The rational orbifold first Chern class can be computed by way of the first rational Chern class of the canonical divisor.
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A principal S'-orbibundle or prequantization orbibundle whose total space Y is a manifold is
the same as an almost free S'-action on Y. In this setting, the contact form is induced by the
connection I-form A, which satisfies iA(R) = 1 and d(iA)(R, -) = 0, where R is the derivative of
the S'-action. The curvature form is the S'-basic 2-form dA = ip*w, where S'-basic means that
the 2-form is S'-invariant and vanishes in the S!-direction of R. The basic cohomology class of w
can be canonically identified with an element in H(z)rb(Z; R) via the equivariant de Rham theorem,
cf. [47, §3.2]. The form w being symplectic means that it is a closed basic 2-form on X satisfying
" # 0.

We now review some results of Kegel and Lange, in particular their complete classification
of closed Besse contact 3-manifolds up to strict contactomorphism in [47]. In a strict contac-
tomorphism, the Reeb dynamics are related by rescaling, which allows us to use either the
prequantization orbibundle or open book description to compute various components of the ECH
index and knot filtration.

By [47, Thm 1.4], we have that a Seifert fibration of a closed orientable 3-manifold Y
over an oriented orbifold £ can be realized by a Reeb flow if and only if the Euler class’,
as defined in Definition 2.7, of the fibration is nontrivial. Combining [47, Thm. 1.4] with
[18] gives the following complete classification of Besse* contact 3-manifolds up to strict
contactomorphism.

Theorem 2.15 [47, Cor. 1.6]. The classification of closed Besse contact 3-manifolds up to strict
contactomorphism coincides with the classification of Seifert fibrations Y — X of orientable, closed
3-manifolds with nonvanishing Euler class.

The Besse condition gives rise to the following orbifold Boothby Wang result, which is explicitly
stated in the language of almost Kéhler orbifolds and Sasakian geometry as [5, Theorems 4.3.15,
6.3.8, 7.1.3, 7.1.6]. However, it is more amenable to use the characterization [47, Theorems 1.1,
1.2] of Besse contact manifolds in terms of principal S*-orbibundles over integral symplectic orb-
ifolds satisfying a certain cohomological condition. (In the below statement, we have restricted to
dimension 3, renormalized the bundle so that the common period of the Reeb orbits is 1 instead
of 27r, and negated their Euler class convention).

Theorem 2.16 [47, Theorem 1.1]. Let (Y3, 1) be a Besse contact manifold. Then, after rescaling by a
suitable constant, the Reeb flow of A has common period 1 and A is given by the connection 1-form of
a corresponding principal S'-orbibundle p : M — X over a symplectic orbifold (Z, w), with w given
by the curvature form associated to A and —%[a)] representing the Euler class e € H(z)rb(Z; R) of
the orbibundle.

The converse construction of the above theorem is not needed for the purposes of this paper,
but we direct the interested reader to [47, Theorem 1.2]. (In the setting where the base is
smooth, prequantization bundles characterize Zoll contact manifolds, which, in addition to being
Besse, also satisfy the requirement that all the periodic Reeb orbits have the same minimal
period).

 Note that our Euler class is referred to as the real Euler class by Kegel-Lange. They also use the opposite sign convention
from us.

# A contact manifold (Y, 1) is said to be Besse whenever all its Reeb orbits are periodic, possibly with different periods.
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2.4 | Morse-Smale functions for T(2, q) fibrations

From Example 2.12, the Reeb vector field associated to 4, , realizing the associated Seifert fiber
space of Proposition 2.10 as a principal S'-orbibundle over CP}) q is given by

. . 0 _ 0 0 _ 0
Rpq '=27”<P<Z1a—zl —Z1a> +Q<Zza—22—22£>>-

A closed orbit y of a prequantization orbibundle is said to be a principal orbit if it has the longest
period among all the periodic orbits, provided one exists. The orbits of the Reeb vector field R,
that project to nonsingular points of the base C[P’})’ g are principal with action 1. In particular, the
T(p, q) binding of the associated open book will be a principal orbit.

There will be two nonprincipal orbits of interest, which, respectively, project to each of the sin-
gular points of CP! . We will refer to these orbits as exceptional orbits; their actions are given by
1/|T, | where |T, | is the order of the cyclic isotropy group at x. (Note that a nonsingular point has
IT',| = 1) The orbit (>, 0) projects to the orbifold point whose isotropy group is Z/pZ. Similarly,
(0, e¥™*) projects to the orbifold point whose isotropy group is Z/qZ.

Next, we specialize to p = 2, and construct the Morse-Smale functions Hz,q on the orbifolds
CP;,q, used to perturb the contact form

Ayge =L +ep Hy ), g, (2.3)

cf. Figure 1. These Morse-Smale functions admit three critical points and is constructed from the
punctured 2g-gon (with opposite sides identified) representation of the page, which is a surface of
genus g = (q — 1)/2, familiar from the study of mapping class groups. We obtain the right handed
2g-periodic element of Mod(Z ) by rotating the 2g-gon by 1 click.

Proposition 2.17 (Morse functions H, ). Let q be a fixed odd number. There exists a Morse
function H,, on C[P’iq, which is C? close to one, with exactly three critical points, such that the
binding projects to the nonsingular index 2 critical point, the Z /2Z-isotropy point is the index 1
critical point, and the Z/qZ isotropy point is the index O critical point. There are stereographic
coordinates defined in a small neighborhood of x € X := Crit(H, ) in which H,, takes the
form

() ro(u,v) :=@W?* +v?)/2-1, ifx €X,,
(ii) ry(u,v) := (V> —u?)/2, ifx e Xy,
(i) ry(u,v) :=1—-@W?+0v?)/2, ifx€X,.

Moreover, H, , is invariant under the 2q-periodic Reeb return map 1, , associated to R, ;.

Proof. This follows from the construction given in [19, Lem. 2.16] via the following procedure.
Figure 1 provides a “cartoon” realizing the construction of the desired Morse function. First, we
define a Morse function H 2,4 On the punctured genus g = ? surface 3 4> Which isrealized as a 2g-

gon with opposite sides identified, with a puncture {x; } at the center.” We put a minimum at each

T This polygon realizes the page of the open book decomposition of 3 4 along T(2, q). Rotation by 1 right handed click and
subsequent identification of the 2g-gon realizes the right handed 2g-periodic element of the mapping class group of fg.
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vertex of the 2g-gon and a saddle at each midpoint of the edge of the 2g-gon; after identification,
we obtain a single minimum at a Z /qZ-isotropy point and a single saddle at a Z /2Z-isotropy point
on C[P’;q \ {xp}. We can then extend F’Iz,q to a Morse function on C[P’iq by “completing” the flow
over the puncture {x;} with an index 2 critical point at {x;}. O

Remark 2.18. When p # 2, a different class of orbifold Morse functions are needed as the previous
construction cannot be used for elementary reasons: when p = 2, the genusof T(2, q) is (g — 1)/2,
and a genus g surface can be represented by gluing opposite sides ofa (4g + 2)-gon. That 2q divides
4g9+2 = @ + 2 is reflected in the fact that the 2g-periodic monodromy of the open book can

be represented by rotating the polygon.

The following lemma guarantees that the Morse functions in Proposition 2.17 are Smale with
respect to w, 4(-, j-) restricted to CIP’% »

Lemma 2.19. IfH is a Morse function on a two-dimensional orbifold  with isolated quotient singu-
larities such that H(p,) = H(p,) for all p,, p, € Crit(H) with Morse index 1, then H is Smale, given
any metric on S.

Proof. Given metric g on Z, H fails to be Smale with respect to g if and only if there are two distinct
critical points of H of Morse index 1 that are connected by a gradient flow line of H. Because all
such critical points have the same H value, no such flow line exists. O

2.5 | Perturbed Reeb dynamics for T(2, q) fibrations

Similarly to [19, 67, 68], we utilize the Morse functions H 2410 perturb the degenerate contact form
A,,4> as in (2.3). Note that the nonsingular point, to which the binding projects, realizing the right
handed transverse torus knot T(2, q), is always the unique maximum of the Morse functions.
A standard computation, cf. [67, Prop. 4.10], adapted to the S'-orbibundle framework, cf. [60,
Rem. 2.1}, yields the following results.

Lemma 2.20. The Reeb vector field of 4, , . is given by

Rz,q eX Hyy

R, .= + , (2.4)
4T 14epHyg  (1+epiH,,)

where X Hy, denotes the horizontal lift of the Hamiltonian vector field" X Hy, O1 C[Piq.

Lemma 2.21. Foreach odd q, let H, ; be the Morse function H, , as constructed in Proposition 2.17,
which we further assume to be C? close to 1.

(i) For each L > 0, there exists (L) > 0 such that for all € < e(L), all Reeb orbits of R, 4 with
A(y) <L are nondegenerate and project to critical points of H,,, where A is computed
using A, g -

T 'We use the convention w(X;;, ) = dH.
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(i) The action of a Reeb orbit yl;lrx' of R, 4 . over a critical point x of H, ; is proportional to the length
of the fiber, namely,

KIT, ;
(™) = [ Fage = K+ e By ()

As in [68, Lem. 3.1], one can choose £(L) so that the embedded orbits realizing the generators
of ECCf(S3,/12’q,E(L);J ) consist only of fibers above critical points of H, , and that (L) ~ % To
capture all these filtered complexes, we obtain the analog of the result proven in [68, §3.4].

Proposition 2.22. As discussed above, there is a direct system formed by {ECHL(Y, A3 g0} The
direct limit lim; _, ECHXL:(S3,/12,q’E(L)) is the homology of the chain complex generated by Reeb
currents {(a;, m;)} where the a; are fibers above critical points of H, ;.

Proposition 2.22 provides a means of computing ECH by taking a direct limit, which involves
passing to filtered Seiberg-Witten Floer cohomology explained in [68, §7]. The Conley-Zehnder
computations in §4.2 yield the following classification of fiber Reeb orbits.

Lemma 2.23. Up to large action L(g), as determined by Proposition 2.21, the generators of
ECCi(E)(S3,/12,q’E,J) are of the form bPhef, where B,E € 7., and H = 0, 1. Moreover,

* b is elliptic projecting to the (nonsingular) index 2 critical point of H, g,
* his negative hyperbolic projecting to the singular index I critical point of H, , with isotropy Z /2Z,
* e s elliptic projecting to the singular index O critical point of H, ; with isotropy Z /qZ.

Remark 2.24. The contact forms 4, , . and 4, , are adapted to the open book decomposition

(T(2,q), ). This is because X Hyg is tangent to the pages of 7, so by (2.4), R, 4 1s positively

transverse to the pages while remaining tangent to the binding because X Hyg vanishes along
the binding.

From the above discussion, we obtain the following linking numbers relevant to our later
computation of the knot filtration on ECH.

Corollary 2.25. For T(2,q), we have:

Q) #(e,h) =1,
(i) £(b,e) =2,
(i) £(b,h) = q.

Proof. Conclusion (i) follows from the fact that the open book decomposition (T(2,q), ) of
Remark 2.4 can be expressed via an S'-action that is free except at the intersections of S* with
the axes in C2. Thus, S is the union of two solid tori whose cores are e and h, which link once.

of the open book (T(2, q), 7r) of periods 2 and g, respectively (the periods can be computed from
Remark 2.3(i, ii)). Their linking numbers with the binding equal their intersection numbers with
the page, which are precisely these periods. O
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3 | GENERALITIES REGARDING THE ECH INDEX

In this section, we provide some generalities on the ECH index, construct surfaces, and explain
different trivializations of £ ; along iterates of Reeb orbits that project to critical points of the
Morse-Smale functions on CP. . We also provide a change of trivialization formula for these
iterated Reeb orbits and compufe it in the desired settings. Our computation of the ECH index,
completed in §5, will make use of three different trivializations. These are the constant trivializa-
tion, orbibundle trivialization, and page trivialization. The “orbibundle” trivialization provides a
global trivialization of &, which makes computing the relative first Chern numbers and Conley-
Zehnder index relatively straightforward, which we carry out in §4.1 and §4.2, respectively.
Understanding the relative intersection pairing in §4.3 is more involved and requires a variety
of different trivializations and surfaces.

3.1 | Properties of the ECH index

In this section, we recall the necessary facts about the ECH index (and clarify some notation),
and we prove Proposition 3.13, which allows us to adjust the terms in the ECH index when using
covers of simple Reeb orbits. We first define the ECH index. To learn more about the wonders of
the ECH index see [35, §2].

The definition of the ECH index depends on three components: the relative first Chern number
¢, which detects the contact topology of the curves; the relative intersection pairing Q., which
detects the algebraic topology of the curves; and the Conley-Zehnder terms, which detect the
contact geometry of the Reeb orbits. For Reeb currents a and 8 on Y, the set H,(Y, a, 3) denotes
the 2-chains Z with 0Z = o — 8, modulo boundaries of 3-chains. If Z € H,(Y, «a,8) and 7 is an
appropriate trivialization of § over the Reeb orbits {o;} and {8;}, which is symplectic with respect
to dA, we define the ECH index as follows.

Definition 3.1 (ECH index). Let a = {(a;, m;)} and B = {(B;, n;)} be Reeb currents in the same
homology class, }; m;[«;] = inj [Bj] =T € H,(Y). Given Z € H,(Y, a, 8), we define the ECH
index to be

I(a,B,2) = ¢,(Z) + Q.(Z) + CZ!(a) — CZL(B),

where CZI(y) 1= Y, Z;";l CZT()/;‘). When «a and 8 are clear from context, we use the notation
I(Z), and when 8 = @ and Z is clear from context, we use the notation I(x). The relative first
Chern number c, is defined in §4.1, the relative intersection pairing Q. is defined in §4.3, and the
Conley—-Zehnder index CZ_ is defined in §4.2.

Remark 3.2. The first Chern number is linear in the multiplicities of the Reeb currents and the
relative intersection term is quadratic (see Lemma 3.4). The “total Conley-Zehnder” index term
CZ£ behaves in a complicated way with respect to the multiplicities, depending on the trivializa-
tion 7, but is generally quadratic unless a very special trivialization is used (because it is a sum of
linear terms, see (4.3)).

We next recall the following general properties of the ECH index, cf. [34, §3.3].

T 'PT0T ‘YTHSESLL

tsdyy wouy

:sdY) SUOMIPUOY) PUT SULA L o 208 “[4T0T/L0/bT] U0 ATEIQIT UHUO Aol1 Ay “ANSIOATUN 201 Aq [€€71°0d0YZ1 11°01/10p/wod Ko

pup-suwo)woo ojim:

ASUDIT SUOWWO)) dANEa1)) d[qeatjdde oy Aq PaUIdA0S a1k SA[IIIE () (a5 JO SN 10§ AIRIqIT duIuQ) A3[IA UO (¢



TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE 25 of 74

Theorem 3.3 [34, Prop. 1.6]. The ECH index has the following basic properties.

(i) (Well Defined) The ECH index I(Z) is independent of the choice of trivialization.
(i) (Index Ambiguity Formula) If Z' € H,(Y, a, ) is another relative homology class, and Z — 7'
is as defined in Remark 3.7(ii), then

12)-1(Z") =(Z - Z,¢,(£) + 2PD(D)).

(iii) (Additivity) If 6 is another orbit set in the homology class T, and if W € H,(Y,3,6), then Z +
W € H,(Y,a,6) is defined as in Remark 3.7(iii) and

I(Z+ W) =1(Z) + I(W).

(iv) (Index Parity) If o and f3 are generators of the ECH chain complex (in particular, all hyperbolic
orbits have multiplicity 1), then (—1)!) = e(a)e(B), where £(a) denotes —1 to the number of
positive hyperbolic orbits in a.

Next, we collect facts about the components of the ECH index, upon which we will rely heavily.
We first fix some notation for trivializations, used throughout this section and the next. Given a
nondegenerate Reeb orbity : R/TZ — Y, denote the set of homotopy classes of symplectic trivial-
izations of the 2-plane bundle y*& over S' = R/TZ by T (y). After fixing trivializations ‘L'l.+ € T ()
for each i and Tj_ eT(B j), we denote this set of trivialization choices by T € T («, 8). The trivial-
ization  determines a trivialization of |- over the ends of C up to homotopy. As spelled out in [68,
Rem. 2.4], we use the sign convention that if 7;, 7, : y*£ — S! x R? are two trivializations, then

T, — 1, = deg(ty07;" 1 S' > Sp(2,R) = S*). (€X))

Lemma3.4. LetZ,Z,,Z, € H,(Y,a,f), Z' € H,(Y,a', "), and W € H,(Y, 3, 8). We have:

(i) (Dependence on Z: [34, (5), Lem. 2.5 (a)]) The relative first Chern number depends only on
a, 3,1, and Z, that is,

c(Z,) —c.(Z,) = <Cl(§)s Zy — Zy). 3.2)
Similarly, the relative intersection pairing depends only on a, 8,7, Z, and Z', that is,
Q,(2,,2"Y-Q.(2,,Z")=[2, - Z,] - T.

(i) (Linearity with respect to concatenation) Using trivializations that agree over the orbits in
B, the relative first Chern number and relative intersection pairing are linear with respect to
concatenation addition:"

c(Z+W)=c(Z) +c.(W),

Q.Z+wW,Z +W)=Q.(Z,Z") + Q.(W,W').

* See Remark 3.7(iii) for a precise definition.
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(iii) (Linearity/bilinearity with respect to union: [35, (3.11)]) The relative first Chern number is
linear with respect to union addition”,

c,(ZwZ")=c(Z)+c.(Z),

while the relative intersection pairing is symmetric, and it is bilinear with respect to union
addition,

Q.(2,2") = Q.(Z',2),
Q.ZwW,z") =Q.(2,Z") +Q.(W,Z)).

(iv) (Change of trivialization: [34, (6), Lem. 2.5 (b)] and [35, (2.12)]) Given another collection of
trivialization choices T = ({flf}, {fj_}) € T (a, B) over the Reeb currents a = {(a;, m;)} and § =
{(,Gj, nj)}, we have

c.(Z2)—c:(2) = z:mi(‘f;r —-&) - an(‘rj_ —‘Z'j_), (3.3)

i J
Q2,2 = Q:(2,2) = Y mm/(z =)= D' n AT =), (3.4)
CZ(a) — CZL(a) = Y\ (m} + m)(F; — T)). (3.5)

In Lemma 3.4, the properties that are given without citation (the linearity properties) follow
immediately from the definitions of ¢, and Q..

Remark 3.5.

(i) When Y is S3, Lemma 3.4 (i) will not be used because each H,(S?, «, ) contains only one
element, as in Remark 3.7 (i).
(ii) A consequence of (iii) is that for union addition

Q.(ZwZ,ZwZ")=Q.(2)+2Q.(Z,Z")+ Q.(Z)),

thus Q,(mZ) = m*>Q.(2).

(iii) In Lemma 3.4 (iii), it may be the case that y; does not appear in «’; in this case ml( =0, and
similarly when y; does not appear in B’, then n}. = 0. The trivialization 7 is a trivialization
of & over all Reeb orbits in the sets a, @/, 3, and 8’. As a consequence, when a and o’ share
no underlying orbits and 8 and 8’ share no underlying orbits, then Q_.(Z, Z’) is independent
of 7.

 See Remark 3.7(iv) for a precise definition.
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3.2 | Trivializations and surfaces for T(2, q) fibrations

The Reeb orbit b realizing the binding is a regular fiber, so there are three trivializations that can be
used: the constant 7, page 75, and orbibundle 7, trivialization. The constant trivialization is not
available for fibers that project to orbifold points. The constant trivialization can be geometrically
“extended” from the binding b to obtain trivializations along h? and e9. See Remarks 3.11-3.12.

Since some trivializations are easier to work with than others, we establish some change in
trivialization formulas to relate them. Additional details on how various components of the ECH
index are impacted by changes of trivialization are given in §3.1.

Remark 3.6. In our computations of the relative first Chern number, Conley-Zehnder index,
and relative self-intersection pairing, we minimize the number of subscripts used distinguish
trivializations by suppressing 7. This means we use the notation

C() ‘=c QO = QTO’ CZO = CZTO’

.= 70°

and the obvious analogs for other trivializations.

We now define the trivializations which we will use throughout our computations. We do this
via surfaces, and thus, first note several facts about H, (Y, «, 8) that will help us describe the classes
in which those surfaces live.

Remark 3.7. Relative homology classes in H,(Y, , §) admit the following properties.

(i) Since H,(Y,a, B) is affine over H,(Y), when Y = S* or L(k, £), it contains only one element.
When § = @3, we denote this element by Z,,.
(ii) Since H,(Y,a,B) is affine over H,(Y), if Z,Z' € H,(Y,«,f3), then Z — Z’ denotes their
difference as an element of H,(Y).
(iii) Let & be another Reeb current in the homology class [a] = [f]. If Z € H,(Y,a,8) and W €
H,(Y,p,6), we can define their sum

Z+W e Hy(Y,a,b),

by gluing representatives along 3. We will refer to this as “concatenation addition” and denote
it by +.
(iv) When Z € Hy(Y,a,8) and Z' € H,(Y,a’, 8’), we can define their sum

Z+Z7Z e Hy(Y,ad,BR),

where concatenation of Reeb currents denotes union of the underlying orbits with corre-
sponding multiplicities added. We will refer to this as “union addition” and denote it by w.
Furthermore, we will use the notation

mzZ . =24--WZ.
—_
m

We now describe the surface representatives of the elements of relevant H,(S3, a, 8) sets. We
use [S] to denote the equivalence class Z in H,(Y, a, 8) of a surface S in Y with boundaryon o — 3.
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Definition 3.8 (Surfaces for T(2,q)). We define the following three surfaces in S°, where U,
means that we are attaching two surfaces along their common boundary b.

* The surface X, which has one boundary component and genus (q — 1)/2, is the page of the open
book decomposition discussed in §2.1. Thus, 0% = b = T(2,q) and [X] = Z;,.

* The surface S, is the preimage under p of a short ray connecting p(e) to a regular fiber b. Thus,
0S, =e?—band[S, U, Z] =[S, ] +[Z] = Z,q = qZ,.

* The surface Sy, is the preimage under p of a short ray connecting p(h) to a regular fiber b. Thus,
3S, = h* —band [S;, Up Z] = [S,] + [Z] = Z). = 2Z,,.

Assume y € dS. A trivialization 7 over an orbit y “has linking number zero with respect to S”
or “is the S-trivialization” if the pushoff of y into S is considered to be constant with respect to t;
see Remarks 4.2 and 4.3. We denote such a trivialization by 7.

Remark 3.9 (Trivializations for T(2, q)). The trivializations we will use are:

* the page trivialization ty over b,

 the constant trivialization t, over b, which has two related surface trivializations (see
Remark 3.11):
* 1, i=7Tg, overbande,
* 1j :=1g, over band h*.

* The orbibundle trivialization t,,, over b, e, and h; this can be used as a black box and is a pull-
back trivialization as explained and utilized in [31, §3] for Conley-Zehnder computations of
fibers in terms of the orbifold Chern class of the base Cﬂﬂ’;’q; cf. §4.2.2.

We will use 7(y) to indicate the orbit to which we restrict the trivialization.

See §4.2.1 for details on the constant trivialization, including the computation of the Conley-
Zehnder index. It has the following topological relationships to the surfaces.

Definition 3.10. The constant trivialization t, can be defined for any orbit y that is a fiber of a
prequantization bundle (as in [68]) or regular fiber of a prequantization orbibundle p : Y — X.
It is the trivialization in which the unperturbed linearized Reeb flow is the identity, meaning an
identification of §|, with T,y Z X S', which is homotopic to the trivialization that restricts to p,
on each contact plane.

Py

Remark 3.11. In Definition 3.10, the condition that the linearized Reeb flow be the identity makes
sense over any fiber orbit whose neighbors are all regular fibers as well, that is, even over excep-
tional fibers. The only necessary adjustment is that we take a cover of the orbit whose covering
multiplicity is a multiple of the corresponding orbifold point’s isotropy. However, it is simpler to
define these as the trivializations having linking number zero with respect to a surface that is a
union of nearby fibers, such as S, or S;,. One of the boundaries of this surface will be a cover of
an exceptional fiber whose order is that fiber’s orbifold point’s isotropy. For example, in the case
of S,, it will be a g-fold cover, and in the case of S;, a 2-fold cover. For a visualization of such a
surface, see the mesh surface in [92, Fig. 3].

Remark 3.12 (T(2,q) constant and surface trivializations). Lemma 3.14(i) shows that 7,(b) =
7,(b) = 1,,(b). Moreover, we can think of the trivializations 7, and 7, as extensions of the
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constant trivialization over e? and h?. This heuristic is supported by computing the Conley-
Zehnder indices. Combining Proposition 3.13, Lemma 4.9, and Lemma 3.15 shows that

CZ,(e?) = CZ,,, (%) + 2k(t,,,(e?) — 7,(e)) = 2(2 + @)k — 1 + 2k(-2 — q) = —1;
CZ, (W) = CZ,, (W) + 2k(zy,(h?) — T,(h?)) = 2(2 + @)k + 2k(-2— q) = 0.

These are the values taken if they were regular fibers, analogous to [68, Lem. 3.9].

3.3 | General change of trivialization formulae

We now review and compute some changes of trivialization. There are many natural trivializations
only defined over covers of simple orbits: see [92, §5.1], where trivializations of contact structures
over rationally (but not necessarily integrally) nullhomologous knots are used to define the knot
filtration when b; = 0 but H; # 0. If y is an embedded orbit, then for every trivialization of & over
y¥ that does arise as the k-fold cover of a trivialization of ¢ over y, there will be k — 1 trivializations
that do not.

For example, in the T(2, q) setting, our trivializations 7, and 7, over e? and h2, respectively (see
Remark 3.9), are of this type, while 7,,,, is a trivialization over the underlying embedded orbits
e and h. Since it is much easier to find r-representatives when 7 = 7,, ), rather than when 7 =
75> We require change-of-trivialization formulas for trivializations over covers of simple orbits
in order to prove Lemma 4.17, which computes the relative self-intersection numbers of e and h.

Proposition 3.13. Modifications of the formulas in Lemma 3.4 and (4.3) hold for trivializations
over covers of embedded orbits. Specifically, assume that

* v is an embedded orbit,

t(y¥) and #(y*) are trivializations over a cover y* of a simple orbit y,

« a={(m,y)}u{lmk,y}anda’ ={(m),y)}u{(m'k,y)}, wherenoy, oryl isy,
* T and 7 extend to elements of T (a, 8), and

ZeH,(Y,a,B)and Z' € Hy(Y,d', ).

Then,

@) ¢.(Z2)—c:(2) =m (t(/) -2 + T my (cf —%h) - xin (‘r]— — f'.‘),

J
(i) Q:(Z.2) = Q:(Z. 7)) = mm'k (") = (/) + Xymym! (v = 2/) = T mym) (75 = 77 ),
(iii) CZ.(y™*) = CZ.(y™'*¥) = 2m(F(y¥) — 1(¥¥)).

Note that the proof of Proposition 3.13 relies on the definitions of ¢;, Q;, and CZ_ in §4.1-4.3.
We include it here because of the similarities between the result and those in §3.1 and because it
is motivated by the trivializations defined in §3.2.

Proof. The proofs of (i) and (iii) are the same as in the case of a simple orbit. For (i), replace the
curve bounded by y with one bounded by y¥; for (iii), as the Conley-Zehnder index is defined for
any Reeb orbit, simply replace the Reeb orbit y with y.

To prove (ii), let S and S’ be admissible representatives of Z and Z’, respectively. It is enough to
consider a single pair of ends, on each of S, S’, on y* (the coefficient mm’ arises from the number
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of ways to match these ends of S and S”), determining braids ¢ and ¢’. Our goal is to show
2:($,8") = £, 8N + k() = 2/

In the tubular neighborhood of y identified by 7 with S' x D?, arrange ¢ and ¢’ so that there is
an interval (in the S! factor) on which the k strands of ¢ project to a set {r,, 0}, ..., {r;, 0} of points
in D?, the k strands of ¢’ project to {(rj41,0), ..., (3, 0)}, and r; < -+- < ry;.. The effect of changing
the trivialization from 7 to  can be expressed by adding 7(y*) — #(y*) copies of the meridian of
S1 x D? to the strands projecting to both (r, 0) and (ry,, 0). This adds exactly k(r(y*) — #(y%)) to
the linking number of { and ¢’, because the strand projecting to (r,_,,0) now links (y%) — (%)
times with each strand of ¢ (including the one projecting to (r,, 0), which has also been twisted).
We have thus proved (ii). O

We now collect the various change in trivialization formulas. Some proofs require the relative
first Chern number and Conley-Zehnder computations carried out in §4.1-4.2 as a black box.

3.4 | Changes of trivializations for T'(2, q) fibrations
We now collect the change in trivialization formulas for the binding.

Lemma 3.14. For trivializations defined along the binding orbit b realizing T(2, q), we have:

(i) 7.(b) = 74(b) = 7(b),
(i) 7o(b) — 75(b) = 2¢,
(iii) 7o(b) — Top(b) =2+,
(i) 7onp(b) = 75(b) = ¢ — 2.

Proof.

(i) In all these trivializations, a nearby fiber is a constant pushoff. Since the homotopy class of
a constant pushoff determines the trivialization, they agree.

(ii) The homotopy equivalence Sp(2, R) ~ S! sends the rotation matrix by angle 6 to 6 € S' =
R/27Z. Thus, it suffices to show that 7,07y 11 R/Z - Sp(2,R) is homotopy equivalent to
the map sending ¢ to rotation by —4qrt.

In solid torus coordinates St1 X [Df o Dear b = (t,0,0), because the fractional Dehn twist
coefficient of the open book decomp,osition is 1/2q, a nearby fiber can be parametrized as
(t,r,4qmt) so that it wraps positively 2q times around the binding b. The pullback b*£ can
be identified with TD? ~ R2, and under this identification, the trivialization 75 is simply
the identity, as is its inverse. Thus, the trivialization 7, which sends (¢, r, 4q7t) to the curve
(t,r,0)in S x R? that does not wrap at all around the central fiber S* x {(0, 0)}, must subtract
4qrt from the 6 coordinate, or in other words, rotate 2q times negatively around the central
fiber. Thus, 7, — 75, = —(t5 — 7y) = 24.

(iii) Using the change-of-trivialization formula (4.3) for the Conley—Zehnder index referenced
above, Corollary 4.6, and Lemma 4.9 computing CZ_(b) when 7 = 7, 7,,,, respectively, we
obtain

21y(b) — 7, (b)) = CZ,,(b) — CZo(b) =22+ @) + 1 — 1.

T 'PT0T ‘YTHSESLL

tsdyy wouy

e Suio 1 oy 208 “[H707/L0/bT] U0 ATRIqET SUHUO Aol1 A “ANSIOATUN 20R] AQ [€€71°0d0YZ1 11°01/10p/wod o

pup-suwo)woo ojim:

ASUDIT SUOWWO)) dANEa1)) d[qeatjdde oy Aq PaUIdA0S a1k SA[IIIE () (a5 JO SN 10§ AIRIqIT duIuQ) A3[IA UO (¢



TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE 310f 74

(iv) Using conclusions (ii) and (iii), we obtain
Torp(b) — TZ(b) = (to(b) — TZ(b)) + (Torb(b) - TO(b)) =29—-2—q. |:]

We now collect the change of trivialization formulas along the exceptional fibers. First, we
consider T(2, q).

Lemma 3.15. The change of trivialization formulae along e and h? are
(i) t.(e?) —1,p(e?) =244,

(i) 7,(h®) — 7, (W*) =2 +q.

Proof. Using the change-of-trivialization formula for the relative first Chern number concerning
trivializations over multiply covered orbits (Proposition 3.13(i) mentioned above), we have

7,(e?) — 7, (1) = c,(Zog) — Copp(Zog) =2+ q — 0.

Lemma 4.1(iv) computes c,(Z,q), while c,,,(Z,q) = qc,,,(Z,) = 0 by the linearity formula for the
relative first Chern number with respect to union addition explained in Lemma 3.4 (iii). This
proves (i); the proof of (ii) is similar. O

4 | COMPONENTS OF THE ECH INDEX

In this section, we compute the components of the ECH index for the T(2, q) fibrations of S3.
First, we compute relative first Chern numbers, then the Conley-Zehnder indices, and finally the
relative intersection pairing.

4.1 | Relative first Chern numbers

The relative first Chern number of the complex line bundle |~ with respect to the trivialization
T € T(a,B) is denoted by

(€)= c;§le» 0,

and defined as follows. Let 7y : R XY — Y denote projection onto Y. We define ¢, (|, 7) to be
the algebraic count of zeros of a generic section 3 of |, ¢ that on each end is nonvanishing and
constant with respect to the trivialization on the ends. In particular, given a class Z € H,(Y, «, B),
we represent Z by asmooth map f : S — Y where S is a compact oriented surface with boundary.
Choose a section 3 of f*& over S such that 1 is transverse to the zero section and  is nonvanishing
over each boundary component of S with winding number zero with respect to the trivialization
7. We define

CT(Z) = #¢_1(0)’

where “#” denotes the signed count.
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Thus, given another collection of trivialization choices up to homotopy 7/ = <{T’ l.+}, {' ;}) €
T (a, 8), by the convention (3.1), we have

c(Z)—cy(2) = Zmi(f;r _T;u) - an<fj_ —rj_,>; 4.1

J

this is also reviewed in Lemma 3.4 (iv). Moreover, we will also use the fact that ¢, is linear under
both + and w; see Lemma 3.4.

We now compute the relative first Chern number ¢ (Z) where Z = [S] for the surfaces S of
Definition 3.8. (Note that we compute the ECH index in §5 using only c,,;, but we required the
values of ¢, for other 7 for our computations in §3.4.)

Lemma 4.1. ForT(2,q), we have

(1) Corb([z]) =0,
(i) c([Z)=2+¢,
(i) cx([E)=2-¢q,
(iv) Ce(Zeq) = Ch(th) =2+gq,
V) corp(Ze) = ¢opp(Z),) = 0.

Proof.

(i) The trivialization 7, is global, so it extends from b over the interior of any representative of
the class Z;,. Thus, c,,;,([Z]) = 0.

(ii) The degree of the covering p : = — CP;’q is 2q and the orbifold Euler characteristic of the
base of p is (2 + q)/2g, thus in analogy to [68, Lem. 3.12],

oz =2q( 22 ) =244

(iii) Using the change of trivialization formula and Lemma 3.14(ii),
es(IZD) = ¢o(IZD) + 75(b) — 79(b) = 2+ ¢ — 2q.

(iv) Both S, and S, are a union of fibers, so the degree of the restriction of p to each of them
is zero and ¢,([S,]) = ¢;,([S,]) = 0. Thus, by the linearity of the relative first Chern number
under concatenation addition, Lemma 3.4(ii), as well as the fact that 7,(b) = 7;,(b) = 7,(b)
by Lemma 3.14(i),

ce(Zeq) = ce([Se U Z]) = Ce([Se]) + CO([Z]) = 0 + 2 + q

and similarly for ¢, (Z),2).

(v) The trivialization 7, is global, so it extends from e (respectively, i) over the interior of
any representative of the class Z, (respectively, the class Z,). Thus, ¢,,,(Z,) = c,.,(Z,) = 0.
However, we may also verify this using the change-of-trivialization formula for covers of
embedded orbits, Proposition 3.13(i). O
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4.2 | Conley-Zehnder indices

We now compute the Conley-Zehnder index of b using the constant and orbibundle trivializa-
tions, and the Conley-Zehnder index of e and h? using the orbibundle trivialization, which also
provides the formulae for other iterates of e and g. To switch to the page trivialization, we will
make use of the change of trivialization formulae computed previously. We first review some basic
definitions and properties of the Conley-Zehnder index.

Given a Reeb orbity : R/TZ — Y, the linearized Reeb flow along y with respect to a choice of
a trivialization 7 € 7 (y) from time O to time ¢ € R defines a symplectic map P, * &,0) = &)
The symplectic return map is defined to be P,,r). (Note that P, is the identity matrix.) If we
assume that y is nondegenerate, then the path of symplectic matrices {P,) | 0 <t < T} has a
well-defined Conley-Zehnder index, which we denote by

In three dimensions, the Conley-Zehnder index can be more explicitly described in the
nondegenerate setting as follows:

» If y is hyperbolic, meaning the eigenvalues of the linearized return map are real, then there
is an integer n € Z such that the linearized Reeb flow along y rotates the eigenspaces of the
linearized return map by angle nzr with respect to . We have:

CZT(yk) = kn.

The integer n is always even when y is positive hyperbolic and always odd when y is negative
hyperbolic. We call n the monodromy angle of y.

 Ify is elliptic, meaning the eigenvalues of the linearized return map lie on the unit circle, then
7 is homotopic to a trivialization in which the linearization of the time ¢ Reeb flow §, ) = &,
along y rotates by angle 2726, foreach ¢t € [0, T], where 6 : [0,T] — Ris continuousand 6, = 0.
The nondegeneracy assumption forces 6; to be irrational. We have:

CZ.(y*)=2|k6;] +1 (4.2)

We call 81 the monodromy angle of y. (In some literature, 8 is called the rotation angle, but
we will use the terminology “rotation number” to designate the O, obtained from a specific
homotopy class of trvializations, see Remark 4.2 below.)

The Conley-Zehnder index depends only on the Reeb orbit y and the homotopy class of 7 €
T (y).If ! € T (y) is another trivialization, then we have

CZ,(y* - CZ. (") = 2k(z’ —1). (4.3)

Remark 4.2. Our computation of knot filtered ECH with respect to the binding in §6 will make
use of the page trivialization 75, : & l, = R?, as when ¥ is the binding, a pushoff of y via this trivi-
alization has linking number zero with y. If H,(Y) = 0, then we can associate to any elliptic Reeb
orbit y a well-defined rotation number

rot(y) :=6r €R
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in terms of the symplectic trivialization which, when used to push the elliptic Reeb orbit y off
itself, has linking number zero.

Remark 4.3. When defining the Conley-Zehnder index of a nondegenerate Reeb orbit, it is typical
to use a different homotopy class of trivialization 7 than the one described in Remark 4.2, which
extends to a trivialization of € over a surface bounded by y, rather than one yielding a zero linking
number with respect to the pushoff of the Reeb orbit. These two trivializations differ by the self-
linking number of the transverse knot y. The self-linking number of a simple Reeb orbit y, or more
generally, of any transverse knot (oriented and positively transverse to &) is defined as follows.
Let 7 denote the homotopy class of a symplectic trivialization of §|y for which a pushoff of y has
linking number 0 with y. Let X be a Seifert surface for y. Then,

sl(y) 1= —¢1(€l5, ).

We have c5([Z]) = 2 + g — 2q, so 2q — 2 — q is the self-linking that corresponds to the rotation
angle of the binding being 2q. Using the trivialization that extends over a disk, we will show that
the monodromy angle is 2 + g.

We have the following formula for the Conley-Zehnder indices of iterates of Reeb orbits associ-
ated to 4, ; . that project to critical points x of H, ;. We denote the k-fold iterate of an orbit which
projects to x € Crit(H, ;) by y)’g. This formula relies on an extension of the Conley-Zehnder index
to degenerate orbits, which are the fibers of the prequantization orbibundle associated to 4, 4,
namely, that of the Robbin-Salamon index as in [74]. Detailed background, various technicali-
ties, and associated proofs can be found in [67, §4], [31, 48, §3]. The following lemma provides an
overview of how these results are used in the setting at hand.

Lemma 4.4. FixL > 0 and let H, ;, be a Morse-Smale function on CP;,q that is C? close to 1 as in
Proposition 2.17. Then, there exists € > 0 such that all periodic orbits y of R, , . with action A(y) < L
are nondegenerate and project to critical points of H, ;. The Conley-Zehnder index such a Reeb orbit
over x € Crit(HZ’q) is given by

CZ.(y") = RS,(")-1+ index, H, ,,

where RS stands for the Robbin-Salamon index, which can be associated to a degenerate Reeb orbit

[74].

421 | Constant trivialization

The constant trivialization 7, in Definition 3.10, as, for example, considered in [68, §3] can be used
to compute the Conley-Zehnder index of the fibers that project to nonsingular points as follows.
Let x € C[IJ’1 be any point with trivial isotropy. Then, for any point y € p~!(x), a fixed trivial-

ization of T, tIZ[P’1 allows us to trivialize &), because §, = T, <[2[F1>1 2q This trivialization is invariant
under the hnearlzed Reeb flow and can be thought of as a constant trivialization over the orbit y,,
because the linearized Reeb flow, with respect to this trivialization, is the identity map.

Using this constant trivialization, we have the following result regarding the Robbin-Salamon
index, see [48, Lem. 3.3] and [67, Lem. 4.8].
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Lemma 4.5. Let x € CP) 2, be any point with trivial isotropy and let y, = p~1(x) be the S! fiber
realizing a Reeb orbit of 1, 4, which projects to x. Then, for the constant trivialization 7, we obtain
RSy(y,) =0and RSO(yk) = 0, where RS denotes the Robbin-Salamon index.

In conjunction with Lemma 4.4, we obtain the following computations.

Corollary 4.6. Fix L > 0, and Hz’q as in Proposition 2.17. Then, there exists an € > 0 such that all
k-fold iterates of b with action A(b*) < L are nondegenerate. Then,

CZy(b*) = 1.

4.2.2 | Orbibundle trivialization

In order to compute the Conley-Zehnder indices of Reeb orbits that project to critical points,
we appeal to a global orbibundle trivialization that relates the Robbin-Salamon indices of the
degenerate Reeb orbit fibers to the orbifold Chern class of the base C[P’1 g A bit of clarifica-
tion may be helpful prior to stating Hong’s result on this relationship that we will employ
below.

First, we note that that this global orbibundle trivialization is done in terms of pullback bun-
dles, which is provided in full detail in [31, §3] to establish the below result, which generalizes the
construction in [48]. We use change of coordinate formulae to convert our relative intersection
pairing terms using the aforementioned constant and page trivializations to this orbibundle triv-
ialization, which obviates the need to work explicitly with the orbibundle trivialization beyond
its below application to the computation of the Robbin-Salamon and Conley-Zehnder indicies of
the fiber orbits, and thus their monodromy angles, and the prior use of deducing that the relative
Chern number vanishes.

Second, the orbifold fundamental group is deserving of (more than) a few words; see also [5,
§1.5, 4] and [9, §2.2]. The orbifold fundamental group ﬂ‘l”b was first conceived by Thurston in
terms of the group of deck transformations of a universal covering orbifold [88, §13], though this
did not fully make its way into [89]. The modern presentation realizing Thurston’s construction
comes by way of homotopy classes of loops on the pseudogroups representing the orbifold, though
a more involved notion of homotopy classes is necessary to capture the local nature of pseu-
dogroups, as pseudogroups are in essence groups of transformations where there “may be some
problems” with domains of definition. Haeflinger gave an alternate [28] but equivalent approach
[29], by providing an explicit Borel-type construction of the classifying space of an orbifold; the
latter permits the definitions of all higher homotopy groups as well.

Theorem 4.7 [31, Thm. 3.1]. Let (£, w,J) be a Kihler orbifold so that it admits an S*-orbibundle
p 1 Y — Zsuch thatY has a Besse contact structure,” where dA = p*w. If

@) c?’b(TZ) = vy[w] € H*(Z, Q) for some integer vs, € Z,;
(if) 7¢"0(2) =
(iii) Y is a manifold.

1In [31], a Besse contact structure is called a K-contact structure.
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TABLE 1 Conley-Zehnder indices for the T(2, 3) open book decomposition.
Orbit e h e e h> b e h e e h* b> e h° e e h® b
CcZ 3 5 7 9 10 1 13 15 17 19 20 21 23 25 27 29 30 31

orb

Then, the Robbin-Salamon index RS,,;, of the |T', |th iterate of a Reeb orbit y is given by
RSorp (y|Fx|) = 2vy,

where p(y) = x and T, is the isotropy group at X.

Remark 4.8. Let (S3, lp,q) be the prequantization S'-orbibundle over the orbifold (CIP; @ p,q) of

real Euler class —i. Then, for the orbibundle trivialization 7,,;, along the fiber yxr"l, we have

RS, (ylcr"lk> = 2(p + q@)k. (Recall that Example 2.12 computed [cop,q] = [d/lp,q] = i, while
Definition 2.14 computed ¢ CP,,) = pp—;q.)

In combination with Lemma 4.4, the above yields the following formulae for the Conley-
Zehnder indices of iterates of orbits that project to critical points x of H, ;.

Lemma 4.9. FixL > 0 and H, ; a Morse-Smale function as in Proposition 2.17 on CPiq that is C?
close to 1. Then, there exists € > 0 such that all periodic orbits of y of R, ; . with action A(y) < L are
nondegenerate and project to critical points of H, ;. The Conley-Zehnder index of such a Reeb orbit
over x € Crit(HZ’q) is given by

CZOVb(yﬁlr"l) =2(2+ @)k + index, H, ; — 1.

In particular, we have:

CZyy(b) = 22+ @k +1,
CZorb(th) = 202+ Q)k,
CZ,, (%) = 224 qk-1.

Thus,

* b iselliptic of monodromy angle 2 + q + &y, ;, where 0 < &y, | < 1 is irrational;
* h is negative hyperbolic with rotation number 2 + q;
* e iselliptic of monodromy angle (2 + q)/q — 6, 1, where 0 < §, ; < 1 is irrational.

Remark 4.10. The computations in Table 1 show that our construction recovers the action filtered
cylindrical contact homology of (S*, ker 1, ;) via an action filtered chain complex with vanishing
differential by way of [19, 66, 67]. Since h is a negative hyperbolic orbit, we discard all of its even
iterates, thus, there is always exactly one generator in every odd degree of the action filtered chain
complex. In contrast to the scheme utilized in [94], we have that the binding and its iterates are
generators of cylindrical contact homology.
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4.2.3 | Page trivialization aka push-off linking zero trivialization

Finally, we consider the Conley-Zehnder indices and monodromy angles of the bindings with
respect to the page trivialization 7y, described in §3.2. Since the page trivialization is the push-
off linking zero trivialization, these monodromy angles are the rotation numbers used in our
computation of knot filtered ECH.

Lemma 4.11. For the T(2, q) binding b, CZs(b®) = 4qB + 1. Thus, with respect to the page trivial-
ization b is elliptic with rot(b) = 2q + &, 1, where §,, ; is an irrational number such that0 < ), ;| <
1

Proof. Using (4.3) and Lemmas 4.9 and 3.14(iv), we have

CZs(b?) = 2B(z,,,(b) — t5(b)) + CZ,,,(b®) = 2B(g —2) + 22+ q)B+ 1) =4gB+1. [

It may be of interest to note that a direct computation for the Conley-Zehnder index of the
binding of an open book decomposition with disk like pages is given in [6, Thm. 3.11].

4.3 | Relative intersection pairing

In order to compute the relative intersection pairing Q,(Z), we need to choose specific surfaces
S C [-1,1] X Y representing a class Z € H,(Y, a, f3).

Definition 4.12 [35, Def. 2.11]. Given Z € H,(Y, a, ), we define an admissible representative of Z
to be a smooth map f : S — [—1,1] X Y, where S is an oriented compact surface such that

1. The restriction of f to the boundary dS consists of positively oriented covers of {1} X a; whose
total multiplicity is m; and negatively oriented covers of {—1} X 8; whose total multiplicity is
n;.

J
2. The projection 7y : [—1,1] X Y — Y satisfies [7y(f(S))] = Z.
3. The restriction of f to int(S) is an embedding and f is transverse to {—1,1} X Y.

Such an S is said to be an admissible surface for Z € H,(Y, «, ).

An admissible representative S of Z € H,(Y, a, 8) determines braids around the component
Reeb orbits o; and §;. Let § l+ denote the braid around «; given by S N ({1 — e} X Y) for € > 0 suffi-
ciently small; it is well defined up to isotopy in a tubular neighborhood of «; chosen to not intersect
the tubular neighborhood of to any other simple Reeb orbit in ct. Note that l+ will have m; strands.
Define ¢ i analogously in a tubular neighborhood of §;.

We now define the linking number of admissible representatives. If S’ is an admissible rep-
resentative of Z’' € H,(Y,a’, ') such that the interior of S’ does not intersect the interior of S
near the boundary, and with braids ¢ i+/ and g“j‘,, we can define the linking number of S and S’
to be

£:(8,8) = Y 6T ST = Y 6T
i J
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Using this, we may now define the relative intersection pairing. Let S and S’ be two surfaces
that are admissible representatives of Z € H,(Y,a,8) and Z’ € H,(Y,a/,8’) whose interiors S
and S’ are transverse and do not intersect near the boundary. We define the relative intersection
pairing by the following signed count:

Q.(2,Z") :=#(SnS") —£.(S,5). (4.4)

Moreover, Q,(Z, Z") is an integer that depends only on o, 3, Z,Z’ and 7. If Z = Z’, then we write
Q.(2) :=Q.(Z,Z) and call this the relative self-intersection number of Z.

The above definition of the relative intersection pairing comes from [35, §2.7], and it is par-
ticularly useful when we can find admissible representatives with # (S ns’ ) = 0 (see the proofs
of Lemmas 4.18). However, often, it is also desirable to compute Q. when the linking number
term is zero, and this is how the relative intersection pairing was originally defined in [34, §2.4].
Those surfaces with #_(S,S") = 0 can be characterized geometrically, as in the following defini-
tion. Note that instead of following [34, §2.4], we use the version for embedded surfaces appearing
in [37, §3.3].F

Definition 4.13. Assume that S is an admissible representative of Z, and furthermore, that the
following conditions hold.

1. myof is an embedding near 0S.

2. The m; (respectively, n;) nonvanishing intersections of these embedded collars of 6S with §
lie in distinct rays emanating from the origin and do not rotate (with respect to 7) as one goes
around q; (respectively, ;).

Then, we say that S is a t-representative of Z, and Q.(Z,Z') := # (SnS').
We start by noting that the surfaces defined in §3.2 are convenient for computing Q,.

Lemma 4.14. The following surfaces are T-representatives.

(i) The surface X is a Tx-representative of Z,,.
(ii) The surface S, is a t,-representative of the class in H,(S>,e4, b).
(iii) The surface S), is a t),-representative of the class in H,(S>, h?,b).

Proof. The conclusions follow immediately from the definitions of the trivializations in §3.2. []
‘We prove that several relative intersection pairings are zero.

Lemma 4.15. The following relative intersection pairings are zero.

(@) QIS = Qu(ISu]) = 0.
(i) Q:([S.].[S,]) = 0, where z(e) = 7,(e), 7(h) = ,(h), and (b) = 7o(b).

Proof. The surfaces S, and S;, are t-representatives of the single element in H,(S>,e%,b) and

TThe definition in [34, §2.4] is only for immersed curves, and it requires that the boundary of S consists of single covers
of the o; and I which we do not want to be restricted to.
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three cases equal the intersection numbers of the surfaces in R x S3. These are all zero because
even the intersection numbers between the projections of the surfaces to S* are zero. O

‘We compute the remaining relative intersection pairings, separated by proof method.

Lemma 4.16. The following formulas hold.

@ Qs(Zy) =0.
(i) Qy(Zp) = 2q.
Proof.

(i) Recall that X is a ty-representative of Z,. Thus, Qx([XZ]) = 0 because X can be pushed off of
itself in S3 via the Reeb flow, which sends it to another surface whose boundary is constant
with respect to 5.

(ii) We use the change-of-trivialization formula Lemma 3.4 (iv) and Lemma 3.14(iii):

Qorb([z]) = QZ([Z]) + Torb(b) - TZ(b) =0+ q-—- 2.
(iii) We use the change-of-trivialization formula Lemma 3.4(iv) and Lemma 3.14(ii):
Qu([ZD) = Qx([ZED + 19 — 75 = 0+ 2q.

Note that this agrees with the quantity —ed? computed in [68, Lem. 3.13] for the case of a
prequantization bundle, because e = —Zi while d = d(b) = 2q; we expect this agreement

because b is a regular fiber of a prequantization orbibundle. O
Lemma 4.17. The following formulas hold.

(1) Qorb(Ze) =-1
(ii) Qorb(Zh) =-1

Proof.

(i) Using the change-of-trivialization formula from Proposition 3.13(ii) and the value of
7,p(e?) — 7,(e?) computed in Lemma 3.15(i), we have

Qorb(qZe) = Qe(Z,) + q(Topp(e?) — 7,(e?))
=Q.(Zw) +q(-2—-1q)
= Qu([Sc] +[£)) — 29 — ¢°
=-¢*,
where we have used linearity with respect to concatenation, Lemma 3.4 (ii), and the fact that

7,(b) = 74(b), Lemma 3.14(i), in the fourth line, and Lemma 4.15 (i) to compute Q,([S,]) in the

fifth line. Thus, by bilinearity with respect to union addition, see Remark 3.5 (ii), Q,,,(Z,) =
Qorb(9Z,)
o tes = —1.

qZ
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(ii) By the change-of-trivialization formula from Proposition 3.13 (ii) and the value of 7, (h?) —
7,,(h?) computed in Lemma 3.15 (ii), we have

Qorp(2Z1) = Q,(2Z1) + 2(tyyp(h?) — T, (h?))
=Qu(Z2) +2(-2-¢q)
= Qu([Sy]1+[ZD -2(2+q)
= —4’

where in the fourth line, we have used the fact that Q. is linear with respect to concatenation
addition and the fact that 7, (b) = 7,(b), Lemma 3.14(i). We have also used Lemma 4.15(i) to
compute Q([S,]) in the fifth line. Thus, by bilinearity with respect to union addition, see

Remark 3.5(ii), Q,,,(Z),) = M =-1. ]

Lemma 4.18. The following formulas hold.

(i) Qorb(Ze’Zh) =1
(ii) Qorb(Ze’Zb) =2
(iii) Qorb(Zh’Zb) =q.

Proof. Whenever the ends of Z and Z’ are disjoint and connected, the £, term in the definition of
Q, is zero. Thus for any trivialization 7 and admissible representatives S and S’ of Z and Z’, we
have

Q.(2,Z")y=#(SNnS")=#(SnS") = ¢£(3S,3S").

Corollary 2.25 computes the relevant linking numbers. 1

5 | COMPUTATION OF EMBEDDED CONTACT HOMOLOGY

In this section, we compute the action filtered ECH chain complex for the contact form 4, , .. We
establish our ECH index theorem and then summarize the results of this section in §5.1. In §5.2,
we finish the description of the ECH chain complex of 4, ;. up to action L(¢). In particular, we
prove that the differential disappears for index reasons, enabling us to compute

z/2 if k€27
ll_I)% ECHi(E)(SG,/’Lz,q,E’J) = { / 20

0 else

combinatorially, including the T(2, ) knot filtration in §6.

Other well-known means of recovering ECH (S, £;;) can be achieved via the irrational ellip-
soid in [37, §3.7], or even the prequantization bundle over S? with Euler class —1 in [68, §7.2.2].
The utility of our computation is not to obtain the homology, but to prove that our chain com-
plex consists precisely of one generator per index, and to identify the degree of that generator as
a function of its index. This identification will be heavily relied on in §6.
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5.1 | Summary of calculations for T'(2, q)

Recall that the generators of ECCi(E)(S3, A3,4.6>J) are of the form bBhH et where B,E € Z, and
H=0,1"

Notation 5.1. When specifying a particular Reeb current with multiplicative notation, we will
follow the convention that m > 0, omitting the term (a,m) that in multiplicative notation is
expressed as a” if m = 0. For an unspecified or general Reeb current, however, we will allow
m = 0, and it will correspond to an omitted Reeb current in the usual notation.

Our computation of the ECH index is as follows.

Theorem 5.2. The ECH index]1 for (S3, A, q.¢) satisfies the following formula. For any Reeb current
ef h"'bB with action less than L(c), where E = qm +r,0<r < q—1:

I(bBhfef) = 2EH — H? + (¢ + 2)H + 2qB* + (q + 3)B + 4EB + 2qHB + %EZ +(q+1m

- érz +2r + l%J @2r—-qg+1), (GAY)

whereE =qm+r,0<r<q-—1

Proof. 1f we can show

+ 2
cz! (eF) = qTE2 +(g+Dm— %rz +or+ l%J Qr—g+1) (5.2)

or
and

cz!  (b%)=(q+2)B*>+(q+3)B,

then (5.1) follows from Definition 3.1 of the ECH index, linearity of ¢, and bilinearity of Q, with

respect to union addition, Lemma 3.4 (iii), as well as Lemmas 4.9, 4.1(i,v), 4.16(ii), 4.17, and 4.18.
The formula for CZ(I) rb(bB) can be quickly obtained from Lemma 4.9:

b
cz! (%) =Y (2(q+2)i+1) = (g +2)(B+1)B +B.
i=1

The formula for CZé rb(eE ) where E = gm + r is elementary but slightly complicated to obtain.
First, we compute a formula for CZ(ef) in terms of m and r. Let (g + 2)/q — 8, . denote the mon-

odromy angle of e with respect to the contact form 4, and the trivialization 7,,,;,; recall §, . > 0 and

* Recall that the Reeb vector field R, 4, admits two orbits realizing singular fibers of the Seifert fibration, called e and h
and of isotropy Z/q and Z/2, respectively, with T(2, q) as a regular fiber b. We obtain 1, ; . by perturbing 4, ; using the
Morse function H, ;4 of Proposition 2.17 on the base orbifold CP;’ . As described in Lemma 2.23, up to large action, the
only Reeb orbits of R, 4 are iterates of e (elliptic), h (negative hyperbolic), and b (elliptic).
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approaches zero as ¢ — 0 (see Lemma 4.9). Then,
m+r q+2
CZ, .,y =2((gm+r) B Oec || +1
2r
—2(q+2)m+2r+2[q] - 1.

To obtain CZ! | (e¥), we first compute CZ! , (e9™):

m—1 q
6= 5, 3, cZer)
i=0 j=1
m—1{1g/2] q-1
= D Qg+2i+2j+ D+ Y (Ag+2)i+2j+3)+ Qg+ +1)—1)
=0 | j=1 Jj=la/21
m—1
= 2q(q+2)i+q*+3q+1
i=0
+2

using the r = 0 case of
= (gm +r)* = ¢*>m? + 2qmr + r*.

This proves (5.2) whenr = 0. Now forr = 1,..., |q/2], we have

cz! (et =cz! (&™) + Z CZ,,,(edm+))
j=1

= q(g+2)m* + (g +Dm+ Y (2(q+2)m+2j+1)
i=1

2
= &EZ +(q@+1)m-— 2,2 + 2r,
q q

while whenr = [q/2],...,q — 1, we have

CZI b(eqm+r) _ CZI (eqm+[q/2J) + Z CZ b(eqm+j)
Jj=lq/21
=q(g+2)m*+(q+Dm+ (g +2)m+1) [%J + ng ([QJ + 1)

,
+ D (Ag+2)m+2j+3)
Jj=lq/2]

v s e9(e- |4 +reen-[3] (3] 1)
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+2
=qTE2+(q+1)m—§r2+4r—q+1. 0

Remark 5.3 (Evenness of ECH index). We note that the ECH index appearing in Theorem 5.2 is
always an even integer, as it must be by the Index Parity property, Theorem 3.3 (iv), because h is
negative hyperbolic by Lemma 2.23. Because q is odd, the only terms that are not even integers
are

—H?, m+mH,3E{ and — 272,
q q
If H = 1, then the sum —H? + (¢ + 2)H = g + 1 is even. Moreover,
2, 5 2 2,5 5 2
E(E —r9) = a(q m° + 2gmr) = 2gm” + 4mr,

which is an even integer. Thus, in order to obtain the ECH of S* as computed in [37, §3.7], the ECH
differential must vanish; this also follows as a direct consequence of the combinatorial results in
§5.2.

The formula for the ECH index appearing in Theorem 5.2 is rather opaque. To make sense of
it, recall the notion of degree of a generator, adapted to the case 8 = §J in Definition 1.11:

B+3H+:E

d(bBPhtel) =
le

=2qB +qH + 2E.

Remark 5.4. We now summarize the key properties of the relationship between the ECH index of
a generator and its degree so as to better elucidate the formula for the ECH index in Theorem 5.2
and its consequences in §5.2.

» Ifd(ax) > d(B), then I(ax) > I(f3); moreover, the lowest index appearing for a generator of degree
d + 1 is exactly two more than the highest index appearing for a generator of degree d, so long
as d is large enough. See Lemma 5.9.

* Within a given degree, the ECH index increases by twos in lexicographic order on triples
(B,H,E).}

* A generator of the form b? has degree d = 2gB and index I = 2qB? + (g + 3)B, thus

_q+3++/(q+3)*+8Iq

2

d

The function I ~ d in general is a more complicated approximation of the above; see §6.1.

We provide a list of generators organized by degree and index for 4, ; . in Table 2(a) and for 1, 5 .
in Table 2(b).

We prove the following proposition in §5.2, which will be key to our computation of the knot
filtration in §6. This is primarily done combinatorially, with a minimal invocation of results on
ECH cobordism maps.

"Note that within a given degree H is constant, because its contribution to the degree has odd parity while the
contributions of E and B have even parity.
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TABLE 2 Note the differences in the number of generators of fixed degree between the 4, 5 . and 4, 5 . contact

forms. Neither 4, ;. nor 4, 5. admit a generator of degree 1, and for 4, 5 ., there are no generators in degree 3.

(a) Generators for T'(2, 3)

(b) Generators for T(2,5)

Degree Generator Index Degree Generator
0 @ 0 0 @

2 2 2 e

3 h 4 4 e?
4 e? 6 5 h

5 he 8 6 el

6 e 10 7 he
6 b 12 8 et

7 he? 14 9 he?
8 et 16 10 e’

8 be 18 10 b

9 he? 20 11 he3
9 bh 22 12 e®
10 e’ 24 12 be
10 be? 26 13 he*
1 he* 28 14 e’
n bhe 30 14 be?
12 e® 32 15 he’
12 be? 34 15 bh
12 b? 36 16 e8
13 he® 38 16 be?
13 bhe? 40 17 he®
14 e’ 42 17 bhe
14 be* 44 18 e
14 b%e 46 18 be*
15 he® 48 19 he’
15 bhe? 50 19 bhe?
15 b*h 52 20 elf
16 e8 54 20 be®
16 be® 56 20 b?
16 b%e? 58 21 he®
17 he’ 60 21 bhe?
17 bhe* 62 22 el
17 bhe 64 22 be®
18 e’ 66 22 b%e
18 be® 68 23 he®

Proposition 5.5. For any A-compatible almost complex structure J, we have

Z[2 if x€2Z,

ECCHO(S3 0, )=
¥ 20£ 0 otherwise,

Index

©® o ~ DN O
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so long as * is small enough relative to L(¢) (see Lemma 2.23).

Moreover, for € > ¢/, there is an exact symplectic cobordism from (S3,/12’q,g) to (S3,/12’q’51 ), and
the compositions of the inclusion-induced maps (LELED gnd the cobordism maps ®" defined in [68,
Thm. 2.17] are the canonical bijection on generators.

After taking direct limits, Proposition 5.5 immediately provides a combinatorial computation
of the ECH of (S, &,4):"

Corollary 5.6. The direct limit of the homologies of the chain complexes in Proposition 5.5 recovers
the ECH of (S, &,4):

Z]/2  if x€ 27,

lim ECHY (3,4, . .,J) =
-0 ¥ 24 0 otherwise.

5.2 | The ECH chain complex

In this section, we prove Proposition 5.5 and Corollary 5.6. We first prove several lemmas. Recall
that by Definition 1.12, the formula for the degree of a generator is d(b®hef) = 2qB + qH + 2E.
Our first lemma sorts the generators by degree.

Lemma 5.7.

(i) In degrees2i,i = 0,...,q — 1, there is one generator, ¢'.
(ii) In degrees q + 2i,i =0,...,q — 1, there is one generator, hel.
(iii) Each other generator can be written in the form bY h ¢4+ where h'le! is as described in (i) or
(ii) above. Given two such generators b” hfle®+ and b¥' hH' ¢4+’ they have the same degree
ifandonlyifi =i’ and x +y = x' + y'. This degree is d(h'e) + 2q(x + y).

Proof. For all three conclusions, the fact that the described generators have the given degrees is a
simple computation.

The reverse implication in (i), that the el are the only generators of degree 2i,i =0,...,q — 1,
follows from the fact that the degree is even and less than 2q, thus H = B = 0. Then, E = i follows
from the formula for degree.

The reverse implication in (ii), that the he' are the only generators of degree q + 2i,i = 0,...,q —
1, follows from the fact that the degree is odd and q + 2i — q is less than 2q, thus H = 1 and B = 0.
Then, E = i follows from the formula for degree.

Given a generator bPh'’ e the first claim in (iii) follows by setting i = E mod ¢,x = |E/q],
andy = B.

The second claim in (iii) has two implications. Assuming that the degrees of b hffe4*** and
bY Wt 1+ are equal, we conclude H = H' by parity of degree. Using the fact that

d(bBhteE) = d(bP hHet') < d(bPef) = d(b® eF),

¥ For a simpler computation of ECH(S?, £,4), see [37, §3.7].
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TABLE 3 Here, we have shown the generator of degree 2(gm + i) — 1 of the highest ECH index, the
generators of degree 2(gm + i) of the lowest and highest ECH index, and the generator of degree 2(gm + i) + 1 of
the lowest ECH index.

Degree Generator
20qm + i) — 1 b helt s
2(gm + i) @

bmel
2gm+i)+1 hedlm=D+i+ 52

we then compute
d(e) + 2q(x + y) = d(e') + 2q(x’ + y).

Because d(e'), d(e!") < 2g, this implies d(e!) = d(e!') and x + y = x’ + y'; part (i) implies i = i’.
The opposite implication in (iii) is immediate from the formula for degree. O

Our next lemma sorts generators with the same degree by their ECH index.
Lemma 5.8. Ifd(bYh!1ed*+i) = d(bY h1ed'+1), then
IR H) = I(6Y W e +) 4 2(y = ).

Proof. This is a straightforward computation using Theorem 5.2. Note that it is crucial to use the
fact that x + y = x’ + y’, or equivalently, that x —x’ =y — y’. O

Lemma 5.8 can also be interpreted as the fact that, within a given degree, the ECH index
increases with respect to the lexicographic order on triples (B, H, E).
The final lemma explains how to sort generators of adjacent degrees by their ECH index.

Lemma5.9. Ford > 2q — 1, the lowest index occurring for a generator of degree d + 1 is two higher
than the highest index occurring for a generator of degree d.

Proof. We split the proof, based on degree, into three pairs of identities, each of which compares
two ECH indices. We first explain where the three pairs of identities come from.

From Lemma 5.7, we know that generators appear in an alternating ascending pattern accord-
ing to degree, that the parity of degree and multiplicity H of h match, and that within a given
degree, the sum of the multiplicity of b and the floor of the multiplicity of e divided by q is constant.
Thus, we have two basic junctures at which we must verify the conclusion of the lemma: when
degree changes from odd to even and when degree changes from even to odd. Each of Tables 3-5
thus presents a scenario where we are checking two such junctures.

The reason we present three different tables, determined by E mod g, is because the form the
generators take depends on degree, meaning the specific identities we must check to prove the
lemma differ. Thinking of the generators @, e, ..., e~ as the basic set of generators, Lemma 5.7
indicates how all other generators are obtained from this basic set, and how their degrees corre-
spond. Essentially, for the lower (respectively, upper) half of values of E mod g, the adjacent odd
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TABLE 4 Here, we have shown the generator of degree 2qm + g — 2 of the highest ECH index, the
generators of degree 2gm + q — 1 of the lowest and highest ECH index, and the generator of degree 2gm + q of
the lowest ECH index.

Degree Generator
2qm+q—2 b thed™!
-1
2gm+q—1 eIt
S .
b"e >
2gm +q hed™

TABLE 5 Here, we have shown the generator of degree 2(gm + i) — 1 of the highest ECH index, the
generators of degree 2(qgm + i) of the lowest and highest ECH index, and the generator of degree 2(gm + i) + 1 of
the lowest ECH index.

Degree Generator
20qm +i) -1 bhe ™5
2(qm + i) I
b™me!
; qm-+i— LS
2(gm+1i)+1 he 2

generators are of the form b? hef’ with E’ in the upper (respectively, lower) half of numbers mod-
ulo g. As there are precisely g possible values of E mod g, we must also handle the case when E
mod ¢ takes on the middle value, (g — 1)/2, separately (Table 4).

This is most easily seen in Table 2(b), where g = 5. For example, Table 3 includes the cases of
degrees 9-11 as well as 11-13; Table 4 addresses degrees 13-15; finally, Table 5 handles degrees 15-17
as well as 17-19. At this point, we have reached a degree equal to 9 mod 2q (equivalently, value
of E mod q), whereupon we repeat the argument, starting with Table 3 and degrees 19-21.

Note that within each case, we also need to identify the highest and lowest ECH index repre-
sentatives of the shared degree; this identification relies on Lemma 5.8, which is used implicitly
when constructing the tables to sort the generators vertically by ECH index. The only odd degree
generators presented are those with the highest and lowest indices in their respective degrees
(whichever we need to prove has ECH index adjacent to that of the lowest/highest ECH index
representatives of the even degree under consideration).

The cases presented prove the lemma because they represent each pair of consecutive degrees
where one entry in the pair has degree 2(gm + i) fori = 0, ...,q — 1 and any m > 1; this covers all
adjacent pairs of degrees starting with 2q — 1 and 2q (by setting m = 1 and i = 0).

Case 1, E=, 0, ..,(q — 3)/2: By Lemma 5.7, for i =0,...,(q — 3)/2, the generators in con-
secutive degrees 2(gm + i) — 1,2(gm + i), 2(gm + i) + 1 are (sorted vertically within degree by
increasing ECH index, using Lemma 5.8) as depicted in Table 3.

As shown in Table 3, in the case of consecutive degrees 2(gm + i) — 1,2(qgm + i), and 2(qm +
i)+ 1withi=0,...,(q — 3)/2, we must prove that

. —1 . . . +1
1(b™Mhe T ) +2 = 1(e*) and 1(b™e!) + 2 = 1 he? ™ V),
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Case 2, E=S;(q — 1)/2: When i = (q — 1)/2, the generators in these consecutive degrees are
displayed in Table 4.

As shown in Table 4, in the case of consecutive degrees 2gm + q — 2,2qgm + q — 1, and 2qm +
g, we must prove that

—1 —1
I thed™ ) 42 = I(eqm+q7) and I(bmeqT> +2 = I(hel™).

Case 3, E= (q + 1)/2,..,q — 1: When i =(q + 1)/2,...,q — 1, the generators in consecutive
degrees 2(gm + i) — 1,2(qgm +i),2(qm + i) + 1 are given in Table 5.

As shown in Table 5, for the consecutive degrees 2(gm + i) — 1,2(qm + i), and 2(gm + i) + 1
withi =(q +1)/2,...,q — 1, we must show that

1(b7he ™5 ) +2 = 1™ and I(b7e!) +2 = 1(Re™™ 75 ).

All six identities can be checked using Theorem 5.2 (using computer algebra system helps us
avoid mistakes). O

To conclude this section, we first prove Proposition 5.5, which computes the action filtered
chain complexes ECC*L(E)(S3, A5,4.6-J) and the maps between them necessary to set up a directed
system with € — 0.

Proof of Proposition 5.5. Lemma 5.7(i, ii) provides us with one generator of each even degree from
zero to g — 1, one generator of each degree from q — 1 to 2q — 1, and one generator of each odd
degree from 2q — 1 to 3q — 2. Using Lemma 5.7(iii), we can obtain generators of every degree
d > 2q, since each such d can be written as m + 2qn for some positive integer n and m one of the
degrees described in the previous sentence.

Lemmas 5.7(iii) and 5.8 show that generators with the same degree have different (even) ECH
indices. Lemma 5.9 shows that for degrees at least 2q, not only does ECH index increase by degree,
but it increases by the smallest amount possible (two). Thus, to show that the set of action fil-
tered generators is in bijection with some subset of the nonnegative even integers, it remains to
show that the generators of degrees 0, ..., 2q — 1 have ECH indices 0, ..., I(«) — 2, where « is the
generator of degree 2q with the smallest ECH index.

By Lemma 5.7, these generators are eli=o0,.., g—1lor hej,j =0,..,(gq—1)/2, and a = eq.
By Theorem 5.2,

: i 20 ifogi<(g—-1)/2
I(e") =2i+ [2J Qi—-g+1)= ' ! i<(g-1/
q 4i—q+1 if(g+1)/2<i<q—-1,

I(he!) = q+4j +1, and
I(e?) =3q +1.

These indices are precisely the even numbers between 0 and g> + g + 2, inclusive: the first quar-
ter are the indices 2i of el,i = 0, ..., (@ —1)/2, and then the rest come in consecutive pairs with
I(hel) + 2 = I(e'), as it is easy to check from the above formulas.

It remains to show that the inclusion-induced maps and cobordism maps compose to the canon-
ical bijection (in either direction of the commutative diagram [68, (2.16)]): the proof is practically
identical to the analogous part of the proof of [68, Prop. 3.2], which appears in [68, §3.4]. This

T 'PT0T ‘YTHSESLL

tsdyy wouy

:sdY) SUOMIPUOY) PUT SULA L o 208 “[4T0T/L0/bT] U0 ATEIQIT UHUO Aol1 Ay “ANSIOATUN 201 Aq [€€71°0d0YZ1 11°01/10p/wod Ko

pup-suwo)woo ojim:

ASUDIT SUOWWO)) dANEa1)) d[qeatjdde oy Aq PaUIdA0S a1k SA[IIIE () (a5 JO SN 10§ AIRIqIT duIuQ) A3[IA UO (¢



TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE | 49 of 74

necessitates checking a list of conditions from [45], which are summarized in [68, Lem. 2.18] and
contained in §7. O

6 | SPECTRAL INVARIANTS OF ECH

In this section, we compute the ECH spectrum for (S°, 4, ;) and knot filtered ECH for (S, £,4)
with respect to the standard transverse right handed T(2, q) knot with rotation angle 2q + &, where
d is either O or a sufficiently small positive irrational number. First, we establish the relationship
between the ECH index of a generator and its degree in §6.1; this governs the behavior of the ECH
spectral invariants. In §6.2, we review basic properties of the ECH spectrum. In Proposition 6.5,
we prove that

¢ (S%, 9) = Ni(1/2,1/q)

using our chain complex described in §2-5.
In §6.3, we review the basics of knot filtered ECH and compute the knot filtration by relating it
to the degree of Reeb current generators. We then establish Theorem 1.7.

6.1 | Relationship between index and degree

We first compute the function I = 2k — d, which will govern the computations of both the ECH
spectrum and knot filtered ECH. Recall that from Definition 1.11 and Remark 1.12 that the degree
of a Reeb current is d(bBhfe?) = 2gB + qH + 2E.

For a,b € R, let N(a, b) denote the sequence (am + b”)m,nezw of nonnegative integer linear
combinations of a and b, written in increasing order with multiplicity. We use Ny.(a, b) to denote
the kth element of this sequence, including multiples and starting with N(a, b) = 0.

Lemma 6.1. When k is small enough relative to L(¢), cf. Lemma 2.23, the degree of any Reeb current
whose homology class represents the generator of the group ECHZLIEE) (83, Asq.6) s Ni(2,9).

Proof. The fact that each group ECH ;IEE)(S 3, A,,4.) is generated by the homology class of a single
Reeb current, all of which are cycles, follows from the computation of the differential in §5. The
differential vanishes (Proposition 5.5), and therefore, the homology equals the chain complex. (For
T(p, q), there will be a nonvanishing differential, and all even index generators will be closed).
Let (m,n) = (E,2B + H). This defines a bijection between ECH generators and Zio (to show
surjectivity, note that bl*/2pn=2l/2l¢m s (m, n); injectivity is easy to show). The fact that
composing this bijection with (m,n) —» 2m + nq is monotonically increasing with respect to
index follows from the fact that degree increases with respect to index, which is proven in
Lemma 5.9. O

6.2 | The ECH spectrum

We summarize the definitions and properties of action filtered ECH and the ECH spectrum, and
we compute the ECH spectrum of (S3, Ayq)-
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Remark 6.2. ECH contains a canonical class, called the contact invariant c¢(§) € ECH(Y,&,0),
which is the homology class of the cycle given by the empty set of Reeb orbits.

In the following, when T' is not specified, we define

ECH,(Y,A) := @ ECH,(Y,A,T). (6.1)
TeH,(Y)

Recall that the symplectic action of a Reeb current .A(cr) was defined in (1.3) and that the ECH dif-
ferential decreases symplectic action. Thus, for each L € R, there is a subcomplex ECCL(Y,1,])
generated by the Reeb currents o for which A(a) < L, whose homology is the action filtered
embedded contact homology ECHﬁ(Y,/l). In [45, Thm. 1.3], it is shown that action filtered ECH
does not depend on J; it does, however, depend on the choice of contact form A. (In the literature,
the word action is omitted; we include it to more readily distinguish action filtered ECH from knot
filtered ECH).
If r > 0 is a constant, then there is a canonical scaling isomorphism

ECH™(Y,A) = ECH™™(Y,r}) (6.2)

because 1 and rA have the same Reeb orbits up to reparametrization. Moreover, for any generic
A-compatible almost complex structure J, there exists a unique rA-compatible almost complex
structure J” that agrees with J on the contact planes; thus, the bijection on Reeb orbits gives an
isomorphism at the level of chain complexes:

ECCL(Y,A,J) = ECC™ (Y, rA,J"). (6.3)
For L < L/, there are also maps induced by the inclusion of chain complexes:
t : ECHY(Y,1) — ECH(Y, 2),
) ) (6.4)
L ECHY(Y, 1) — ECHY (Y, ).

None of the maps in (7.3) and (6.4) depend on J as a result of [45, Thm. 1.3].

Remark 6.3 (U-map). If Y is connected, there is a degree -2 map
U : ECH(Y,A,T) » ECH(Y,A,T),

which is induced by a chain map that is defined similarly to the differential. However, instead of
counting J-holomorphic curves in R X Y with ECH index one modulo translation, it counts ECH
index two curves that pass through a chosen generic point z € R X Y, see [44, §2.5]. Taubes proved
in [87] that U agrees with an analogous map on Seiberg-Witten Floer cohomology defined in [50]
under the isomorphism of Theorem 1.3.

We now have all the necessary ingredients to define the ECH spectrum.

Definition 6.4 [36, §4]. Let (Y, 1) be a closed connected” contact 3-manifold and assume that
the contact invariant ¢(§) # 0 € ECH(Y, &, 0). The ECH spectrum of (Y, 1) is the sequence of real

* One can define the ECH spectrum for disconnected contact 3-manifolds, cf. [37, §1.5].
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numbers
0=1cy(Y,1) <c;(Y,1) €cy(Y, 1) £ ... € o0,

defined as follows. First suppose that 4 is nondegenerate. Then, ¢, (Y, 4) is the infimum of L such
that there exists a class 7 € ECHL(Y, ,0) with Uy = ¢(¢) = [@]. This is equivalent to ¢, (Y, 1)
realizing the infimum over L such that the generator of ECH,, (Y, 4, 0) is in the image of the first
inclusion induced map (6.4). If no such class exists ¢, (Y, 1) = oo, while ¢; (Y, 1) < oo if and only
if c(£) is in the image of U* on ECH(Y, £, 0).

If A is degenerate, define

ck(Ya /1) = r}l_EIolo Ck(Y’ fn/l)a

where f, : Y - R,, are functions on Y such that f,4 is nondegenerate for each n and
lim,_, ., f, = 1in the C%topology. In this setting, the spectral numbers ¢, still take values in the
action spectrum of 4 and remain infimums over actions of admissible Reeb currents.

The ECH spectrum satisfies a number of nice properties, such as spectrality, monotonicity,
and scaling. Thus, it obstructs symplectic embeddings of symplectic manifolds with contact type
boundary, and in many interesting cases, the obstructions are sharp.

We now compute the ECH spectrum of the degenerate contact form 4, ;.

Proposition 6.5. We have ¢, (S°, L) = Ni(1/2,1/9).
Proof. Letf, =1+ %p*Hz,q. Once nislarge enough so that ¢ (Y, f,4, 4) < L(1/n), the capacities
oy, f n/lz,q) are constant in n; therefore, it suffices to compute these for k small enough with

respect to L(1/n) so that all orbits are of the form b2hf e* (see Lemma 2.23).
By Lemma 2.21(ii),

ADBPY =B, A(h) = % A(eF) = 5.

Therefore,
By H ,E
A@PRHeFy = WOTheT) (6.5)
2q
The result follows from Proposition 5.5 and Lemma 6.1. O

Remark 6.6. The result of Proposition 6.5 could be indirectly obtained by [36, Prop. 1.2], because
A, 4 is strictly contactomorphic (up to rescaling by a constant) to the standard contact form on
E(2, q). The strict contactomorphism follows from [18, 47].

6.3 | Knot filtered ECH

We collect the key properties of the knot filtration when H,(Y) = 0 from [39]. See the introduction
of the knot filtration in §1.1 for discussion of the consequences of these facts.
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Let b™a be a Reeb current where m € Z,, and a be any Reeb current’ not including b. We
define the knot filtration with respect to (b, rot(b)) by

Fp(b™a) = mrot(b) + £(a, b), (6.6)
where #(a, b) is given by

£(a,b) = Y mi(a;,b).

The ECH differential d does not increase the knot filtration 7.

Lemma 6.7 [39, Lem. 5.1]. Let (Y3, 1) be a closed nondegenerate contact manifold. If b"+a, and
b"-a_ are Reeb currents, and there exists a J-holomorphic current C € M’ (b"+«a 4, b-a_), then

7:‘b(bm+ OC+) = Fb(bm* 0(_). (67)
In particular, the ECH differential 3 does not increase the knot filtration F,.

IfK € R,let ECH,*<¥
Reeb currents b™a with F,(b™a) < K. We have that ECH

in the following sense.

(Y, 4,J) denote the homology of the subcomplex generated by admissible
Fb <K

0 (Y,A4,J)is a topological invariant

Theorem 6.8 [39, Thm. 5.3]. Let (Y, §) be a closed contact 3-manifold with H;(Y) =0, b C Y bea
transverse knot and K € R. Let A be a contact form with ker 1 = & such that b is an elliptic Reeb orbit
with rotation number rot(b) € R/Q. Let J be any generic A-compatible almost complex structure.

Then ECHbeK(Y, A,J) depends onlyon Y, €, b, rot(b), and K.

In §7, we generalize Theorem 6.8 to allow for rational rotation numbers and provide a Morse-
Bott direct limit means of its computation via an extension of the arguments employed in [68].
The proof relies upon a doubly filtered Morse-Bott direct limit argument and requires a knot-
admissible sequence of contact forms (see Definition 1.5).

This allows us to compute the knot filtered ECH of (S3, &, 4, T(2, ), 2q) via successive approx-
imations using the sequence {1, .}, which is knot-admissible family by Lemma 4.9 and its
surrounding discussion. We briefly review the computation for the nondegenerate unknot in the
irrational ellipsoid.

Example 6.9 [39, §5]. Let Y = 0E(a, b) = {(zl,zz) ec?|x (% + %) = 1}, with a,b > 0.

Then, for 4, = % (Z?zl zdej - Zjdzj> restricted to Y,

190 10
Ry=2m|-F++--).
0 ”(aael b662>
If a/b € R\ Q, there are exactly two embedded Reeb orbits: y; in the z, = 0 plane with action
a and y, in the z; = 0 plane with action b. The ECH generators are of the form o = y:" 1)/;" 2

TWhen defining the knot filtration 7, we need not assume that hyperbolic orbits have multiplicity 1, for example, « does
not have to be a generator of ECH.
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and the ECH index’ defines a bijection from the set of generators of ECC,(Y,4,,J) to the set
of nonnegative even integers, cf. [39, Lem. 4.1], where the grading of fJ is 0. Thus,

z7[2 ifx€ 27,
0 else.

ECH, (Y,&uq) = {

We have that rot(y,) = b/a and #(y,,7,) = 1. Thus, the knot filtration of an ECH generator
¥y 'y,* with respect to y, is given by

(71 97/2 2) = mZb/a + ml = a_lA(Yl a}lz )
Thus, if a is an arbitrary ECH generator with I() = 2k, then
Pyz(a) = Nk(17 b/a)

It follows that if k is a nonnegative integer, b, is the standard transverse unknot* given by a Hopf
circle, and rot(b,) € R \ Q, then

Z/2 K > N;(1,rot(by)),

7:'
ECH), bk (g3, €4 bo» TOt(by)) = _
0 otherwise,

F, <K
and in all other gradings %, ECH,, a (83, &4» by» rot(by)) = 0.

Before computing knot filtered ECH for (S3, &) with respect to the right handed T(p, q) torus
knot, we first compute the knot filtration.

Proposition 6.10. For (S3,/12,q,5) and €(L) as in Proposition 2.17, for any Reeb current o not
including the right handed T(2, q) torus knot b,

Fy(bPa) = d(bPa) + Béy .
Proof. By Lemma 4.11, we know rot(b) = 2q + &, ;. We have that @ = hf e for H,E € 7, thus
F,(bBa) = Brot(b) + £(a, b)
=B(2q + 8, 1) + £(",b) + £(h", b)
=B(2q +d;, 1) + qH + 2E,
where the last line follows from Corollary 2.25. Recall that
d(b®n'ef) = 2qB + qH + 2E. Cl

Remark 6.11. Note that d(b?a) = 2q Az, (bBrx) thus knot filtered ECH is able to realize the
relationship between action and linking in "these examples, cf. [4].

TWhen H,(Y) = 0, the chain complex has an absolute Z-grading, which we indicate by ECC,.

#1In tight contact 3-manifolds, [21, 22] demonstrate that the self-linking number is a complete invariant of transversal
isotopy for transversal unknots and torus knots, respectively.
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Recall that T(2, q) is standard as a transverse knot in the sense of Etnyre [22], that is, it has
maximal self-linking 2q — 2 — ¢." We now compute T(2, g) knot filtered ECH.

Theorem 6.12. Let &, be the standard tight contact structure on S°. Let b, be the standard positive
(right handed) transverse T(2, q) torus knot for q odd and positive. Then, for k € N,

Fp<K Z/2 K 2 Ni(2,9),
ECH, "~ (S%, €4, by, 29) = .
0 otherwise,

and in all other gradings =,

ECH"¥(83,£,,4,by, 2q) = 0.

If & is a sufficiently small positive irrational number, then up to grading k € N and knot filtration
threshold K inversely proportional to &,

Z/2 K2 Ni(2,q9)+ 368N (2,9)—1),

Fy<K
ECH."~" (8%, €4, by, 29 + 8) =
2k (5 Ssa> Do 24 ) {O otherwise,

where $N,.(2,q) is the number of repeats in {Nj(2, q)}jSk with value N(2,q), and in all other

gradings *, up to the threshold inversely proportional to 6,

ECH!"¥(S3,£,,4,by,2q + 8) = 0.

Remark 6.13. The relationship between the threshold of the grading 2k and the size of § is as
follows. We require & to be small enough so that N (2,q) + (8N (p,q) — 1) < N.1(2,q) for
all k.

Proof. Since § is small and the knot filtration is invariant of the contact form (so long as b is
an elliptic Reeb orbit with irrational rotation number 2q + § in its Seifert surface trivialization),
we use one of our preferred contact forms 4, ; . where § := &, ;) = to compute the ECH chain
complex up to the action and index thresholds determined by Lemma 2.23. We require § to be
small enough so that N} (2,q) + 6(8N(2,9) —1) < N;,,(2,q) for all k.

Proposition 5.5 tells us that the lower bound on K is precisely the knot filtration level of
the generator of ECCZEE)(S3, A3,4.)» Which is Ni.(2, q) + 8($8N,(2, ) — 1) by Proposition 6.10 and
Lemma 6.1. By Theorem 1.6 and the discussions in §7.3-7.4, we can take direct limits to realize

§=0. O

7 | COBORDISM MAPS ON EMBEDDED CONTACT HOMOLOGY

In this section, we establish Theorem 1.6, which extends the definition and invariance of knot
filtered ECH to knots with rational rotation numbers. This is accomplished by a generalization
and refinement of the direct systems established for our action filtered Morse-Bott arguments

TWe computed in §4.1 that cs([Z]) = 2 + g — 2q, thus 2q — 2 — q is the self-linking that corresponds to rotation 2q + &,
with respect to the pushoff linking number zero trivialization, as explained in §4.2.3.

T 'PT0T ‘YTHSESLL

sdiy woy

:sdY) SUOMIPUOY) PUT SULA L o 208 “[4T0T/L0/bT] U0 ATEIQIT UHUO Aol1 Ay “ANSIOATUN 201 Aq [€€71°0d0YZ1 11°01/10p/wod Ko

SO KA

25URDI] SUOWILIOY) 9ANERX) A[qEAddE ALY Aq POUIIACS AIE SIIIMIE VO 125 JO SIINI 0] ATBIQIT SUHUQ AS[1A UO (:



TORUS KNOT FILTERED EMBEDDED CONTACT HOMOLOGY OF THE TIGHT CONTACT 3-SPHERE | 55 of 74

in [68, §7.1], which utilized the cobordism maps induced by filtered perturbed Seiberg-Witten
Floer cohomology.

To make this section more self-contained, we first briefly review a number of results regarding
the existence and properties of cobordism maps for action filtered ECH and the relation to their
counterpart in Seiberg-Witten Floer cohomology as established by Hutchings and Taubes [45] in
§7.1-7.2. In §7.3, we explain how to construct action filtered direct systems via cobordism maps
coming from filtered perturbed Seiberg-Witten Floer cohomology.” In §7.4, we set up the doubly
filtered direct system, complete the direct limit argument, and establish invariance, which proves
Theorem 1.6.

7.1 | Exact symplectic cobordisms and broken currents

We now collect a number of definitions and some deep facts about the existence of certain broken
holomorphic currents in exact symplectic cobordisms.

An exact symplectic cobordism from (Y ,4,) to (Y_,A_) is a pair (X, 1) where X is a compact
four-dimensional oriented manifold with 0X =Y, —Y_ and dA is a symplectic form on X with
Aly, = Z,. Given an exact symplectic cobordism (X, 1), we form its completion

X = ((=00,0] X Y_)Uy_X Uy, ([0,00) X Y,)

using the gluing under the following identifications. A neighborhood of Y, in (X, 1) can be canon-
ically identified with (—¢, 0]; X Y, for some € > 0 so that 4 is identified with e . Moreover, this
identification is defined so that d; corresponds to the unique vector field V' such that t,,dA = 4.
Similarly, a neighborhood of Y_ in X can be canonically identified with [0,€) X Y_ so that 4 is
identified with eSA_.

Let (X,A) be an exact symplectic cobordism from (Y, ,1,) to (Y_,A_). An almost complex
structure J on the completion X is said to be cobordism compatible if J is dA-compatible on X
(meaning that dA(-,J-) isa Riemannian metric on X), and there are A, -compatible almost complex
structures J, on R X Y, such that J agrees with J, on [0, 00) X Y, and withJ_ on (—=00,0] X Y _.

In order to define direct systems, we will need to compose cobordisms, X_oX,, compose
cobordism compatible almost complex structures, and understand the maps they induce on ECH.

Definition 7.1. Given exact symplectic cobordisms (X, 4, ) from (Y;,4,)to (Y, 4y) and (X_,1_)
from (Y, 4,) to (Y_;,1_,), we glue along Y|, to define their composition

X_0X+ :=X_ UY0X+’

which we equip with the exact symplectic form 1_oA, obtained by gluing A_ and 4, together.
This produces an exact symplectic cobordism from (Y;,4;) to (Y_;,A_;).
For R > 0, we can construct the stretched composition

X_opX, 1=X_Uy, ([-R.R] XYy uX,.

The contact and symplectic form perturbations of monopole Floer cohomology originated in Taubes’ proof of the Wein-
stein conjecture in dimension three [81, 82] and were also used in his proof of the isomorphism between ECH and
Seiberg-Witten Floer cohomology [83-87].
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We glue e*R1, on X, and e, on [-R,R] X Y, to obtain a one-form A_ogxA, on X_ogX,, thereby
producing an exact symplectic cobordism from (Y5, eRA;) to (Y_;,e R1_)).

(Our notation here is not entirely ideal because, previously for an exact symplectic cobordism
X fromY, toY_, A, were contact forms on Y, but in this definition, they are primitives of the
exact symplectic forms on the exact symplectic cobordisms being composed).

Notation 7.2. For positive ¢’ < ¢ and s € [¢/,¢], we consider exact symplectic cobordisms from
(8%, 25,4.0) 0 (S, 4, 4 1), which we denote by

(X[s’,a]’AZ,q,[s’,z]) = ([E/, E] X S3, a+ Sp*HZ,q)AZ,q)‘

For " < ¢ < ¢, we will consider the exact symplectic cobordism from (S3,/12’q,g) to (S3,12,q’5”)
formed from the composition of two exact symplectic cobordisms:

(X[E”,E’]o[z’,a] , AZ,q,[EI/’EI]O[E/’E]) = (X[E//,E/], AZ,q,[E”,E’])O(X[E’,E] , /12’(1’[5/’5]).

Remark 7.3. We can compose cobordism compatible almost complex structures as follows. Let
J; be a A;-compatible almost complex structure on R X Y; for i = —1,0,1. Let J, be cobordism
compatible almost complex structures on the completions X 4 that restrict to J,; and J, on the
ends. For each R > 0, we glue J_, J,,, and J, to define an almost complex structure J_ogJ, on
X_opX,; when R = 0, we obtain a cobordism compatible almost complex structure on X_oX_,
which we denote by J_oJ .

Following [45, §5.1], we will need to consider a strong homotopy (X,{A,};c[0.1]) of exact sym-
plectic cobordisms from (Y, 1, ) to (Y_,A_), where X is a compact four-manifold with boundary
0X =Y, —Y_ and {A,}is a smooth family of 1-forms on X that is independent of t near 6X, such
that for each ¢, the form d4, is symplectic and 4,y = 1,.

Finally, we define the notion of a broken J-holomorphic current on (X,J). These arise in
connection with the maps induced by cobordisms on ECH.

Definition 7.4. Let a, and S_ be Reeb currents, respectively, associated to 4, and A_. Let
M (a,, B_) be the set of J-holomorphic currents in (X,J) from a + to B_. A broken J-holomorphic
current from a, to B_ is a tuple C = (Cy _, ..., Cy, ...,CN+) where N_ < 0 < N, such that there
are distinct Reeb currents §_ = S_(N_),...,5_(0) for (Y_,A_) and a,(0),..,a, (N,) = a, for
(Y,,4,) such that:

« ifk > 0, then €, € M’+(at, (k), aty (k — 1))/R.
* Cy € M/ (a,(0),8.(0));
« ifk <0, then C, € M/~(B_(k + 1), B_(k))/R.

The currents C;, are called the levels of (the broken holomorphic current) C. We denote the set

of broken holomorphic currents by M/(a,,3_). The ECH index of the broken J-holomorphic
current is defined to be the sum of the ECH indices of its levels,

Ny
10) = ), I(C).
i=N_

(See [35, §4.2] for the definition of the ECH index in cobordisms).
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Let 1, be nondegenerate and J, be generic so that the chain complexes ECC(Y,4,,J,) are
defined. We say that a linear map

¢ : ECC(Y,,4,,],) > ECC(Y_,A_,J_) (7.1)

counts (broken) J-holomorphic currents if (¢a,,B_) # 0 implies that the set M/(a,,B_)
is nonempty.

The linear map ¢ in (7.1) of interest is a noncanonical chain map defined by counting solu-
tions to the Seiberg-Witten equations on X, where the Riemannian metric is determined by 4
and J. There is a perturbation of the four dimensional Seiberg-Witten equations on an exact
symplectic cobordism [45, §4.2], which is closely related to the contact form perturbation of the
three-dimensional Seiberg-Witten equations. In particular, one uses a 2-form ro = r\/§5 /1@] on
X where r is a very large positive constant and @ = d1 with F being a slightly nonstandard choice
of 1-form.” Up to insignificant factors, & agrees with dA on X and with dA , onitsends. In [45, §7],
it is explained how for r sufficiently large, the Seiberg-Witten solutions in a cobordism give rise
to broken holomorphic currents, which are counted by the map ¢. In particular, it is shown that
given a sequence of solutions to the r-perturbed Seiberg-Witten equations with r — oo, the zero
set of one component of the spinor converges to a broken holomorphic current.

However, the chain map ¢ is noncanonical because it is not unique; it depends on r, and even
for fixed r, additional perturbations of the Seiberg-Witten equations are needed.* In particular,
two different perturbations may give rise to different chain maps. Fortunately, when this hap-
pens, Hutchings and Taubes have shown in [45, Prop. 5.2(b)] that they are capable of choosing
a homotopy between the two perturbations, and that the two chain maps will then differ by a
chain homotopy, which counts solutions to the Seiberg-Witten equations for perturbations in the
homotopy, provided that r is sufficiently large. The proof of this is carried out in [45, §7.6] and is
similar to the proof that the chain maps count holomorphic currents.

The noncanonical chain map ¢ from (7.1), induced by an exact symplectic cobordism (X, 1)
from (Y ,4,) to (Y_,A_), induces canonical cobordism maps

®L(X, 1) : ECHY(Y,,A,) - ECH*(Y_,1_), (7.2)

satisfying a number of wonderful properties, as established in [45, Thm. 1.9], which we will soon
review.

Remark 7.5. Our favorite property is the “Holomorphic Curves Axiom,” which guarantees that
®L(X, 1) is induced by a noncanonical chain map ¢, which counts (broken) J-holomorphic cur-
rents. The existence of a J-holomorphic curve allows us to draw geometric conclusions, like
intersection positivity, which will be key to the proof that the knot filtration is preserved by ¢,
and allows us to conclude that knot filtered ECH is a topological invariant.

T This is for the sake of consistency with Taubes’ work [81] and [83-87], as there are some factors of 2 that appear; see [45,
Rem. 2.2, 4.2]. Otherwise one may have instead expected to have defined 1 by extending the 1-form 4 onX to agree with
eSA, on [0,00) X Y, and with eSA_ on (—o0,0] X Y_.

# One uses the exact 2-forms 4y onY, and xon X, which agrees with 4 on the ends, which appear in the contact form
perturbation of the three-dimensional Seiberg-Witten equations. One must choose u so that its derivatives up to some
sufficiently large, but constant order have absolute value less than 1/100.
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In particular, for any cobordism compatible J, the cobordism map ®*(X, 1) is induced by a
noncanonical chain map ¢ such that the coefficient (¢y_,y_) is nonzero only if there exists
a broken J-holomorphic current from y, to y_. Moreover, the coefficient (¢y,,y_) is nonzero
only if A(y,) > A(y_), which is why the cobordism maps ®"(X,1) preserve the symplectic
action filtration.

We define ®*(X, 4,J) to be the set of chain maps, which are the fruits of the labors of Hutch-
ings and Taubes [45] for r > r,, where r, is chosen to be sufficiently large," so that any such chain
map, in fact, counts (broken) J-holomorphic currents, and any two chain maps differ by a chain
homotopy that counts J-holomorphic currents. (In [45, §3], it is explained why the energy fil-
tered contact form perturbation of Seiberg-Witten Floer cohomology ﬁ]\\/lz(Y, 3;A,J,r) does not
depend on J or r.)

Remark 7.6. To study questions pertaining to the existence of symplectic cobordisms between
transverse knots, a weaker notion of symplectic cobordism will be desirable, namely, that of a
strong symplectic cobordism, as considered in [33, 38].

7.2 | Action filtered chain maps

First, we recall from (6.2) that if » > 0 is a constant, then there is a canonical scaling isomorphism
ECHY(Y, 1) = ECH™ (Y, r}) (7.3)

because 1 and r4 have the same Reeb orbits up to reparametrization. Moreover, after a unique
appropriate choice of almost complex structure, the bijection on Reeb orbits gives an isomorphism
at the level of chain complex (7.3). This scaling isomorphism preserves the knot filtration 73 in
(6.6).

Second, recall from (6.4), that given L < L', there are homomorphisms induced by the inclusion
of chain complexes:

t : ECHX(Y,A,T) — ECH(Y, 1,T),
&L ECHY(Y,A,T) — ECHY (Y, A,T).

(That there is independence of J is shown in [45, Thm. 1.3]). The homomorphisms DL fit together
into a direct system ({ECCL(Y, 4, T)};cp, ™). Since taking direct limits commutes with taking
homology, we have

ECH,(Y,A,T) = H, ( lim ECCL(Y,A,T; J)) = Jim ECHL(Y,,T).

An exact symplectic cobordism (X, 1) from (Y, ,4,) to (Y_,A_), where 4, are nondegenerate,
induces canonical maps on action filtered ECH

®L(X, ) : ECHY(Y,,A,) - ECH*(Y_,1_),

satisfying various properties, which are proven using Seiberg-Witten theory and reviewed below.

 The constant 1o also dependson L, X, A, and J.
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Theorem 7.7 [45, Thm. 1.9, proof of Prop. 5.2(b), proof of Prop. 5.4], [39, Prop. 6.2]. Let 1, be
nondegenerate contact forms on closed 3-manifolds Y ,, with (X, 1) an exact symplectic cobordism
from (Y, ,A,) to (Y_,A_). Let J be a cobordism compatible almost complex structure on X, which
restricts to generic A, -compatible almost complex structures J on the ends. Then, for each L > 0,
there exists a nonempty set ®*(X, ,J) of maps of ungraded 7 /2-modules

¢ : ECHL(Y,,A,,J,) —» ECHL(Y_,A_,1.),
induced by a nonempty set ©"(X, 1,J) of chain maps, satisfying the following properties.
* (Holomorphic Curves) The (noncanonical) chain map
¢ : ECCL(Y,,2,,J,) » ECCE(Y_,2_,J.),

inducing ¢ € ®*(X,A,J), counts J-holomorphic currents. More precisely, if y -, are the respective
admissible Reeb currents for (Y ., A, ) with A(y,) <L, then:
(i) If there are no broken J-holomorphic curves in X from Y. toy_, then (dy,,y_) =0.
(i) If the only broken J-holomorphic curve in X from y + to y_ is a union of covers of product
cylinders, then (¢y HY_)y=1
* (Inclusion) If L < L', then the following diagram commutes:

I DL(X,0) I
ECHM(Y,2,,T) ——= ECHX(Y,A_,T)

L J/ J{luj (7.4)

ECHY(Y,A,,T) ——— ECH" (Y, A_,T)
o (X,2)

* (Homotopy Invariance) Let (X Aiheron J) be a strong homotopy of exact symplectic cobordisms

from (Y, ,A,)to(Y_,A_). Let {Jt}te[o,l] be a family of almost complex structures on X such that
foreach t, J, is cobordism compatible for A, and J, restricts to J .. Given

¢, € OM(X,2;,7)
fori=0,1, there is a map
K : ECCHMY,,A,,J.) —» ECCH(Y_,A_,J.),
which counts J,-holomorphic currents' such that

3_K+Kd, =¢,—¢,.

* (Composition) Let

¢i e GL(Xi’ Ai"]i)

This means that if (Ka(1),7(0)) # 0, then for some t, the moduli space M (a;,B_) is nonempty. Here, d, denotes the
differential on the chain complex ECC(Y ., 4,.,J,).
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and
¢ € OL(X_oX,,A_od,,J_oJ.).
Then, there exists a chain homotopy
K : ECCL(Y,,A,,];) = ECCH(Y_},A_1,T_))
such that
0_K+K0, =¢_op, —¢

and K counts J_ogJ  -holomorphic currents.
* (Trivial Cobordisms) Let A, be a nondegenerate contact form on Y, and suppose that

X,4) = ([a,b] x Yy, e*A).
Let J be a generic Ay-compatible almost complex structure on R X Y, and
b ECCL<Y0, e”/lo,fgb) N ECCL<YO, ea/lo,Jga>

denote the chain map induced in (7.3). Let f : R — R be a positive function such that f(s) = e°
when s < a and f(s) = e when s > b. Then,

0" (Ia, b1 X Yy, ¢20, 7] ) = {0}

Furthermore, as explained in [45, Rem. 1.10], the maps ®"(X, 1) respect the decomposi-
tion (6.1) in the following sense: the image of ECH (Y ,,A,,T,) has a nonzero component in
ECH.(Y_,A_,T )onlyifT, € H{(Y,) map to the same class in H,(X).

Next, we collect some additional facts about cobordism maps on the chain level in special exact
cobordisms. These cobordism maps allowed us to compute the ECH of prequantization bundles
in [68, §7], via successive action filtrations, and we will also employ them in our definition and
computation of knot filtered ECH with respect to rational rotation numbers.

Lemma 7.8 [45, Lem. 3.4(d), 5.6 and Def. 5.9]. Given a real number L, let A, and J, be smooth
one-parameter families of contact forms on Y and A,-compatible almost complex structures such
that

* The contact forms A are of the form f Ay, where f : [0,1] XY — R, satisfies % < 0 everywhere.

* All Reeb orbits of each A of length less than L are nondegenerate, and there are no Reeb currents
of A, of action exactly L. (This condition is referred to in [45] as A, being “L-nondegenerate”).

* Near each Reeb orbit of length less than L the pair (A, J ) satisfies the conditions of [83, (4.1)]. (This
condition is referred to in [45] as (A, J,) being “L-flat”).

» For Reeb currents of action less than L, the ECH differential 0 is well defined on admissible Reeb
currents of action less than L and satisfies 3* = 0. (This is a condition on the genericity of J,
described in [43], and referred to in [45] as J being “EC H"-generic”).
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Then, ([-1,0] X Y,A_,) is an exact symplectic cobordism from (Y, Ay) to (Y,4,), and for all T €
H,(Y), the cobordism map ®“([—1,0] X Y, A_,) is induced by the isomorphism of chain complexes

ECCE(Y,2,T;Jy) » ECCL(Y, 4,,T3 ),
determined by the canonical bijection on generators.

Remark 7.9. In [45] and [39], the notation conventions for the “directionality” of the cobordisms
in Lemma 7.8 disagree; we made use of the former in [68]. To align with [39], we subsequently
switch to using the exact symplectic cobordism ([0, 1] X Y, A,), which gives rise to a cobordism
map ®([0,1] X Y, A,) induced by the isomorphism of chain complexes

ECCLE(Y,2,,T50,) = ECCL(Y, 20, T3 Jy),

determined by the canonical bijection on generators in Lemma 7.8. This latter convention is also
taken in Theorem 7.7 (Trivial Cobordisms).

Additionally, in [45, §3.1, Lem. 3.6], it is explained that an arbitrary pair (4,J), where 4 is an
L-nondegenerate contact form and J is an ECH' generic 1-compatible almost complex structure
on R X Y, can always be approximated by an L-flat pair (4,,J;), which is the endpoint of a well-
behaved smooth homotopy as in [45, Def. 3.2]. As a result, there is a canonical isomorphism of
chain complexes induced by the canonical identification of generators

ECCL(Y,A,T;J) > ECCL(Y, A, T3 ).

Combining this with the isomorphism established in [45, Prop. 3.1], we can conclude that if (4, J;)
is an L-flat approximation and if r is sufficiently large, then there is a canonical isomorphism of
chain complexes

ECC,(Y,A,T3J) = CM, (Y, 8; 15 1,01, 7).

(The right-hand side denotes the filtered perturbed Seiberg-Witten cochain complex, which we
are about to dive into.)

7.3 | Direct systems via filtered perturbed Seiberg-Witten

Our approach to defining and computing knot filtered ECH using a knot-admissible pair requires
the use of Seiberg-Witten Floer cohomology to define the direct system, similarly to [68, §7.1].
These cobordism maps belong to the realm of energy filtered contact form perturbed Seiberg—
Witten Floer cohomology ﬁ]\\/lz(Y, 3;A,J,r), which we now review from [45]. We do not take the
time to define Seiberg-Witten Floer cohomology, which is fully explained in the book by Kron-
heimer and Mrowka [50], the contact and symplectic form perturbations of the Seiberg-Witten
equations, or the energy filtration that is analogous to the action filtration in ECH; a summary
can be found in [68, §7.1.1-7.1.3], and many more details in [45, §2, 4].

Remark 7.10. We define @;(Y, 3;A,J,r) to be the submodule of CM ;r generated by irre-
ducible solutions (A, 1) to the contact form perturbation of the Seiberg-Witten equations [45, (28)]
with energy E(A) < 2L [45, Lem. 2.3] and abstract perturbation (if necessary to obtain suitable
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transversality). The energy of a reducible solution (A4, 0) to the contact form perturbation of the
Seiberg-Witten equations is a linear increasing function in r, so if r is sufficiently large, then the
condition that elements of C/’I\\/Iz be elements of CM i*rr isredundant: if the energy E(A) < 27L, then
if r is large enough, the pair (A, 0) cannot be a solution to the perturbed Seiberg-Witten equations.

First, we recall the necessary conditions for defining the homology of the submodule CM :

Lemma 7.11 [45, Lem. 2.3]. Fix Y, A,J as above and L € R. Suppose that A has no Reeb current of
action exactly L. Fix r sufficiently large, and a 2-form u so that all irreducible solutions to the per-
turbed Seiberg-Witten equations are cut out transversely. Then for every 3 and for every sufficiently
small generic abstract perturbation, 5]\712(Y, 8;1,J,r) is a subcomplex of@\\/l*(Y, 3;A,7,r).

When the hypotheses of Lemma 7.11 apply, we denote the homology of @z(Y, 3;4,J,r) by
}/IA\/Ii(Y,/l, 8). (If r is sufficiently large, then this homology is independent of u and r, and it is
also independent of J, as shown in [45, Cor. 3.5].) We use the notation am ;(Y, A,8;1,J,r) when
we wish to emphasize the roles of J and r.

We have that filtered Seiberg-Witten Floer cohomology is isomorphic to ECH:

Lemma 7.12 [45, Lem. 3.7]. Suppose that A is L-nondegenerate and J is ECH"-generic (see

Lemma 7.8). Then, for all T € H\(Y), there is a canonical isomorphism of relatively graded
Z /2-modules

Wl 1 ECHN(Y,A,T;7) — HM, (Y, 2,8 1), (7.5)

where 8 - is the spin-c structure 8: + PD(I).

We now illustrate the ideas behind Lemma 7.8, as encapsulated in [45, §5.3], which will be used
to construct a direct system.

Proposition 7.13. Fix L such that A, has no Reeb currents of action exactly L. Then, for
g <e<e)
and pairs (1,,J,) and (1,,J,) satisfying the conditions in Lemma 7.8, there is a cobordism map
(pig, : ECHY(Y,2,,J,) = ECHE(Y, A, Jy),
which is an isomorphism.
Proof. Since ker A, = ker 4,,, we know A, = e% 1, for some g, € C*®(Y, R). We may assume g, >

0 everywhere by the scaling isomorphism (6.2), which preserves the knot filtration 7. Let g €
C*(R X Y,R) such that

* g(s,y) = sfors € (—oo,¢) for some ¢ > 0;
* g(s,y) =g.(y)+s—1fors e (1—g,oo0)for somegs > 0;
* dy9 > 0.
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Since d(eg(s")/lgf) is symplectic, ([0,1] X Y, eg(s")lgr) is an exact symplectic cobordism from (Y, 1,)
to (Y, A,). Consider the admissible deformation (in the sense of [45, Def. 3.3])

p =19, LI, 1) | s €[0,1]} (7.6)

where r, is sufficiently large, and J; is ECH"-generic. Define 7, := e 1,,.
By Lemma 7.12 and [45, §3.5], since 7, has no orbit sets of action L,

ECHL(Y, 9, T;J,) =~ HM, (Y, 7, 8¢ ). (7.7)
By [45, Lem. 3.4], the admissible deformation p gives an isomorphism
M, (Y, 8 13 Ae, 1, 11) — HM, (Y, 8, 13 Ar, Jo, To)- (7.8)

Composing the isomorphisms (7.7) and (7.8) gives the desired map goig,. 1

For a fixed L, when € > ¢(L), we cannot typically directly compute ECH i(Y, Ag,J). For example,
the chain complex ECCﬁ(S3,/12’q’E,J ) will contain orbits that do not project to critical points of
H, ;. Thus, it is desirable to instead compute the direct limit over L with respect to a sequence of
contact forms {1, }. This requires some additional cobordism maps from Seiberg-Witten Floer
cohomology, as in [68, §7.1.3]. However, we will need to take slightly more care, so that we can
define the direct system associated to a knot-admissible pair and take its direct limit; this will
allow us to define and establish invariance of knot filtered ECH with respect to a rational rotation
number in §7.4.

Analogous to the cobordism maps on ECHE, there are cobordism maps on HM Z The following
is a modified version of [45, Cor. 5.3(a)], which keeps track of the spin-c structures in our setting.
Note that therefore our notation for the cobordism maps on HM Z differs slightly from that of [45].

Lemma 7.14. Let (X, 4) be an exact symplectic cobordism from (Y, ,A,) to (Y_,A_) where A is
L-nondegenerate. Let 3 be a spin-c structure on X and let 8, denote its restrictions to Y ., respectively.
Let J, be A,-compatible almost complex structures. Suppose that r is sufficiently large. Fix 2-forms
u, and small abstract perturbations sufficient to define the chain complexes CM *(Yi, 8, 34,,J,,7).
Then, there is a well-defined map

HM;(X,4,8) : AM[(Y,,8,54,,J,,r) > AM(Y_,8_;A_,J_,1), (7.9)

depending only on X, 8,4,L,r,J ., u,, and the perturbations, such that if L < L' and if 2, are also
L'-nondegenerate, then the diagram

" AM(X.A.8 —
AM(Y,,8,:2,,1,,7) D M (Y, 85 AT, 1)

J J a0

HM (Y, 843 44,04, r) ————— HM,(Y_,8_;A_,J_,7)
HM,1(X,1,3)

. . . . . / .
commutes, where the vertical arrows are induced by inclusions i of chain complexes.
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After passing through the isomorphism with filtered perturbed Seiberg-Witten Floer cohomol-
ogy, Lemma 7.12, we obtain the following cobordism map from Lemma 7.14 associated to the
product exact symplectic cobordism (X :=[0,1] XY, := eg(s"),/lgf)

®4(X,4,J) : ECHE(Y,A,,J,) > ECHE(Y, 2,4, 7). (7.11)

Assuming that L < L' and e(L) > ¢(L'), after combining the cobordism map induced by admis-
sible deformation in Proposition 7.13 with the cobordism map induced by inclusion, we obtain
the following commutative diagram, as in the proof of [45, Lem. 3.7]:

ey
ECH™(Y,Ayy)) —— ECH“(Y, A,q))

ll,,l/l llu,’ (712)

ECHY (Y, A1) — ECHY (Y, 2.4
gaa‘(L).a(I/)

Here, the (L’ are the inclusion-induced cobordism maps as in Theorem 7.7 (Inclusion). We
have also (abusively) suppressed the almost complex structures, though this is acceptable by [45,
§5.3]. Moreover, if ¢ = ¢(L) and ¢/ = ¢/(L), then by Lemma [45, Lem. 5.6], qof(L)’E(L,) and gof(lL),E(L,)
can be identified with the respective exact cobordism maps ®*(X, 4,J) and oL (X, A,J) from (7.11).

Next, we verify that (7.12) produces a direct system. We need to check that we have a well-
defined composition for the cobordism maps, defined via either path in (7.12),

oLl (e(L),e(L)) : ECHY(Y, Ayy)) — ECHY (Y, A1) (7.13)

To do so, for L < L' < L"”, we define ¢ :=¢(L) > ¢/ :=¢e(L’) > ¢’ :=¢(L"). Then, the composi-
tion (7.13) is given by the commutative diagram:

ECHY(Y,A;) —— ECH*(Y,A,) —— ECH"(Y, 1.»)

(ps,s’ Per =
’ ’ ’
lL'L lL'L lL'L

ECH"(Y,2;) ——— ECH"(Y,Ay) ——— ECH" (Y, 1)

Peer Per e
’n rn rn
[l, WL Ll’ L ll’ WL

ECHY(Y,A,) ——— ECHY'(Y,1,) ———— ECH"' (Y, A1)
]// I//
: @ o

(7.14)

&l

To complete the direct limit of the filtered ECH complexes with respect to the above maps, some
additional algebraic manipulations are required, akin to those found at the very end of [91, §7],
which we complete in the next subsection. We also review there why the chain maps do not
increase the knot filtration. (The colors provide navigation of the diagram as needed in the proof
of Lemma 7.19.)

Remark 7.15. We do not want to directly pass to Seiberg-Witten theory to complete the direct limit,
as we did in [68, §7.1.4]. This is because we need to verify that the action filtered cobordism maps
count broken J-holomorphic currents, and hence, preserve the knot filtration, which is defined
within the realm of ECH.
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Before completing this argument, for the purposes of the Morse-Bott computations that we
made use of in the proof of Theorem 6.12, we review why the maps induced by the composition
of exact symplectic cobordisms ([¢/, €] x S3, (1 + sp*H, 4)A, ;) compose properly. This relies on a
version of [45, Prop. 5.4] explaining the composition law for HM :, which we previously explained
in [68, §7.1]

Assume ¢” < ¢’ < ¢ and recall Notation 7.2. We consider the exact symplectic cobordism
X[ ¢]» A2,9,¢’ ¢])» Which is the composition of

(X[s”,g’]o[g’,g]’ AZ,q,[s”,s’]o[E’,s]) = (X[EN’E/] s AZ,q,[g”,g’])o(X[g’,gP Az’q,[gl’g]),

in the sense of [45, §1.5], where Ay, D> Az,p,sf, and Az’p,gu are L(¢)-nondegenerate. We also assume
that J,J’, and J" are A,-, 1,/-, and A,»-compatible almost complex structures, respectively. Fur-
ther, we choose a spin-c structure 8’ on [¢”/,¢] X Y that restricts to spin-c structures 8’ and 8 on
[¢”,€'] XY and [¢/,e] X Y, respectively, where &' restricts to 8, on {¢”} X Y, 8 restricts to 8, on
{e} X Y, and both &’ and 8 restrict to 8, on {¢’} X Y. Finally, we choose abstract perturbations and
r large enough to define the chain complexes cM Z

Lemma 7.16. The maps of Lemma 7.14 for the above data satisfy
e~k e~k e~k
HML(X[E”,EJ’ /12,q,[£”,aj’ §//) = HML(X[E/’,E’J’ /‘IZ,q,[E”,E’J . 5/)°HML(X15’,5J . AZ,q,[E’,EJ’ §)

While [45, Prop. 5.4] does not discuss the spin-c structures, it is proved with a neck-stretching
argument for holomorphic curves whose ends must be homologous; thus, it will preserve spin-c
structures in the case considered in Lemma 7.16, see [45, Rmk. 1.10].

In case it is instructive to better understand the proof of Theorem 6.12, we summarize our
“cruder” Morse-Bott limit argument from [68, §7], wherein we passed to the isomorphism with
Seiberg-Witten at an earlier stage. We have

ECH!®(Y,2,,T) = ECHL(Y, A1), ),
and therefore,
lim ECHY(Y, A1) = lim ECH™(y,2,,T).

We then invoked the following sequence of isomorphisms by way of the contact form perturbation
of the Seiberg-Witten equations:

. L . Ty o
lim ECH, ©(y,2,,T) ~ lim FIM (Y Ac. 8¢ 1) (7.15)
~lim lim HM; (Y, A, 8¢ ) (7.16)
~ lim AM (Y, 8¢ 1) (7.17)
e—=0 ?
~ ECH,(Y,£,T). (7.18)

A few remarks are in order regarding the above chain of isomorphisms.
The direct limit on the right-hand side (7.15) is defined using composition of the “trivial” sym-
plectic cobordisms and the commutative diagram of inclusion maps modified from [45, Cor. 5.3(a)]
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to keep track of spin-c structures; cf. the recap in Lemmas 7.16 and 7.14. Thus, the isomorphism
between action filtered Seiberg-Witten and action filtered ECH [45, Lem. 3.7] establishes (7.15).

The groups ﬁ]\\/[;*(Y, A¢, 8¢ r) in (7.16) are only defined for L and ¢ such that 4, has no Reeb
currents of action exactly L. (For any given ¢, we still obtain a full measure set of L.) A calculation
carried out in [68, §7.1.4] yields (7.16).

That (7.17) holds follows from the last equation of [45, §3.5], which follows from [83, Thm. 4.5].
It bears mention that although the equation in former citation is only required to hold for
nondegenerate 4, it is, in fact, true for all 4.

Finally, we obtain (7.18) because the groups HM _*(Y, 8; 1) are all equal and independent of ¢,

together with Taubes’ isomorphism [83-87]: ECH,(Y,A,T,J) ~ ﬁ]\\/l_*(Y, §§,F)'

7.4 | The knot filtration and doubly filtered direct limits

We now have all the ingredients to prove Theorem 1.6. Before completing the algebraic arguments
that allow us to take direct limits, we review why the knot filtration is respected by the chain maps,
as previously explained in [39, §7]. Let us collect the usual suspects.

Fix a closed contact 3-manifold (Y, &) with H;(Y; Z) = 0" and let 1, and 4, be two contact forms
for £, which are nondegenerate and both admit the same transverse knot b as an elliptic embedded
Reeb orbit so that rot, (b) > roty(b).

Remark 7.17. 1t is to be understood from context that the knot filtration with respect to b is com-
puted with respect to 4;, F;,(b™a) : = mrot;(b) + £(a, b), where « is a Reeb current not containing
b associated to 4;.

Let ([0,1], X Y, eg(s")/lo) be an exact symplectic cobordism from (Y, 4,) to (Y, 4,), as defined
in proof of Proposition 7.13, and identify its completion with R X Y in the obvious way. Let J be a
cobordism compatible almost complex structure on R X Y, which agrees with J; on[1, o0) X Y and
with J; on (—o0,0] X Y. We can choose J so that R X b is aJ-holomorphic curve because [1, o) X b
is a J;-holomorphic submanifold, (—o0, 0] X b is a J,-holomorphic submanifold, and [0, 1] X b is
a symplectic submanifold of R x Y. (The space of J satisfying these conditions is contractible).

Proposition 7.18. Given L > 0, let
¢ : ECCL(Y,4,,J,) — ECCE(Y, 20, J,)

be a chain map in the set ©-([0,1] X Y, e9) 1), as provided by Theorem 7.7. If A, and A, both admit
b as an embedded elliptic Reeb orbit and rot,(b) > rot,(b), then ¢ preserves the knot filtration Fy,
meaning that if (¢par,, B_) # 0, then F(a,) = Fp(B_).

Proof. By the Theorem 7.7 (Holomorphic Curves), if (¢a,,B_) # 0, there exists a broken
holomorphic current

C = (CN_’ ey Co, ey CN+) (S M‘I(C(+,B_)-

 This condition can be relaxed to allow H,(Y; Z) to be torsion, cf. [92, Thms. 5.2 & 5.3] to see how to obtain a well-defined
rotation number in this case.
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The proof of [39, Lem. 5.1] shows that if there exists a J;-holomorphic current C' €
Mi(b™+y, , bM-y_), then Fp(b"+y.) > F,(b™-y_); we now summarize how it goes. The argu-
ment relies on intersection positivity of the J;-holomorphic trivial cylinder R X b with each
irreducible somewhere injective component C of C that does not agree with R X b. By [75, Cor. 2.5,
2.6, if s, > 0is sufficiently large, then C is transverse to {+s,} X Y and C N ((—o0, s3] X Y) and C N
([s, c0) X Y) do not intersect R X b. Let s, be sufficiently large and denote 7, = C N ({xsp} X Y)
to be these intersections. Then,

£(m4,b) —£(n_,b) = #([C N (R x b)) > 0.

Moreover, the link 7, consists of a link approximating the Reeb currents y, and a link ¢, in a
neighborhood of b. We have

f(ﬂi, b) = f()’i, b) + I/ﬂ(gi’ b).

By the bounds on the winding number of the associated asymptotic eigenfunction of mek in terms

of the Conley-Zehnder index of bmi, going back to [30, §3] and as reviewed in [40, Lem. 3.2, 3.4],
it follows that #(¢,,b) < m, rot(b) and ¢({_, b) = m_rot(b), with respective equality holding if
and only if m, = 0. Thus, it follows that the current C’ respects the knot filtration.

Thus, if k # 0, it immediately follows from this argument that C, preserves the filtration. If
k = 0, then since R X b is J-holomorphic, the same intersection positivity argument and the fact
that rot, (b) > roty(b) implies that C, also preserves the filtration 7}, and therefore, C does as
well. O

In light of Proposition 7.18, we can restrict the action filtered subcomplex to the subcomplex
where 7, < K, and after passing to homology, we obtain a map

A A
Ak Ak
¢, 1 ECH,” " (Y,4y,10t,(b),J;) = ECH.,"" " (Y, A, roty(b),Jy). (7.19)

By Theorem 7.7 (Homotopy Invariance) and intersection positivity as in Proposition 7.18, we know
that the map (7.19) does not depend on the choice of g, J, or ¢ € ©([0,1] X Y, eI, T).

Thus, the noncanonical chain maps ¢ that induced the cobordism maps in (7.11), (7.12), (7.13),
and (7.14) all preserve the knot filtration assuming the knot admissibility condition, for example,
rot,(b) > roty(b). Thus, we could, in fact, have restricted to the subcomplexes where F;, < K prior
to passing to homology. Assuming that rot,(b) > rot, (b), this produces the commutative diagram

A<L 40?;/ A<L
ECHF»=<K(Y, A, rot (b)) ————s ECHH<K(Y, Ay, rot, (b))

2s J J{ll‘,l‘/ (7‘20)

AL A<
ECH”"v=K(Y, A,,rot. (b)) — ECH"»=K(Y, A, rot. (b)),

el

which analogously produces a direct system.

Next, we need to understand the direct limit as L — oo, so that we can establish the definition
of knot filtered ECH with respect to a knot-admissible pair, as it appeared in Theorem 1.6. We
need the following lemma to allow us to take a doubly filtered direct limit.
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[7] = ¥({o'])

\
7

N

o' =|lm(oy)

A4

N2

-'-6 — 077
(Injectivity) Lﬂ(a ) = 0. Then there exists (Surjectivity) Let oy be some representative
Ly such that ¥(o) = 0 for some g5. We can of an element 7 for some gy. By taking the

map ¥ (o) to zero under &0 from (7.11), thus limit as ¢ — 0, the image of oo is o’. Then
o~ 0. [7] =¥ (o]

FIGURE 2 The “good region” corresponds to € < €(L), which is shaded. When ¢, > ¢(L,)), we illustrate how

appropriate choices of vertical and horizontal paths in the knot filtered analog of (7.14) allow us to move into this
“good region.” We reach the “L = c0” and “c = 0” lines by taking direct limits.

Lemma 7.19. Given a knot admissible pair {(1,,J.)}, as defined in Definition 1.5, the map

A<L(e) A<L
[V linéECH FosK (Y, A, b, rot, (b)) — lir%Llim ECH”»<K(Y, A, b, ot (b)), (7.21)
£ E—> —00
A<L(e)

which sends the equivalence class of an element o, € ECH 7»<K (Y, A, b, rot.(b)) under lim,_,, to
the equivalence class of o, under lim,_, lim;_, ., is well defined and a bijection.

Remark 7.20. In light of Lemma 7.19 and the associated considerations that came beforehand, we
have that

A<L
ECH**(Y,4,b, rot(b)) = lim lim ECH»<K(Y, 2, b, rot. (b)),
E— — 00

A<L(e)
= lim ECH F»<K (Y, A, b, rot (b)), (7.22)
£—

A<L
= gLrl;lo ECHPbSK(Y, }i'g(L)’ b, I'OtE(L)(b)).

A highly desirable consequence of Lemma 7.19 is that it allows us to move from a region where L
is too large compared to ¢ into a “good region” where € < £(L). We will establish invariance after
the proof of Lemma 7.19 so as to complete the proof of Theorem 1.6. A similar argument appears
in the context of the connected sum formula for ECH in [91, §7].

Proof. The proof relies on choosing appropriate paths through the knot filtered analog of the
commutative diagram (7.14). A schematic illustration of the proof is given in Figure 2, where
we have plotted (e, L) coordinates on a plane and the shaded region corresponds to the “good
region” where ¢ < ¢(L). We can always move into this “good region” by moving vertically or
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horizontally via chain maps induced by cobordisms in the knot filtered analog of (7.14). We now
provide the details.
First, we establish that ¥ is well defined. Consider

A<L(e)
0., 0 € lim ECH 7h<K (Y, 4., b, rot,(b),

where € > ¢’ and o, ~ o,/. This means that there is a common element

A<L(e")
0. € ECH 7v<K (Y, ,,b, rot,(b)),

that both o, and o, are mapped to under the direct limit. By composing the following maps,
we can show that ¥(o,) ~ ¥(o,/), by showing that they both map to ¥(o,~). To obtain ¥(c,), we
compose the maps arising from the four edges (three in magenta and one in purple) obtained by
first following the left column, then going along the bottom row of the knot filtered analog of the
commutative diagram (7.14),

A<L(¢) A<L(") A<L(E")
ECH 7vsK (Y, A_,b,rot (b))>ECH "»<K (Y, A,,b,rot(b).) > ECH "»<K (Y,A.,b, 1ot (b)).

To obtain ¥(o,/), we compose the maps arising from the two edges following the bottom half of
the middle column (in blue) and bottom row (in purple),

A<L(e") A<L(e") A<L(e")
ECH "<k (Y,A,,b,rot, (b)) » ECH "»<K (Y,2,,b,rot (b)) » ECH "<k (Y,A_,,b,rot..(b)).

Next, we prove injectivity of W. The schematic illustration in Figure 2 (Injectivity) may be help-
ful to understand € and L ranges as we consider the doubly filtered complexes. Suppose that
¥(o) = 0. Then, there exists L, such that a representative

A<Ly
¥(0) € ECH"»<K(Y, 2, , b, rot, (b))

is zero for some g,, where [¥(0)] =¥(0). If ¢, <e(L,), then we are done, because by
Proposition 7.13 for the “good region” € < (L),

A<L A<L
ECHFbSK(Y, /18’ b, I'Otg(b)) = ECHFbSK(Y, /‘lE(L)’ b, I'Ots(L)(b)),

thus ¥ is a bijection. Suppose that ¢, > e(L;). Then, ¥(o) is mapped to zero in
A<Ly

ECH”»<K(Y, A, b, rot, (b)) under the map in (7.11). Therefore, o ~ 0.
Finally, we show that ¥ is surjective. The schematic illustration in Figure 2 (Surjectivity) may
be helpful to understand € and L ranges as we consider the doubly filtered complexes. Let

A<L
TE Lh—>r§o ECH"»<K(Y, Agy» b, rotEO(b))
for some ¢,,. Then, there exists L, so that the element

A<Lg
0, € ECH"»<K(Y, Ag,» b, 1ot (b))
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is a representative such that [o,)] = 7. Similarly to the proof of injectivity, if ¢, < €(L,), then we are
done. Suppose that g, > £(L,). Let

A<Ly
O'I S ECHFbsK(Y, AE(L)’ b, rotE(L)(b))

be the image of o, when taking the limit as ¢ — 0 defined by the exact cobordism map as in (7.11).
Then, [7] = ¥([o’]). d

It remains to establish invariance to complete the proof of Theorem 1.6.

Proposition 7.21. Let {(/1:+ ,J; )} be a knot admissible pair for (Y, A*, b, rot(b)) and let {(A_,J )}
be a knot admissible pair for (Y, 1™, b, rot(b)) where ker At = ker 1~ Then there exists a chain map

Fb <K

*

@t ECCl SNy, A%, b, rot(b),J 1) — ECCL (Y, 17, b, rot(b), T ), (7.23)

which is a chain homotopy equivalence.

Proof. Since the rotation angles of the knot-admissible families {/I:Zr} and {1_} both monotoni-
cally converge from above to rot(b), we can pass to subsequences of {(/1;,]:+ )} and {(A_,J )}
and reindex whenever necessary to guarantee that our intersection positivity argument as in

Proposition 7.18 applies. Thus, there is a chain map

A<L* A<L™
¢t Eccv K (v, A%, b, rot(b),J ") — ECC/PK (v, 47, b, rot(b),J ), (7.24)

which we now want to show is a chain homotopy equivalence. This means that we need to show
that there is a chain map

i i
- < - - <
¢, : ECC."~" (Y,A7,b,rot(b),J] ") = ECC,"~" (Y,A",b,r0t(b),J "), (7.25)
such that
¢*o¢. ischain homotopic to id_, (7.26)
¢ o¢’ is chain homotopic to id, . (7.27)

To show this, we need two collections {x*} and {x~} of chain contractors

A<L* A<L*
xt 1 BCC"K (Y, 2%, b, ot(b),J*) — ECCP<X (Y, 2%, b, rot(b), J%)
such that
<¢>J_fo<;bjr —id_=0dx" +x79, (7.28)

¢ opt —id, = ax* +x*o. (7.29)
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The desired properties (7.28) and (7.29) follow from the Theorem 7.7 (Trivial Cobordisms) and
(Composition) together with the same intersection positivity argument as before. We obtain the
map (7.23) by taking direct limits as L — oo and € — 0 as in Lemma 7.19. O
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