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Atomistic simulation has abroad range of applications from drug design

to materials discovery. Machine learning interatomic potentials (MLIPs)
have become an efficient alternative to computationally expensive ab
initio simulations. For this reason, chemistry and materials science

would greatly benefit from a general reactive MLIP, that is, an MLIP that
isapplicable to abroad range of reactive chemistry without the need for
refitting. Here we develop a general reactive MLIP (ANI-1xnr) through
automated sampling of condensed-phase reactions. ANI-1xnr is then
applied to study five distinct systems: carbon solid-phase nucleation,
graphene ring formation from acetylene, biofuel additives, combustion
of methane and the spontaneous formation of glycine from early earth
small molecules. In all studies, ANI-1xnr closely matches experiment (when
available) and/or previous studies using traditional model chemistry
methods. As such, ANI-1xnr proves to be a highly general reactive MLIP for
C,H,Nand O elements in the condensed phase, enabling high-throughput
insilico reactive chemistry experimentation.

Over the past several decades, atomic-scale simulation has become an
invaluable computational tool for providing microscopic explanations
of experimentally observed phenomena. Many scientifically crucial
chemical and materials properties can be evaluated through molecu-
lar dynamics (MD) simulation, wherein atomic motion is dictated by
integrating the second law of Newtonian physics. The quantitative
predictiveness of MD depends almost entirely on the accuracy of the
underlying model potential energy surface (the potential) used to com-
putethe forces acting on each atom. However, standard physics-based
paradigms, such as classical force fields (FFs) and quantum mechanics
(QM) methods, straddle a historical trade-off between computational
cost, accuracy and generality, thatis, being applicable toabroad range

of systems without further specialization. This trade-off is especially
pronounced in the context of modelling reactions, thatis, the making
and breaking of chemical bonds. Although computationally efficient,
reactive FFs often need to be reparameterized to pre-determined reac-
tions to be quantitatively accurate. By contrast, while QM methods
are often quitereliable and generally applicable, their computational
costis prohibitive for many reactive MD studies. For this reason, a fast,
accurate and general reactive potential is of paramountimportance to
many scientific applications, as it would fulfil the long-sought promise
for predictive MD simulations that can providereliable reactionrates,
discover entire reaction networks and warn of dangerous conditions,
all before entering the laboratory.
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Nanoreactor: MLIP-driven simulations of extreme dynamics
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Fig.1|Summary of the nanoreactor active learning workflow and specific
applications considered. The AL loop is an automated, iterative and efficient
approachto develop a MLIP. AL generates a training dataset consisting of
quantum calculations for only the high-uncertainty structures, asidentified
based onan ensemble of MLIPs. Structures relevant to condensed-phase reactive
chemistry are sampled using NR simulations. The initial system is built by
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random configurations of small molecules consisting of the elements C,H, N,
and O. Dynamic simulations are performed using the current MLIP with extreme
fluctuations in temperature and volume to induce chemical reactions. To test the
generality of the resulting model, the final MLIP is then applied to several case
studies that were not directly targeted during training.

{r}

Recently, machine learning interatomic potentials (MLIPs)
have been proposed to overcome the trade-off that has existed in
physics-based computational models for many decades. MLIPs often
achieve computational efficiency similar to classical FFs but with
QM:-level accuracy''°. Among the many different types of MLIPs that
havebeen proposed, neural network (NN)-based MLIPs are especially
capable of describing a broad range of chemical systems without
additional specialization and, thereby, represent a top candidate for
developing a truly general MLIP. For example, ANAKIN-ME (or ANI) is
aNN-based MLIP that hasbeentrained to large and chemically diverse
datasets of organic molecules containing the elements C,H, N, O, S, F
and Cl (refs. 17,18). While previous ANI MLIPs proved to be extremely
accurate for near-equilibrium conformations of organic molecules
invacuo, these potentials do not address the challenges of modelling
condensed-phases (that is, periodic systems of liquids, supercritical
fluids or solids) and reactive chemistry.

Several MLIPs have been developed for studying both condensed-
phase and gas-phase (or in vacuo) reactive chemistry of a specific sys-
tem'*, However, each of these studies required considerable domain
and MLIP expertise and enormous computational resources to build
anon-general reactive MLIP. For this reason, a highly general reactive
MLIP would be transformational towards the usage andimpact of MLIPs
among non-experts. While recent endeavours have yielded ground-
breaking results towards a general MLIP for approximately one third
of the periodic table?*?, these studies do not directly target reactive
chemistry. Targeted, model-aware sampling strategies for dataset gen-
eration of three-dimensional atomic positions are especially essential
for modelling rare events, such as chemical reactions”?.

Active learning (AL)* is a class of model-aware algorithms
designed to automatically sample, select and label new data with the
goal of efficiently generating a diverse and relevant dataset to train
amore robust ML model. AL aims to ameliorate human bias through
automating the decision-making process for adding new datato a
training dataset. Recently, AL has been applied to develop numerous
MLIPs trained to datasets of atomic positions labelled with energies
and atomic forces from expensive QM calculations™**'7%,

To develop a general reactive MLIP with AL, existing methodolo-
gies for selecting, labelling and training are relatively straightforward
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Fig.2| Analysis of the dataset generated in this work (ANI-1xnr) with
nanoreactor active learning. a-d, A comparison between the ANI-1xnr dataset
(blue points) and a non-reactive, near-equilibrium, moleculein vacuo, AL dataset
from the literature (ANI-1x; red points). Two-dimensional visualizations of the
local atomic environments for the elements H (a), C (b), N (c) and O (d). The ANI-
1xnr dataset not only encompasses the vast majority of the regions sampled in the
ANI-1x dataset, but it also interpolates between these regions and even extends
these regions substantially. For visual clarity and to manage memory loads, only
arandom subset of the ANI-1x dataset and ANI-1xnr dataset are depicted in a-d.
e, Five examples of the over 1,000 unique molecules that formed during AL.
Reaction pathways to form these molecules must, therefore, be presentin the
ANI-1xnr dataset.

to apply (Methods). However, for sampling atomic positions, ade-
quately exploring reactive chemical space in an automated fashion is
extremely challenging® because it requires the exploration of chemi-
cal variance of molecular species in tandem with structural variance
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Fig.3| Carbon solid-phase nucleation simulation results for ANI-1xnr.

a-c, Specific densitiesat 3.52 g cc™(a), 2.25 g cc™ (b) and 0.5 g cc* (¢). Simulations
areinitiated with random carbon positions. The final structures agree with the
expected phases of carbon for each density. Specifically, a produces diamond
cubic crystal, b produces graphite-like graphene sheets and ¢ produces fullerene-
like graphene sheets.

associated with non-equilibrium thermodynamic processes. The
traditional approach of fitting reactive FFs**** to a limited dataset
of pre-determined gas-phase reaction pathways based on chemical
intuition is insufficient for developing a general reactive MLIP, as the
resulting MLIP would be biased to only perform well on the assumed
reaction network. Similarly, while recent work (performed simultane-
ousandindependentto this study) presented an automated approach
to sample transition states and minimum-energy-path structures
for gas-phase (or in vacuo) reactions of C, H, N and O molecules®,
this sampling procedure is unlikely to result in an MLIP that is robust
for condensed-phase high-temperature reactive MD simulations. By
contrast, training an MLIP directly to condensed-phase QM reactive
datawould ensure that the potential is reliable for the density ranges
typically used in reactive MD simulations.

Wang and co-workers developed an elegant approach for the
MD-based exploration of reaction pathways in the condensed phase,
using QM methods, referred to as the ab initio nanoreactor (NR)***,
The NRwas designed to model high-velocity molecular collisions of
small molecules by using afictitious biasing force to promote chemi-
cal reactions and the formation of new molecules, thus automati-
cally exploring reaction pathways between arbitrary reactants and
products. The abinitio NR was successfully able to predict graphene
ring formation from pure acetylene as well as reaction pathways
to form glycine, one of the building blocks of life, from small early
earth molecules.

Although Wang et al. clearly demonstrated the promise of the ab
initio NR to discover reactive chemistry, QM-driven MD sampling is
extremely computationally intensive for generating a large training
dataset within AL. Inthis Article, inspired by the work of Wanget al., we
design an MLIP-driven NR sampling procedure that targets arbitrary
reactive chemical processes and compositions of C, H, N and O ele-
ments, including near pure elemental systems and mixtures. Combined
with the ANI model architecture and applying AL at scale, we aim to

produce arobust and general reactive MLIP. Figure 1shows asummary
of the NR-AL workflow and the specific applications investigated in
this work with the final model, referred to as ANI-1xnr.

Toevaluatethereliability of ANI-1xnrin practical research scenarios,
we conduct several condensed-phase reactive chemistry simulations
inspired by other literature with the ANI-Ixnr potential, namely carbon
solid-phase nucleation**"*, graphene ring formation fromacetylene with
varying O, concentrations***°, biodiesel ignition with different fuel addi-
tives*®, methane combustion* and the spontaneous formation of glycine
fromearly earth molecules***"*2, Across this wide range of applications,
we show that ANI-1xnr provides results that are consistent with chemical
intuition, experimental data, QM calculations (density-functional theory
(DFT), Hartree-Fock and density-functional tight-binding (DFTB)) and
classical reactive MD simulations (reactive force field (ReaxFF) and an
application-specific MLIP) all without retraining.

This study demonstrates the capability of automated chemical
exploration workflows to build a general-purpose reactive potential,
resulting in ANI-1xnr, afast, accurate and general potential capable of
simulating a wide range of real-world reactive systems containing C,
H,Nand O elements.

Results

Nanoreactor active learning

Before assessing the performance of the ANI-1xnr model on the differ-
entcase studies, we evaluated both the diversity and the completeness
ofthe ANI-1xnr dataset. Figure 2 provides atwo-dimensional visualiza-
tion of a high-dimensional dataset by clustering together similar local
atomic environments for the elements H (Fig. 2a), C (Fig. 2b), N (Fig. 2c)
and O (Fig. 2d). Figure 2a-d compare the ANI-1xnr dataset and a
non-reactive, near-equilibrium, moleculeinvacuo, AL dataset (ANI-1x).
Clearly, the ANI-1xnr dataset not only effectively encompasses the
entire ANI-1x dataset but it also extends substantially beyond the local
atomic environment space covered by ANI-1x. More importantly, the
ANI-1xnr dataset provides pathways between many of the clustersinthe
ANI-1x dataset. These pathways probably correspond toreactionsina
low-dimensional representation. Furthermore, Fig. 2e provides select
examples of the over 1,000 unique molecules (consisting of ten or
fewer CNO atoms; Methods) that are identified in the ANI-1xnr training
dataset. Since the NR sampling simulations were initialized with only
small molecules (consisting of two or fewer CNO atoms; Methods), the
NR-AL procedure automatically discovered hundreds, if not thousands,
of reaction pathways leading to these distinct molecular structures.

Carbonsolid-phase nucleation

Accurate simulation of amorphous carbon systems has long been
one of the top interests among chemists and materials scientists, as
some distinct materials (for example, graphene, diamond and carbon
nanotubes) form from amorphous carbon under different conditions.
Understanding this behaviour would assist in the development of func-
tional materials by controlling the solid-phase nucleation process.
Many reactive FFs have been employed to simulate amorphous car-
bon in MD****** With the widespread use of ML methods, researchers
recently developed application-specific MLIPs to investigate amor-
phous carbon systems***, These application-specific MLIPs proved
accurate at predicting pure carbon fragments and mechanical proper-
ties of the bulk system. Despite these achievements, MLIPs trained on
application-specific datasets would have very poor generality to new
chemistry as the model has only been fit to alimited number of struc-
turesand reactions. Onthe other hand, the NR-AL approach presented
inthis work does not sample any specific form of carbon explicitly. We
relyonthe NRsampler and AL algorithm to automatically select physi-
cally relevantand unbiased configurations of carbon atoms. To validate
ANI-1xnr in carbon solid-phase nucleation simulations under differ-
ent conditions, we perform simulations at high (3.52 g cc™), medium
(2.25gcc) and low (0.50 g cc™?) densities.
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Fig. 4 | Effect of oxygen on graphene ring formation simulation results for
ANI-1xnr. a-h, A comparison of three-, four-, five-, six- and seven-membered ring
formation for different ratios of O,/C,H,: 0.00 (a), 0.08 (b), 0.17 (¢c), 0.22 (d), 0.38
(e),0.50 (f), 0.86 (g) and 1.33 (h). ANI-1xnr predicts six-membered ring formation
for O,/C,H, ratios less than 0.50, in closer agreement with experimental data
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than the DFTB simulation results of Lei et al.*’ In comparison with these
literature DFTB simulations, the computational efficiency of ANI-1xnr enables
considerably longer simulation times and larger systems. Specifically, while

Lei et al. performed simulations of 0.5 ns with between 160 and 270 atoms
(depending on the O,/C,H, ratio), we simulate 1,000 atoms for 10 ns (Methods).

Figure 3 summarizes the product of each simulation. For each of
the high- (Fig. 3a), medium- (Fig. 3b) and low-density (Fig. 3¢c) carbon
simulations, ANI-1xnr produces the expected structure of carbon for
the respective density**™*%, Specifically, for the system with the high-
est density (3.52 g cc™), diamond, graphene and hexagonal diamond
phase coexist after 246 ps, where 70% of carbon atoms in the simula-
tion box forms diamond cubic crystal structure. After another 2.3 ns,
the high-density system contains 86% of carbon atoms in the diamond
cubiccrystal structure, with very few graphene and hexagonal diamond
sites. Inthe medium-density (2.25 g cc™) system, 31% of atoms rapidly
form graphene after 8.2 ps, and the system contains 83% graphene
afteranother 2.3 ns. Graphene sheets tend to form a stacked and more
ordered graphite-like structure, whichis observed for the systemslice
in Fig. 3b). The low-density (0.5 g cc™) system forms carbon atom
chains after 250 ps, with 11% of atoms forming graphene sheets. After
another 3 ns, the system contains 88% of atoms formed in graphene
sheets. However, the graphene sheets in this low-density case are more
disordered and appear to form fullerene-like closed or partially closed
meshes. Extended Data Table 1 provides an analysis of the ANI-1xnr
crystal lattice constants for diamond and graphite.

Effect of oxygen ongraphene ring formation
Wang et al.* applied the original ab initio NR method to observe ring
formation (thatis, the early stages of graphene formation) fromapure
acetylene (C,H,) system. Subsequently, Lei et al.* presented DFTBNR
simulations of acetylene inthe presence of different amounts of oxygen,
where 0,/C,H,=0, 0.1, ..., lis the ratio of added O, while the number
of C,H, moleculesis fixed to 40. Graphene formation is the dominant
process for pure C,H,, as the generation of free radicals enables the
rapid growth of hydrocarbon rings. By contrast, the addition of O, to the
systemdeters or, at high enough O,/C,H, ratios, completely eliminates
ring formation®. Similar to the work of Lei et al.*’, we perform reactive
simulations with varying ratios of C,H, and O,.

Figure 4 shows the amount of three-, four-, five-, six- and seven-
membered rings formed with respect to simulation time for eight
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Fig. 5| Biofuel additive simulation results for ANI-1xnr. a-d, Tracking plots of
0, and major products (CO, CO,and H,0) for the following biofuel simulations:
biofuel+0, (a), biofuel + O, with ethanol additive (b), biofuel + O, with 2-butanol
additive (c) and biofuel + O, with MTBE additive (d). IDT is defined as the average
time that at least five molecules of CO, CO, and H,0 are produced (Supplementary
Fig.1).IDTissignificantly decreased for each additive in comparison with the
clean biofuel. For tracking plots including the entire 2 ns simulation, see Extended
DataFig.2.

different O,/C,H, ratios. Increasing the oxygen ratio decreases the
number of rings formed, which is in good agreement with the simu-
lations from Lei et al. and experimental literature®. Furthermore,
although the branching ratios (that is, the relative production of dif-
ferent ring sizes) are not completely converged for all systems, the
branching ratios are clearly in qualitative agreement with Lei et al.
Specifically, six-membered rings are the predominant product, fol-
lowed by five-membered and seven-membered rings at noticeably
lower, but nearly equal, branching ratios. However, in contrast with
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Fig. 6 | Methane combustion simulation results for ANI-1xnr. a, A tracking
plot of 0,, CH, and major products (CO, CO, and H,0). The tracking plot for

the full simulationis provided as Supplementary Fig. 3. b, Snapshots of initial
reactants, intermediate species and final products. Both the tracking plot and
the snapshots confirm that ANI-1xnr predicts qualitatively reasonable reactive
chemistry for this system. However, ANI-1xnr is markedly more reactive than the
application-specific MLIP in the literature®.

Leietal., six-membered rings form even for an O,/C,H, ratio of 0.5.In
comparison, the simulations of Lei et al. predict ring formation for
0,/C,H, ratio up to 0.2, but negligible ring formation for an 0,/C,H,
ratio of 0.4. The ANI-1xnr results are in much closer agreement with
experimental data, which report graphene formation for O,/C,H,
ratios between 0.4 and 0.8 (no experimental measurements were
reported outside of this range). A clear explanation for the improved
agreement between ANI-1xnr and experiment is the longer simula-
tion timescales and the larger system sizes achievable by ANI-1xnr
compared with DFTB (Methods). Specifically, for an O,/C,H, ratio of
0.5, six-membered rings only begin to form after 1 ns with ANI-1xnr.
Considering that the DFTB simulations of Lei et al. ran foronly 0.5 ns,
our results suggest that six-membered rings could form under higher
oxygen ratio conditions using DFTB at longer timescales. Although
it is possible that even longer MD simulations could result in ring
formation at even higher O,/C,H, ratios, this case study demonstrate
the valueinthe lower computational costs of ANI-1xnr compared with
traditional methods, such as DFTB, to discover interesting phenomena
that canonly be observed during long timescale simulations. Further
validation of the ANI-1xnr simulation results are provided in Extended
DataFig. 1.

Comparison of biofuel additives

To promote combustion processes of liquid fuel, fuel additives are uti-
lized as detergents, oxygenates, emission depressors, corrosioninhibi-
tors, dyes and to increase the octane number. Chen et al.’® performed
high-temperature high-pressure MD simulations with ReaxFF**** to
predict the mechanisms and kinetics of several fuel additives, includ-
ing ethanol, 2-butanol and methyl tert-butyl ether (MTBE). Accord-
ing to their results, 2-butanol was the best fuel additive at enhancing
ignition while MTBE demonstrated similar ignition enhancement to
2-butanol. By contrast, ethanol was the worst fuel additive, having a
negligible effect on the O, consumption rate and ignition delay time
(IDT) compared with the clean biofuel.

Tovalidate the reliability of ANI-1xnr for simulating biodiesel and
to investigate the reported ignition enhancement of fuel additives,
we reproduced four systems simulated by Chen et al.*°, namely, clean
biodiesel, biodiesel with ethanol as additive, biodiesel with 2-butanol
asadditive and biodiesel with MTBE as additive. Figure 5 shows that the
main products (CO, CO,and H,0) are produced in very similar quanti-
ties to the ReaxFF simulations of Chen et al. Despite a quantitative
difference between ANI-1xnr and ReaxFF IDTs (Extended Data Table 2),
the additive effect on ignition delay for ANI-1xnr agrees qualitatively
with ReaxFF, namely, all three additives cause product formation to
occur at earlier times compared with clean biodiesel. Furthermore,
ANI-1xnr predictsthat 2-butanoland MTBE both resultin the enhance-
ment of O,consumption, similar to ReaxFF (Extended DataTable 2). The
primary qualitative discrepancy with ReaxFF is that ANI-1xnr predicts
that ethanol also enhances O, consumption. However, experimental
work demonstrates that ethanol can actually accelerate fuel ignition
atrelatively high pressures, in agreement with our simulation results®.
Extended Data Fig. 3 provides further justification for the ANI-1xnr
ethanol simulation results.

Methane combustion

Emerging research has shown the success of application-specific MLIPs
onsystems such as radical reactions in hydrocarbon combustion and
well-known gas-phase mechanisms®*. Zeng et al.?* trained an NN-based
potential to a dataset of QM-calculated fragment clusters sampled
from a ReaxFF simulation of the combustion process of a mixture of
CH, and O,. They showed that their application-specific MLIP could
then simulate the combustion process of methane with areasonable
mechanism. Though our ANI-1xnr potential was trained for a more
general purpose, we compare the performance of our MLIP with the
application-specific MLIP of Zeng et al. for methane combustion under
high temperatures and pressures. Specifically, we reproduce their MD
simulation of methane combustion under the same conditions with
the ANI-1xnr potential. Figure 6a shows that the ANI-1xnr potential
produces very similar major products and species profiles to those
of Zeng et al. However, by comparison with the CH, and O, consump-
tionrates of Zeng et al., ANI-1xnr predicts an overall reaction rate that
is approximately a factor of 40 times faster. Specifically, while their
systemrequired 0.5 ns of simulation time to consume half of the initial
CH,, our systemrequired only 0.012 ns. Similar to the biofuel case, the
differenceinthe overall reactionrateis probably due to the difference
in the reference DFT reaction energy barriers (Methods). Extended
DataFigs.4and 5 provide further explanationasto the potential cause
of this discrepancy.

Dueto the extreme simulation conditions, no experimental refer-
ence dataare available for comparison. However, the similar trend for
species concentration with respect totime in comparison with the work
of Zengetal.indicates that our general-purpose MLIP was able tolearn
therelevant physics and mechanisms as well as the application-specific
MLIP of Zeng et al. Also, the CH, and O, consumption curves for the
ANI-1xnr model are much closer to exponential decay, which is more
physically reasonable than the near-linear decay plots of Zenget al.

Miller experiment

In1959, Stanley Miller designed afamous experiment to elucidate the
origins of life on earth>.. Miller applied an electric field to a gaseous
system consisting of simple small-molecule species (for example, NH,,
CO, H,0,H,and CH,) and reported the formation of amino acids such as
glycine (C,HsNO,). This revolutionary experiment led to the formation
ofthefield of prebiotic chemistry, which aimsto discover the reaction
networks that produce molecules that are essential for the formation of
life. In this spirit, computational studies have attempted to imitate the
reaction conditions of the Miller experiment to predict the key reaction
pathways that lead to the formation of glycine. Recently, Saitta and
Saija performed relatively short (=40 ps) near-ambient temperature
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Fig. 7| Miller experiment simulation results for ANI-1xnr. The reaction pathways
discovered by ANI-1xnr in a Miller experiment simulation for the formation of
glycine fromsmall-molecule species (for example, NH;, CO, H,0, H,and CH,).

The green arrows denote reactions previously identified by Wang et al. or Saitta
and Saija. The orange arrows denote reactions that have a similar reactionin

Wang et al. or Saitta and Saija. The majority of reactions have been previously
reported in theliterature, confirming the validity of the ANI-Ixnr mechanism.
Three-dimensional snapshots extracted from the MD simulation trajectory are
reported in Extended Data Fig. 6, further confirming that the reaction pathways are
physically meaningful. Note that +H does not necessarily signify a free hydrogen
atom, +His short-hand for a proton donor, for example, NH,, NH,, CHO, CHNO,
H,0 or H,0. Likewise, —H does not necessarily signify dissociation of ahydrogen
atom. -His short-hand for a proton acceptor, for example, NH,, CO, CNO, H,0

or OH. The boxes encapsulate the key intermediates, carbon dioxide (CO,) and
methylene (CH,). The novel pathways to form these key intermediates are reported
in Extended DataFig. 7. The depiction of bond orders and radical speciesis based
simply on chemical intuition, since ANI-1xnr does not provide explicitbonding,
orbital or electronic information (for an alternative interpretation of this
mechanisminvolvingionic species, see Extended DataFig. 8).

(400 K) condensed-phase (=1 g cc™) DFT-MD simulations, wherein an
electricfield is applied directly to ‘spark’ chemical reactions®>. As our
MLIP does not contain the necessary electronic information to apply
anelectricfield, we instead encourage reactions to occur on picosec-
ond timescales by performing high-temperature high-density MD
simulations, similar to the Miller NR simulation of Wang et al.** Due to
the low computational cost of our MLIP, we are able to run our Miller
experiment simulation considerably longer (=4 ns) than the ab initio
NR simulations of Wang et al. (=1 ns) with the same system size of 228
atoms but with periodic boundary conditions. For this reason, we use
a constant condensed-phase density (with corresponding pressures
around 1 GPa) rather than applying an artificial piston to periodically
compress the non-periodic gas-phase system to around 10 GPa, as was
the approach employed by Wanget al.

Figure 7 shows the ANI-1xnr reaction mechanism to form gly-
cine starting from the initial reactants. During our Miller simulation,
glycine is formed three times and persists for approximately 225fs,
375fsand 913 fs. Dissociation of glycine in less than 1 ps is expected,
considering the relatively high temperature of this simulation. The
final step to form glycine is hydrogen addition to C,H,NO,, similar to
the mechanism of Saitta and Saija. However, hydrogen addition occurs
atanoxygen atomin our mechanism, rather thanat the a-carbonasin
the Saittaand Saijamechanism. Inoneinstance, our Miller simulation
produced the same C,H,NO, isomer as reported by Saitta and Saija.
By contrast to the Saitta and Saija mechanism, this C,H,NO, isomer
dissociated in our simulation rather than forming glycine. The key
precursor to C,H,NO, is CH,N, whichis formed through several path-
ways. The pathway to form CH,N that proceeds through the CH,O
intermediate is very similar to the mechanism reported by Wang et al.**
The mechanismsto form theintermediates formaldehyde (CH,0) and
hydrogen cyanide (CHN) from the initial reactants CO, NH, and H,0

were nearly identical to those reported by Wang et al.** and Saitta and
Saija®. Overall, there are several similarities between our mechanism
and those of Wang et al. and Saitta and Saija.

Conclusions

Here, weintroduced asampling procedure, dataset and MLIP (ANI-1nxr)
based onthe NR for organic condensed-phase MDs, including reactions.
The NR-based AL process builds areactive dataset spanning elemental
compositions of C,H, Nand O under awide range of conditions starting
fromnine small seed molecules. The NR-AL procedure provided data
with unprecedented chemical environment diversity and relevance
compared with prior non-reactive AL, and uncovers more than 1,000
unique moleculesintotal, under condensed-phase reactive atomistic
configurations. Each unique molecular species formed by MDs simula-
tionin our NRsampler was the result of one or morereaction pathways
that did not need to be known or specified before runtime.

We validated the generality of the ANI-1xnr potential on five real-
world condensed-phase reactive case studies: carbon solid-phase
nucleation, effect of oxygen on graphene ring formation from acety-
lene, ignition of biodiesel with various fuel additives, combustion
of methane and the spontaneous formation of glycine in early earth
conditions, all without retraining. In carbon solid-phase nucleation
and graphene ring formation studies, we show that ANI-1xnr repro-
duces the experiment well. In other cases, in extreme simulation
conditions where an experiment is not available for comparison,
ANI-1xnr produces results that are generally consistent with tradi-
tional modelling approaches, such as DFT, DFTB, ReaxFF and even an
application-specific MLIP. The effectiveness of the NR-AL approach
demonstrates the power of coupling and automating the system explo-
ration, data generation and model training processes to produce a
robust MLIP.

Although the ANI-1xnr potential is already a broadly applicable
tool for studying condensed-phase reactive chemistry, we envision
continuous improvement of this MLIP. Future work could augment the
condensed-phase ANI-1xnr dataset with low-density or in vacuo reac-
tive data, for example, by sampling pathways for pre-determined reac-
tions®* or for reactions identified in the NR simulations**. Future work
could also extend the dataset to additional elements'®, As the current
dataset was computed using an affordable plane-wave DFT method,
future work could also investigate the prospect for higher-accuracy
QM methods (for example, double-hybrid DFT or post-Hartree-Fock)
toobtainimproved reaction barriers. Inaddition to simple retraining,
any of these improvements could use more advanced ML training
paradigms, such as transfer learning®®, meta-learning® and lifelong
learning®’. Concerning the model form, the ANI-1xnr potential is fully
local, meaning long-range effects, such as London dispersion and
Coulombicinteractions, arenot described explicitly beyond the model
cutoffradius (Methods). Certain applications may require more direct
treatment of long-range effects. Future work could investigateincorpo-
rating recent developments, such as explicit long-range terms®, charge
equilibration schemes®* or graph NN models*>'">"' that can implicitly
account for long-range interactions. A recent advancement in ML for
natural language processing is the concept of foundational models,
thatis, large, general models usually trained with unlabelled data that
canbe specialized to specific tasks quickly with very small amounts of
data®. As ANI-1xnr is trained to a large, general dataset, a clear future
directionisto evaluate whether it can act as a foundational model for
application-specific MLIPs when greater accuracy is required.

We are providing the ANI-1xnr dataset for future research. We are
also providing the resulting ANI-1xnr potential to the community. We
advise potential users to exercise strong caution if applying ANI-1xnr
outside of the training domain (CHNO condensed-phase reactive
chemistry). Nonetheless, considering that ANI-1xnr was developed
independently of the five case study systems, the generality of ANI-1xnr
istruly remarkable.
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Methods

Model description and training details

The ANI-1xnr model was trained similarly to ANI models within other
contexts’, including materials science® and chemistry®®. We use the
ANldescriptors®”, whichis amodified form of the Behler and Parinello
NN descriptors™. ANI-1xnr uses a local cutoff of 5.2 A for the radial
descriptorsand 3.5 A for the angular descriptors. The model is trained
for the elements C, H, N and O, each of which has its own specialized
NN-based potential. The NN architecture for each element and sym-
metry functions are reported as Supplementary Tables 2 and 3, respec-
tively. Similar to previous ANImodels, ANI-1xnr predicts energies based
solely uponthe atomic positions and element types. Therefore, unlike
more complex MLIPs, for example, SpookyNet'® and AIMNet®, the
ANI-1xnr-predicted energies do not explicitly depend on the charge
or spin multiplicity. Thus, similar to ReaxFF, ANI-1xnr predicts only
the ground-state energy, regardless of whether the lowest-energy
electronic state corresponds to aradical oranion.

Training. The ANI-1xnr model was trained using both energy and force
terms in the loss function as described in previous work®. During
training, we employ early stopping to prevent overfitting with learn-
ing rate annealing to ensure a high-fidelity fit. The model training is
considered converged when the learning rate drops below 1.0 x 107>
Model performance against the held-out test dataset is presented in
Supplementary Tables 4 and 5 and Supplementary Figs. 5-8. Note that,
similar to previous MLIP studies®*, we report the per-atom energy
errors. Thisisbecause energy is an extensive property and the ANI-1xnr
dataset consists of systems spanning almost two orders of magnitude
inthe number of atoms. Therefore, the unnormalized energy spans an
enormous range and, thus, the corresponding unnormalized energy
error is skewed by larger systems.

Althoughthe ANI-1xnr root meansquared errors are approximately
anorder of magnitude larger than an MLIP trained to near-equilibrium
data (for example, ANI-1x). This is not surprising since the ANI-1xnr
dataset is considerably more challenging to train due to the wider
range of atomic environments and system energies present in a reac-
tive dataset. While errors between MLIPs trained on different data-
sets are not precisely comparable, we note that the ANI-1xnr mean
absolute errors are of similar magnitude to those for TeaNet”, which
was also trained on a very challenging dataset aimed at developing a
universal potential. Furthermore, the ANI-1xnr dataset is much more
general than mostreactive datasets that are limited to a single system
of interest, for example, the Zeng et al. reactive dataset for CH, + O,.
By comparison, the force root mean squared errors of ANI-1xnr are
only about30% higher thanthose of the MLIP trained to the Zeng et al.
single-reactive-system dataset, despite the ANI-1xnr dataset covering
a substantially wider range of reactive chemistry. A validation that
ANI-1xnr conserves energy is shown in Supplementary Fig. 9.

Training dataset generation

The ANI-1xnr training dataset was generated through an iterative AL
process, where sampling of new atomic configurationsis obtained with
NR-inspired MD simulations. To bootstrap the AL process, periodic cells
containing randomly placed and oriented small molecules with less
thanthree non-Hatoms and with arandomly selected composition of
C,H,Nand O are generated. Starting from this small initial bootstrap
dataset, the AL algorithm is applied iteratively, yielding generations
of datasets designed to improve upon their ancestors. Iterations of
sampling, selecting, labelling and training are performed until the
resulting MLIP is no longer improving. Training was described in the
previous section. Details regarding sampling, selecting and labelling
are provided in the following paragraphs.

Sampling. Atomic structures (that is, positions) are sampled by per-
forming NR simulations with the current AL-generation MLIP. The

MLIP-driven NR simulations are initialized with random compositions
of small molecules, containing in the order of 100 atoms. Random
oscillations of temperature and density (that is, simulation box vol-
ume) promote reactions and the formation of new products during
the allotted simulation time (less than1ns).

Selecting. From all the atomic structures sampled along the NR
trajectories, only high-uncertainty structures are selected for the
ever-growing dataset, as these structures are deemed to be poorly
described by the current AL-generation MLIP. Similar to previous ANI
studies, we utilize a query-by-committee’® uncertainty metric, that
is, the normalized ensemble standard deviationin energy and atomic
forces*>°, To achieve a balance between exploration of chemical
space and exploitation of the mostimportant regions of the potential
energy surface, the uncertainty thresholds vary between AL itera-
tions, where the latter AL iterations generally have larger thresholds
thanearlier iterations. The final uncertainty threshold values for the
normalized energy and forces were 1.85 kcal mol ™ N3 and 6.92 kcal
mol™ A™, respectively.

Labelling. Each selected structure is then labelled with QM system
energy and atomic forces. These QM calculations are computed with
the open-source CP2K software” using unrestricted Kohn-Sham

DFT’?, Becke, Lee, Yang and Parr (BLYP) functional’, triple-zeta

valence basis set with two sets of polarisation functions (TZV2P)”,

Goedecker, Teter and Hutter (GTH) pseudopotentials’®, Grimme

third-generation dispersion (D3) correction with zero damping’’

and energy cutoffs of 600 and 60 Ry, respectively, for the plane-wave
and Gaussian contributions to the basis set, as recommended in pre-
vious work’®, Ensuring that each DFT calculation converges to the
global-minimum energy is challenging for complex condensed-phase
systems with alarge number of molecules and partially broken bonds.

Indeed, itis likely that the few large outliers observed in Supplemen-

tary Fig. 5 are DFT calculations that converged to a meta-stable elec-

tronic state. Fortunately, the fraction of these outliersis relatively low.

Thus, these presumed meta-stable calculations do not meaningfully

impede the MLIP from learning the dominant branch of convergence

for the DFT calculations.

The overall spin multiplicity for each DFT calculation is con-
strained to a singlet state. Note that this is the spin for the entire
box, not just a single molecule or radical. The assumption that a
condensed-phase system does not accumulate an impactful amount
of spinis effectively aninfinite-system size approximation. This choice
of spin multiplicity is consistent with previous studies that perform
CP2K simulations of bulk systems containing radical species”. How-
ever, a singlet spin multiplicity for low-density gas phase or in vacuo
calculations would not always be appropriate (for example, for radicals
or molecules with partially formed bonds). The use of a singlet spin
multiplicity may explain, in part, why ANI-1xnr performs poorly for
invacuobond-breaking calculations (Extended Data Fig. 4).

Below is a detailed step-by-step description of the AL workflow
(forahigh-level overview, see Fig.1):

1. Generate abootstrap dataset (labelled with energies and
forces) of 100 randomly generated periodic cells containing
randomly placed and oriented small molecules including C,, H,,
N,, 0,, NH,, CH,, CO,, H,0 and C,H, with random composition

2. Trainensemble of ANI potentials to the current training dataset
using eightfold (16 blocks) cross validation (14/1/1: train/valida-
tion/test split) scheme

3. Prepare for NR-AL sampling: build a new random box of small
molecules with random size, density, placements orientations.
Define arandom schedule function for oscillating tempera-
ture (7) and density (p). Oscillating functional form is the
same for temperature and density (see equations below),
where tis time, t..,, is a hyperparameter for the max time the
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SimUIation WI” run, and Tstart' Tend' Tamp' pstart' pend' pamp and tper
are randomly selected values within a pre-determined range
(Supplementary Table 6):

t .2 t
T(@®) = start T [_(Tend - Tstart) + Tampsm ( )

ax Cper

P = Pstare + i(pend — Pstart) +pamp5in2 <ﬁj>

4. Runthe NR MD simulation using forces from current
AL-generation MLIP

5. Monitor energy and force uncertainty metrics every 5-50 MD
steps (with an MD time step of 0.5 fs). If the uncertainty values
exceed a pre-selected threshold value, end the simulation and
add configuration to a new batch of structures. Otherwise,
continue running MD for a maximum of 1 ns

6. RunDFT single-point calculations on the new batch of struc-
tures to obtain energy and force labels

7. Addnew labelled data to the training dataset

8. Gobackto step 2 and repeat until the MLIP converges. We
define convergence as when MLIP-driven MD sampling simula-
tions run for on the order of 50 ps on average. In other words,
convergence is achieved when the MLIP is confident in all new
MD simulations

Resulting training dataset

After more than 50 iterations of AL, the resulting training dataset
includes 26,650 simulation cells of atomic positions with corre-
sponding DFT system energy and atomic forces. Two-dimensional
visualizations of the local atomic environments present in the dataset
(Fig. 2a-d) are generated using ¢-distributed stochastic neighbour
embeddings®. Distributions of the system sizes, compositions and
densities canbe foundin Supplementary Figs.10-12, respectively. The
average systemsize is 139 atoms. The vast majority (=95%) of configura-
tions in the training dataset have a density between 0.5and 2.0 gcc™
While the minimum density in the datasetis =0.03 g cc™, less than1% of
the configurationsinthe dataset have a density lessthan 0.1 g cc™, sug-
gesting that ANI-1xnr should not be trusted for low-density gas-phase
simulations or in vacuo calculations.

By cross-referencing the ANI-1xnr training dataset with the exist-
ing PubChem database® for only CHNO molecules with ten or fewer
CNO atoms, we conclude that the ANI-1xnr dataset contains 1,212
unique known PubChem molecules, or approximately 0.2% of the
=555k PubChem CHNO molecules with ten or fewer CNO atoms. Sup-
plementary Fig.13 shows a histogram of the sizes of all molecules that
are found in the ANI-1xnr dataset, which includes one molecule up to
145 atoms. The majority are small molecules of similar size or slightly
larger than those from which the systems were initialized. There are
many occurrences of moleculesin the range of 10-90 atoms. The larg-
eststructures, ascertained by visual inspection, are graphene sheets.
Furthermore, the 1,212 unique PubChem molecules only represent
the simulation frames that were selected by the uncertainty estimate.
Therefore, 1,212 should be considered alower bound of molecules dis-
covered during AL. There are probably many more molecules formed
over all NR-AL sampling, which is estimated to be hundreds of nano-
seconds of MD simulation time in aggregate.

To automate the extraction of common molecular entities that
formed during the AL process, we developed a NetworkX-based pack-
age called MolFind. This Python software tool employs user prescribed
cutoff distances for defining when two atoms are bonded or not and dis-
covers clusters of atoms connected viabonds. The three-dimensional
molecular architecture is partially captured through a graphical rep-
resentation (thatis, nodes and edges) of the bonding topology where
atoms are nodes and bonds are edges. Graphs are encoded according
to the open-source Python package called NetworkX®2. The graphical

representation and the NetworkX package enables (1) the counting of
the number of topologically distinct molecular speciesinasimulation
viaagraphisomorphism check and (2) acomparison to known molecu-
lar entities with a specified topology. Previously, we tabulated alarge
database of known molecules and associated topologies by scraping
the entirety of the PubChem database up to ten non-hydrogen atoms.
The existence of a species in the database is not required for MolFind
toextractabonded atomic cluster butiffound, it canaffix achemical/
species name with the entity.

Simulation details

All MD simulations in this study are performed with the NeuroChem
package® and the Atomic Simulation Environment®. The average com-
putational speed of our Atomic Simulation Environment-NeuroChem
MD simulations was approximately 50k atomic gradients per sec-
ond on a single NVIDIA Titan V graphics processing unit (GPU). We
acknowledge that amore optimized code, such as Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)®, would be notice-
ably more computationally efficient. For example, recent studies have
demonstrated that highly optimized MLIPs within LAMMPS can obtain
1-10 million atomic gradients per second on a single NVIDIA A100
GPU™%, However, because of the relatively small system sizes of our
AL simulations (less than 500 atoms) and our case study simulations
(no greater than 5,000 atoms), it was not necessary to fully optimize
our computational performance by utilizing acode such as LAMMPS.
To demonstrate that there is an opportunity to greatly improve our
performance, we achieved 90k atomic gradients per second simply
by increasing our simulation size to 25k atoms and, thereby, more
efficiently utilizing the GPU.

Carbon ssolid-phase nucleation

To investigate the formation process of diamond and graphene, MD
simulations were performed for amorphous carbon under different
densities. Threeinitial system structures with three different densities
(0.5gcc™, 2.25gcc™and 3.52 g cc™) were generated by varying the
simulationbox length for a constant total number of carbon atoms of
5,000.Theinitial system structure was built with in-house code. First,
theinitial position for the first carbon atomin the simulation box was
randomly selected. Then, random positions were proposed for each
additional carbonatom. A proposed positionwas accepted onlyif the
distance to all previous positions was larger than twice the van der
Waals radius for carbon atoms (1.7 A). This process was repeated until
all 5,000 carbon atoms were inserted. Langevin dynamics were per-
formed at a temperature of 2,500 K for 5 ns with step length of 0.5 fs.
Coordinates and properties were recorded every 50 fs (100 time steps).
Eightindependent trajectories were run for each density to verify that
the correct phase was identified from different starting structures.
Different phases (diamond cubic, hexagonal diamond or graphene) in
each snapshot were distinguished with the Open Visualization Tool*®.

Effect of oxygen on graphene ring formation
To investigate ring formation from acetylene, MD simulations were
performed for eight different systems with varying O,/C,H, ratios:
(0.00, 0.08, 0.17, 0.22, 0.38, 0.50, 0.86 and 1.33). All systems con-
tained 1,000 atoms, resulting in a range of 150-250 C,H, molecules
and 0-200 O, molecules, depending on the O,/C,H, ratio. To have a
nearly identical density of 0.2 g cc™* for each system, the box lengths
ranged between 37 A and 44 A. The initial structures were generated
with PackMol¥. Next, the minimum-energy structure was obtained
with the Limited-memory Broyden-Fletcher-Goldfarb-Shanno opti-
mizer®®. Then, Langevin dynamics simulations were run at 2,000 K for
10 nswitha 0.5 fstime step and a friction constant of 0.01. Snapshots
and properties were recorded every 0.5 ps (1,000 time steps).

Ring structures of varying sizes were identified and counted with
our in-house code MolFind. Considering that the distance between
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bonded atoms can fluctuate, a 0.02 A buffer was utilized when scan-
ning C-C bonds so that any pair of carbon atoms that has distance
smallerthan1.72 A (two times the covalent radius of carbonatom plus
the buffer) were considered bonded. Similar buffers were also added
when analysing other simulations.

Comparison of biofuel additives
To investigate the effect of different fuel additives onignition perfor-
mance, MD simulations were performed for clean biofuel and biofuel
with three differentadditives: ethanol, 2-butanol and MTBE. The biofuel
composition, the number of additive molecules and the number of O,
molecules werethe same as presentedin Table 2 of the ReaxFF reference
paper*°. Each system consists of approximately 2,000 atoms. Initial
structures were generated using Packmol such that the initial separa-
tion of all molecules was at least 2 A. The initial density was 0.2 g cc™
in all four cases, consistent with Chen et al. Langevin dynamics were
runatatemperature of 100 K for 1 ps for relaxation. Then, the system
temperature was gradually increased to 3,000 Kat a 50 K ps ™ heating
rate. Afterreaching the desired temperature of 3,000 K, the simulation
was ran for an additional 10 ns. A fixed time step of 0.1 fs was utilized.
Thetemperature, time step and heating profile were the same as those
utilized by Chen et al.*° During the whole process (including relaxation
and temperature ramping) snapshots and properties were recorded
every 1ps (10,000 time steps). Five independent trajectories were
performed for each system to reduce uncertainty in species profiles.
ANI-1xnr was trained to BLYP reference calculations, whereas
ReaxFF was primarily developed based on B3LYP calculations (sup-
plemented with high-accuracy bond dissociation energy data). Since
reaction rates are extremely sensitive to energy barriers, this difference
in the DFT functional can lead to a substantial difference in overall
reaction rates.

Methane combustion

The methane combustion system was initialized with 100 CH, mol-
eculesand 200 O, molecules. Allmolecules were inserted using Pack-
mol and ensuring that all molecules were separated by at least 2.0 A.
The cubic simulation box length was 37.60 A, resulting in a density of
0.25g cc™’. The temperature was initialized to 3,000 K by Maxwell-
Boltzmann distribution. Langevin dynamics were run for 1 ns with a
time step of 0.1 fs and with a friction constant of 0.01. The initial den-
sity, number of molecules, temperature and time step were consistent
withZengetal.?*. Snapshots and properties were recorded every 0.1 ps
(1,000 time steps).

ANI-1xnrwastrained toreference calculations computed with BLYP
functional and TZV2P basis set, whereas Zeng et al. utilized the MN15
functional and 6-31G** basis set?. Since reaction rates are extremely
sensitive to energy barriers, this difference in the DFT functional and
basis set can lead to a substantial difference in overall reaction rates.

Miller experiment
To investigate the ability to simulate complex organic system that
involve biologically relevant molecules, an MD simulation was per-
formed with a similar species composition to the Miller experiment.
Packmolwas utilized to randomly place 16 H,,14 H,0,14 CO, 14 NH; and
14 CH, inacubicsimulation box with edge lengths of 12.1 A, resultingin
adensity of1.067 g cc’. The simulation was run with Langevin dynamics
for over 4 ns with a time step of 0.25 fs. The temperature was linearly
increased from 0 Kto300 Kinthefirst100 ps. Then, the temperature
was linearly increased from 300 K to 2,500 K in the next 100 ps. The
temperature was then maintained at 2,500 K for 4,000 ps. The system
was thencooled from 2,500 Kto300 K over the final 200 ps. Snapshots
and properties were recorded every 12.5 fs (50 time steps).

Although some differences exist between our mechanism and
those reported in previous simulation studies, this is not surpris-
ing considering not only the difference in levels of theory (that is,

Hartree-Fock versus DFT versus MLIP), but also the difference in the
simulation methodologies (that is, our Miller simulation did not uti-
lize a ‘piston’ nor induce an electric field). For this reason, we further
validate our Miller experiment results by comparing the ANI-1xnr ener-
giesand forces directly with DFT calculations along the MD trajectory.
These validation results are provided in Supplementary Fig. 4.

Data availability

The ANI-1xnr training dataset is publicly available at https://doi.
org/10.6084/m9.figshare.22814579. Initial and final structures for
case study simulations are provided as Supplementary Data files.
Details are provided inthe corresponding sectionin Methods. Source
dataare provided with this paper.

Code availability
The ANI-1xnr model canbe found at https://github.com/atomistic-ml/
ani-1xnr/.

References

66. Smith, J. S. et al. The ANI-1ccx and ANI-1x data sets, coupled-
cluster and density functional theory properties for molecules.
Sci. Data 7,134 (2020).

67. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural
network potential with DFT accuracy at force field computational
cost. Chem. Sci. J. 8, 3192-3203 (2017).

68. Zubatyuk, R., Smith, J. S., Leszczynski, J. & Isayev, O. Accurate and
transferable multitask prediction of chemical properties with an
atoms-in-molecules neural network. Sci. Adv. 5, eaav6490 (2019).

69. Smith, J. S., Lubbers, N., Thompson, A. P. & Barros, K. Simple
and efficient algorithms for training machine learning potentials
to force data. Preprint at arXiv https://doi.org/10.48550/
arXiv.2006.05475 (2020).

70. Seung, H.S., Opper, M. & Sompolinsky, H. Query by Committee.
In Proc. Association for Computing Machinery (1992). https://doi.
org/10.1145/130385.130417

71. Kihne, T. D. et al. CP2K: An electronic structure and molecular
dynamics software package—Quickstep: efficient and accurate
electronic structure calculations. J. Chem. Phys. 152, 194103
(2020).

72. Kohn, W. & Sham, L. J. Self-consistent equations including
exchange and correlation effects. Phys. Rev. 140, A1133-A1138
(1965).

73. Becke, A. D. Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A 38, 3098-3100
(1988).

74. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron
density. Phys. Rev. B 37, 785-789 (1988).

75. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate
calculations on molecular systems in gas and condensed phases.
J. Chem. Phys. 127, 114105 (2007).

76. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space
Gaussian pseudopotentials. Phys. Rev. B 54, 17703-1710 (1996).

77. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and
accurate ab initio parametrization of density functional dispersion
correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132,
154104 (2010).

78. Jadrich, R. B., Ticknor, C. & Leiding, J. A. First principles reactive
simulation for equation of state prediction. J. Chem. Phys. 154,
244307 (2021).

79. Fetisov, E. O. et al. First-principles Monte Carlo simulations of
reaction equilibria in compressed vapors. ACS Cent. Sci. 2,
409-415 (2016).

80. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 2579-2605 (2008).

Nature Chemistry


http://www.nature.com/naturechemistry
https://doi.org/10.6084/m9.figshare.22814579
https://doi.org/10.6084/m9.figshare.22814579
https://github.com/atomistic-ml/ani-1xnr/
https://github.com/atomistic-ml/ani-1xnr/
https://doi.org/10.48550/arXiv.2006.05475
https://doi.org/10.48550/arXiv.2006.05475
https://doi.org/10.1145/130385.130417
https://doi.org/10.1145/130385.130417

Article

https://doi.org/10.1038/s41557-023-01427-3

81. Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51,
D1373-D1380 (2022).

82. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network
structure, dynamics, and function using NetworkX. In Proc. 7th
Python in Science Conference (eds Varoquaux, G., Vaught, T. &
Millman, J.) 11-15 (2008).

83. Larsen, A. H. et al. The atomic simulation environment—a Python
library for working with atoms. J. Phys. Condens. Matter 29,
273002 (2017).

84. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for
particle-based materials modeling at the atomic, meso, and
continuum scales. Comp. Phys. Comm. 271, 108171 (2022).

85. Musaelian, A. et al. Learning local equivariant representations for
large-scale atomistic dynamics. Nat. Commun. 14, 579 (2023).

86. Stukowski, A. Visualization and analysis of atomistic simulation
data with OVITO-the open visualization tool. Model. Simul. Mat.
Sci. Eng. 18, 015012 (2009).

87. Martinez, L., Andrade, R., Birgin, E. G. & Martinez, J. M.
PACKMOL: a package for building initial configurations for
molecular dynamics simulations. J. Comput. Chem. 30,
2157-2164 (2009).

88. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for
large scale optimization. Math. Program. 45, 503-528 (1989).

Acknowledgements

The authors thank A. E. Roitberg for useful discussions on validating
MLIPs for reactive chemistry. S.Z., K.B., BT.N., ST, N.L. and R.A.M.
acknowledge support from the US Department of Energy, Office of
Science, Basic Energy Sciences, Chemical Sciences, Geosciences,
and Biosciences Division under Triad National Security, LLC (‘Triad’)
contract grant 89233218 CNAOOOOO1 (FWP: LANLE3F2). M.Z.M.
gratefully acknowledges the resources of the Los Alamos National
Laboratory (LANL) Applied Machine Learning summer student
programme. The work at LANL was supported by the LANL Directed
Research and Development Funds 20210087DR. Work at LANL

was performed in part at the Center for Nonlinear Studies and

the Center for Integrated Nanotechnologies, a US Department of
Energy Office of Science user facility at LANL. This research used
resources provided by the LANL Institutional Computing Program.
0.l. acknowledges support from Office of Naval Research through

Energetic Materials Program (MURI grant number NOOO14-21-1-2476).
M.Z.M. and E.K. acknowledge funding from National Science
Foundation, grant CHE 2102461.

Author contributions

J.5.S. and N.L. conceptualized the approach. R.B.J., J.S.S, ST. and B.T.N.
designed the QM methods. The NR sampler was designed by J.S.S.
and N.L. The validation cases were designed by J.S.S., M.Z.M., S.Z.

and R.A.M. Software was written by J.S.S., N.L., M.Z.M., R.B.J. and S.Z.
J.S.S. performed the AL procedure. The validation case studies were
performed by the following authors: carbon solid-phase nucleation

by J.S.S.; effect of oxygen on graphene ring formation by J.S.S., S.Z.,
M.Z.M. and N.L.; comparison of biofuel additives by S.Z., M.Z.M. and
R.A.M.; methane combustion by S.Z. and R.A.M.; Miller experiment by
J.S.S., M.ZM., R.A.M. and N.L. with reaction network analysis by M.Z.M.
and R.A.M. Figure 2 was designed by S.Z., J.S.S., N.L., R.A.M. and K.B.
Figure 2 was generated by M.Z.M. and J.S.S. Figure 7 was generated

by R.A.M. Other figures were rendered by S.Z., J.S.S., M.Z.M., N.L. and
R.A.M. Supervision was provided by E.K., O.l., ST., K.B., R.A.M,, J.S.S.
and N.L. Funding acquisition was provided by BT.N., J.S.S., ST., K.B.,
O.l. and E.K. All authors discussed the results. S.Z., J.5.S. and R.A.M.
wrote the original draft of the manuscript. Editing and revision of the
manuscript were performed by all authors.

Competinginterests
The authors declare no competing financial interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41557-023-01427-3.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41557-023-01427-3.

Correspondence and requests for materials should be addressed to
Nicholas Lubbers, Richard A. Messerly or Justin S. Smith.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Chemistry


http://www.nature.com/naturechemistry
https://doi.org/10.1038/s41557-023-01427-3
https://doi.org/10.1038/s41557-023-01427-3
http://www.nature.com/reprints

Article https://doi.org/10.1038/s41557-023-01427-3

Extended Data Table 1| Comparison of optimized crystal lattice constants (a, b, c) for diamond and graphite phases

Crystal Model a(A) b(A) c(A)
Diamond ANI-1xnr 3.58 3.58 3.58
ANI-1xnr(Lr) 3.66 3.66 3.66
ANI-2x 375 375 364
Exp. 3.57 3.57 3.57
Graphite ANI-Txnr 2.47 2.47 6.24
ANI-1xnr(lr) 2.46 2.46 6.56
ANI-2x 244 244 10.0
Exp. 2.46 2.46 6.71

Comparison between ANI-1xnr, ANI-1xnr(lr), ANI-2x and experiment (Exp.). ANI-1xnr reproduces the diamond cubic lattice constants, the a and b lattice constants in graphite, and the
non-orthogonal experimental cell angles for both diamond and graphite (see Supplementary Table 1). However, the c lattice constant in graphite (along the direction of rr-i stacking) is
predicted with a relatively large error of 0.47 A. This relatively large error is likely due to ANI-1xnr being a short-range potential, while long-range dispersion interactions are important for -1
stacking. We also trained an MLIP with a longer-range local cutoff (5.5/4.5 A) than the original ANI-1xnr potential (5.2/3.5 A), called ANI-1xnr(lr). ANI-1xnr(lr) performs significantly better than
the original ANI-1xnr on the c lattice parameter. However, ANI-1xnr(lr) performs worse on diamond cubic. A possible explanation for this reduction in accuracy is that larger cutoffs reduce the
resolution of the local atomic descriptors, which can affect accuracy in dense chemical environments. This shortcoming could be resolved by increasing the number of symmetry functions
on the longer-range MLIP, but this would greatly impact the computational speed of the potential. A more optimal solution would be to add an explicit dispersion correction to ANI-1xnr

that captures long-range interactions while maintaining an accurate description of the local environment. We also compare the ANI-1xnr lattice constants with those from ANI-2x'®, a model
explicitly trained to small organic molecules as a baseline. ANI-2x performs poorly at predicting the lattice constants for both diamond cubic and graphite. This result is expected since the
dataset used to train ANI-2x does not contain any structures similar to either of these systems. Furthermore, in contrast to the ANI-2x dataset reference calculations, the reference calculations
used for building the ANI-1xnr dataset include dispersion corrections (see the Methods section for details), which are essential to reproduce the c lattice parameter in graphite.
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Extended Data Table 2 | Comparison between ANI-1xnr and ReaxFF ignition delay time (IDT) and O, consumption for clean

biofuel and biofuel with each of the three additives

System Ignition delay time (ps) 0, consumption (%)

ANI-1xnr ReaxFF ANI-1xnr (t=0.07 ns) ReaxFF (t=2ns)
Clean biofuel 55 239 49.0% 48.5%
Ethanol additive 45 126 58.6% 49.21%
2-butanol additive 46 10 57.5% 73.33%
MTBE additive 45 92 57.4% 70.3%

Ignition delay time is defined as the average time that at least five molecules of CO, CO,, and H,0 are produced. While the reduction in IDT is not as pronounced for ANI-Ixnr compared to
ReaxFF, IDTs are highly sensitive as to how the system is initialized and to how ignition is defined (see Supplementary Figure 1). O, consumption is compared at 0.07 ns for ANI-1xnr and at 2 ns
for ReaxFF, that is, the time that the O, consumption for the clean biofuel is approximately equal for both models. After the first 0.07 ns of ANI-1xnr simulation, 50% of O, was consumed in the
pure biofuel system, while systems with additives consumed around 60% of O, (for O, consumption plots, see Supplementary Figure 2). By contrast, in the ReaxFF simulations both the clean
biofuel and ethanol additive systems consumed around 50% of O, after 2 ns, while the 2-butanol additive and MTBE additive systems consumed about 70% of O,. The overall rate of fuel and

0O, consumption is considerably faster for ANI-Ixnr compared with ReaxFF. Specifically, for all four cases, nearly all of the O, was consumed in the first 0.3 ns with ANI-1xnr, while there was still
20%-50% unconsumed O, after 2 ns with ReaxFF (for tracking plots including the entire 2 ns simulation, see Extended Data Figure 2). The discrepancy in overall reaction rates between ANI-1xnr
and ReaxFF is likely due to a difference in the underlying QM approach used to build each model (see Methods for details).
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Extended Data Fig.1| ANI-1xnr uncertainty for all eight 0,/C,H, ratiosin that more oxidation reactions happenin the system with alarger O,/C,H, ratio,
graphenering formation simulations. Uncertainty (¢) iscomputed asensemble  which isacommon reaction in our training dataset, although typically involving
standard deviation in energy normalized by the square-root of number atoms. species other than acetylene. By contrast, the system with a smaller O,/C,H, ratio
1 . . .
Dashed black line corresponds to AL energy threshold of 1.85 kcal mol™t N 2. has more ring formation, large carbon sheet formation and even phase change
The MLIP uncertainty is fairly constant and approximately equal tothe ALenergy ~ Process, whicharelesscommonin the training set. Although C,H, and O, are
threshold through nearly the entire simulation (with only a few snapshots as common species in the ANI-1xnr dataset (see Methods for details), the fact that
exceptions). The relatively low and constant uncertainty confirms that each the uncertainties remain slightly larger than those for any structure in the entire
system s well-modeled by our MLIP. Itis also interesting that the MLIP ANI-1xnr training set demonstrates that these specific systems were not studied
uncertainty decreases with increasing O,/C,H, ratio, suggesting that ANI-1xnr is directly in the NR AL sampling. Therefore, this case study serves as an assessment
most confident under a higher 0,/C,H, ratio. The reason for such atendency is of the generality of the ANI-1xnr potential.
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Extended DataFig. 2 | Biofuel additive simulation results for ANI-1xnr over the entire simulation. Tracking plot of O, and major products (CO, CO,, and H,0) for
biofuel simulations: (a) biofuel+0, (b) biofuel+0, with ethanol additive (c) biofuel+O, with 2-butanol additive (d) biofuel+0O, with MTBE additive.
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Extended Data Fig. 3| Comparison of normalized production rate of OH for
biofuel additive simulations. Number of OH species (N,,) is normalized by the
initial number of O, molecules (Ni):zo). In comparison to the pure biofuel, all three
systems with additives have a higher and earlier peak in OH radical, when
normalized by the initialamount of O,. The enhancement in OH production for
ethanol is intuitive since ethanol contains a hydroxyl group with a similar bond
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dissociation energy to 2-butanol. Considering theimportantrole that the OH
radical plays inignition and combustion chemistry, the accelerated rate of OH
production s consistent with alower IDT for all three additive systems. Thus,
although the ANI-1xnr results for ethanol are in conflict with ReaxFF, the
enhancementin OH production provides understanding as to how ethanol
accelerates the ignition process, similar to 2-butanol and MTBE.
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Extended DataFig. 4| Bond dissociation diagram for C-H bond in methane.
Dataare presented as mean (center line) + ensemble standard deviation
(shaded region). Comparison between ANI-1xnr and ANI-1x with the DFT and
experimental bond dissociation energies (BDE). The C-H bond dissociation
energy from ANI-1xnr (116.6 kcal mol™) is similar to that from our reference
DFT (110.0 kcal mol™), the reference DFT of Zeng et al. (115.0 kcal mol ™), and
experiment (103.3 kcal mol™). Although an in vacuo energy barrier may not
correspond to a condensed-phase reaction rate, this analysis demonstrates
that the accelerated consumption of CH, is not due to a vastly under predicted
C-Hbond dissociation energy by ANI-1xnr or our reference DFT. However, the
relatively large uncertainties in ANI-1xnr along the bond dissociation path
suggest that ANI-1xnr should not be utilized for studying low-density gas-phase
(orinvacuo) bond-breaking reactions. Although ANI-1xnr exhibits markedly

re—u (A)

greater uncertainty between 2-3 A, the MLIP remains smooth and the forces are
continuous. The poor performance in this high-uncertainty region is possibly
due, in part, to the fact that the spin multiplicity of the minimum-energy
electronic state changes fromasinglet toatripletin the gas-phase. Whereas,
ANI-1xnr does not explicitly learn the relationship between energy and spin
multiplicity and was trained on condensed-phase singlet data, where the
notion of spin is much less pronounced. Although this may seem surprising
that ANI-1xnr performs worse for in vacuo calculations where the physics are
definitively simpler than for the condensed-phase, it isimportant to recall
that the performance of MLIPs is highly dependent on having relevant training
data. Specifically, since ANI-1xnr was trained solely to condensed-phase NR
simulations (with densities between 0.5 and 2.5 g cc?), we do not recommend
using ANI-1xnr for invacuo calculations.
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Extended Data Fig. 5| Uncertainty analysis of ANI-1xnr onreactive literature

datasets. Distribution of ANI-1xnr ensemble uncertaintiesin (a/c) energy and
(b/d) force for the (a/b) ANI-1xnr dataset, (a/b) Zeng et al. dataset for methane,
and (c/d) Transition-1x reactive dataset. Energy uncertainty is the ensemble
standard deviation for energy normalized by the square-root of number atoms.
Force uncertainty is the ensemble standard deviation for force averaged over all
atoms and Cartesian coordinates. The energy and force uncertainties in (a/b) for

1
the Zeng et al. dataset are smaller than the AL thresholds of 1.85 kcal mol™ N2

and 6.92 kcal mol™ A, respectively, for approximately 77% of the =~ 567000
structures. Note that the AL selection criterion of Zeng et al. was based solely on

the force uncertainty. The ANI-1xnr force uncertainty is larger than the Zeng et al.

AL threshold of 11.53 kcal mol™ A for only 5% of the structures in the Zeng et al.
dataset, suggesting that ANI-1xnr has a similar confidence on this dataset as the
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application-specific MLIP of Zeng et al. Note that with such a high AL threshold, it
is quite likely that there are some non-physical structuresin the Zeng et al.
dataset. Furthermore, the Zeng et al. dataset also consists of structures sampled
with ReaxFF without curation. Itis also important to recall that the Zeng et al.
training dataset consists of small clusters of molecules extracted froma
condensed-phase MD simulation. Therefore, atoms near the center of the cluster
arein condensed-phase environments while atoms on the border of the cluster
are effectively in a gas-phase environment. By contrast, the unilateral high
uncertainties for the Transition-1x dataset in (c/d) demonstrate that ANI-1xnr is
notintended for in vacuo reactive chemistry. Note that the distribution of
Transition-1x uncertainties is nearly the same for reactants, transition states, and
products, demonstrating that the issue is the vacuum environment rather than
unsampled transition states.
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Extended Data Fig. 6 | Three-dimensional structures of reactions discovered by ANI-1xnr in Miller experiment simulation. Structures are snapshots extracted
directly from the MD simulation trajectory, providing visual confirmation that the reaction pathways are physically meaningful.
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Extended Data Fig. 7 | Reaction mechanisms for formation of key intermediates (CH, and CO,) from initial reactants (NH,;, CO, CH,, H,0) in Miller simulation.
Green arrows denote reactions previously identified by Wang et al. or Saitta and Saija. Orange arrows denote reactions that have closely-related reactions in Wang et al.

or Saitta and Saija.
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Extended Data Fig. 8 | Alternative mechanism for the formation of glycine in
the Miller experiment simulation. In this pathway, the final step to form glycine
involves H-abstraction from H,0, which chemical intuition would label as a
cationic species (H,0"). The penultimate species (C,H,NO5) formed prior to
glycine, therefore, cannot be unambiguously labeled as an anion or aradical.
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The uncertainty regarding the ionic nature of this mechanismiillustrates anissue
with electron-agnostic MLIPs, like ANI-1xnr. The depiction of bond orders,
charges onions, and radical species is based simply on chemical intuition, since
ANI-1xnr does not provide explicit bonding, orbital, or electronic information.
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