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H I G H L I G H T S

• Presentation of a topological descrip-
tion of complete and non-redundant lo-
cal mode sets.

• Generalization of the local mode param-
eter count formulas employing Euler’s
theorem.

• Substantiation of our recent and original
protocol of local mode analysis, LMod-
eAGen.
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A B S T R A C T

This Frontiers Article introduces a unique perspective on the well-established concept of completeness in a
chemically meaningful set of non-redundant local vibrational modes. By utilizing graph theory, we demonstrate
how this concept naturally arises when Euler’s theorem is fulfilled in molecular graphs of tree, cycle, and
polyhedral types. This significantly advances our understanding of topology, leading to a new interpretation
for deriving such a set. A key aspect of the local vibrational mode theory is the decomposition of normal modes
into local mode contributions, which provides a powerful approach for analyzing vibrational spectra. This
however requires a complete and meaningful set of non-redundant local vibrational modes, as demonstrated
for the IR spectra of both non-zwitterionic and zwitterionic forms of glycine, the cubane and perfluorocubane
pair, and the Ar–benzene dimer. The mathematical concept is put to the test by applying our counting formulas
for complete and non-redundant local mode sets to a series of organic molecules with increasing complexity.

1. Introduction

Vibrational spectroscopy serves as a potent tool for unraveling in-
tricate details of the electronic structure of a molecule and its chemical
bonds [1,2]. It is customary to link measured or calculated vibrational
frequencies with distinct patterns of molecular vibration. Following the
Wilson GF formalism [3,4], to each vibrational frequency, also called
normal mode frequency, a normal mode vector can be assigned, which
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describes the corresponding molecular vibration. However, normal vi-
brational modes are generally delocalized within the molecular system,
which poses interpretation challenges and also questions the popular
use of normal vibrational frequencies and related normal mode force
constants as bond strength measure [1,2]. In contrast, local vibrational
modes derived from our local vibrational mode (LVM) theory [1,2,5]
are confined within specific molecular fragments, recently referred to
in the literature as ‘‘diatomics-within-molecules’’ [6]. They provide a
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better fit for describing the vibrational properties associated with the
internal coordinates of a molecule, such as bonds, angles, and dihedral
angles, as well as interpreting vibrational spectra. The importance of
internal coordinates has been highlighted in the literature [7–14]. In his
seminal work, Decius provided an elegant mathematical demonstration
that bonds, angles, and dihedral angles form a topologically complete
set [7], laying one of the foundations for the present work.

Besides providing a quantitative measure of the intrinsic strength
of a chemical bond or weak chemical interaction [1,2,15], another
key feature of the LVM theory is the characterization of normal mode
(CNM) procedure, which decomposes each normal vibrational mode
into local mode contribution, physically based on an adiabatic con-
nection scheme (ACS), i.e., the one-to-one correspondence between a
non-redundant set of local vibrational modes and the corresponding
set of normal vibrational modes [16]. Both tools, CNM and ACS,
integrated within LVM, have proven to provide a unique instrument
for a comprehensive analysis and interpretation of vibrational spec-
tra, as documented in the literature [2,17–22], predating a recent
study that claims to have introduced the concept of normal mode
decomposition [23]. The method [24] employed in that study [23]
for quantifying molecular vibrations has been identified in the 1990s
to be highly reliant on the chosen set of internal parameters used
to define the geometry of the molecule [25]. In contrast, local vi-
brational modes remain unaffected by the choice of parameter set,
highlighting that variations observed in the calculated properties of
local vibrational modes provide valuable insights into the electronic
structure of the fragments, rather than being influenced by the selection
of internal parameters [2,25]. For an overview of LVM, the reader
is referred to Ref. [2]. The different use of the term ‘local mode’ in
the literature, which should not be confused with LVM, is discussed
in Ref. [1]. Among the different local-mode approaches, the one that
incorporates anharmonicity effects [26,27] is particularly appealing
and has been of recent interest [28,29]. However, since our approach
is static rather than dynamic, such a comparison falls outside the scope
of this Frontiers Article. Some recent applications of the LVM theory
range from large systems of biological interest [30–33] to problems
within the realm of relativistic quantum chemistry [34]. Furthermore,
an enhanced implementation of the LVM theory for analyzing 2D/3D
periodic systems has been recently released [35].

Recently, we introduced a novel protocol, LModeAGen [19], de-
signed for the automatic generation of local mode parameters. This
protocol is capable of producing a complete and non-redundant set of
Nvib chemically meaningful local vibrational modes required for ACS
and CNM, where Nvib = 3N *Ntr. Here, Ntr denotes the translational
and rotational degrees of freedom, which amounts to 5 for linear and
6 for non-linear molecules composed of N atoms. LModeAGen utilizes
molecular connectivity and marks a significant advancement, offering
a solution to the challenges associated with unphysical parameters
and addressing the intricacies of systems with high symmetry, cyclic
structures (without disregarding bonds and disrupting symmetry), and
larger molecular complexes extending beyond small and mid-sized
molecules [19]. LModeAGen [19] can be integrated with the gen-
eralized subsystem vibrational analysis (GSVA) [36,37] for QM/MM
systems. This integration allows for the extraction of intrinsic fragmen-
tal vibrations from any fragment/subsystem within the whole system,
achieved through the evaluation of the corresponding effective Hessian
matrix [36,37]. Notably, LModeAGen has undergone successful testing
in various applications [2,18–21], always numerically satisfying the
total amount of local mode parameters that ensures meaningful local
mode analysis data [16]. For further details on how LModeAGen selects
internal coordinates, please refer to Ref. [19].

The study of molecules through the lens of topology can shed light
on chemical properties and has attracted increasing interest [38–53].
The intricacies of high symmetry such as that of rings [54,55] and
polyhedral structures such as cubane [56], buckminsterfullerene [57],
or the recently synthesized electron cage, perfluorocubane [58], serve

as an inspiration for contemplating the chemical aesthetics and mark a
significant milestone in synthetic chemistry [59]. As elaborated below,
graphs in which the edges only intersect at their endpoints are cate-
gorized as planar graphs [47,52,60–62]. However, within the realm of
molecular structures, it is worth noting that certain shapes can manifest
non-trivial topological intricacies [51–53,63–71].

In this Frontiers Article, we aimed to address the following issues:

• Previous efforts in tackling the counting problem of complete
and non-redundant sets of local vibrational modes have provided
useful formulas ensuring meaningful local mode results [16,19].
However, none have attempted to generalize these approaches to
encompass molecules from a broader perspective.

• What has been missing is an intuitive realization that views
molecules as connected graphs, thereby taking a significant step
towards recognizing that the count of bond local mode parame-
ters should adhere to Euler’s theorem [60–62]. Essentially, there
has been a lack of a clear connection between local vibrational
mode theory and graph theory.

• This connection has the potential to merge vibrational spectro-
scopic and topological concepts, offering a broader perspective
that includes various structural types, such as open-chain, cyclic,
and even cage structures, which are systems of growing interest
in recent studies [42,45,58,59,72–80].

In addition, a demonstration of LVM is provided to illustrate the
identification of localization and a penetrating look into the subtleties
of normal vibrational modes, as well as to gauge bond strength through
the local force constant. Fig. 1 depicts the molecular systems selected
for this study, encompassing: acetylene (1), ethane (2), glycine (3),
benzene (4), bicyclo[2.2.2]octane (5), cubane (6), perfluorocubane (7),
buckminsterfullerene (8), and Ar–benzene (9). We have chosen exam-
ples to represent molecular systems characteristic of tree graphs (1–3),
cycle graphs (4 and 5), and polyhedral graphs (6–9). System 3 has
been included due to its relevance in astrochemistry [81–84], as well as
the anticipated distinctions in the infrared spectra acquired for amino
acids in their neutral and zwitterionic forms [85]. Considering that a
molecular graph reflects the topological characteristics of a system’s
charge distribution [86], it is evident that the concepts explored in our
work extend beyond the realm of organic molecules.

2. Methodology

This section serves to provide context for the integration of graph
theory concepts into the framework of local vibrational mode theory.
By doing so, it lays the foundation for understanding the novel ap-
proach employed to take local mode analysis from a different perspec-
tive. Following this contextualization, we delve into the core compo-
nents of local mode analysis, offering an exploration that is showcased
in the subsequent section. This all should come later.

2.1. Computational details

Electronic structure calculations were conducted using the Gaus-
sian 16 quantum chemistry program [87] at the density functional
theory level. To ensure accuracy, an ultra-fine grid integration and
a tight convergence criterion were applied during the self-consistent
field procedure. The equilibrium geometries for the examples 1–9,
along with the subsequent Hessian matrix and associated normal vi-
brational modes, were obtained using the !B97X-D functional [88] in
conjunction with Dunning’s aug-cc-pVTZ basis set [89,90]. The Polar-
izable Continuum Model (PCM) [91], employing water as the solvent,
was utilized to achieve the equilibrium geometry for the zwitterionic
form of glycine (3). All the geometries were visualized using UCSF
ChimeraX [92].

The automatic generation of non-redundant and complete sets of lo-
cal vibrational modes was accomplished through our newly developed
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Fig. 1. Illustration of the examples selected for this work.

LModeAGen protocol [19]. Subsequently, the local mode analysis was
conducted using the standalone LModeA package [93].

The constants a and b mentioned in Eq. (20) were determined for
C–C bonds based on examples 1 and 2, corresponding to BSO n values
of 3 and 1, respectively.

2.2. GF method

The matrix theory of normal vibrational modes described in this
section is known as the GF method [3,4]. The Lagrangian L of a
polyatomic molecule with N atoms that vibrates harmonically can be
generalized by the following matrix formulation

L =
1

2
Üq†G*1

Üq *
1

2
q†Fqq (1)

The Nvib ù Nvib matrices G and Fq are the Wilson G matrix and the
Hessian in internal coordinates q, respectively. The internal coordinate
vector q can be defined as a linear transformation ÉD of the normal
coordinate vector Q as follows

q = ÉDQ (2)

The normal vectors Éd� (� = 1,… ,Nvib) in internal coordinates form the
columns of the matrix ÉD.

The vibrational secular equation expressed in internal coordinates
is given by

Fq ÉD = G*1 ÉD⇤ (3)

The following equality involving the identity matrix I is true:

ÉD†G*1 ÉD = I (4)

The diagonal matrix ⇤ contains Nvib eigenvalues �� , which give Nvib

frequency values !� (in the units of cm*1) associated with each normal
coordinate Q� :

!� =
1

2⇡c
��

1_2 (5)

with c being the speed of light in vacuum. In other words, the set
of diagonal elements �� of the matrix ⇤ gives rise to the vibrational
spectrum of a polyatomic molecule.

The Wilson B matrix, a Nvib ù 3N rectangular matrix comprising
the first derivatives of the internal coordinates qn (n = 1,… ,Nvib) with
respect to the Cartesian coordinates xi (i = 1,… , 3N) as its elements
Bni, establishes the link between internal and Cartesian coordinates [4]:

q = Bx (6)

Bni =
)qn

)xi

(7)

The pseudo-inverse matrix of B is the matrix C [1]:

C = M*1B†G*1 (8)

M is the mass matrix, a 3N ù 3N matrix containing each atomic mass
three times to account for the motion in the x, y and z directions.

Renormalization of ÉD, via the diagonal matrix MR of reduced mass
elements mR

�
, according to

D = ÉD(MR
)
1_2 (9)

leads to

D†G*1D = MR (10)

D†FqD = K (11)

by rewriting Eqs. (3) and (4), respectively. D is the column-wise col-
lection of the normal vectors d� and K is the diagonal normal force
constant matrix, that is, K = FQ. Another bridge between internal and
Cartesian coordinates is given by

Fq
= C†FxC (12)

L = CD (13)

Evidently, L collects the normal vectors l� in its columns.
Left multiplication of Eq. (2) by ÉD†G*1 considering Eq. (4) gives

Q = ÉD†G*1q (14)

In essence, normal coordinates emerge as linear combinations of in-
ternal coordinates, leading to normal vibrational modes delocalized
throughout the molecule. Consequently, relying solely on normal mode
frequencies and force constants becomes limited in assessing bond
strength. To overcome this limitation, local vibrational modes with
their respective frequencies and force constants become indispensable,
as shown in the ensuing section. Additionally, the widespread delo-
calization hinders the tracking of subtle structural changes without
a method for normal mode decomposition. Serving as a quantitative
approach, CNM decomposes normal vibrational modes into local mode
contributions, enabling a thorough analysis of vibrational spectra.

2.3. Local vibrational mode theory

The intricacies of local mode analysis have been extensively covered
in two comprehensive feature articles [1,2]. Therefore, this section
focuses on key aspects of the method. The normal vibrational modes dn
and the diagonal force constant matrix K can be utilized to calculate
local mode vectors an associated with the internal coordinates qn, as
demonstrated by Konkoli and Cremer [5]:

an =
K*1d†n
dnK*1d†n

(15)
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Fig. 2. Bond strength order (BSO) for C–C bonds based on local C–C force constants for examples 1–9 at the !B97X-D/aug-cc-pVTZ level of theory.

It is worth noting that dn and K can be readily obtained from standard
quantum chemistry packages following a vibrational frequency calcula-
tion. The local mode vector an can be readily converted to the Cartesian
coordinate space via L to give ax

n
as follows

ax
n
= Lan (16)

The local mode force constant ka
n
, which was elucidated by Zou and

Cremer as a local descriptor of the intrinsic strength of the bond or
non-covalent interaction between two atoms under consideration [15],
can be calculated as outlined below:

k
a

n
= a†

n
Kan = (dnK*1d†

n
)
*1 (17)

This allows for the calculation of the local mode frequency !
a

n
:

(!
a

n
)
2
= (4⇡

2
c
2
)
*1 k

a

n

ma

n

(18)

with m
a

n
being the local mode mass, which can be calculated in terms

of the diagonal element of G:

m
a

n
=

1

Gnn

(19)

Rather than directly comparing the values of the local force con-
stants, a more convenient approach for discussing larger sets of
molecules is to utilize a relative bond strength order (BSO) denoted as
n. These two aspects are interconnected through a power relationship,
as illustrated by the following equation for a given internal coordinate
on the basis of the generalized Badger rule of Cremer, Kraka, and
coworkers [94,95]:

BSO n = a(k
a
)
b (20)

Under the requirement that a force constant value of zero corresponds
to a BSO n value of zero, the constants a and b are computed using the
k
a values of two reference compounds with known BSO n values. In
other words, BSO n provides chemists with a more intuitive understand-
ing of bond strength by linking it to the local force constant through
the familiar concept of bond order.

Recently, the LVM theory has made significant progress, emerg-
ing as a robust descriptor for bond strength encompassing diverse
interactions, from covalent bonds to non-covalent interactions such
as hydrogen bonds, halogen bonds, tetrel bonds, and ⇡-hole interac-
tions [20,96–98]. For a comprehensive compilation of examples, refer
to Refs. [1,2] and the references therein. Recent advancements have
highlighted the effectiveness of k

a in accurately capturing packing

effects and serving as a reliable indicator of bond strength for periodic
systems as well, regardless of the crystal’s nature [35]. Moreover, a
novel metric has been introduced, the metal-ligand electronic param-
eter (MLEP) [99], which has found application in various studies,
including the investigation of iron-ligand bonding in carboxy myo-
globins and carboxy neuroglobins [100,101], as well as the assessment
of non-covalent ⇡-interactions in mutated aquomet-myoglobin pro-
teins [30]. Additionally, our recent integration of local mode force
constants into lanthanide spectroscopy has yielded fresh insights into
the bonding behavior of lanthanide complexes. This approach sheds
light on the inverse correlation between lanthanide-ligand strength and
ligand effective polarizability, thereby advancing our understanding of
lanthanide chemistry [18].

Now turning our attention to the bond strength analysis, it must be
emphasized that it does not require a complete and non-redundant set.
However, we included it in this section to showcase the capability of the
LVM theory beyond the CNM analysis, which is showcased in the form
of significant results later in this Frontiers Article. Compared with the
C–C bonds in ethane (2) and acetylene (1), our findings reveal intrigu-
ing insights into the strengths of C–C bonds within the series ranging
from 1 to 9 (see Fig. 2). Perfluorocubane (7) is distinguished by having
the weakest C–C bond among all the examples considered. This obser-
vation offers a supplementary description given its electron-accepting
capability as an electron cage [58,59]. This analysis highlights the
diverse bond strengths within these molecular structures, with implica-
tions for their stability and reactivity. Only the non-zwitterionic form
of 3 is included in Fig. 2 because PCM was utilized for the computation
of the zwitterion, which represents a different level of theory compared
to the rest of the BSO series.

The necessity for a spectral analysis tool capable of quantitatively
assessing the individual contributions of molecular fragments to each
normal vibrational mode composing the vibrational space of a molecule
must be evident to anyone who has grappled with interpreting vibra-
tional spectra using qualitative and pictorial symbols. These symbols,
usually found in tiresome tables for peak assignments, denote stretch-
ing, bending, wagging, twisting, rocking, and scissoring vibrations.
Normal vibrational modes generally suffer from delocalization, making
it impractical to monitor subtle structural variations and changes in
the surroundings of the molecule without a method for normal mode
decomposition. In this context, the CNM procedure emerges as an
original and powerful tool that is an integral part of the LVM theory,
providing a quantitative approach for decomposing normal vibrational



Chemical Physics Letters 849 (2024) 141416

5

M. Quintano et al.

Fig. 3. The interaction between an atom A (Ar in this study) and a benzene ring B is defined as follows: O
A
is the geometric center of the rotated monomer A, O

B
and x®y®z®

define the standard orientation of ring B; the coordinate system x®®y®®z®® is derived from the original system x®y®z® by shifting it from O
B
to O

A
[97]. In this study, the interaction

between A and B is characterized using the framed Sz motion.

modes into local mode contributions. Consequently, it enables the
analysis of vibrational spectra in a novel and innovative manner.

Each normal vibrational mode (corresponding to absorption peaks)
can be decomposed into the percentage contributions of non-redundant
local vibrational modes from a complete set using the CNM procedure
on the basis of ACS, an essential component of local mode analysis. The
degree of overlap, as represented by Sn� [1,2,102], is defined as:

Sn� =

Íax
n
Fxl�Î2

Íax
n
Fxax

n
ÎÍl�Fxl�Î

(21)

with ax
n
, Fx and l� being the local vibrational mode, the Hessian

matrix and the normal vibrational mode in Cartesian coordinates. The
percentage contribution C

%

n�
(local mode contribution) of the local vi-

brational mode ax
n
to the normal vibrational mode l� is then calculated

as follows [102]

C
%

n�
=

Sn�

≥Nvib

m
Sm�

100 (22)

A CNM plot displays normal mode decompositions, with the local
mode contributions C

%

n�
depicted as distinct components forming the

bars representing normal modes in a diagram. The normal frequencies
corresponding to the decomposed normal modes are shown on the
plot’s x-axis.

One of the advantages of LVM lies in its capability to perform local
mode analysis on specific molecular fragments, such as bonds, angles,
and dihedral angles, using only the necessary local mode parameters
for these fragments. Moreover, any set of parameters can be utilized
without altering the values of the local mode properties, highlighting
the sensitivity and reliability of these properties to the electronic struc-
ture of the fragments. On the contrary, conducting CNM necessitates a
complete and non-redundant set of local mode parameters. Despite the
absence of a unique set due to the non-uniqueness of the choice internal
coordinates, selecting parameters randomly to form a chemically mean-
ingful set is ludicrous. The problem becomes particularly challenging
for larger systems or molecules with higher structural complexity,
such as polyhedral molecules. To address this challenge, we previously
developed an automatic method (LModeAGen) based on molecular
graphs [19]. However, a comprehensive explanation generalizing the
local mode parameter count formulas to encompass the significant class
of polyhedral molecules, along with a rigorous mathematical analysis
based on graph theory [60–62], has been lacking. To bridge this gap,
we delved deeper into graph theory, integrating Euler’s polyhedral
formula with Decius’s seminal work [7]. This combined approach offers
a solution to the problem at hand.

2.3.1. Special local modes for the Ar–benzene dimer
The ⇡ interaction between argon and benzene in Ar–benzene (9)

has been demonstrated to possess predominantly electrostatic charac-
ter [97]. Our group has previously developed, tested, and reported
special local modes for describing the intermolecular ⇡ interaction
between two monomers [97]. These modes have shown superior perfor-
mance compared to other approaches for describing such interactions,
such as the ansatz based on the six Ar–C interactions (in the Ar–benzene
dimer) or the approach guided by the bond paths of the electron
density [97]. Here, our endeavor was to combine the approach of
these special local modes with that of the new protocol of local mode
analysis, LModeAGen [19]. This adaptation was guided by the topolog-
ical insights presented in this Frontiers Article, aiming to consistently
achieve a complete and non-redundant local mode set for the CNM
analysis of dimeric systems such as test example 9.

Fig. 3 illustrates the methodology for obtaining a set of non-
redundant local inter-monomer modes, emphasizing the establishment
of a physically meaningful local inter-monomer mode (S

z
) directly

correlated with the interaction between the two monomers [97]. For
an in-depth comprehension of this mathematical construct, readers are
directed to the thorough explanation provided in Ref. [97], which falls
outside the scope of this Frontiers Article.

As monomer A functions as an atom in the present work (Ar in the
Ar–benzene dimer), only three specific local modes are required, given
that an atom lacks rotational degrees of freedom [97]: [3(1+NB)*6]*

(3NB * 6) = 3. Thus, the intra-monomer stretching modes along the x-,
y-, and z-directions, denoted as S

x
, S

y
, and S

z
, respectively, were

utilized in this work for the first time in combination with LMod-
eAGen [19] for the CNM analysis. Given the need for a specific adap-
tation alongside a topological argumentation, the reasoning behind it
is elucidated as one of the results presented in this Frontiers Article.

2.4. Graph theory

The ideas discussed in the present work are based on a set of
distilled mathematical concepts, as outlined below [60]:

(i) A graph G(V ,E) is a mathematical object comprising two sets: its
vertex set V and its edge set E. In this work, v and e denote the
number of vertices within V and edges within E, respectively.

(ii) The degree of a vertex vi, denoted as deg(vi), is determined by
the number of its incident edges (or neighbors).

(iii) A graph is considered connected if there is a walk (a sequence
of edges) between any pair of vertices within the graph.

(iv) A graph is considered planar if it can be represented in the
plane (planar embedding [47]) without any intersecting edges
(see Fig. 4). In a planar graph, every subgraph is also planar.
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Fig. 4. Representations of a tree, cycle, and polyhedral graph, each containing v vertices, e edges and f faces.

(v) Regions known as faces emerge from the planar representation
of a planar graph. The infinite face, which refers to the exterior
region, is included in the number of faces, denoted herein as f .
Ref. [61] elegantly demonstrates the emergence of the infinite
face from the planar representation.

(vi) A cycle is a graph in which the first and last vertices are the
same (v g 3).

(vii) A tree is a connected graph that always has a unique simple path
between any two of its vertices [61,62]. If a graph has a cycle,
it cannot be classified as a tree.

(viii) A graph is considered polygonal when it fulfills three criteria:
it must be planar, connected, and each edge must separate two
distinct faces.

(ix) The planar graphs that depict three-dimensional polyhedra are
known as polyhedral graphs [47].

Considering i–ix, we can introduce Euler’s second formula as part
of his theorem of elementary mathematics [60–62]:

v + f * e = � (23)

where � denotes the Euler characteristic, a topological invariant that
depends on the surface by taking into account the graph’s genus g [60,
61]:

� = 2 * 2g (24)

with g = 0 for the examples in Fig. 4. The column featuring v +

f * e in Table 1 illustrates the concept of this topological invariant
for planar graphs. The genus g enables the generalization of graphs
drawn on surfaces other than a plane [60]. If a graph is planar and
satisfies Eq. (23), then it is connected [60]. Though there are relatively
few instances of molecules exhibiting non-planar graphs [52,65], we
can achieve topological generalization using Eqs. (23) and (24) for
complex structures with a higher genus [47,50].

The handshaking lemma can be stated as [47]
v…
i=1

deg
�
vi

�
= 2e (25)

For buckminsterfullerene (8), where each of the 60 vertices (v = 60)
has a degree of 3, the handshaking lemma provides e = 3v_2 = 90,
which, through Eq. (23), results in f = 2 + v_2 = 32 (see Table 1).

It is striking that the majority of molecules are represented by
planar graphs [52,65], including buckminsterfullerene. Before delving
further, it is essential to clarify that non-planar molecules can be
mathematically considered as planar graphs, a distinction rooted in
mathematics (see distilled idea iv above). Essentially, the concept of
structural complexity in chemistry should not be confused with that
of planar graphs. The counting problem of partitioning the local mode
parameters of a complete and non-redundant set was approached from
the perspective of planar graphs. We then proposed an integration
of Decius’s formulas [7] with Euler’s theorem [60–62] to derive the
formulas already familiar to our group [16], generalizing them to

describe polyhedral molecules for the first time in this Frontiers Article.
The selection of the 9 diverse test molecules (see Fig. 1) aimed to illus-
trate that, despite their differing structural complexities, all molecules
exhibit planar graphs. Additionally, the intention was to encompass
representatives from the graph families: tree graphs (1–3), cycle graphs
(4 and 5), and polyhedral graphs (6–9), thereby demonstrating the ver-
satility and applicability of our generalized formulas for the counting
problem.

3. Results and discussion

Within the realm of molecules, parameters such as bond lengths,
angles, and dihedral angles function as internal coordinates. The clari-
fication of the counting problem for partitioning local mode parameters
of a complete and non-redundant set is organized as follows. The
proposed planar graph approach is integrated into Decius’s work [7]
through Euler’s polyhedral formula [60–62]. As previously stated, a
planar graph is connected if it satisfies Eq. (23) [60].

Because LModeAGen satisfies Eq. (23), the issue with bond param-
eters associated with unphysical parameters is resolved, making the
complete and non-redundant set generated by the new protocol chem-
ically meaningful for local mode analysis. The problem that remains to
be addressed is the search for optimal sets that minimize the vibrational
coupling. ACS can detect such coupling in the form of a mismatch in the
one-to-one relation between local and normal vibrational modes, and
work is in progress towards a theoretical approach that utilizes CNM
and another physical basis as a metric for determining the optimal sets.

3.1. Count of bond local mode parameters

Fig. 4 depicts representations of a tree, cycle, and polyhedral graph
in a plane. The infinite face, discussed in Refs. [60,61], should be noted
in these representations. Below is the discussion of the differentiation
between faces and molecular cycles in more detail.

It is not difficult to demonstrate that when two graphs, A and B,
of the types illustrated in Fig. 4, are connected by an edge, they still
adhere to Euler’s formula (Eq. (23)), as

(vA + vB) + (fA + fB * 1) * (eA + eB + 1) = 2 (26)

The subscript indicates the respective quantities of individual compo-
nents.

Graphs, as a concept rooted in a collection of objects with any
notion of connection, can be readily extended to the realm of molecules,
resulting in what we commonly refer to as molecular or chemical
graphs, that is, graphs in the context of chemical topology [52]. This
transition primarily involves adapting notations and terminology. Our
primary objective is to generalize the formulas used to determine the
number of local mode parameters in a molecule from a complete and
non-redundant set. This set should adhere to conditions i to ix outlined
earlier.

We begin by asserting that the very concept of completeness, which
is well-known in our group within the context of local vibrational mode
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theory [16,19], naturally arises from satisfying Euler’s theorem [60–
62]. Specifically, the total number of bond local mode parameters Nb

corresponds to the total number of edges e in the molecular graph,
while the total number of vertices v represents the total number of
atoms N . Aside from polyhedral molecules, it should be noted that
the number of molecular cycles Nc differs from the number of faces
f by 1 thanks to the infinite face. Thus, the formula for predicting the
number of bond local mode parameters in open-chain, cyclic, and cage-
like structures representable in the plane can be extended through the
application of Euler’s formula (Eq. (23)):

Nb = N + f * 2 (27)

with Nc = f * 1 for open-chain and cyclic molecules and Nc = f for
polyhedral molecules.

The requirement for connectivity, as outlined in our recently pub-
lished local mode analysis protocol, LModeAGen [19], aligns with
Eq. (26) and ensures the fulfillment of Euler’s theorem [60–62]. Differ-
ences in connectivity can be translated into mathematics through the
handshaking lemma (Eq. (25)), which sheds light on the significant dis-
crepancy in the number of edges for the same number of vertices when
progressing from a tree to a cycle or polyhedral graph, as depicted in
Fig. 4. Table 1 demonstrates that the local mode parameters, automati-
cally generated by LModeAGen [19], adhere to Euler’s theorem [60–62]
for planar graphs.

To emphasize connectivity, let us consider the cycle depicted in
Fig. 4 as a hypothetical dimer composed of monomers 1–2–3–4 and
5–6–7–8, with the edges 1–8 and 4–5 representing non-covalent inter-
actions, as we momentarily indulge in imagination. If one mistakenly
connects either 1–8 or 4–5, not only does the topology of the graph
change completely from a cycle to a tree, but the description of one
non-covalent interaction will be omitted, resulting in a local vibrational
space that fails to meet the requirements for a proper vibrational
analysis of the problem through LModeAGen [19]. It is important to
highlight that excluding both 1–8 and 4–5 results in a disconnected
graph, failing to satisfy Euler’s equation.

Altogether, the well-established concept of completeness in a chem-
ically meaningful, non-redundant set of local vibrational modes can
be viewed from the perspective of graph theory as a natural outcome
of satisfying Euler’s theorem for molecular graphs of tree, cycle, and
polyhedral types. This marks a significant advancement by recognizing
local vibrational mode theory from the perspective of graph theory for
the first time. Ultimately, the elementary yet impactful mathematical
ideas explored here substantiate our novel local mode analysis protocol,
LModeAGen [19].

The partitioning problem extends beyond the discussion presented
here, raising questions about how angles and dihedrals can be optimally
divided to create a complete set of non-redundant bond, angle, and
dihedral local vibrational modes that minimize coupling. Work is in
progress to address this challenge. Meanwhile, we present preliminary
formulas as follows for the number of angle and dihedral angle local
mode parameters of plane graphs, building upon the foundations for
linear and planar molecules laid by Decius [7]. We will revisit these for-
mulas in a follow-up work while searching for optimal local mode sets
that minimize vibrational coupling between the molecular fragments.

3.2. Count of angle and dihedral local mode parameters

3.2.1. Linear molecules
Linear molecules are depicted by a specific type of tree known as a

path graph. According to Decius’ prescription for linear molecules [7],
the number of angle local mode parameters Na can be determined as
follows:

Na = 2(N * 2) (28)

The summation of Eqs. (28) and (27) results in 3N*5 given that f = 1.

Table 1
Comparison of the total numbers of vertices (v), faces (f ), and edges (e), alongside
the manifestation of the topological invariant v+ f * e, and the number of bond (N

b
),

angle (N
a
), and dihedral (N

d
) local mode parameters according to Eqs. (27), (28)–(30)

(see text).
Examples v f e v + f * e N

b
N

a
N

d

1 Acetylene 4 1 3 2 3 4
2 Ethane 8 1 7 2 7 6 5
3 Glycine 10 1 9 2 9 8 7
4 Benzene 12 2 12 2 12 9 9
5 Bicyclo[2.2.2]octane 22 3 23 2 23 18 19
6 Cubane 16 6 20 2 20 9 13
7 Perfluorocubane 16 6 20 2 20 9 13
8 Buckminsterfullerene 60 32 90 2 90 27 57
9 Ar–benzenea 13 2 10

a The blank entries vary depending on the associated plane graph, which may have
different connections concerning how the interaction between Ar and the benzene ring
is depicted (see text).

3.2.2. Planar chemical graphs
From Decius’ prescription for planar molecules [7], we can gen-

eralize the number of angle local mode parameters Na and the total
number of dihedral angle local mode parameters Nd for plane graphs
using Eq. (27):

Na = N * f * 1 (29)

Nd = N * 3 (30)

In our convention for dihedral angle parameters, any string with four
elements represents a dihedral angle. Additionally, Eq. (27) enables us
to rewrite Decius’ quantity �, with � = Nb *N + 1, as

� = f * 1 (31)

To the best of our knowledge, this is the first time that � has been
recast in this manner. Herein, � can be generalized to represent the
number of edges that need to be removed to transform any planar
graph, not just a cycle, into a tree. Eqs. (29) and (30) were derived by
subtracting 3(f * 1) from each type of parameter, corresponding to the
6� redundancies in Decius’ formulas [7]. Correction for the presence
of linear submolecules is computed by adding (l * 1) to Eq. (29) and
subtracting it from Eq. (30), with l representing the number of linear
bonds [7].

Therefore, the formulas previously proposed in our group to obtain
local mode results with chemical significance [16,19] can be retrieved.
The generalization to polyhedral molecules, reported here for the first
time within the scope of local mode analysis, adds a new dimension to
our understanding.

3.3. A showcase of CNM

This section aims to showcase local mode analysis using CNM.
Through CNM, it often becomes abundantly clear that normal vibra-
tional modes fail to serve as an effective descriptor of bond strength
due to delocalization [18,21]. In such cases, local vibrational modes
come into play, offering a new perspective on vibrational analysis.
Furthermore, the quantitative approach offered by CNM makes it pos-
sible to pinpoint the interacting functional groups when interpreting
vibrational spectra [20].

3.3.1. Glycine
Glycine, despite its apparent simplicity, holds significant importance

as it exemplifies how CNM works as a magnifying glass on vibrational
fingerprints, probing structural and environmental changes. This can
serve as a useful tool when scrutinizing IR spectra to provide reliable
and consistent assignments. The CNM analysis shown here can be
incorporated into a spectral analysis protocol extended to other amino
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Fig. 5. CNM analysis of the canonical (b) and zwitterionic (d) forms of glycine at the !B97X-D/aug-cc-pVTZ level of theory. The fingerprint fragments are indicated, and the
calculated infrared spectra are provided for comparison.

acids, contributing to the debate on their presence in the interstellar
medium [81].

Essentially, Fig. 5 provides a comprehensive analysis of the calcu-
lated normal vibrational modes, revealing distinct patterns associated
with the characteristic interactions between fragments when transi-
tioning from the canonical to the zwitterionic form, unveiling the
localized nature of the normal vibrational modes of the O–H and N–H
stretching vibrations, respectively. This analysis also presents a means
to track down the local mode contributions due to the fragments that
contain the hydrogen responsible for the structural changes (fingerprint
fragments). Such fragments are indicated by B, A, and D for the
bond, angle, and dihedral parameters containing H8. The prime symbol
distinguishes those of the zwitterion.

In Fig. 5b, the fragments C1H3 and C1H4, as well as N5H9 and
N5H10, equally contribute to the normal vibrational modes they form.
Conversely, the normal vibrational modes of the zwitterion in Fig. 5d
show some interaction between the N5H8, C1H3, and C1H4 fragments.
This interaction is evident when examining the local mode frequencies
associated with the fragments. While in the non-zwitterionic form,
there are two degenerate N–H local mode frequencies at 3551 cm*1

and two degenerate C–H local mode frequencies at 3073 cm*1, in the
zwitterionic form, the quasi-degenerate C–H local mode frequencies
occur at 3162 cm*1, with the N5H8 local mode frequency occurring
much closer, at 2905 cm*1. The other N–H local mode frequencies,
whose parameters are equivalent to those of the non-zwitterionic form,
remain practically unchanged, occurring at 3562 cm*1. Of particular
interest is the probing of the interaction between the C–O fragments
in both scenarios. From Fig. 5b to d, there is a clear increase in
the coupling between the C–O fragments, with the normal vibrational
modes occurring at 1398 and 1709 cm*1. This can be understood due to
the hydrogen transfer to the nitrogen atom, resulting in the local mode
frequency values of C2O7 and C2O6 reaching 1582 and 1477 cm*1,

respectively, in the zwitterionic form. In the non-zwitterionic form,
they occur at 1199 and 1791 cm*1, respectively.

3.3.2. Cubane and perfluorocubane
Due to the dimension of the vibrational space, we have selectively

analyzed only the normal vibrational modes supported by the vibra-
tional spectra. Also, given the significant delocalization observed in
the normal vibrational modes associated with the infrared-active peaks
of both cubane and perfluorocubane, it is recommended to perform
the CNM analysis using local mode families. For the C–H family, this
entails aggregating all the percentage contributions of C–H local modes,≥8

j=1
C

%

j
(C * H), to form the C–H entry in Fig. 6. Similar rationale

applies to other local mode families.
While the normal vibrational modes of cubane at 3141 cm*1 in

Fig. 6b are collectively 99% localized with respect to the C–H local
mode family, there is no equivalent for the C–F local mode family
in perfluorocubane, as depicted in Fig. 6d. Instead, the C–F and C–C
fragments are coupled in all the normal vibrational modes at 852 and
1431 cm*1. The coupling between the C–C fragments and the X–C–C,
X–C–C–C, and C–C–C–C fragments, where X represents H or F for
cubane or perfluorocubane, respectively, is also evident.

3.3.3. Ar–benzene
The local modes S

x
and S

y
account for the lateral movement of

A along the mean plane of the ring system B in two perpendicu-
lar directions, while S

z
represents the actual stretching between the

monomers A and B, reflecting their interaction [97]. In essence, S
x
and

S
y
primarily ensure the completeness of the non-redundant vibrational

space. However, as previously mentioned, a plane graph satisfying
Eq. (23) implies that it is also connected [60]. Since Eqs. (27), (29), and
(30) rely on Eq. (23), we had to devise an ansatz to ensure topological
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Fig. 6. CNM analysis of cubane (b) and perfluorocubane (d) at the !B97X-D/aug-cc-pVTZ level of theory. The calculated infrared spectra are provided for comparison.

Fig. 7. Ansatz: (i) the plane graph containing all connections between the central vertex (Ar) and the vertices of the cycle (six-membered carbon ring), (ii) the plane graph where
central edges (Ar–C bonds) can be replaced with S

x
, S

y
, and S

z
, resulting in construct iii. This ansatz aims to reconcile our counting formulas with these special local modes for

complete and non-redundant local mode sets.

consistency between LModeAGen and the special local modes regarding
the counting problem we aimed to address in this Frontiers Article.

Fig. 7 demonstrates that when considering Ar–benzene (9), the thir-
teen vertices can be analyzed in different ways regarding the number of
edges, faces, and the substitution of edges by the special local modes,
all from a counting perspective. Graph i exhibits Ni

b
= 18, Ni

a
= 5, and

N
i

d
= 10, whereas graph ii displays Nii

b
= 15, Nii

a
= 8, and N

ii

d
= 10.

Evidently, these represent two distinct ways of partitioning 3N
(9)

* 6 =

33 local modes, with graph i featuring f
i
= 7 and graph ii featuring

f
ii
= 4. The three intra-monomer stretching modes along the x-, y-, and

z-directions, represented as S
x
, S

y
, and S

z
, respectively, can substitute

the three Ar–C bond local modes without altering the completeness and
non-redundancy of the local mode set when transitioning from ii to iii.
A comparative CNM analysis for i–iii is presented in Fig. 8.

Fig. 8 shows the CNM analysis of the normal vibrational modes
linked to the infrared absorption peaks for the Ar-benzene dimer.
The identical merging technique for local mode families, used in the
cases of cubane and perfluorocubane, has been implemented here for
the local modes unrelated to the ⇡ interaction. This highlights the
focus on describing the interaction between Ar and the benzene ring.
Although not explicitly shown in Fig. 8a, there exists a small peak at
81 cm*1 whose normal mode decomposition is significantly influenced
by the selection of i, ii, or iii from the ansatz illustrated in Fig. 7.
Notably, the choice does not impact the normal vibrational modes
associated with C–H stretching vibrations, as they remain 99% collec-
tively localized with respect to the C–H local mode family regardless
of the option. However, there is a substantial variation in the local
mode contributions for the normal vibrational modes in between when
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Fig. 8. CNM analysis of Ar-benzene at the !B97X-D/aug-cc-pVTZ level of theory. The calculated infrared spectrum is provided for comparison. Ansatz: i (b), ii (c), and iii (d).

transitioning from i to ii, while CNM for iii remains unchanged next
to ii except for the normal vibrational mode at 81 cm*1. Construct iii
effectively captures the decomposition of this normal vibrational mode,
illustrating the interaction between Ar and the benzene ring, with 93%
of localization due solely to S

z
. The deficiencies of the CNM analysis

for such normal vibrational mode, based on i and ii, have been demon-
strated, along with the misleading local mode contributions within the
frequency range of 702–1528 cm*1 when adopting graph i. Ultimately,
the selection of special local modes combined with LModeAGen for
Ar–benzene serves as a notable example, highlighting the absence of
an optimization algorithm in current literature. This paves the way for
the development of LModeAOPT, an algorithm aimed at generating an
optimal local mode set by minimizing vibrational coupling.

4. Conclusion

This study has shed new light on the well-established concept of
completeness in a chemically meaningful, non-redundant set of local
vibrational modes by framing it within the realm of graph theory. Our
exploration has revealed that this concept naturally emerges when Eu-
ler’s theorem is satisfied for molecular graphs of various types, marking
a significant milestone in our understanding of local vibrational mode
theory.

This work supports our local mode analysis protocol, LModeAGen,
by revealing the elementary yet impactful mathematical ideas that
underpin it. Furthermore, we have highlighted the next step to ad-
dressing the partitioning problem in local mode analysis, an intriguing
challenge that extends the discussion beyond this study. It prompts
us to consider how angles and dihedrals can be optimally divided to
create a complete set of non-redundant bond, angle, and dihedral local
vibrational modes that minimizes coupling. This remains as an open
problem with ongoing efforts in our group.

We have demonstrated the varying strengths of C–C bonds within a
curated selection of organic compounds. Furthermore, we have show-
cased the local mode analysis, offering valuable insights into how CNM
functions as a magnifying glass for vibrational fingerprints, allowing for
the probing of structural and environmental changes.

We have combined the approach of special local modes with that of
the new protocol of local mode analysis, LModeAGen, for the first time.
This adaptation was guided by the topological insights presented in this
Frontiers Article, aiming to consistently achieve a complete and non-
redundant local mode set for the CNM analysis of dimeric systems such
as the Ar–benzene dimer. In essence, the integration of special local
modes with LModeAGen for Ar–benzene exemplifies a significant gap
in current literature: the lack of an optimization algorithm. This lays the
groundwork for the creation of LModeAOPT, an algorithm designed to
produce an optimal local mode set by minimizing vibrational coupling.
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