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Abstract—This study progresses solar flare prediction research
by presenting a full-disk deep-learning model to forecast >M-
class solar flares and evaluating its efficacy on both central
(within +70°) and near-limb (beyond +70°) events, showcasing
qualitative assessment of post hoc explanations for the model’s
predictions, and providing empirical findings from human-
centered quantitative assessments of these explanations. Our
model is trained using hourly full-disk line-of-sight magnetogram
images to predict >M-class solar flares within the subsequent
24-hour prediction window. Additionally, we apply the Guided
Gradient-weighted Class Activation Mapping (Guided Grad-
CAM) attribution method to interpret our model’s predictions
and evaluate the explanations. Our analysis unveils that full-disk
solar flare predictions correspond with active region characteris-
tics. The following points represent the most important findings
of our study: (1) Our deep learning models achieved an average
true skill statistic (TSS) of ~0.51 and a Heidke skill score (HSS)
of ~0.38, exhibiting skill to predict solar flares where for central
locations the average recall is ~0.75 (recall values for X- and
M-class are 0.95 and 0.73 respectively) and for the near-limb
flares the average recall is ~0.52 (recall values for X- and M-
class are 0.74 and 0.50 respectively); (2) qualitative examination
of the model’s explanations reveals that it discerns and leverages
features linked to active regions in both central and near-limb
locations within full-disk magnetograms to produce respective
predictions. In essence, our models grasp the shape and texture-
based properties of flaring active regions, even in proximity to
limb areas—a novel and essential capability with considerable
significance for operational forecasting systems.

Index Terms—Solar flares, Deep learning, xAI, Interpretability

I. INTRODUCTION

Solar flares are transient but intense outbursts of energy
that emanate from the Sun’s surface in the form of extreme
ultraviolet and X-ray radiation and are one of the central
phenomena in space weather forecasting. Flares are typically
classified in five different classes based on their peak X-ray
flux by National Oceanic and Atmospheric Administration
(NOAA) [1f], where flare intensities are characterized by a
major class (i.e., A, B, C, M, and X) and a numerical strength
value within a class (from 1.0 to 9.9). These indicate the order
of magnitude of the peak X-ray flux in a logarithmic scale
(e.g., X-ray flux values for B3.7 is 3.7 x 10-"Wm~=2, C7.2
is 7.2 x 1075Wm=2, M1.4 is 1.4 x 10~°Wm~2, or X2.1 is
2.1 x 107*Wm™2). M- and X-class solar flares are relatively
scarce events and significantly more powerful than the other

flare classes which garner the attention of researchers due to
their potential to cause near-Earth impacts that pose a sub-
stantial risk to both space-based and terrestrial infrastructures,
disrupting satellite communications, power grids, and aviation,
making solar flare prediction a complex and critical area of
research in space weather forecasting [2].

Active regions (ARs) on the Sun represent areas where
the sun’s magnetic field experiences disruptions, leading to
a variety of solar phenomena such as solar flares, coronal
mass ejections (CMEs), and solar energetic particle (SEP)
events. The majority of solar flare prediction models con-
centrate on these regions of interest, offering forecasts for
each AR, as they are primarily responsible for space weather
events. To generate a comprehensive forecast using an AR-
centric model, the likelihood of a flare occurring within each
AR (Prr(AR;)) is usually consolidated utilizing a heuristic
function as described in [3]]. The equation for this aggregation
is Paggregatea = 1 — [, [1 — PFL(ARZ-)], which computes
the probability of having a minimum of one flaring AR,
under the assumption that flares from different ARs occur
independently and infers that all ARs hold equal significance
in the combination. This constrains an accurate assessment of
the full-disk flare prediction probability.

Furthermore, the magnetic field measurements, which un-
derpin AR-based forecasting techniques, are influenced by
projection effects when ARs are in proximity to the limbs [4].
Consequently, the data is restricted to ARs situated within a
range of +30° [5] to £70° [6] of the solar disk due to sig-
nificant projection effects [[7]. The full-disk models, however,
utilize magnetograms corresponding to the entire solar disk to
rely on shape-based features such as size, directionality, shapes
of sunspots, and polarity inversion lines similar to the findings
from [8]]-[11]]. While projection effects persist in these images,
we show that the full-disk models are capable of learning and
predicting flare productivity of areas close to the limb of the
Sun, offering an essential component for operational systems.

Recently, many studies (e.g., [3[, [S], [12]-[18]]) have led
to the successful application of machine learning and deep
learning methods in predicting solar flares. These methods
have shown promising experimental results, indicating their
potential to improve forecasting accuracy in the field of
solar flare prediction. However, deep learning models are



often considered black-box models due to their complex
data representations, making it challenging to understand the
reasoning behind their predictions. This lack of transparency
can pose problems in critical applications like solar flare pre-
diction, where the model’s reliability is crucial. The absence
of transparency in the decision-making process lowers confi-
dence in the accuracy and reliability of the predictions made.
Post hoc explanations offer insights into a model’s decision-
making process, enabling the identification of potential errors
and biases in the data, and subsequent improvements to the
model’s performance and reliability, which addresses the issue
of transparency and makes it more trustworthy for critical
applications. While post hoc explanations effectively highlight
crucial input features and enhance trust, a gap persists in our
understanding due to the inherent opacity of these models’
decision-making processes. Therefore, an approach for mean-
ingful translations remains essential for fully understanding
these explanations. This paper serves as an initial step in
shedding light on our models’ effectiveness by clarifying the
model’s reasoning with post hoc explanations and enhancing
confidence in the model’s reliability and accuracy, especially
in cases where incorrect predictions could result in substantial
consequences, such as in space weather forecasting.

The focus of this paper is to study whether full-disk models
for solar flare prediction can be relied upon for operational
forecasting applications as this exploration extends to the
prediction of near-limb flare events with model explanations,
which hold a notably critical role. This paper builds upon
the convolutional neural network (CNN) based model in [19]
to predict >M-class flares, trained with compressed full-disk
line-of-sight magnetograms. The novel contributions of this
paper are as follows: (i) We highlight the overall improved
performance of our solar flare prediction model exhaustively
with quantitative analysis of predictive performance on near-
limb and central locations, (i1) We utilized a recent attribution
method to explain and interpret the decisions of our deep
learning model and present a case study that shows the expla-
nations of model’s decision in spatiotemporal progression, and
(iii) More importantly, for the first time, we provide empirical
evidence that our models can tackle the prediction of flares
appearing on near-limb regions of the Sun by analyzing the
explanations with quantitative human-centered approach [20].

The remainder of the paper is structured as follows: Sec-
tion [[I] provides an overview of existing studies on machine
learning and deep learning-based data-driven solar flare predic-
tion models. In Section [[TI} we detail the process of data collec-
tion with labeling and explain the subsequent data distribution.
In Section we outline our methodology by describing the
architecture of our flare prediction model and providing a
detailed explanation of the method used for explanation. In
Section we present our experimental design and findings
from the model evaluation. Furthermore, we offer case-based
qualitative interpretations of explanations for limited instances
and a quantitative analysis of explanations for entire X-class
flares in our dataset. Finally, in Section [VI} we summarize our
findings and suggest avenues for future research.

II. RELATED WORK

Currently, to the best of our knowledge, four strategies are
employed for flare prediction: (i) empirical human prediction
(e.g., [21], [22]]), (ii) statistical prediction (e.g., [23]], [24]), (iii)
physics-based numerical simulations (e.g., [25], [26]), and (iv)
machine learning and deep learning approaches (e.g., 3], [S],
[14]-[18], [27]). With the rapid progress in machine learning
and deep learning techniques, their application to solar flare
prediction has significantly expedited research efforts. For
instance, in [13]], a multi-layer perceptron-based model was
employed for predicting >C- and >M-class flares. The model
utilized 79 manually selected physical precursors extracted
from multi-modal solar observations.

Deep learning models have recently emerged as a prominent
choice for solar flare prediction. In [5]], a CNN-based model
was trained using AR patches extracted from line-of-sight
magnetograms within £30° of the central meridian to predict
>C-, >M-, and >X-class flares. Similarly, [|I14] developed a
CNN-based model that issued binary class predictions for >C-
and >M-class flares within 24 hours using Space-Weather
Helioseismic and Magnetic Imager Active Region Patches
(SHARP) data [28|]. The SHARP data was extracted from solar
magnetograms using AR patches located within £45° of the
central meridian. Notably, both models had limited operational
capability, as they were restricted to small portions of the
observable disk in central locations (+30° and £45°).

In the context of explainability in solar flare prediction
models, [29] used an occlusion-based method to interpret
a CNN-based solar flare prediction model trained with AR
patches. Similarly, [30] presented visual explanation methods
for a deep learning-based flare prediction model. They used
Grad-CAM [31], and Guided Backpropagation [32]] to show
the relationship of physical parameters of ARs with flare
activity in the context of the daily occurrence of C-, M-
, and X-class flares. They used daily observations of solar
full-disk line-of-sight magnetograms at 00:00 UT, and their
models show limitations for the near-limb flares. Similarly,
[33] assessed two additional attribution methods, DeepLIFT
[34] and Integrated Gradients [35]], for interpreting CNNs
trained to predict solar flares. Their study used tracked AR
patches within a range of +70°, where the interpretations are
confined to central locations.

Furthermore, we presented deep learning-based full-disk
flare prediction models trained with limited data in [[15]], [|16]]
as preliminary studies on their feasibility for a complementary
approach to operational forecasting systems. These models
collectively showed relative success highlighting a promising
direction for the development of more comprehensive full-disk
models. However, a common limitation across both models
was the lack of explainability. More recently, we presented ex-
plainable full-disk flare prediction models [[19], [36]], utilizing
attribution methods to comprehend the models’ effectiveness
for near-limb flare events. We provided explanations for a
limited set of near-limb flares through a case-based qualitative
analysis. In this paper, we extend our approach beyond the



case-based qualitative analysis by employing a questionnaire-
based evaluation scheme to quantitatively measure post hoc
explanations for X-class flares in our dataset. This addition
enhances our ability to show the efficacy of our model’s
predictions for both near-limb and central locations while also
verifying its feasibility for operational forecasting systems.

III. DATA
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Fig. 1. A visualization for the data labeling procedure of hourly observations
of full-disk line-of-sight magnetograms with a prediction window (Pw) of
24 hours. Here, ‘FL’ and ‘NF’ indicate the ‘Flare’ and ‘No Flare’ classes
respectively in binary prediction mode (>M-class flares).
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Fig. 2. The total number of hourly sampled magnetogram images per flare
classes. Note that the length of the bar is in logarithmic scale.

We used full-disk line-of-sight solar magnetograms obtained
from the Helioseismic and Magnetic Imager (HMI) instru-
ment onboard Solar Dynamics Observatory (SDO) [38] avail-
able as compressed JPEG 2000 (JP2) images in near real-time
publicly via Helioviewer [39]. We sampled the magnetogram
images every hour of the day, starting at 00:00 and ending at
23:00, from December 2010 to December 2018. We collected a
total of 63,649 magnetogram images and labeled them using a
24-hour prediction window based on the maximum peak X-ray
flux (converted to NOAA/GOES flare classes), as illustrated in
Fig.[I] To elaborate, for a magnetogram instance at timestamp
(T), if the maximum X-ray intensity of a flare was weaker than
M within the next 24 hours, we labeled the observation as “No
Flare” (NF: <M), and if it was >M, we labeled it as “Flare”
(FL: >M). This resulted in 54,649 instances for the NF class
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Fig. 3. Label distribution into four tri-monthly partitions for predicting
>M1.0-class flares. Note that the length of the bar is in logarithmic scale.

and 9,000 instances for the FL class. The detailed class-wise
distribution of our data is shown in Fig. 2] Finally, we created
a non-chronological split of our data into four temporally non-
overlapping tri-monthly partitions introduced in for our
cross-validation experiments, as shown in Fig. @ Since M- and
X-class flares are relatively scarce events, for >M-class flares
the overall distribution of the data becomes highly imbalanced
resulting in the FL to NF ratio in our dataset to be ~1:6.

IV. MODEL AND EXPLANATION
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Fig. 4. The architecture of our AlexNet-based flare prediction model.

In this work, we utilized the AlexNet-based [40] full-disk
flare prediction model in [[19]. Our model extends the pre-
trained AlexNet model to accommodate 1-channel input mag-
netogram images by introducing an additional convolutional
layer at the beginning of the network that uses a 3x3 kernel,
size-1 stride, and outputs three feature maps. This allows the
network to take advantage of the pre-trained weights while
processing the 1-channel magnetogram images. Moreover, the
original AlexNet model is designed to handle 224x224, 3-
channel images, whereas our input images are 1-channel,
512x512 images. To address this discrepancy, an adaptive
average pooling layer is used after the feature extraction
process using the convolutional layer and before the fully-
connected layer. This step ensures that the dimensions of the
input images are matched to those expected by the pre-trained
model. As a result, the model has six convolutional layers,
three max pool layers, one adaptive average pool layer, and
two fully connected layers. The architecture of the extended
AlexNet model used in this study is illustrated in Fig. [



Deep learning models have become increasingly complex,
creating difficulties in understanding the intricate data repre-
sentations they learn. As a result, inconsistencies can arise
in the patterns discovered by these models [41]. To address
this, attribution methods have been proposed to aid in the
interpretation of neural networks’ decision-making process.
Attribution methods use post hoc attention techniques to gen-
erate an attribution vector, or heat map, of the same size as the
input, which visualizes how specific input sections contribute
to the model’s decision without influencing the decision-
making process during model training and evaluation. There
are mainly two categories of attribution methods: perturbation-
based (e.g., Occlusion [42]]) and gradient-based. Perturbation-
based methods can lead to inconsistent interpretations due to
the creation of Out-of-Distribution data caused by random
perturbations [43]], while gradient-based methods calculate the
gradients of the output with respect to the extracted features
or input using backpropagation, enabling attribution scores to
be estimated more efficiently and robustly compared to input
perturbations [44]. In this study, we employ a gradient-based
method namely Guided Grad-CAM [31] to evaluate models
and visualize their decisions, identifying the characteristics of
magnetogram images that trigger specific decisions to help
with operational forecasting under critical conditions.

The Guided Grad-CAM technique [31] is a fusion of the
Grad-CAM and guided backpropagation [32] methods. Grad-
CAM is a model-agnostic approach that does not require
model retraining, and it employs the class-specific gradient
data flowing into the final convolutional layer of a CNN to
generate a rough localization map of the image’s significant
regions. Guided Backpropagation is based on the notion that
neurons function as detectors for certain image characteristics.
As a result, it computes the output gradient with respect
to the input, but it only backpropagates the non-negative
gradients through ReLU functions, emphasizing the pixels
that are important in the image. Although the attributions
generated by Grad-CAM are class-discriminative and localize
relevant regions of the image, they do not highlight the pixel-
level importance as accurately as guided backpropagation [45]].
Guided Grad-CAM merges the globally precise details of
guided backpropagation with the coarse localization advan-
tages of Grad-CAM and is computed as the element-wise
product of guided backpropagation with the upsampled Grad-
CAM attributions. We used Captum [46]] library to compute
the Guided Grad-CAM attributions and the detailed steps used
are enumerated as follows:

1) Load the pre-trained model and the desired input image X
converted to a tensor. Run the forward pass of the model
to obtain the final predictions y and the activations A from
the last convolution layer.

2) Compute the gradient jfj‘j of the target class score y. with
respect to the activations A at location 4. This shows how
sensitive the class score is to changes in the activations.

3) Calculate the weight w; for each activation location by

averaging the gradients along the channels and spatial di-

mensions. Compute the Grad-CAM heatmap by performing
a weighted sum of the activations followed by Rectified
Linear Unit (ReLU) activation: L. = ReLU(}_, w; - A;).

4) To compute the guided backpropagation mask:

a) Set the gradient of the target class score y. with respect
to the model output as 1, and all other gradients as 0.

b) Perform the backward pass through the network, calcu-
lating gradients for all activations and weights. During
this process, all negative gradient values are set to 0 at
each ReLU activation function. Hence, the backprop-
agation process propagates only positive gradients.

¢) The output of the guided backpropagation will be a
mask M, which highlights the pixels in the input that
contribute positively to the target class score ..

5) Combine the Grad-CAM heatmap and guided backpropa-
gation mask by multiplying L. (upsampled to the input
size) element-wise with M to obtain the Guided Grad-
CAM heatmap L, = L. - M.

Finally, the Guided Grad-CAM heatmap L/ is normalized
and we can visualize it with or without overlaying on the
original image, to identify the important regions contributing
to the final prediction.

V. EXPERIMENTAL EVALUATION

In this section, we describe our experimental settings, in-
cluding the augmentations used to balance the data, as well as
the model implementation and hyperparameter configurations
utilized in this study. Furthermore, we present the results and
observations drawn from our experiments, with a particular
focus on the locations of flares (near-limb flares), which
are critical aspects of an operational forecasting system. In
addition to reporting on the predictive performance of our
models, we also present our findings on post-hoc explanations
for X-class flares, which are the most relevant class of flares
for Earth-impacting events. To quantify the quality of these
explanations, we conducted a questionnaire-based assessment
of their reliability, which is also described in this section.

A. Experimental Settings

The full-disk flare prediction model used in this study
is trained using Stochastic Gradient Descent (SGD) as the
optimizer and Negative Log-Likelihood (NLL) as the objective
function. The model is initialized with pre-trained weights
from the AlexNet Model [40|], then further trained for 40
epochs with a batch size of 64 while employing a dynamic
learning rate (initialized at 0.0099 and decreased by 5%).
To overcome the issue of class imbalance, we utilized data
augmentation and class weights in the loss function. Specifi-
cally, we used three augmentation techniques: vertical flipping,
horizontal flipping, and rotations ranging from +5° to -5°.
We applied augmentation to both classes, tripling the number
of augmented samples for the entire FL class and randomly
augmenting the NF class. After augmentation, we adjusted the
class weights inversely proportional to the class frequencies to
penalize misclassifications in the minority class.



The overall performance of our models is evaluated using
two widely-used forecast skills scores: True Skill Statistics
(TSS, shown in Eq. and Heidke Skill Score (HSS, shown
in Eq. @) derived from the elements of confusion matrix:
True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN). In the context of our solar flare
prediction task, the FL class is considered as the positive
outcome, while the NF class is negative.

TP FP
TSS = p T FN " FPLTN M

TP x TN — FN x FP
HSS =2 x X X @

(Px(FN+4+TN)+ (TP+FP)x N))
where N =TN + FP and P=TP + FN.

TSS and HSS values range from -1 to 1, where 1 indicates
all correct predictions, -1 represents all incorrect predictions,
and O represents no skill. In contrast to TSS, HSS is an
imbalance-aware metric, and it is common practice to use HSS
for the solar flare prediction models due to the high class-
imbalance ratio present in the datasets. In solar flare predic-
tion, TSS and HSS are the preferred evaluation metrics over
commonly used ones in image classification, such as accuracy.
This preference is because they offer a more thorough and de-
pendable way to assess how well predictions work, especially
when dealing with imbalanced class distributions. Lastly, we
report the subclass and overall recall (shown in Eq. 3) for
FL class instances (M-class and X-class) to demonstrate the
prediction sensitivity in central and near-limb regions.

TP
Recall = m (3)

To reproduce this work, the source code and experimental
results can be accessed from our open-source repository [47].

B. Model Evaluation

The aggregated results from the 4-fold cross-validation
experiments are as follows: Our models have on average
TSS~0.51 and HSS~0.38, which improves over the perfor-
mance of [15] by ~4% in terms of TSS (reported ~0.47)
and ~3% in terms of HSS (reported ~0.35). In addition,
on evaluating our results for correctly predicted (TP) and
missed flare (FN) counts for class-specific flares (X-class
and M-class) in central locations (within £70°) and near-
limb locations (beyond +70°) of the Sun as shown in Table
[ we observe that our models made correct predictions for
~95% of the X-class flares and ~73% of the M flares in
central locations. Similarly, our models show a compelling
performance for flares appearing on near-limb locations of
the Sun, where ~74% of the X-class and ~50% of the M-
class flares are predicted correctlyﬂ This is important because,

11t is important to note that there are certain flares that may not be predicted
at all with current observational capabilities, particularly when the active
region responsible for the flare is not visible or only partially visible on the
East limb up to 24 hours prior to the occurrence of the flare.

to our knowledge, the prediction of near-limb flares is often
overlooked. More false positives in M-class are expected
because of the model’s inability to distinguish bordering class
(C4+ to C9.9) flares from >M1.0-class flares, which we have
observed empirically in our prior work as well. Overall, we
observed that ~90% and ~66% of the X-class and M-class
flares, respectively, are predicted correctly by our models.

TABLE I
COUNTS OF CORRECTLY (TP) AND INCORRECTLY (FN) CLASSIFIED X-
AND M-CLASS FLARES IN CENTRAL (|longitude|< £70°) AND
NEAR-LIMB LOCATIONS. THE RECALL ACROSS DIFFERENT LOCATION
GROUPS IS ALSO PRESENTED. COUNTS ARE AGGREGATED ACROSS FOLDS.

Within +70° Beyond £70°
Flare-Class TP FN Recall TP FN Recall
X-Class 637 31 095 157 55 0.74
M-Class 4229 1601 0.73 1143 1147 0.50

Total (X&M) 4866 1632 0.75 1300 1202 0.52

We evaluated the effectiveness of our models both quanti-
tatively and qualitatively by spatially analyzing their perfor-
mance with respect to the locations of M- and X-class flares
responsible for the labels. To conduct our analysis, we spatially
binned the responsible flares based on their location in the
Heliographic Stonyhurst (HGS) coordinate system, where each
bin represents a 5° by 5° spatial cell in terms of latitude
and longitude. Then, we analyzed the predictions of our
models in the validation set from the 4-fold cross-validation
experiments to determine whether the instances were correctly
or incorrectly predicted. We calculated the recall separately
for M-class, X-class, and both M- and X-class flares in each
spatial cell to assess the models’ sensitivity at a fine-grained
level. The heatmaps that illustrate the spatial distribution of
recall scores for our models can be found in Fig. 5} This
allowed us to pinpoint the locations where our models were
more effective in making accurate predictions and vice versa.

Our research findings indicate that our models are capable of
effectively predicting even near-limb flares, particularly for X-
class flares in both central and near-limb locations. However,
we observed a higher number of false negatives in the near-
limb areas for M-class flares. This represents a new capability
in space weather forecasting, as we can now predict flares
in regions where the magnetic field is distorted and pinpoint
the locations of relevant active regions that are more likely to
flare, which is critical for operational forecasting methods.

C. Evaluating Post hoc Explanations

In this section, we present a comprehensive analysis of
the explanations generated using the Guided Grad-CAM at-
tribution method for X-class flares. We focus on X-class
flares because they are the most significant contributors to
Earth-impacting extreme space weather events, such as the
Halloween and Bastille Day Superstorms [48]. Our analysis
encompasses both qualitative and quantitative evaluations of
the generated explanations, providing a more detailed under-
standing of the attribution method’s effectiveness in predicting
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Fig. 5. A heatmap to assess the performance of our models in terms of recall for individual FL-Class (X- and M-class flares) and when combined (>M-class
flares) binned into 5° x 5° flare locations used as the label. The flare events including and beyond £70° longitude (separated by a vertical red line) are
represented as near-limb events. Note: (i) Red cross in white grids represents locations with zero correct predictions while white cells without red cross
represent unavailable instances. (ii) These results are aggregated from the validation sets of 4-folds.

X-class flares. By examining the results closely, we aim to
improve our ability to forecast these powerful flares and
mitigate their potential impacts.

For qualitative analytics, we evaluate the visual explanations
with their temporal progression and interpret them by show-
casing two examples of correctly predicted near-limb flares on
both the East and West limbs of the Sun. Firstly, we present
the explanation of our model for an East-limb X1.4-class (note
that East and West are reversed in solar coordinates) flare

observed on 2011-09-22 at 10:29:00 UTC with visualizations
generated using Guided Grad-CAM, denoted as GGCAM-
MAP in Fig. [f] (a). For this, we used three input images, each
separated by an hour starting at 2011-09-22 02:00:00 UTC
(denoted as T), until the sunspot for the corresponding flare
starts to become more visible in the magnetogram image. With
temporal progression, we observed that as soon as a region
becomes visible, the pixels covering the AR on the East limb
are activated as shown in Fig. |§| (a), in fact, the model focuses



Input Image (T) Input Image (T+1hr) Input Image (T+2hrs) Flare Image(T+9.5hrs)

Date: 2011-09-22 UTC

Input Time (T): 02:00:00 UTC
Flare Time: 10:29:00 UTC
Flare Class: X1.4

Flare Location: (-81.60, 11)

Note: The color bar shows the scale of
the strength of attributions ranging from
0-1, where a higher value suggests
important features for a corresponding
prediction.

GGCAM-Map (T) GGCAM-Map (T+1hr) GGCAM-Map (T+2hrs)
(a)

Input Image (T) Input Image (T+3hrs) Input Image (T+6hrs) Flare Image(T+22hrs)

Date: 2013-10-29 UTC

Input Time (T): 00:00:00 UTC
Flare Time: 21:42:00 UTC
Flare Class: X2.3

Flare Location: (90, 6)

Note: The color bar shows the scale of
the strength of attributions ranging from
0-1, where a higher value suggests
important features for a corresponding
prediction.
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Fig. 6. A visual explanation of two correctly predicted near-limb X-class flares for East and West limbs, depicted in subfigures (a) and (b), respectively. The
top row displays a series of three full-disk magnetogram input images, with a temporal progression of i={0, 1, 2} hours for (a) and i={0, 3, 6} hours for (b),
starting from an initial timestamp T (different for each subfigure). These images are followed by a magnetogram image at approximately T+k hours, featuring
overlays of detected active regions at the time of the flare (k~8.5 hours in (a) and k~22 hours in (b), denoted as Flare Image). Green flags indicate the flare
location, while red flags represent all active regions in the magnetogram. The bottom row exhibits three activation maps generated using Guided Grad-CAM,
corresponding to the input images and following the same temporal progression respective to subfigures (a) and (b).



TABLE II
TOTAL COUNTS OF GUIDED GRAD-CAM (TRUE WHEN ACTIVATED AND
FALSE OTHERWISE) THAT CORRESPONDS TO THE FLARE LOCATION
(FLOC: LOCATION OF MAXIMUM PEAK X-RAY FLUX USED TO LABEL
EACH MAGNETOGRAM INSTANCES) FOR CORRECTLY (TP) AND
INCORRECTLY (FN) CLASSIFIED X-CLASS FLARES IN CENTRAL
(|longitude|< £70°) AND NEAR-LIMB LOCATIONS.

Within £70° Beyond +70° Full-disk (Total)

Prediction True False True False True False
TP 635 2 149 8 784 10
FN 31 0 55 0 86 0

on specific ARs including the relatively smaller area AR (in
terms of pixels) on the East limb, even though other ARs
are present in the magnetogram image. The visualization of
attribution maps suggests that for this particular prediction,
although only partially visible due to rotation and projection
effects, the region responsible for the flare event is attributed to
be important and hence contributes to the consequent decision.

Similarly, we analyze another case of correctly predicted
near-limb flare (West-limb) of the Sun. For this, we provide a
case of X2.3-class flare observed on 2013-10-29 at 21:42:00
UTC. For this, we again used three input images, each
separated by three hours starting on 2013-10-29 at 00:00:00
UTC (denoted as T) shown in Fig. [] (b). We observe that
for the duration of six hours (until 16 hours prior to the flare
event with three input images), the model’s activation for AR
on the West-limb remains intact and it remains so as long
as the AR corresponding to the flare is visible on the full-
disk, indicating it is an important region for corresponding
correct prediction. While there are several larger ARs present
in the magnetogram, it focuses on specific ARs including
the relatively smaller AR on the West limb. This shows that
our models were able to learn shape-based features from
compressed images and use them effectively for predicting
flares, even in the presence of severe projection effects.

In addition, we conducted a rigorous quantitative evaluation
of explanations for X-class flares, which comprised 880 in-
stances in our dataset. We adopted a human-centered approach,
as mentioned in [20], and designed a set of questionnaires
addressing each instance to validate the explanations. The
questionnaires were structured as follows:

1) Determine the activation of the location of the responsible
X-class flare, denoted as FL, with maximum peak X-ray
flux used to label the image. Assess the activation using a
binary response format, with True (T) indicating activation
and False (F) indicating non-activation. The location of FL
is denoted as FLOC={T, F}.

2) Determine the activation of any other X-class flare loca-
tions besides the maximum flare location (FLOC) used to
label the instance (i.e., FL) that coexisted within the 24-
hour prediction window. Use a ternary response format,
with ‘T indicating activation, ‘F’ indicating non-activation,
and Not Applicable (N/A) indicating the absence of other
X-class flares in the prediction window. This is denoted as
XLOC={T, F, N/A}.

3) Determine the activation of any M-class flare locations that
coexisted with FL within the 24-hour prediction window.
Use a ternary response format, with ‘T’ indicating activa-
tion, ‘F’ indicating non-activation, and ‘N/A’ indicating the
absence of M-class flares in the prediction window. This
is denoted as MLOC={T, F, N/A}.

4) Determine the activation of any C-class flare locations that
coexisted with FL within the 24-hour prediction window.
Use a ternary response format, with ‘T’ indicating activa-
tion, ‘F’ indicating non-activation, and ‘N/A’ indicating the
absence of C-class flares in the prediction window. This is
denoted as CLOC={T, F, N/A}.

After examining the outcomes of question (1), which evalu-
ated the activation of location for flare with maximum peak X-
ray flux (FLOC) for X-class flares in our dataset, we found that
FLOC was activated in 870 out of 880 instances, as presented
in Table [lIl We subsequently conducted a separate evaluation
of the outcomes for instances predicted correctly (TP) and
incorrectly (FN) in both central and near-limb locationsﬂ Upon
analyzing the results, we discovered that in every false negative
(FN) instance, the model was able to locate the location of
the flare but could not classify it accurately. Additionally, we
observed that there were 10 instances (~1.1% of total X-class
flares), of which 8 were located in near-limb regions, while
the remaining 2 were located in central locations, that were
predicted correctly. However, the FLOC was not activated
because other active regions were also activated, and those
regions produced one or more M- and C-class flares. The
location of the responsible flares was partially or completely
invisible while in the near-limb region. Nevertheless, the
model was able to predict these instances correctly.

In addition to question (1), we also incorporated the results
of questions (2), (3), and (4) to examine the impact of
other flares on the corresponding predictions, as presented in
Table Notably, in instances where the FLOC is activated,
we observed that only 23 instances had all other flare loca-
tions (i.e., XLOC, MLOC, and CLOC, if not N/A) activated.
Furthermore, we found that all of the CLOC (if not N/A) were
activated, even when the MLOC and FLOC were not activated.
Overall, the majority of instances (~53%) showed activations
for both MLOC and CLOC (if they coexist) along with FLOC.
Our findings here point to a well-known phenomenon that
flares productive active regions emit flares and eruptions in a
clustered fashion [49]], [50]. Moreover, we observed that, for
almost 39% of the instances, where M-class locations were
absent, only CLOC along with FLOC were activated. This
may be due to the higher rates of occurrence of C-class flares,
which constitute approximately 40% (25,150 instances) of the
entire dataset and the model struggles to distinguish them from
the FL-class as observed in our prior work [16]. Despite this,
we observed the model’s adept ability to accurately identify

2Note that the central and near-limb locations referred to are only for
the corresponding FL location (FLOC), and the evaluations are presented
irrespective of the locations of other coexisting X, M, and C-class flares.
Furthermore, the activations maps for incorrectly predicted instances (FN)
are also generated and evaluated for positive class labels.



TABLE III
TOTAL COUNTS OF GUIDED GRAD-CAM THAT CORRESPONDS TO THE RESPONSIBLE FLARE LOCATION (FLOC), OTHER X-FLARES LOCATION (BESIDE
MAXIMUM INTENSITY FLARE EVENT, I.E., FL-CLASS) DENOTED AS XLOC, OTHER M-FLARES LOCATION DENOTED AS MLOC, AND OTHER C-FLARES
LOCATION DENOTED AS CLOC, WHICH COEXISTS WITHIN THE PREDICTION WINDOW OF 24 HOURS. THE COUNT IS PRESENTED FOR CORRECTLY (TP)
AND INCORRECTLY (FN) CLASSIFIED X-CLASS FLARES (FL) IN CENTRAL (|longitude|< +70°) AND NEAR-LIMB LOCATIONS.

When FL-location is activated in GGCAM (FLOC=T)

Within £70° | Beyond +70° | Full-disk (Total)

Coexisting X-Flare
Locations (XLOC)

Coexisting M-flare
Locations (MLOC)

Coexisting C-Flare
Locations (CLOC) | TP FN TP FN TP FN

T T T 8 0 4 0 12

T N/A T 11 0 0 0 11
N/A T N/A 25 4 0 0 25 4
N/A T T 398 6 47 17 445 23
N/A N/A T 186 21 98 38 284 59
N/A F T 7 0 0 0 7 0

When FL-location is not activated in GGCAM (FLOC=F)

N/A T T 6 0 6
N/A N/A T 1 0 1
N/A F T 1 3

relevant locations for the corresponding prediction, even for
near-limb events, which emphasizes the utility of the full-disk
model as a valuable contribution to operationalization efforts.
Furthermore, it’s important to note that the explanations show
our model’s ability to selectively highlight specific ARs that
are more likely to initiate flares. This aspect is crucial for
localizing flare-productive ARs, which is of utmost importance
when performing long-term SEP event prediction [51].

VI. CONCLUSION AND FUTURE WORK

In this work, we used a gradient-based attribution method,
namely, Guided Grad-CAM to interpret the predictions of our
binary ( >M1.0-class) full-disk flare prediction model. We
addressed the highly overlooked problem of flares appearing
in near-limb locations of the Sun, and our evaluation shows
a compelling performance of a full-disk model for such
events. Furthermore, we evaluated our model’s predictions
with visual explanations and showed that the model’s decisions
are primarily based on characteristics corresponding to the
relevant active regions in the magnetogram instances. As
an extension, we plan to develop an automated method of
evaluating explanations and incorporate the M-class flares as
well to make this study more comprehensive. Furthermore, at
this point, our models consider only the point-in-time spatial
raster features in our data, and we intend to widen this work
toward building models that can capture the temporal evolution
of these features to improve predictive performance.
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