Unveiling the Potential of Deep Learning Models
for Solar Flare Prediction in Near-Limb Regions

Abstract—In recent years, the development of complex models
for data-driven solar flare prediction has been accelerated by
advancements in machine learning and deep learning utilizing
a variety of approaches and data products, while most studies
only address and assess the models’ efficacy in central locations
(within £70° in longitude of the solar disk). This study aims to
evaluate the performance of deep learning models in predicting
>M-class solar flares with a prediction window of 24 hours,
using hourly sampled full-disk line-of-sight (LoS) magnetogram
images, particularly focusing on the often overlooked flare
events corresponding to the near-limb regions (beyond +70°
in longitude of the full-disk) that constitute ~40% of the total
area of the entire solar disk. We performed our spatial and
temporal analytical evaluations using three well-known deep
learning architectures—AlexNet, VGG16, and ResNet34 using
transfer learning. Furthermore, we compare and evaluate the
overall performance of our models using true skill statistics
(TSS) and Heidke skill score (HSS) and compute recall scores to
understand the prediction sensitivity in central and near-limb
regions for both X- and M-class flares. The following points
summarize the key findings of our study: (1) The highest overall
performance was observed with the AlexNet-based model, which
achieved an average TSS of ~0.53 and an HSS of ~0.37; (2)
Further, a meticulous spatial analysis of recall scores disclosed
that for the near-limb events, the VGG16- and ResNet34-based
models exhibited superior prediction sensitivity. The best results,
however, were seen with the ResNet34-based model for the near-
limb flares, where the average recall was roughly 0.59 (the recall
for X- and M-class was 0.81 and 0.56 respectively) and (3) Our
research findings demonstrate that our models are capable of
discerning complex spatial patterns from full-disk magnetograms
and exhibit skill in predicting solar flares, even in the vicinity of
near-limb regions. This ability holds substantial importance for
operational forecasting systems.

Index Terms—deep learning, solar flares, near-limb prediction

I. INTRODUCTION

Solar flares are temporary occurrences on the Sun, consid-
ered to be the central phenomena in space weather forecasting,
manifested as the sudden large eruption of electromagnetic
radiation on the outermost atmosphere of the Sun. They
are classified according to their peak X-ray flux level into
the following five categories by National Oceanic and At-
mospheric Administration (NOAA): X (> 1074Wm~2), M
(> 107°Wm=2), C (> 107°Wm=2), B (> 107" Wm~2),
and A (> 1078Wm=2) [1]. M- and X-class solar flares are
relatively scarce events and significantly more powerful than
the other flare classes and, therefore, the class of interest
that gathers the attention of researchers. These flares may
potentially disrupt the electricity supply chain, airline industry,
and satellite communications, and pose radiation hazards to
astronauts in space [?2].

Active regions (ARs) on the Sun are areas, visually indi-
cated by scattered red flags in full-disk magnetogram image
shown in Fig. [I] where the Sun’s magnetic field is disturbed,
and they spawn various types of solar activity such as solar
flare, coronal mass ejection (CME), and solar energetic particle
(SEP) events. Most operational flare forecasts [3|] target these
regions of interest and issue predictions for individual ARs,
which are the main initiators of space weather events. To
issue a full-disk forecast with an AR-based model, the output
flare probabilities for each active region are usually aggregated
using a heuristic function as mentioned in [4]. The heuristic
function used to aggregate the final forecast operates under the
assumption of conditional independence among active regions
and that all active regions contribute equally to the aggregate
forecast. This uniform weighting scheme may not accurately
reflect the true influence of each active region on full-disk
flare prediction probability. It’s important to highlight that the
weights of these active regions are generally unknown; there
are no established methods to accurately determine them, nor
are there any prior assumptions that guide the assignment of
these weights. Furthermore, the magnetic field measurements,
which are the dominant feature employed by the AR-based
forecasting techniques, are susceptible to severe projection
effects as ARs get closer to limbs (to the degree that after
+60° the magnetic field readings are distorted [5]]); therefore,
the aggregated full-disk flare probability is in fact, restrictive
(i.e., from ARs in central locations) as the data in itself is
limited to ARs located within +45° [[6] to +70° [7] and in
some cases, even +30° [8] due to severe projection effects [9].
This further underscores the inherent challenges in issuing a
full-disk flare forecast using an AR-based model.

The full-disk models, however, utilize entire magnetograms
corresponding to the full-disk and rely on shape-based features
such as size, directionality, sunspot borders (or shapes), and
inversion lines similar to the findings from [[1O]—[13]]. These
shape-based features in full-disk magnetograms collectively
pertain to active regions that are widely recognized as pre-
cursors to solar flares. By leveraging convolutional neural
networks (CNNs), which are adept at capturing spatial patterns
and relationships, the information within magnetograms can
be effectively analyzed. The CNN models can automatically
extract relevant spatial features and discern the intricate struc-
tures and configurations associated with active regions prone
to solar flares. This enables the CNNs to recognize and learn
the specific spatial characteristics that indicate an elevated
probability of solar flare occurrence. In essence, this approach
harnesses the power of deep learning for spatial analytics to



Fig. 1. An annotated full-disk line-of-sight magnetogram observed on 2013-
05-13 at 02:00:00 UTC as an example, showing the central location (within
+70°) and near-limb (beyond £70° to +90°) region with all the visible
active regions present at the noted timestamp, indicated by the red flags. Note
that the directions East (E) and West (W) are reversed in solar coordinates.

interpret the underlying patterns and variations within full-disk
line-of-sight (LoS) magnetograms, thereby enabling robust
prediction of solar flares. While projection effects persist in
these images, it remains to be proven whether full-disk models
are capable of predicting flares from areas close to the near-
limb. Thus, we provide quantitative evidence favoring a full-
disk model and show that it is essential to supplement AR-
based models, enabling the prediction of flares in the Sun’s
near-limb areas and enhancing operational systems.

In recent years, deep learning has emerged as a powerful
tool for analyzing and interpreting large volumes of solar
data and has shown great experimental success (e.g., [],
(8], [T4]-[16]), capturing complex features that precede the
onset of solar flares, surpassing traditional statistical methods.
However, most of these studies either only use the datasets that
correspond to the central locations (within +70° in longitude
of the solar disk, as indicated by an inner-circle region in
Fig. [I) and assess their model’s efficacy only within these
regions, or although they utilize full-disk models, fail to show
and discuss the model’s prediction capabilities in the near-
limb regions (beyond +70° in longitude of the solar disk).
These near-limb regions in full-disk solar magnetograms refer
to the areas in the proximity of the edge of the visible
disk, which constitute approximately 40% in terms of area
of the entire observable solar disk area and is crucial for
ultimate operational efforts in the prediction of solar flares.
In this work, we explore deep learning for the prediction
of >M-class solar flares in binary mode with three widely
used pre-trained CNNs — AlexNet [17], VGG16 [18], and
ResNet34 [19], utilizing hourly sampled instances of full-disk
LoS magnetogram images covering solar cycle 24. The focus
of this work is to study whether our models can be relied

upon for critical applications, particularly in the absence of
alternatives, as in the case of near-limb forecasting. Our study
shows that the deep learning models can learn the spatial
patterns from full-disk magnetogram images, even when the
flare originates from the near-limb regions, and provides
compelling quantitative evidence supporting the use of a full-
disk model as a complement to AR-based models, highlighting
its pivotal role in enabling precise prediction of solar flares in
near-limb regions. This is a significant addition to existing
operational systems and has the potential to greatly enhance
space weather forecasting capabilities.

The remainder of the paper is structured as follows. Sec. [[I]
provides an overview of existing studies on solar flare predic-
tions using deep learning models and various data sources.
In Sec. we detail the process of data collection with
labeling and consequent data distribution. In Sec. we
outline our methodology by describing all three architectures
explored in this work. Sec. [V] presents the experimental design
and evaluates the effectiveness of our model evaluated with
skill scores and prediction sensitivity in central and near-limb
regions. Finally, in Sec. we summarize our findings and
suggest avenues for future research.

II. RELATED WORK

Solar flare prediction currently relies on four major strate-
gies: (i) empirical human prediction (e.g., [20], [21]])), which
involves manual monitoring and analysis of solar activity
using various instruments and techniques, to obtain real-time
information about changes in the Sun’s magnetic field and sur-
face features, which are often precursors to flare activity; (ii)
statistical prediction (e.g., [22], [23]]), which involves studying
the historical behavior of flares to predict their likelihood in
the future; (iii) physics-based numerical simulations (e.g., [24],
), which involves a detailed understanding of the Sun’s
magnetic field and the processes that drive flare activity and
running simulations models based on the physics of the Sun
to predict the occurrence of flares; and (iv) machine learning
and deep learning approaches (e.g., [4]l, [6]l, [8], [26]-[28]),
which involves training algorithms to recognize patterns in
solar activity that are associated with flares and using those
patterns to make predictions. The rapid progress of machine
learning and deep learning techniques has greatly accelerated
research efforts in solar flare prediction, offering promising
avenues for substantial improvements in forecast accuracy.

The use of machine learning techniques to automatically
extract forecast patterns from the intrinsic magnetic field data
on the photosphere of the sun has been an active area of
research since the early 1990s . Since then, there has
been a significant advancement in machine learning and deep
learning techniques, leading to a surge of interest in apply-
ing these methods to build more accurate flare forecasting
models. For instance, in [I5], a multi-layer perceptron-based
model was employed for predicting >C- and >M-class flares.
The model utilized 79 manually selected physical precursors
extracted from multi-modal solar observations, demonstrating
the potential of machine learning in flare prediction. Deep



learning models have recently emerged as a popular choice for
solar flare prediction. In [8], a CNN-based model was trained
using solar Active Region (AR) patches extracted from LoS
magnetograms within £30° of the central meridian to predict
>C-, >M-, and >X-class flares. Similarly, [6] developed a
CNN-based model that issued binary class predictions for >C-
and >M-class flares within 24 hours using Space-Weather
Helioseismic and Magnetic Imager Active Region Patches
(SHARP) data [30]. The SHARP data was extracted from solar
magnetograms using AR patches located within £45° of the
central meridian. Notably, both models [6], [8] had limited
operational capability, as they were restricted to small portions
of the observable disk in central locations (£30° and 445°).

Recently, [27] presented a CNN-based model to predict
>M-class flares using full-disk LoS magnetograms. The model
was trained using bi-daily observations (i.e., two magne-
tograms per day) and achieved a true skill statistic (TSS)
of approximately 0.47 and a Heidke skill score (HSS) of
approximately 0.35. However, the limited number of instances
in the dataset may have affected the model’s performance and
this study did not investigate the model’s ability to predict
flares in near-limb regions. Subsequently, [28]] developed deep
learning-based models that use a similar approach of bi-daily
observations of full-disk magnetograms to predict >C4- and
>M-class flares in binary mode. It is important to note that
all the instances that fall between the >C4- and >M-class
flares were excluded in both training and validation sets.
These particular sets of instances lie on the border of two
binary outcomes and can be considered the harder-to-predict
instances. For the >M-class flare model, they reported a TSS
of ~0.55 and an HSS of ~0.43. However, this study as well
did not investigate whether these full-disk models can predict
the onset of flares in near-limb regions and no claims were
made regarding the model’s performance in these regions.

In this work, we build a set of models using compressed
full-disk LoS magnetograms with pre-trained deep-learning
models to predict the occurrence of >M-class solar flares.
The novel contributions of this paper are as follows: (i) We
show an improved overall performance of a full-disk solar
flare prediction model by building and comparing three CNN
architectures on full-disk magnetogram images, (ii)) We pro-
vide an extended spatial analysis on the predictive capability
of full-disk models on near-limb and central locations, and (iii)
We provide results that underscore the pivotal role of full-disk
models in the prediction of solar flares in near-limb regions.

III. DATA

We used full-disk LoS solar magnetograms obtained from
the Helioseismic and Magnetic Imager (HMI) [31] instrument
onboard Solar Dynamics Observatory (SDO) [32] available
as compressed JPEG 2000 (JP2) images in near real-time
publicly via Helioviewer [33[]. We sampled the magnetogram
images every hour of the day, starting at 00:00 and ending at
23:00, from December 2010 to December 2018. We collected
a total of 63,649 magnetogram images and labeled them
using a 24-hour prediction window based on the maximum
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Fig. 2. A visual illustration of the data labeling process using hourly
observations of full-disk LoS magnetogram images with a prediction window
of 24 hours. Here, ‘FL’ and ‘NF’ indicates ‘Flare’ and ‘No Flare’ for binary
prediction mode (>M-class flares). The gray-filled circles indicate hourly
spaced timestamps for magnetogram instances.
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Fig. 3. Data distribution of four tri-monthly partitions for predicting >M1.0-
class flares. Note that the length of the bar is in logarithmic scale.

peak X-ray flux (converted to NOAA flare classes) within the
next 24 hours, as illustrated in Fig. @ To elaborate, if the
maximum X-ray intensity of a flare was weaker than M, we
labeled the observation as "No Flare” (NF: <M), and if it
was >M, we labeled it as “Flare” (FL: >M). This resulted in
54,649 instances for the NF class and 9,000 instances (8,120
instances of M-class and 880 instances of X-class flares) for
the FL class. Finally, we created a non-chronological split
of our data into four temporally non-overlapping tri-monthly
partitions for our cross-validation experiments. We created
this partitioning by dividing the data timeline from December
2010 to December 2018 (solar cycle 24) into four partitions.
Partition-1 contained data from January to March, Partition-2
contained data from April to June, Partition-3 contained data
from July to September, and Partition-4 contained data from
October to December, as shown in Fig. [3| Due to the scarcity
of >M-class flares, the overall distribution of the data is highly
imbalanced, with FL:NF ~1:6.

IV. MODELS

In this work, we utilize three eminent CNN architectures:
AlexNet, VGG16, and ResNet34. Our initial selection was
AlexNet [[17], a model distinguished by its uncomplicated
architecture, which consists of 5 convolutional layers, 3 max
pool layers, 1 adaptive average pool layer, and three fully



connected layers. The inherent structural simplicity of AlexNet
rendered it a desirable candidate for our exploratory analysis.
Progressing further, our study included VGG16 [18]], a more
complex model, to evaluate the hypothesis that an increase in
the number of layers might engender enhanced performance.
This model augments the foundational structure of AlexNet
by integrating additional convolutional layers, all employing
uniform 3x3 convolutional kernels. The VGG16 architecture
encompasses 13 convolutional layers, 5 max pool layers, 1
adaptive average pool layer, and 3 fully connected layers.
Lastly, we included ResNet34 [19], a CNN model that ex-
tends the complexity of the VGG16 design by facilitating the
training of deeper networks with fewer parameters. Diverging
from the methodologies employed by AlexNet and VGG16,
ResNet34 integrates residual connections from each layer into
subsequent connected layers. The architecture of ResNet34
consists of 33 convolutional layers, including a 7x7 kernel
for the initial layer and 3x3 kernels for the remaining layers,
along with one max pool layer, one adaptive average pool
layer, and one fully connected layer. The primary reason
behind our choice of these distinct architectures was to analyze
and evaluate the influence of varying architectural designs
and increasing layer depths on performance. Additionally, we
factored the simplicity of the architectures into our selection
process, in light of the relatively modest scale of our dataset
suitable for deep learning models. These pre-trained models re-
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Fig. 4. An overview of three deep learning architectures we use (a) AlexNet-,
(b) VGG16-, (c) ResNet34-based models.

quire a 3-channel image for input, however, our data comprises
compressed solar magnetogram images, which are grayscale.
To reconcile this, we incorporated an additional convolutional
layer at the onset of the network architecture as shown in
Fig. [l which accepts a 1-channel input. This layer employs
a 3x3 kernel with a size-1 stride, padding, and dilation, and
consequently generates a 3-channel image. This added convo-
lutional layer is initialized using Kaiming initialization [34]
for all three models. Additionally, with the aim of optimally
utilizing the pre-trained weights—-irrespective of the archi-

tectural specifics of these models, which anticipate 3-channel
input of varying dimensions—-we used an adaptive average
pooling layer within each model. This layer is positioned
after the completion of feature extraction via the convolutional
layer and immediately preceding the fully-connected layer.
This placement facilitates the alignment of dimensions with
our image input size, which is 512x512.

V. EXPERIMENTAL EVALUATION

In this section, we provide a comprehensive overview of
our experimental setup, outlining the settings for data aug-
mentation techniques employed for data balancing, and the
hyperparameter configurations utilized to train our models.
Moreover, we present the obtained results and share our
observational remarks derived from the experiments, with
a specific emphasis on the crucial aspect of flare spatial
locations, specifically near-limb flares. These near-limb flares
are often overlooked, and our analysis sheds light on the
predictive capabilities of our models in operational systems.

A. Experimental Settings

We trained our full-disk flare prediction models using
Stochastic Gradient Descent (SGD) as the optimizer and
Negative Log-Likelihood (NLL) as the objective function.
We initialized each of the models with their corresponding
pre-trained weights, then further trained it for 50 epochs
while employing a dynamic learning rate scheduling strategy,
OneCycleLR [35]], details presented in Table [l All three mod-
els in this study were trained using the OneCycleLR scheduler
with cosine annealing, which offers the benefit of automating
the learning rate schedule selection for hyperparameter tuning.
This scheduler adjusts the learning rate in a cyclical pattern,
gradually increasing it to help the model quickly converge
and then decreasing it to fine-tune performance. The steps per
epoch were set to the number of batches in training data, and
the batch size was 64. Utilizing the OneCycleLR scheduler, the
models benefit from an automated and optimized learning rate
schedule, simplifying the process of hyperparameter tuning.

Building upon the discussion in Sec. it is important to
acknowledge that our dataset has an inherent class imbalance
issue. This imbalance can significantly influence the perfor-
mance of the models, potentially leading to less precise and
reliable predictions for the minority class. To address this,
we employed data augmentation and adjusted class weights in
the loss function. Specifically, we applied three augmentation
techniques: vertical flipping, horizontal flipping, and rotations
between +5° and -5° to both classes. For each instance in the
minority class (FL), we applied all three augmentations, qua-
drupling the total number of instances for the entire FL-class.
For each instance in NF-class, we randomly selected one of
the three aforementioned augmentation techniques, doubling
the total instances for this class. The goal of augmenting the
NF-class instances was to ensure that the NF-class, though not
uniformly augmented, retained a diversity in its data akin to the
FL-class and expand the overall dataset. Post augmentation,
we adjusted the class weights to be inversely proportional to



TABLE I
PARAMETER SETTINGS FOR ALL OF OUR MODELS: ALEXNET, VGG16, AND RESNET34.

Loss Initial Max. Learning Batch Weight
Models Optimizer Function Learning Rate Rate Size Decay Epochs
AlexNet SGD NLL le—5 le—4 64 le—4 50
VGG16 SGD NLL le—5 le—5 64 le —4 50
ResNet34 SGD NLL le—5 le—5 64 le—3 50

class frequencies, thereby penalizing misclassifications of the
minority class. Finally, we evaluated our models using a 4-fold
cross-validation approach on tri-monthly partitions.

We evaluate the performance of our models using two
widely-used forecast skills scores: True Skill Statistics (TSS,
in Eq. and Heidke Skill Score (HSS, in Eq. [2), derived
from the elements of confusion matrix: True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives
(FN). In the context of our flare prediction task, the FL class
is considered as the positive outcome, while NF is negative.

TP FP
TSS_TP+FN_FP+TN M
TP xTN — FN x FP
HSS =2 2
“(Px(FN+TN) + TP+ FP) x V) @
where N =TN +FP and P=TP + FN.
TP
Recall—m (3)

TSS and HSS values range from -1 to 1, where 1 indicates
all correct predictions, -1 represents all incorrect predictions,
and O represents no skill. In contrast to TSS, HSS is an
imbalance-aware metric, and it is common practice to use
HSS in combination with TSS for the solar flare prediction
models due to the high class-imbalance ratio present in the
datasets. For a balanced dataset, these metrics are equivalent
[36]. In solar flare prediction, TSS and HSS are the preferred
choice of evaluation metrics compared to commonly used
metrics in image classification, such as accuracy, precision,
recall, and F1 scores as they ensure a comprehensive and
reliable evaluation of predictive capabilities, especially in
scenarios with imbalanced class distributions. Lastly, we report
the subclass and overall recall (shown in Eq. [3) for flaring
instances (M- and X-class) to assess the prediction sensitivity
of our models in central and near-limb regions.

B. Evaluation

This section presents an analysis of the results, focusing on
the performance comparison of the models. The findings reveal
that the AlexNet-based model exhibits better performance in
relation to both the VGG16- and ResNet34-based models,
as evidenced by the HSS and TSS scores provided in Table
Notably, the AlexNet-based model demonstrates enhanced
robustness, as indicated by the lower standard deviation, and

achieves an approximate 2% improvement (for both TSS and
HSS) compared to the VGG16-based model. Furthermore,
when compared to the ResNet34-based model, the AlexNet-
based model showcases a 1% higher skill score (for both TSS
and HSS). It is important to highlight that the skill scores of
the VGG16 and ResNet34 models exhibit greater variability,
primarily influenced by the outcomes of Fold-3 in the 4-fold
cross-validation experiment, details presented in Table. V]
Furthermore, our best results surpass the performance reported
in [27] by ~ 5% in terms of TSS (reported as 0.47+0.06) and
by ~2% in terms of HSS (reported as O.35:|:0.05

TABLE I
THIS TABLE PRESENTS THE AGGREGATED RESULTS OF A 4-FOLD
CROSS-VALIDATION EXPERIMENT ON OUR MODELS. THE MODELS’
AVERAGE PERFORMANCE IS EVALUATED USING TWO SKILL SCORES (TSS
AND HSS), BASED ON THE TEST SET.

Models TSS HSS
AlexNet 0.526+0.05 0.372+0.05
VGGl16 0.506=£0.09 0.353+0.09
ResNet34 0.513£0.09 0.360+0.09

In addition, we evaluate the results by examining the correct
prediction and missed flare counts for class-specific flares (X-
class and M-class) in central locations and near-limb locations
of the Sun, as presented in Table It is noteworthy that,
while the overall performance measured in terms of TSS and
HSS indicates the better performance of the AlexNet-based
model over the other two deeper and more advanced models,
VGG16 and ResNet34, the ResNet34-based model exhibits the
best performance on average for near-limb events. The class-
specific analysis for X- and M-class flares reveals that the
ResNet34-based model achieves correct predictions for ~81%
of the X-class flares (~16% higher than AlexNet) and ~56%
of the M-class flares (~1% higher than AlexNet) in near-limb
locations. Despite all models being fine-tuned with the same
dataset and undergoing similar hyperparameter optimization,
their distinctive architectures influenced their ability to capture
specific spatial patterns and features, leading to variations in
overall performance, prediction sensitivity, and recall rates for
specific flare intensities and event locations.

'While there are several other work (mentioned in Sec. in solar flare
prediction that evaluate the performance of their deep learning models using
TSS and HSS, these models are not directly comparable since they employ
different datasets, data timelines, and data partitioning strategies.



TABLE III
A COMPREHENSIVE OVERVIEW OF CORRECTLY (TP) AND INCORRECTLY
(FN) CLASSIFIED X- AND M-CLASS FLARES, DISTINGUISHING BETWEEN
CENTRAL (|longitude|< £70°) AND NEAR-LIMB LOCATIONS. RECALL
STATISTICS ACROSS THESE LOCATION GROUPS ARE ALSO PROVIDED. ALL
COUNTS ARE AGGREGATED ACROSS THE FOLDS OF THE
CROSS-VALIDATION EXPERIMENT.

Within +70° Beyond £70°

Models Flare-Class TP FN  Recall TP FN  Recall
X-Class 614 54 0.92 138 74 0.65
AlexNet M-Class 4,645 1,185 080 1,276 1,014 0.55
Total (X&M) 5,259 1,239 0.81 1,414 1,088 0.57
X-Class 560 108 0.84 165 47 0.78
VGG16 M-Class 4,473 1,357 0.77 1,273 1,017 0.5
Total (X&M) 5,033 1,465 0.77 1,438 1,064 0.57
X-Class 612 56 0.92 172 40 0.81
ResNet34 M-Class 4,449 1,381 0.76 1,291 999  0.56
Total (X&M) 5,061 1,437 0.78 1,463 1,039 0.59

TABLE IV

DETAILED RESULTS OF 4-FOLD CROSS-VALIDATION EXPERIMENTS,
SHOWING ALL THE FOUR OUTCOMES OF CONFUSION MATRICES (TP, FP,
TN, FN) FOR ALL THREE MODELS USED IN THIS STUDY.

Models  Folds TP FP N FN TSS HSS
Fold-1 1,729 2,225 10,229 605 0.5621 0.4385
AlexNet Fold-2 1,075 2,298 11,557 537 0.5010 0.3380
Fold-3 1,660 3,291 11,017 704 0.4722 0.3241
Fold-4 2,209 3,549 10,483 481 0.5683 0.3890
Fold-1 1,704 2,067 10,387 630 0.5641 0.4512
VGG16 Fold-2 1,233 3,401 10,454 379 05194 0.2841
Fold-3 1,409 3,089 11,219 955 0.3801 0.2761
Fold-4 2,125 3,236 10,796 565 0.5593 0.3992
Fold-1 1,779 2,145 10,309 555 0.5900 0.4621
ResNet34 Fold-2 1,257 3,872 9983 355 0.5003 0.2550
Fold-3 1,328 2,299 12,009 1,036 0.4011 0.3280
Fold-4 2,160 3,382 10,650 530 0.5620 0.3933

Moreover, we scrutinized the proficiency of our models both
from a quantitative and qualitative standpoint by conducting
an intricate spatial analysis of their performance in correlation
with the locations of M- and X-class solar flares, that were
used as the labels. For the purpose of our analysis, we used
the predictions made on the test set and created a heatmap
by gathering the flares grouped by their location in the
Heliographic Stonyhurst (HGS) coordinate system, where each
bin represents a 5° x 5° spatial cell in terms of latitude
and longitude. Initially, we computed the recall for the >M-
class flares (combined M- and X-class flares) in each spatial
cell, providing a comprehensive assessment of the models’
performance. Subsequently, we evaluated the recall separately
for M-class and X-class flares, allowing us to analyze the
models’ sensitivity at a more granular level. The heatmaps

that illustrate the spatial distribution of recall scores for >M-,
X-, and M-class flares are shown in Fig. 5] [6] (a) , and [f]
(b) respectively. This allowed us to compare all three models
on their capabilities to learn spatial patterns that pinpoint the
locations where the models were more effective in making
accurate predictions and vice versa.
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Fig. 5. A heatmap illustrating the quantitative and qualitative evaluation of
all three models’ recall performance for >M-class flares i.e., FL-class. The
locations of the flares (with maximum peak x-ray flux, used as labels) are
aggregated into 5° x 5° spatial bins of latitude and longitude. Note: Red
cross in white grids represents locations with zero correct predictions while
white cells without red cross represent unavailable instances.

Our findings indicate that all three models demonstrated
reasonable proficiency in predicting X-class flares in central
locations. However, among these, the ResNet34-based model
stood out for its overall better performance in accurately
forecasting X-class flares, regardless of whether they were
in near-limb or central locations as shown in Fig. |§| (a).
Upon analysis of the heatmaps for >M- and only M-class
flares, as depicted in Fig. [5] and Fig. [f] (b) respectively, it
was revealed that the ResNet34-based model generally yielded
more accurate predictions across diverse spatial locations in
comparison to the other models. Nonetheless, a common
limitation across all three models was an elevated rate of
false negatives in near-limb areas for M-class flares. Notably,
these regions are often associated with unreliable readings
due to projection effects. Despite this challenge, our study
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Fig. 6. A heatmap illustrating the quantitative and qualitative evaluation of all three models’ recall performance for (a) X-class flares and (b) M-class flares.
The locations of the flares (with maximum peak x-ray flux, used as labels) are aggregated into 5° x 5° spatial bins of latitude and longitude. Note: Red
cross in white grids represents locations with zero correct predictions while white cells without red cross represent unavailable instances.

signifies a substantial progression in space weather forecasting,
enabling the prediction of flares even in these intricate near-
limb regions with distorted magnetic fields. The ability to
accurately identify flare locations could considerably enhance
the precision of operational forecasting methods. This ability
to predict flares in traditionally overlooked near-limb areas has
considerable implications.

VI. CONCLUSION AND FUTURE WORK

In conclusion, our study involved the development and
evaluation of deep learning models, namely AlexNet, VGG16,
and ResNet34, for the prediction of solar flares, with a specific
emphasis on capturing near-limb events. Through rigorous
analysis and examination of the results, several significant
findings have emerged, providing insights into the capabilities
of these models. Firstly, our models demonstrated promising
abilities in learning intricate spatial patterns from full-disk
magnetograms, illustrating the potential of deep learning tech-
niques in extracting meaningful features from complex solar
data. Of particular importance, our investigation unveiled a no-
table performance advantage of the ResNet34-based model in
predicting near-limb flares. This finding highlights the efficacy
of employing deeper architectures with residual connections,

which enhance feature extraction and facilitate the capture of
subtle patterns associated with near-limb events. Moreover,
our study highlighted the variability in model performance
across different flare types and event locations, emphasizing
the importance of tailoring models and analyzing results in
context-specific manners. This underlines the need for further
exploration of model architecture enhancements and training
techniques to effectively capture the diverse nature of flare
events. The implications of our research extend to operational
forecasting systems, where the precise and reliable prediction
of solar flares, including near-limb events, holds significant
importance. The improved capabilities demonstrated by our
models provide valuable insights for refining forecasting
methodologies in operation and facilitating real-time decision-
making processes.

Apart from the promising capabilities of our models, it
is important to highlight the associated inherent challenges.
Factors such as data availability, observational constraints,
and the evolving nature of solar activity pose ongoing obsta-
cles to model development and validation. Addressing these
challenges necessitates advancements in data collection, inte-
gration, and the developing of sophisticated models. Future
research directions can explore the integration of multi-modal



data, the development of models that can capture temporally
evolving solar activity, the interpretability of learned features,
and the utilization of explainable deep learning techniques
to enhance predictive capabilities and address limitations.
Overall, our study contributes to the growing body of research
in solar flare prediction, shedding light on the capabilities
and limitations of different model architectures, particularly
for near-limb flares. These insights hold the potential to drive
advancements in ultimate operational forecasting efforts.
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