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A B S T R A C T

Understanding healthcare accessibility, or the ability to access healthcare services, has significant implications
for both individual well-being and community equity. However, existing studies seldom account for temporally
varying factors such as traffic conditions and hospital schedules, resulting in miscalculation of accessibility. This
study addresses this gap by introducing a framework that evaluates accessibility to multi-tier hospitals, factoring
in both spatial and temporal aspects, using public transit (PT) and personal vehicles (PVs), and assesses its impact
on horizontal and vertical equity. Implemented in Shanghai, China, we employ the Gaussian two-step floating
catchment area method for accessibility quantification and utilize map APIs for dynamic travel time data. Our
analysis reveals: (i) notable temporal fluctuations in healthcare accessibility, especially for PT, and their sig-
nificant impact on both horizontal and vertical equity due to varying travel times and hospital schedules; (ii)
larger disparities in higher-tier hospital accessibility compared to lower-tier ones; (iii) greater horizontal equity
using PV-based accessibility and higher vertical equity using PT-based accessibility. These findings highlight the
need to offer customized transit to healthcare facilities, expand telehealth services, incorporate equity in
healthcare resource allocation, incentivize healthcare professionals to work in underserved areas, and develop
outreach programs to improve accessibility and equity.

1. Introduction

Healthcare equity is often defined as the principle committed to
reducing, and ultimately eliminating, disparity in access to healthcare
services. Recognized as a fundamental human right, it not only posi-
tively impacts health outcomes but also contributes to the economic
efficiency of the healthcare system and social equity at large. Many
countries have integrated healthcare equity as a cornerstone in formu-
lating their long-term healthcare improvement strategies. Examples
include initiatives like China’s ‘Healthy China 2030′ plan (The State
Council of the People’s Republic of China, 2016) and the ‘Healthy
People 2030′ plan in the U.S. (U.S. Department of Health & Human
Services, 2021). Considerable research has been conducted to quantify
healthcare equity across five key dimensions: affordability (i.e., the costs
associated with healthcare usage), acceptability (i.e., compliance with
and satisfaction from healthcare services), availability (i.e., adequacy of

healthcare service provision), accessibility (i.e., ease of travel to
healthcare providers using any mode of transportation), and accom-
modation (i.e., the appropriateness and suitability of healthcare ser-
vices) (Lane et al., 2017). From the perspective of urban and
transportation planning stakeholders, healthcare accessibility has
garnered significant attention due to its crucial role in achieving
healthcare equity. The aim is to mitigate disparities in access to
healthcare services for individuals with comparable needs (horizontal
equity) and/or to provide preferential treatment for those with greater
needs (vertical equity) by strategically allocating or reallocating
healthcare and transportation resources.

Healthcare accessibility refers to the ability to access healthcare
services by overcoming physical distance using various modes of
transportation. It is primarily influenced by three factors: the avail-
ability and quality of healthcare services (e.g., operation hours and fa-
cility types), potential demand (e.g., population density and
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demographics), and the performance of the transportation system (e.g.,
mode availability and travel time) (Chen et al., 2020). The gravity model
class represents the state-of-the-practice in quantifying healthcare
accessibility, capturing most factors influencing healthcare accessibility
(Luo &Wang, 2003; Dai, 2010; Dai &Wang, 2011). It has improved our
understanding of the spatial dimension of healthcare accessibility,
providing snapshots of individuals’ accessibility to healthcare services at
specific times of day.

Most existing studies have focused on the spatial perspective of
healthcare accessibility, which considers the relative distance between
communities and healthcare facilities, as well as the travel time between
them using various modes of transportation. Travel time is often esti-
mated based on free-flow speed or collected at specific intervals to
represent the ease of access to different healthcare facilities.

However, these methods have a fundamental flaw: the performance
of transportation systems fluctuates throughout the day, as well docu-
mented in the literature (Guan et al., 2020; Kotavaara et al., 2021; Xiong
et al., 2022). These fluctuations can directly impact the travel time be-
tween a community and a healthcare facility. Congestion and transit
schedules are the primary factors contributing to temporal variations in
travel time, leading to a temporally varying healthcare accessibility. For
instance, in Shanghai, the average off-peak speed can surpass the
morning peak-hour speed by nearly 40 % (Wang et al., 2016). Addi-
tionally, subway train service frequency in downtown areas, such as on
Shanghai Metro Line 1, can double during peak hours compared to
off-peak hours. Furthermore, non-emergency healthcare services are
typically available only from 8:00 to 11:30 and 13:30 to 17:00, resulting
in significant temporal fluctuations in the number of available hospitals
throughout the day. For some communities, accessibility can vary by
over 50 % throughout the day.

Overlooking these temporal variations can lead to misidentifications
regarding underserved community healthcare accessibility and the
overall evaluation of a region’s healthcare equity. This can significantly
influence long-term decisions concerning both transportation and
healthcare resource allocation, thereby limiting the effectiveness of
these measures in addressing healthcare accessibility and equity.
Therefore, it is necessary to integrate both temporal and spatial per-
spectives to quantify healthcare accessibility comprehensively. Despite
recent efforts to highlight the importance of temporal variations in
healthcare accessibility (Chen et al., 2020; Xia et al., 2022), our un-
derstanding of this dimension remains limited.

Apart from the need for a more comprehensive understanding of the
temporal dimension of healthcare accessibility, current research has
three notable limitations. First, much existing literature emphasizes the
availability of healthcare services, while often overlooking variations in
the quality of these services. This oversight can be particularly crucial in
developing countries, where cities might offer ample access to primary
hospitals and clinics, but access to higher quality hospitals remains
limited (Cheng et al., 2020). Therefore, quantifying access to different
tiers of healthcare services offers a more comprehensive view of
healthcare equity. Second, previous studies tend to be mode-specific
(primarily focusing on personal vehicle-based access) (Evans et al.,
2019; Sharma & Patil, 2021; Xia et al., 2022) or use the shortest travel
time as a metric, regardless of transportation mode, when measuring the
travel time to healthcare services. These measures may not accurately
reflect reality, as individuals do not have equal access to all trans-
portation modes. This discrepancy is particularly evident in developing
countries with relatively low car ownership rates, leading to a potential
overestimation of healthcare accessibility. Third, while much of the
research on accessibility-based healthcare equity has focused on hori-
zontal equity (equal access for equals), studies addressing vertical equity
(equitable, yet unequal, treatment of unequals) remain scant (Chen
et al., 2020). Improving our understanding of vertical equity enables
stakeholders to better identify disparities among different population
groups (e.g., socioeconomic groups, individuals with different health
conditions) and develop strategies to address these inequities.

This study aims to address the aforementioned limitations by
incorporating the temporal dimension into healthcare accessibility
measurements. We utilized hospital data from the Shanghai Municipal
Health Commission and travel time information from the AMAP API.
The Gaussian two-step floating catchment area (G2SFCA) method was
employed to calculate hourly workday accessibility to multi-tier
healthcare services via public transit (PT) and personal vehicles (PVs)
at the subdistrict level. Horizontal equity was assessed using the Gini
coefficient, while vertical equity was quantified by measuring the cor-
relation between healthcare accessibility and a proposed vulnerability
index via Spearman’s rank correlation index. The results highlight the
temporal variations in healthcare accessibility and the differences be-
tween PT and PV-based access. The insights from this study can aid
policymakers in better understanding horizontal and vertical healthcare
equity, identifying regional disparities in healthcare access, and making
more informed decisions regarding the allocation of healthcare and
public transportation resources.

The remainder of this paper is organized as follows: Section 2 re-
views the literature on healthcare accessibility and equity. Section 3
describes the methodologies used in this study. Section 4 details the
study region and data collection methods. Section 5 presents the key
findings regarding healthcare accessibility and equity. Section 6 dis-
cusses how our results compare to existing empirical studies. Section 7
offers policy implications. Section 8 concludes with our key findings and
outlines the limitations and suggests directions for future research in this
field.

2. Literature review

Practitioners and researchers have made considerable strides to
enhance healthcare equity by increasing people’s accessibility to
healthcare services. This initiative is motivated by its potential benefits,
including improved individual health and community resilience
(Whitehead et al., 2019). The urgency for this approach escalated in the
early 2020s during the COVID-19 pandemic, which wrought devastation
on global communities, leaving residual impacts that are still palpable
today (Guo et al., 2021; Li et al., 2023a). Current initiatives focus on two
crucial research questions: (i) how can we devise effective measure-
ments of healthcare accessibility to identify regional disparities? and (ii)
how can we accurately quantify healthcare equity to understand the
potential effectiveness of different strategies aimed at promoting equity?

Healthcare accessibility measures the ease of access to healthcare
services using various transportation modes. It has been employed to
analyze spatial variations in healthcare services (Gusmano et al., 2014;
Brezzi et al., 2016; Cheng et al., 2020; Cui et al., 2022; Majumder et al.,
2023; Jing et al., 2023) and to evaluate the role of different trans-
portation modes, such as private vehicle (Kim et al., 2021) and transit
(Cheng et al., 2018; Boisjoly et al., 2020), or compare them side by side
(Jin et al., 2022) in facilitating access to these services. These studies
illustrate regional disparities in healthcare accessibility, emphasizing
that most healthcare services are concentrated in densely populated
urban areas with robust transportation infrastructure. In contrast, peo-
ple living in rural areas, who already have relatively lower vehicle
ownership rates, experience sparsely located and underdeveloped
transit systems (Tao et al., 2019; Li et al., 2024).

When it comes to measuring healthcare accessibility, early methods
include quantifying the distance/time to the nearest service (Stentzel
et al., 2016), population-to-provider ratios (Hare & Barcus, 2007), cu-
mulative opportunity measures (Singh & Sarkar, 2022), and gravity
models (Luo & Qi, 2009; McCahill & Brenneis, 2020; Li &Wang, 2022).
Measuring the distance or time to the nearest service is simple but
limited in qualifying healthcare accessibility as it only captures the
proximity between population and service locations without considering
service availability. Additionally, it overlooks the fact that people often
have more than one health service option to choose from.
Population-to-provider ratios and cumulative opportunity measures
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share similarities; the former quantifies the number of services available
in a region, while the latter calculates the number of services accessible
to an individual within a specific boundary. Both measures offer benefits
such as ease of understanding and interpretation, replicability, and the
ability for direct comparison across cities (Hare & Barcus, 2007).
However, these approaches fail to consider the quality of the service and
the effect of competition for the available opportunities. The gravity
model accounts for proximity, availability, the quality of services, and
supply-demand competition. Critics argue, however, that it can be
difficult to comprehend and interpret, and that it relies too heavily on
selecting or empirically determining the distance-decay function, often
resulting in a highly concentric pattern of accessibility. This can be even
more pronounced in relatively isolated towns with little overlap in
health services (McGrail & Humphreys, 2009).

The development of the two-step floating catchment area (2SFCA)
class of methods aims to address these limitations by integrating aspects
of cumulative opportunity measures and gravity models. Not only does
the 2SFCA method retain the key benefits of gravity-based models, ac-
counting for the influence of distance on the appeal of opportunities, but
it also establishes a unique supply-to-demand ratio. This is achieved by
iteratively applying the floating catchment area method, a type of cu-
mulative opportunity measure (Luo & Wang, 2003; Xing & Ng, 2022).
Subsequent studies have explored the potential of integrating various
forms of distance decay functions such as the Gaussian function (Dai,
2010), the kernel density function (Dai & Wang, 2011), and the expo-
nential function (Luo & Qi, 2009), to name a few. These studies have
significantly advanced the methodologies of quantifying accessibility
and have found extensive application, particularly in the field of
healthcare accessibility (Cheng et al., 2020; Gu et al., 2023; Li et al.,
2024; Javanmard et al., 2024; Wei et al., 2024).

While recent models have made significant strides in capturing the
spatial dimension of accessibility, most can only offer a snapshot of a
region’s accessibility. This is because key factors, such as travel time,
fluctuate throughout the day due to variables like congestion, transit
scheduling, facility operating hours, and more. These factors collectively
contribute to the variations in accessibility at different times. Recent
studies by Niu et al. (2018), Järv et al. (2018), and Li et al. (2024) have
begun to explore the temporal dimension of accessibility using mapping
application program interfaces (APIs), underscoring the significance of
recognizing these temporal shifts. However, there remains a gap in the
literature concerning how these temporal fluctuations impact healthcare
accessibility and, by extension, healthcare equity.

Beyond the methods used to measure healthcare accessibility, un-
derstanding how this data can be harnessed to quantify healthcare eq-
uity is crucial. Defining “equity” presents challenges, given its basis in
moral judgment, which fluctuates owing to varied social norms and
moral judgements (Van Wee & Geurs, 2011). Like other types of equity,
healthcare equity is typically assessed through two primary dimensions:
horizontal and vertical equity (Whitehead et al., 2019; Chen et al., 2020;
Jin et al., 2022). Horizontal equity focuses on regional disparities in
access to healthcare services, drawing from egalitarian theories. His-
torically, this aspect has dominated the research landscape and can be
evaluated using metrics like the Gini coefficient, Theil index, and
Atkinson index (Cheng et al., 2020; Gu et al., 2023; Lee & Kim, 2023).

In contrast, vertical healthcare equity accesses imbalances in
healthcare accessibility among different subpopulation groups, typically
defined by socioeconomic or behavioral characteristics, where vulner-
able groups may be prioritized for healthcare access. Despite its
importance, vertical healthcare equity has been relatively understudied.
To the best of our knowledge, only a few studies, including those by
Boisjoly et al. (2020) and Xia et al. (2022), delved into this realm. For
instance, Boisjoly et al. (2020) introduced a vulnerability index to
quantify regional vulnerability using demographic attributes and
measured vertical healthcare equity using a Spearman correlation index.
Meanwhile, Xia et al. (2022) employed the Gini coefficient as a measure
to evaluate disparities in healthcare accessibility among varying age

groups in Wuhan, China. Notably, these equity types reflect distinct
facets of the same coin, often overlapping or even conflicting. Sole
reliance on one might yield an incomplete picture of healthcare distri-
bution, potentially undermining the efficacy of efforts aimed at
bolstering healthcare equity.

To sum up, there is a need to provide a more in-depth analysis of
healthcare accessibility and the resultant equity. This research aspires to
bridge this gap by introducing a holistic framework that encapsulates
the spatial and temporal nuances of healthcare accessibility across
various hospital tiers using PT and PVs. Furthermore, the study probes
its repercussions on both horizontal and vertical healthcare equities.

3. Methodology

This section outlines the methodologies employed for qualifying
healthcare accessibility, horizontal equity, and vertical equity in
healthcare accessibility.

3.1. Accessibility measurement: Gaussian two-step floating catchment
area method

The 2SFCA method, introduced by Radke and Mu (2000), has been
widely employed to measure healthcare accessibility (Cheng et al.,
2020; Gu et al., 2023). We chose to use the G2SFCAmethod over simpler
methods, such as cumulative opportunity measures, for several reasons.
Firstly, the G2SFCA method enhances accuracy by incorporating dis-
tance decay functions, which better reflect the reality that the influence
of healthcare facilities diminishes with distance (Javanmard et al.,
2024). Secondly, this method considers spatial variability within
catchment areas, ensuring that our accessibility measures more accu-
rately represent real-world conditions. Thirdly, the G2SFCA method
effectively balances the supply of healthcare facilities and population
demand, addressing potential misrepresentations that simpler methods
might cause. Additionally, our study’s inclusion of dynamic travel times
and other temporal factors necessitates a more comprehensive
approach, which the G2SFCAmethod accommodates better than simpler
alternatives. Therefore, we incorporated the G2SFCA method into our
framework to improve its robustness, enhance the validity of our find-
ings, and better align with our study’s goals. Furthermore, it has been
widely used in recent healthcare accessibility studies, such as Jav-
anmard et al. (2024) and Wei et al. (2024).

The process of calculating accessibility consists of two steps. The first
step involves calculating the supply-demand ratio by determining the
population within the catchment area of a specific healthcare service.
The second step allocates healthcare resources to the population by
identifying accessible healthcare services for population points and then
summarizing the supply-demand ratio. At this juncture, distance decay
functions come into play, symbolizing the decreased accessibility of a
service as distance augments. Among various decay functions, the
Gaussian distance decay function stands out due to its capability to
depict many real-world scenarios. Its robust theoretical grounding in
statistics and probability, especially its tie-in with the normal distribu-
tion, and its empirical superiority over other functions like the power
and exponential functions, solidify its stature (Guo et al., 2016a; Guo &
Peeta, 2020; McCahill & Brenneis, 2020; Hu et al., 2020). This study
adopts the Gaussian function, represented as:

Ri =
Si

∑
j∈{dij≤d0}DjWij

(1)

Aj =
∑

i∈{dij≤d0}

RiWij (2)
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where Ri is the supply-demand ratio of healthcare service i, Si represents
the healthcare supply (number of beds) of healthcare service i, and Dj
represents the population demand of spatial unit j. Aj is the healthcare
accessibility of spatial unit j. In this study, healthcare accessibility is
evaluated at the subdistrict level (or Jiedao in Chinese), which is the
smallest administrative division in China. The boundaries of these sub-
districts are established through a detailed administrative process
involving multiple layers of planning and coordination. This process
typically starts with the central government setting up planning and
urban development policies. Local governments then propose specific
boundaries based on population size, density, and urban development
trends. These proposals are subsequently reviewed and approved by
higher levels of government, such as municipal or provincial authorities.
The boundaries are subject to periodic review and adjustment based on
feedback from local governments, residents, and businesses. Several
recent studies, such as those by Li and Wang (2022) and Xing and Ng
(2022), have also evaluated subdistrict-level healthcare accessibility in
China. The dij represents the travel time between healthcare service i and
subdistrict j, andWij represents a Gaussian-weighted decay function and
d0 set at 45 min, demarcates the maximum travel time within which a
healthcare facility is deemed accessible to a subdistrict. The healthcare
accessibility used in Results and Discussion sections are the standardized
value of Aj across the region.

3.2. Horizontal equity measurement: Gini coefficient

The Gini coefficient, a method known for its interpretive clarity and
simplicity, is used as a to measure horizontal equity (Lucas et al., 2016;
Lee& Kim, 2023). Conceived by Corrado Gini, this coefficient fluctuates
between 0 (indicating absolute equity) and 1 (signifying total inequity),
mirroring the spectrum of horizontal equity from full fairness to com-
plete disparity. The corresponding formulas are presented below:

GC =

∑n
i=1
∑n

k=1|Ai − Ak|
2n2A

(4)

where the n is the total number of subdistricts, Ai and Ak are the
healthcare accessibility of subdistrict i and k. The A is the average
healthcare accessibility of all subdistricts.

3.3. Vertical equity measurement: vulnerability index and Spearman’s
rank correlation index

Considering the nature of healthcare resources, numerous scholars
emphasize the necessity of directing premium healthcare services to
those most in need (Pereira et al., 2017). A critical initial step is to
identify vulnerable subgroups within the population that have height-
ened needs. In this analysis, we utilize a vulnerability index method
proposed by Maes et al. (2011) and Su et al. (2015). This approach is
structured around a composite of three specific indices: the Exposure
Index (EI), Sensitivity Index (SI), and Capacity Index (CI). An overview
of the constituent elements of these indices is provided in Table 1.

As these indexes vary in dimensions and magnitudes, they are stan-
dardized and then use the following equation to calculate (Ippolito et al.,
2010):

rij =
xij

∑n
j=1xij

(5)

EIi or SIi or CIi =

(
∏n

j=1
rij

)1
n

(6)

SVIi =
EIi ∗ SIi
1 + CIi

(7)

where xij is the value of index j of subdistrict i, EIi, SIi, CIi are the values
of EI, SI, and CI of subdistrict i, and SVIi is vulnerability index of sub-
district i. A community with a higher SVI suggests that it is less resilient
when confronted by external stresses on human health, stresses such as
natural or human-caused disasters, or disease outbreaks. Such commu-
nities may need better access to healthcare services, particularly when
there are external stresses.

In line with the tenets of vertical equity, it is optimal for subdistricts
with higher vulnerability to be endowed with superior healthcare
accessibility. Therefore, we rank both the vulnerability level of each
community and its associated healthcare accessibility. To discern the
degree of congruence between these rankings, the Spearman’s

Table 1
Evaluation index system of social vulnerability index to healthcare demand.

Item Element Abbreviation Indices

Social
vulnerability
index (SVI)

Exposure
index (EI)

E1 Population density (10,000
persons/km2)

E2 Regional GDP/regional area
(109 yuan/km2)

E3 Capital invested in the fixed
assets/regional area (109

yuan/km2)
Sensitivity
index (SI)

S1 Percentage of female resident
population (%)

S2 Percentage of population with
age > 65 (%)

S3 Percentage of population with
age < 14 (%)

S4 Percentage of the
immigration (%)

S5 Percentage of minority
population (non-Han groups
in China) (%)

S6 Illiteracy rate (%)
S7 Unemployment rate of

population 15 years or older
(%)

S8 Divorce rate of population 15
years or older (%)

S9 Percentage of laborers
working in primary sector
industries (%)

S10 Percentage of households
without piped water (%)

S11 Percentage of households
without elevator (%)

Capacity
index (CI)

C1 Rail transit mileage (km)

C2 Car ownership (cars per
capita)

C3 Per capita GDP (105 yuan/
persons)

C4 Capita disposable income
(yuan)

C5 Number of beds in medical
institutions per 1000 resident
population (beds per capita)

C6 Number of health technicians
per 1000 resident population
(technicians per capita)

C7 Number of medical
institutions per 1000 resident
population (hospitals per
capita)
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correlation index, rs, is employed (Mortazavi& Akbarzadeh, 2017). This
index, which ranges from -1 to 1, elucidates the monotonic relationship
between the two sets of rankings, given that both accessibility and
vulnerability are relative measures. The general rule of thumb is that the
corresponding absolute value of rs for weak, moderate, strong, and very
strong correlations are |rs| < 0.2, 0.2 ≤ |rs| < 0.4, 0.4 ≤ |rs| < 0.8, and
0.8 ≤ |rs|, respectively (Guo et al., 2016b; De Winter et al., 2016). The
aim of correlating healthcare accessibility with social vulnerability is to
identify patterns of inequity across different levels. A negative and sta-
tistically significant Spearman’s rank correlation would indicate that
subdistricts with higher social vulnerability typically experience lower
healthcare accessibility, and vice versa.

4. Study region and data collection methods

Shanghai, China is selected as the study region to investigate the
spatial and temporal variation in healthcare accessibility and its impact
on horizontal and vertical healthcare equity. This section describes the
study region and the data collection and processing methods.

4.1. Study region

Shanghai, a densely populated megacity on China’s eastern coast,
had a population of 24.9 million spread across 16 districts in 2020
(Shanghai Statistical Bureau, 2021). The Outer Ring Expressway has
partitioned Shanghai into two distinct regions: the densely populated
urban areas within the expressway’s boundaries, and suburban and rural
areas with some newer city subcenters located outside of the expressway
(Fig. 1). With less 10 percent of the total area, nearly 90 percent of the
population live in urban area, along with most resources, opportunities,
and services. The city has experienced rapid economic growth in recent
years; its Gross Domestic Product (GDP) increased eightfold between
2000 and 2022. During the same period, the population expanded by
over 8 million, largely due to an influx of migrants from inland rural
areas, who now make up 60 % of the city’s total population and the
majority of its workforce. This rapid urbanization has put significant
pressure on public resources, particularly healthcare and transportation
infrastructure (Jin et al., 2022).

Shanghai had been proactive in addressing issues related to health-
care accessibility. On one hand, Shanghai attempted to improve medical

Fig. 1. Study region.
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resource allocation. In 2017, the city announced plans to establish five
sub-centers aimed at alleviating resource burdens in the urban area.
These centers were specifically designed to improve healthcare access
for the large migrant population, most of whom live on the periphery of
the city. Decision-making about the location and tier of these new
healthcare facilities is critical given their intended role within the
healthcare system. The COVID-19 pandemic further highlighted these
needs in 2022 when a city-wide lockdown restricted many residents to
hospitals within their local subdistricts (Li et al., 2023a).

Chinese healthcare facilities include hospitals, community clinics,
professional public health services (such as the Chinese Centers for
Disease Control and Prevention and health supervision institutions), and
other specialized institutions (e.g., rehabilitation centers and psychiatric
hospitals), based on the services they provide. Hospitals are categorized
into general hospitals and specialized hospitals (Zhao et al., 2020).
General hospitals offer a wide range of services, including emergency
care, surgery, internal medicine, and various specialized departments (e.
g., cardiology, neurology), while specialized hospitals focus on specific
areas of medicine or patients, such as oncology, pediatrics, or traditional
Chinese medicine.

In this study, we focus on general hospitals. These are categorized
into three tiers based on their scale, level of care provided, and capa-
bilities: primary, secondary, and tertiary hospitals (National Health and
Family Planning Commission of China, 1989). Primary hospitals, akin to
community hospitals in the U.S., are small, township-level facilities with
fewer than 100 beds, primarily offering preventive care and basic
healthcare services. Secondary hospitals are medium-sized facilities
often affiliated with a county or district; they have between 100 and 500
beds and provide comprehensive health services on a regional basis.
Tertiary hospitals are large, specialized facilities often affiliated with a
city, province, or the national government; they have more than 500
beds and serve as hubs for specialized health services, medical educa-
tion, and research.

We considered all 451 general hospitals in our study area as of the
end of 2022, including 91 tertiary, 127 secondary, and 233 primary
hospitals. Given the significant differences in scale, level of care, and
capabilities among these hospitals, we quantified accessibility to each
type of hospital.

In parallel efforts to improve transportation infrastructure, Shanghai
has enacted rigorous policies like road rationing and vehicle registration
controls. The city also boasts one of the world’s largest public trans-
portation systems (Li et al., 2022). As of 2021, the Shanghai metro
included 19 lines, 515 stations, and 803 km (499 mi) of operational
tracks, making it the world’s longest metro network. The metro system
encompasses intercity lines (intercity railway, municipality railway, and
express railway), urban lines (subway and light rail), and local lines
(modern tramcar, rubber-tired transit system). Additionally, Shanghai’s
extensive bus network covered a total length of 8997 km (5590 mi)
across 1575 lines by 2019. Despite these advances, challenges remain;
millions still face long commutes and limited access to healthcare (Shen,
2022). A recent report indicated that the average one-way commute in
Shanghai was 40 min, with 1.5 million residents experiencing daily
extreme commutes exceeding 60 min in 2021 (China Academy of Urban
Planning and Design, 2022). Clearly, significant efforts are still needed
to enhance healthcare accessibility in Shanghai.

4.2. Data collection and processing

As illustrated in Section 3, healthcare accessibility comprises three
primary components: the availability and quality of healthcare services,
the community’s healthcare demand, and the performance of the
transportation system (Chen et al., 2020). To quantify these compo-
nents, three distinct sets of data are collected: hospital data, population
statistics, and estimated dynamic travel time data.

For assessing the availability and quality of healthcare services, we
use data from 99 Healthcare and AMAP. The 99 Healthcare website

serves as a reliable source for hospital information, including details
such as the hospital’s name, address, tier classification, and number of
beds (The 99 Healthcare, 2023). The website rigorously verifies this data
before publication. The number of beds in each hospital serves as a
proxy for its capacity, consistent with the empirical research of Rong
et al. (2020), Li and Wang (2022), and Xia et al. (2022). While most
hospitals offer emergency services, our study considers the hours they
provide non-emergency healthcare services as their available hours.
Geographical coordinates for each hospital, including longitude and
latitude, are gathered from AMAP based on the addresses provided by 99
Healthcare.

To quantify a community’s healthcare demand, we rely on socio-
demographic and boundary data obtained from the China Population
Spatial Distribution Kilometer Grid Dataset (Xu, 2017). According to
data from the Shanghai Statistical Bureau (2021), the city is subdivided
into 204 subdistricts. For sociodemographic data, we utilized more
recent information from the Chinese government. This data represents
more recent available sociodemographic and geographic boundary in-
formation at the time of study, ensuring a high degree of reliability,
accuracy, and completeness. The geometric center of each subdistrict is
considered its healthcare demand center and is calculated using the
Calculate Geometry tool in ArcMap 10.2.

Lastly, we quantified the performance of the transportation system
using real-time travel time data between the geometric center of a
community and a hospital, employing both PV and PT modalities. This
approach marks a departure from previous studies that relied on static
travel time estimates. It is crucial to consider these temporal variations
in travel times, particularly for PT, as they can fluctuate significantly
throughout the day. This variability directly impacts the assessment of a
region’s accessibility. Failing to account for these differences can lead to
either an overestimation or underestimation of a region’s accessibility,
affecting the accuracy of our understanding of the transportation sys-
tem’s performance.

We utilized the AMAP API, a route guidance map service in China
with over 100 million active daily users, to obtain real-time estimated
travel times at different times of the day. This service, akin to Google
Maps, bases its information on an extensive user base and has been
referenced in recent studies for travel time assessments (Xiao et al.,
2021; Zhu & Shi, 2022; Li et al., 2023b; Yang et al., 2023). For our
analysis, we collected travel times every ten-minute for both PV and PT
on workdays from September 21 to September 25, 2023. The travel time
collected represent the most recommended routes by the AMAP API,
typically indicating the shortest travel time. These recommendations
consider various factors such as traffic conditions, transit schedules,
transfer times, and other relevant parameters. In terms of PT, we
imposed no restrictions on the mode of transport (i.e., can be metro, bus,
or a combination of them), designating walking as the default option for
the first and last mile of the journey. We focused on six specific times for
more in-depth analysis: 8:00, 10:00, 12:00, 13:00, 15:00, and 17:00.
Subway and transit services are fully operational during these times,
with their highest frequency of operation occurring at 8:00 and 17:00 to
serve the heighted demand during peak-hours. We did not choose late
night or early morning hours as most PT services are not available, and
majority of the hospitals only provide emergency services, which is
beyond the scope of our study as we focus on regular healthcare services
instead of the emergency services.

5. Results

This section includes the results of the analyses of spatial and tem-
poral accessibility to multi-tier hospitals using PT and PVs, along with
the quantification of horizontal and vertical healthcare equity based on
the accessibility.

Z. Yang et al.
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5.1. Spatial and temporal accessibility to multi-tier healthcare services

Figs. 2, 3, 4, 5, 6, 7 illustrate subdistrict-level accessibility to three
different tiers of hospitals using PT and PVs at six critical times of the
day. Accessibility is classified into five levels, from the lowest (repre-
sented by cooler colors) to the highest (represented by warmer colors).

Spatially, the urban areas enjoy superior access to all healthcare
service tiers, while suburban and rural areas typically face limited
healthcare accessibility, with notable exceptions in certain southwestern
subdistricts (as shown in Figs. 2 to 7). National policy dictates that each
subdistrict must have at least one primary hospital providing essential
medical services to residents. However, the placement of secondary and
tertiary hospitals is more flexible, leading to their significant concen-
tration in urban areas to meet higher healthcare demands. The supply-
demand ratio for tertiary hospitals in urban areas stands at 0.59 per
100,000 people, in stark contrast to 0.17 in suburban and rural areas.
Similarly, for secondary hospitals, the ratios are 0.67 and 0.35, respec-
tively. Enhanced by advanced transportation infrastructure, accessi-
bility to higher-tier hospitals in urban areas typically exceeds that in
suburban and rural areas, a trend observed in other Chinese cities as well
(Jin et al., 2022; Xing & Ng, 2022).

The notably higher healthcare accessibility in the southwestern re-
gions of Shanghai, specifically in Songjiang, Jinshan, and Fengxian
Districts, compared to other suburban and rural areas, can be attributed
to three main factors: geographic location, high demand from neigh-
boring provinces, and lower population density. Positioned at the
juncture between Shanghai and two populous provinces, Jiangsu
(approximately 85 million residents in 2022) and Zhejiang (around 66
million residents in 2022), both ranking in China’s top ten by popula-
tion, many residents from these provinces prefer to travel to Shanghai
for its superior healthcare services. This area is also serviced by several
national and state-level highways and an expansive rail network, which
makes it easier for out-of-province residents to visit this region for
healthcare services (Yan et al., 2022). Both factors contribute to the
overall high demand for better healthcare services that incentives many
hospitals to locate in this area. Furthermore, the local demand for hos-
pitals may be relatively low due to its lower population density (1997
persons/km2 compared to Shanghai’s average of 3830 persons/km2), as
this area primarily supports Shanghai’s agricultural needs with

farmland and forests being the predominant land uses.
Temporal variations in healthcare accessibility throughout the day

represent a significant, yet underexplored, aspect in existing research.
Accessibility to healthcare services peaks during off-peak hours (10:00
and 15:00) and dips during the morning and evening rush hours (8:00
and 17:00) for both PV and PTmodes. This pattern is largely attributable
to increased travel times during peak hours, presumably caused by
traffic congestion. Specifically, average travel times during peak hours
are 29 % longer for PV users compared to an 11 % increase for PT users,
indicating that congestion disproportionately affects PV travel times.
The noticeable dip in average healthcare accessibility around midday
can be linked to hospital consultation hours; many hospitals close for
consultations during this time, despite the relatively minor increase in
travel time (less than 5 %) from non-peak hours. Subdistricts housing
hospitals do not exhibit significant fluctuations in healthcare accessi-
bility throughout the day. These observations underscore the impor-
tance of accounting for temporal changes in studies related to healthcare
accessibility.

Regarding transportation modes, PT and PVs exhibit different pat-
terns in healthcare accessibility. Generally, PV-based accessibility to
healthcare is consistently higher than that of PT, across all hospital tiers
and times of the day. On average, travel times via PT are 1.81 times
those via PVs for identical journeys (47.78min for PT compared to 26.33
min for PVs), and the ratios of PT to PVs for primary, secondary, and
tertiary hospitals are 1.96, 1.79, and 1.69, respectively. These findings
underscore the challenges faced by individuals reliant on PT for
healthcare access, especially those in need of regular healthcare ser-
vices, and it seems to be more pronounced when accessing primary
hospitals, forcing them to choose between enduring lengthy PT travel
times or incurring the high costs associated with using PVs.

Urban areas tend to have higher healthcare accessibility for PV users,
while subdistricts with at least one subway station and one hospital
exhibit improved PT-based accessibility. Shanghai is in the process of
expanding its metro system, aiming to ensure that by 2035, 60 % of rail
transit stations in the urban areas will be within 600 m of land coverage.
This expansion is anticipated to enhance healthcare accessibility for
communities near subway stations, while potentially exacerbating dis-
parities between neighborhoods with convenient access to the metro
system and those without.

Fig. 2. PT to primary hospitals.
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5.2. Horizontal equity of healthcare accessibility to multi-tier healthcare
services

The Gini coefficient is utilized to assess the horizontal equity of
accessibility to multi-tier hospitals at various times using PT and PVs. As
illustrated in Figs. 8 and 9, healthcare equity index exhibits daily fluc-
tuations due to temporal variations in healthcare accessibility. Specif-
ically, the Gini coefficient is relatively higher during peak hours and
midday, indicating greater inequity, as opposed to non-peak hours. The
traffic congestion during peak hours increases travel cost and contracts
the catchment area of hospitals, which disproportionately impacts

suburban and rural areas, resulting in the overestimation of horizontal
equity. When comparing between transportation modes, the PT-based
Gini coefficient not only shows higher inequity but also experiences
more significant fluctuations throughout the day compared to its PV-
based counterpart, especially concerning access to higher-tier hospi-
tals. With a calculated average Gini coefficient of 0.59 under PT, it in-
dicates poor equity in terms of population allocation. This underscores
substantial spatial inequity in PT-based healthcare accessibility, partic-
ularly affecting elderly or car-less individuals residing in suburban and
rural areas.

Fig. 3. PT to secondary hospitals.

Fig. 4. PT to tertiary hospitals.
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5.3. Vertical equity of healthcare accessibility to multi-tier healthcare
services

Spearman’s rank correlation index is utilized to assess the relation-
ship between healthcare accessibility and the social vulnerability of each
subdistrict, providing insights into vertical equity regarding individuals’
access to healthcare services. Figs. 10 and 11 depict the vertical equity of
healthcare accessibility to multi-tier healthcare services via PT and PVs)
respectively. A solid circle indicates that Spearman’s rank correlation
index between the SVI and accessibility is statistically significant at the
95 % confidence level, while a hollow circle denotes a lack of significant

correlation. The findings reveal a nuanced picture.
For PT and PV-based accessibility to tertiary and secondary hospi-

tals, there is a moderate to strong positive correlation with SVI
throughout the day, suggesting that vulnerable communities generally
enjoy satisfactory access to these higher-tier hospitals, irrespective of
the time. This observation is more pronounced for PT-based accessi-
bility, indicating that temporal factors such as congestion and service
schedules have a minimal impact on the equitable access to healthcare,
especially for those relying on public transportation. This outcome
highlights the effectiveness of PT in bridging accessibility gaps for
vulnerable populations to high quality healthcare services.

Fig. 5. PV to primary hospitals.

Fig. 6. PV to secondary hospitals.
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Conversely, when analyzing access to primary healthcare facilities,
we observe a shift in the relationship between healthcare accessibility
and the SVI. Specifically, a moderate to strong negative correlation
emerges at 13:00, with no statistically significant relationship detected
at 10:00 and 15:00. This indicates that access to primary hospitals does
not adequately meet the needs of socially vulnerable communities.
Primary hospitals play a critical role in the healthcare system by
providing accessible, cost-effective care and acting as the foundation of
community health and wellness. They focus on preventive care, man-
agement of common conditions, and ensuring continuity of care, thereby
enhancing the specialized services offered by secondary and tertiary

hospitals and ensuring a healthcare system that addresses the needs of
the entire population comprehensively.

Our findings suggest that, in Shanghai, access to primary hospitals
for its residents, when considering temporal variations in healthcare
accessibility, is not as equitable as it seems. This discrepancy could
remain unnoticed if such temporal variations were not accounted for, as
has been the case in much of the previous research. This highlights the
need for a more nuanced approach to evaluating healthcare accessi-
bility, one that takes into account the temporal dynamics of service
availability and demand, to truly understand and address the gaps in
providing universally accessible primary healthcare.

Fig. 7. PV to tertiary hospitals.

Fig. 8. Gini coefficient of PT.
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6. Discussion

Incorporating the temporal dimension into the accessibility evalua-
tion framework, this study provides a new and comprehensive view of
healthcare accessibility and equity across various hospital tiers using PT
and PVs in megacities.

Firstly, our study results support recent but limited efforts by Kim
and Kwon (2022) and Xia et al. (2022), demonstrating that accessibility
has both spatial and temporal dimensions. A community’s healthcare
accessibility can vary throughout the day due to factors such as
congestion and public transportation service quality. Ignoring these
factors can lead to overestimation or underestimation of accessibility.
Our study expands upon their work by considering additional modes of

transportation, factoring various types of healthcare facilities,
improving travel time estimation accuracy, and featuring a different
study region.

Secondly, the allocation of healthcare resources, particularly higher-
quality ones such as secondary and tertiary hospitals, is skewed towards
communities in urban areas or less vulnerable ones. This finding is
consistent with Ma et al. (2019) and Xing and Ng (2022). Additionally,
the temporal fluctuation in accessibility to these hospitals for suburban
and rural communities is much larger compared to that of urban com-
munities, a factor not yet discussed in existing studies. These results
highlight the need to identify options for improving healthcare services
in remote and/or underserved areas.

Thirdly, despite temporal variations, a community’s PV-based

Fig. 9. Gini coefficient of PV.

Fig. 10. Spearman’s rank correlation index of PT.
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healthcare accessibility is often higher than PT-based accessibility.
Studies by Cheng et al. (2020) and Xing and Ng (2022) observe this
phenomenon at specific times of the day, but our study greatly expands
the generalizability of their findings. These results highlight disadvan-
tage of people who are unable to own or use PVs in accessing healthcare
services and the importance of PT-based healthcare to them.

Lastly, the introduction of vertical equity emphasizes the need to
consider vulnerable populations within society, whereas many existing
studies focus only on horizontal equity. Our results indicate that the PT
system serves as a significant equalizer for vulnerable populations in
accessing healthcare services. However, designing an effective PT sys-
tem for these regions is particularly challenging, as the number of PT
passengers has declined since COVID-19 and the slowing of the Chinese
economy, leading to further underfunding of the system.

These findings offer valuable insights into addressing healthcare
inequity challenges, suggesting that a comprehensive, multi-faceted
approach tailored to specific obstacles which are discussed in the next
section.

7. Policy implications

Shanghai, like many other megacities in China, is propelled by mi-
grants from inland regions. By the end of 2022, approximately 10.06
million of its 24.74 million inhabitants were migrants without local
household registration (Shanghai Statistical bureau, 2023). While these
migrants are central to the Chinese economic miracle and constitute a
significant part of the workforce in megacities, they often face chal-
lenges in accessing essential services such as healthcare, housing, and
transportation (Guo et al., 2017; Guo et al., 2018; Li et al., 2024). Most
megacities, including Shanghai, require migrants to contribute to local
taxes for at least three years and satisfy other additional qualifications
before they become eligible to purchase new homes or register their
vehicles locally—measures aimed at curbing rising housing prices and
congestion (Yang et al., 2023). Vehicles registered outside of Shanghai
are prohibited to access urban highways during the day which drasti-
cally increase their travel time in most cases. Moreover, without local
medical insurance (as many have insurance from their cities of origin),
they incur substantial medical expenses, which they must later seek
reimbursement for in their home cities. These restrictions place

considerable financial strain on migrants in terms of the resources that
they can spend on transportation and housing, who often remit at least
one-third of their income to support families in their hometowns (Guo
et al., 2020). They often have to either experience higher cost by living
in urban areas with better healthcare access or residing in less costly
suburban and rural areas but facing long travel time to access basic
healthcare. These issues underscore the importance for policymakers to
develop a nuanced understanding of healthcare accessibility and equity
in the megacities with millions of migrants, encompassing both spatial
and temporal dimensions.

Addressing the allocation of healthcare resources, particularly for
secondary and tertiary hospitals, reveals a pronounced scarcity in sub-
urban and rural areas, irrespective of transportation modes and times
(Figs. 2 to 7). Tackling healthcare accessibility challenges in these re-
gions demands a comprehensive, multi-faceted approach tailored to
their specific obstacles, which can include the following five aspects.

Implementing dedicated bus routes or customized shuttle services
from suburban and rural communities to secondary and tertiary hospi-
tals can enhance healthcare accessibility. This strategy diminishes travel
time and simplifies the journey to healthcare facilities, proving espe-
cially advantageous for PT dependents (Li et al., 2024). Effective plan-
ning of transit routes should consider population density, healthcare
needs, and pre-existing transportation deficiencies. Moreover, aligning
service schedules with hospital operating hours and peak appointment
times is essential to fulfilling community requirements (Du et al., 2020).

Telehealth has become an indispensable mechanism for delivering
healthcare services to remote and underserved areas (Mouratidis &
Papagiannakis, 2021). Utilizing technology enables patients to engage
with healthcare providers through video calls, phone calls, or messaging
platforms, thus minimizing the necessity for physical travel. Telehealth
is particularly beneficial for conducting routine check-ups, addressing
mental health issues, and facilitating specialist consultations that do not
necessitate in-person examinations. Enhancing telehealth infrastructure,
such as upgrading internet connectivity and fostering digital literacy in
rural locales, is fundamental to the success of this approach.

Integrating healthcare equity, evaluated through the spatial and
temporal dimensions of accessibility and equity as proposed in this
study, can be incorporated into the site selection decision-making pro-
cess for new secondary and tertiary hospitals, potentially mitigating

Fig. 11. Spearman’s rank correlation index of PV.
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access disparities. This process requires a detailed analysis of de-
mographic data, the distribution of existing healthcare facility, and
transportation infrastructure to pinpoint regions with the most acute
needs. Giving priority to hospital development in these underserved
areas can potentially balance healthcare supply-demand distribution
and enhance accessibility for all community members.

Attracting medical practitioners to suburban and rural areas remains
a formidable challenge (Jin et al., 2022). To address this issue, offering
incentives is critical. These incentives could include student loan
forgiveness, competitive remuneration, and housing benefits, which can
motivate more healthcare providers to serve in these areas, thereby
improving service quality and availability. Additionally, creating sup-
portive community environments that welcome and integrate health-
care professionals into local social networks could further enhance the
attractiveness of these regions. Professional development opportunities,
such as conferences and continuing education programs that are
accessible locally, could also be instrumental in persuading practitioners
to relocate. By addressing both the professional and personal needs of
healthcare providers, these strategies canmake suburban and rural areas
more appealing, ensuring a steady influx of skilled practitioners willing
to contribute to improving service quality and healthcare availability.

Apart from aforementioned policies, enhancing awareness and un-
derstanding of these improvements is crucial. Outreach programs that
educate the community on how to effectively utilize the new services
and programs can significantly amplify their impacts (Li&Wang, 2022).
Such initiatives could include workshops, informational campaigns, and
personalized assistance to navigate the enhanced healthcare landscape,
ensuring individuals are fully informed about available resources and
how to access them.

There is empirical evidence supporting the effectiveness of these
strategies, but their success depends on the regions where they are
implemented, the level of enforcement, and various other factors.
Without implementation and extensive data collection and monitoring,
it is challenging to fully understand their effectiveness.

Instead, we can evaluate changes in horizontal and vertical equity if
these strategies successfully increase healthcare accessibility for
vulnerable communities as designed. We tested the changes in health-
care equity by increasing the accessibility of the top 20 % most

vulnerable subdistricts, based on their SVI score, by 20 %, 40 %, 60 %,
and 80 %, using public transit-based healthcare accessibility at 17:00 as
an example. Our results illustrate a significant increase in healthcare
equity, particularly in terms of vertical equity in accessing high-quality
hospitals (Figs. 12 and 13).

In summary, effectively addressing healthcare accessibility issues in
suburban and rural areas requires a comprehensive strategy that in-
tegrates direct interventions, technological innovations, and systemic
changes in healthcare delivery and planning. This study highlights the
critical need to include the temporal dimension in evaluating healthcare
accessibility frameworks and emphasizes the importance of considering
both horizontal and vertical equity to uncover disparities across regions
and socio-economic groups. By taking into account temporal variations
in hospital availability, public transportation system performance, and
traffic conditions, our research illuminates challenges that may be
overlooked when assessments focus solely on peak or non-peak periods.
Furthermore, conducting a comparative analysis across different trans-
portation modes and healthcare service levels provides a nuanced and
thorough perspective for assessing healthcare accessibility and equity.
Overlooking these detailed considerations could result in inaccurate
estimations of healthcare accessibility and equity, thereby impacting
decisions regarding healthcare and transportation resource allocation.
Therefore, the insights derived from this study are invaluable for poli-
cymakers in crafting targeted strategies to achieve healthcare equity.

Moreover, examining temporal variations in accessibility to various
public services from a broader viewpoint offers a novel perspective in
many domains as society shifts towards a data-driven era of decision-
making which is beyond the scope of this study. It can have implica-
tions for resilience planning, emissions reduction, tourism promotion,
local property market dynamics, and other critical sectors. Under-
standing these temporal dynamics enriches our approach to planning
and policy-making, ensuring that decisions are informed by compre-
hensive data that reflect the real-world complexities of service
accessibility.

Fig. 12. Gini coefficient increase (%).
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8. Concluding comments

8.1. Conclusions and insights

Easy, cost-effective, and high-quality access to healthcare through
various transportation modes is crucial for fostering an equitable soci-
ety. Policymakers and practitioners should be particularly mindful of the
needs of underprivileged communities and population subgroups,
especially those heavily reliant on PT for accessing healthcare services.
Accessibility to healthcare is influenced not just by the locations of
healthcare facilities but also by the transportation system, whose service
quality varies throughout the day. However, current research often
overlooks the temporal dimension of accessibility. This study advances
the literature by offering a more comprehensive framework that in-
corporates the temporal dimension into G2SFCA method to understand
accessibility and its implications for both horizontal and vertical equity.
The proposed framework has broad potential applications, extending
beyond this study’s focus, in designing policies and strategies for
healthcare resource allocation and PT improvements. This study reveals
three key findings:

(i) Healthcare accessibility experiences significant temporal fluctu-
ations throughout the day due to temporal variations in traffic
conditions, PT service level, and hospital visitation schedule,
with PT-based healthcare accessibility being particularly
affected. Average healthcare accessibility during peak hours
(8:00 and 17:00) decreases by 17 % for PT users compared to off-
peak hours (10:00 and 15:00), while PV users experience only an
8 % difference.

(ii) The impact of temporally varying healthcare accessibility on the
assessment of healthcare equity presents a mixed picture: the
traffic during peak hours significantly exacerbates horizontal
equity, while its effects on vertical equity assessment are
comparatively minor. Average Gini coefficient during peak hours
increases by 15 % compared to off-peak hours suggesting a larger
temporal variation, while average spearman’s rank correlation
index for secondary and tertiary hospitals changes by only 2 %.

(iii) There is a disparity in access to higher-tier hospitals, with hori-
zontal equity being lower for higher-tier hospitals, while vertical
equity shows an opposite trend. Without considering the midday
break at 12:00 when most hospitals are closed, the average Gini
coefficient for primary, secondary, and tertiary hospitals is 0.46,
0.48, and 0.55, respectively. Regarding vertical equity, the
average Spearman’s rank correlation index for secondary and
tertiary hospitals is 0.43 and 0.56, respectively. In contrast, the
relationship between healthcare accessibility to primary hospi-
tals and the SVI is mostly negative or not statistically significant,
suggesting a higher healthcare equity compared to healthcare
accessibility equity for secondary and tertiary hospitals.

(iv) Horizontal equity is greater when calculated using PV-based
accessibility, while vertical equity is higher when calculated
using PT-based accessibility. The average Gini coefficient for PT-
based and PV-based healthcare accessibility is 0.59 and 0.40,
respectively, while the average Spearman’s rank correlation
index is 0.47 and 0.36, respectively.

These insights enhance our comprehensive understanding of how
temporal variations affect healthcare accessibility and assessment of
equity, both horizontally and vertically. They offer valuable guidance
for policymakers in pinpointing areas and population groups facing
healthcare access challenges. Potential solutions to address these issues
include, but are not limited to, offering direct transit services to
healthcare facilities, expanding telehealth services, incorporating con-
siderations of healthcare equity into hospital location decisions,
providing incentives for healthcare professionals to work in underserved
communities, and implementing outreach programs related to health-
care accessibility.

8.2. Limitations and future research directions

This study, while offering valuable insights, acknowledges several
limitations and suggests directions for future research. In terms of
measuring accessibility, our approach integrates the temporal dimen-
sion into the accessibility calculation framework using the G2SFCA
method, which presents opportunities for refinement from both supply

Fig. 13. Spearman’s rank correlation index increase (%).
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and demand perspectives. On the supply side, future research could
broaden the range of mode choice options for the first/last mile in PT-
based accessibility, to include walking, shared biking, e-biking, and
their combinations. On the demand side, incorporating both subjective
(e.g., attitudes and preferences) and objective (e.g., healthcare needs
and PV availability) data at a more detailed community level into our
framework would be possible once such data are available. Moreover,
studies by Abrishami and Chamberlain (2023) and Kapatsila et al.
(2023) suggest that, despite the differences in methodologies, simpler
accessibility measures can yield similar results as the G2SFCA method
used in this study in many cases and require less data. We encourage
future researchers to explore whether other accessibility measurements
can be incorporated into our proposed framework and if this could
produce better results. Regarding the timeliness of the data, we
encourage future studies to investigate data from other sources, such as
third-party data like that from the WorldPop organization (Li & Wang,
2024), and estimated data based on cellular signaling (Oliver et al.,
2020). These sources can be evaluated in the context of healthcare
accessibility concerning their reliability, accuracy, completeness,
availability, and timeliness. Lastly, in terms of the replicability of this
study, while our study region, Shanghai, has unique character-
istics—such as a high percentage of migrants, and top-tier healthcare
and transit systems in China—our research framework can be applied to
any city worldwide. Our key finding—the temporal variations in
healthcare accessibility and equity—should also be observable else-
where, although their magnitude may differ. We plan to further our
study by collaborating with institutions from other countries to apply
our framework globally, advancing our understanding of healthcare
accessibility and equity.
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Maes, W. H., Fontaine, M., Rongé, K., Hermy, M., & Muys, B. (2011). A quantitative
indicator framework for stand level evaluation and monitoring of environmentally
sustainable forest management. Ecological Indicators, 11(2), 468–479.

Majumder, S., Roy, S., Bose, A., & Chowdhury, I. R. (2023). Understanding regional
disparities in healthcare quality and accessibility in West Bengal, India: A
multivariate analysis. Regional Science Policy & Practice, 15(5), 1086–1114.

McCahill, C., Jain, S., & Brenneis, M. (2020). Comparative assessment of accessibility
metrics across the US. Transportation Research Part D: Transport and Environment, 83,
Article 102328.

McGrail, M. R., & Humphreys, J. S. (2009). Measuring spatial accessibility to primary
care in rural areas: Improving the effectiveness of the two-step floating catchment
area method. Applied Geography, 29(4), 533–541.

Mortazavi, S. A. H., & Akbarzadeh, M. (2017). A framework for measuring the spatial
equity in the distribution of public transportation benefits. Journal of Public
Transportation, 20(1), 44–62.

Mouratidis, K., & Papagiannakis, A. (2021). COVID-19, internet, and mobility: The rise of
telework, telehealth, e-learning, and e-shopping. Sustainable Cities and Society, 74,
Article 103182.

National Health and Family Planning Commission of China. (1989). The measures for the
administration of the hospital grade.

Niu, Q., Wang, Y., Xia, Y., Wu, H., & Tang, X. (2018). Detailed assessment of the spatial
distribution of urban parks according to day and travel mode based on web mapping
API: A case study of main parks in Wuhan. International Journal of Environmental
Research and Public Health, 15(8), 1725.

Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., & Vinck, P.
(2020). Mobile phone data for informing public health actions across the COVID-19
pandemic life cycle. Science Advances, 6(23), eabc0764.

Pereira, R. H., Schwanen, T., & Banister, D. (2017). Distributive justice and equity in
transportation. Transport Reviews, 37(2), 170–191.

Radke, J., & Mu, L. (2000). Spatial decompositions, modeling and mapping service
regions to predict access to social programs. Geographic Information Sciences, 6(2),
105–112.

Rong, P., Zheng, Z., Kwan, M. P., & Qin, Y. (2020). Evaluation of the spatial equity of
medical facilities based on improved potential model and map service API: A case
study in Zhengzhou, China. Applied Geography, 119, Article 102192.

Shanghai Statistical Bureau. (2021). Shanghai statistical yearbook. Beijing: China
Statistical Press. Retrieved from https://tjj.sh.gov.cn/tjnj_rkpc/20220829/73
4169a3ce96405e88917bebd78376bf.html Accessed June 24, 2023.

Shanghai Statistical bureau. (2023). Statistical communiqué of Shanghai on the 2022
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