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Abstract—Recently, the synergy of physics-based feature engi-
neering and data-intensive methods, including machine learning
and deep learning, has ushered in a new era in the analysis
and prediction of space weather forecasting, specifically for solar
flare prediction. These sophisticated approaches play a pivotal
role in understanding the complex mechanisms leading to solar
flares, with a primary focus on forecasting these events and
mitigating potential risks they pose to our planet. While current
methodologies have made substantial advancements, they are
not without limitations, and one particularly glaring limitation
is the neglect of temporal evolution characteristics within the
active regions from which solar flares originate. This oversight
impairs the capacity of these methods to capture the intricate
relationships among high-dimensional features of these active
regions, thereby constraining their practical utility. Our study
focuses on two key objectives: the development of interpretable
classifiers for multivariate time series data and the introduction of
an innovative feature ranking method using sliding window-based
sub-interval ranking. The central contribution of our work lies in
bridging the gap between complex, less interpretable “’black-box”
models typically employed for high-dimensional data and the
exploration of pertinent sub-intervals within multivariate time
series data, with a specific emphasis on solar flare forecasting.
QOur findings underscore the efficacy of our sliding-window
time series forest classifier in solar flare prediction, achieving
a True Skill Statistic of over 85%. Our approach is capable of
pinpointing the most critical features and sub-intervals relevant
to any given learning task. These results indicate significant
progress toward improving the interpretability and accuracy of
flare prediction models, further advancing our understanding of
these impactful events.

Index Terms—Multivariate Time Series Classification, Solar
Flare Prediction, Interval-based Classification

I. INTRODUCTION

Solar flares are intense localized eruptions of electromag-
netic energy from the Sun’s atmosphere that could last from
minutes to hours. The sudden outburst of energy caused
by solar flares travels approximately at the speed of light
and can be accompanied by other solar phenomena such as
coronal mass ejections (CMEs), which can potentially lead to
devastating geomagnetic storms, massive radio collapse on the
sunlit side of Earth, and disruption of sensitive space devices
close to Earth. Current physics-based and data-driven (i.e.,
machine learning-based) methods [16] analyze these events as
predictive learning tasks, with the most commonly used data
products [[18] derived from solar magnetograms.

In recent times, the field of flare prediction has witnessed an
influx of methodologies and corresponding models, primarily

approaching it as a classification task based on point-in-time
measurements. However, these approaches often overlook the
intrinsic time-dependent nature of the data, failing to account
for its temporal evolution characteristics (as discussed in [8])).
They tend to treat multiple physical observations as isolated
entities, generating predictions solely based on instantaneous
values [6]]. Such an approach disregards the dynamic essence
of solar flares, which exhibit characteristics intricately tied to
the evolving behavior of solar active regions [S] [[13]] [14].

By analyzing the temporal characteristics of time series
intervals, we have the potential to unveil implicit relationships
and capture pertinent patterns. In our earlier work [10], we
applied ensembles of interval-based time series classification
models to multivariate time series data, leveraging a set of
interval features. However, these models lack the capacity
to handle a systematic evaluation of the underlying temporal
characteristics for identifying critical predictive features due
to two reasons: (1) random sub-interval sampling and (2)
late fusion of derived features. Hence, the primary focus
of this study is on interpreting statistical features extracted
from multivariate time series. We aim to identify sequences
of features and associated patterns using multi-scale sliding
windows with varying interval sizes and step sizes, thus
enabling a more comprehensive understanding of the temporal
dynamics inherent in solar flare prediction.

The rest of the paper is structured as follows: Section
provides background information on existing time series
classification models pertinent to flare prediction. In Sec-
tion we provide our problem formulation and introduce
our multivariate time series classification model and feature
ranking method used for extracting relevant feature intervals
from provided time series data. Our experimental setup and
evaluation framework are presented in Section Finally,
Section [V| provides conclusions drawn from our study and
discusses potential avenues for future research.

II. RELATED WORK

With the proliferation of available time series data sets [|17]]
and a wide spectrum of machine learning-based techniques
proposed for time series classification, commonly used algo-
rithms make predictions by measuring the similarity between
training/testing instances [4]], [3]l, [15] or by utilizing temporal
features extracted from full time series or subsequences within
these time series instances to capture associations between



target variables and time series instances. For instance, in [[12],
basic statistical features (e.g., mean and standard deviation)
were extracted from global time series and used as input
for a multi-layer perceptron network, yet neglecting localized
informative characteristics and properties.

Feature-based classification methods face challenges when
dealing with multivariate time series data, as they require
additional intricate information across features. Generating
discriminating features in high-dimensional spaces becomes
difficult due to the unknown interrelations among input pa-
rameters of the multivariate time series, therefore, adding
complexity to model construction. Various techniques focus
on extracting relevant features in multivariate aspects and
then applying traditional machine learning algorithms for
classification. Methods such as Shapelet-based decision trees
[19] can effectively capture local patterns in multivariate time
series data but also can be computationally expensive and hard
to identify relevant shapelets (especially in high dimensional
spaces) that are both informative and applicable across dimen-
sions. Another problem is that the shapelets extracted from
one multivariate time series dataset might not generalize well
to other datasets with different dimensionality, characteristics,
and patterns. To mitigate these issues, Time Series Forest
(TSF) [7] incorporates subseries, but instead of relying on
distance measurement from learned subsequences, it derives
summarized statistical features within randomly selected time
series. It treats each time step as a separate component and
constructs decision trees in each feature dimension to capture
temporal relationships and reduce the high-dimensional feature
space. However, important interrelationships between different
components of the time series cannot be fully captured by
treating them as separate features, which can lead to a loss
of inter-channel relationships and dependencies that are often
crucial in multivariate time series data. Understanding the
combined effects of multiple trees on multivariate time series
data might be less intuitive compared to single decision trees.

Many of these methods focus solely on understanding how
each feature behaves on its own, without considering how
different features might interact. There are instances where
a particular relationship within a single time series parameter
might be significant for a specific feature, but not necessarily
for others. When trying to generate features that effectively
differentiate classes, it is more advantageous to select the
most relevant time intervals to create a more robust model.
However, identifying these relevant intervals is not an easy
task as they typically cannot be directly determined and
require an expensive search across the entire series. Being
able to extract the underlying mutual information present in
these relevant intervals can enhance our understanding of the
predictive process and accelerate the transition from research
to operations in flare forecasting models. Our objective in this
work is to establish a framework that can recognize these
characteristics and offer deeper insights into the behavior of
classifiers during prediction tasks.

III. METHODOLOGY

In this section, we will outline our approach, including the
statistical features derived from time intervals, the introduction
of the sliding-window time series forest, and the technique we
employ to rank our features.

1) Problem Formulation: The sliding-window multivariate
time series forest is an early fusion, interval-based ensem-
ble classification method. We present an illustration of the
overview of how we generate features with a sliding window
operation in Fig. [T} It employs a multitude of preferably short
decision trees, similar to random forests, that make use of
interval-based features extracted from all univariate time series
using multi-scale sliding windows. By combining the features
from univariate time series early, we aim to understand the
relationships among these features, utilizing an embedded fea-
ture ranking based on mutual information. Formal definitions
and explanations for processing the multivariate time series
and extraction of vectorized features are provided from our
previous research [9].

2) Interval Features: To generate well-structured and rele-
vant intervals, we calculate statistical characteristics for inter-
vals, including mean, standard deviation, and slope. In addi-
tion, we derive additional transformed features (i.e., maximum,
minimum, and mean) comprising an additional localized pool-
ing procedure, which is used on the individual interval features
extracted from a set of consecutive intervals obtained after
sliding window operation. In this process, all potential interval
sets originating from the same time series are collected, and
pooling functions are applied for consolidation. Essentially,
during this stage, we consider the highest, lowest, and average
values of statistical properties from each parameter of each
subseries obtained through sliding window operations. A de-
tailed description of the extraction and transformation process
can be found in our previous research [9].

3) Sliding Window Multivariate Time Series Forest: After
extracting interval features from subsequences obtained after
sliding window operation and applying secondary transforma-
tion to these statistical attributes, we merge these two groups
of derived features into an input vector. This vector serves as
the foundation for creating a versatile time series classifier we
refer to as Slim-TSF. Among the wide array of supervised
learning models available for making predictions, we have
chosen random forest classifiers for two reasons: (1) their
effectiveness and resilience when dealing with noisy, high-
dimensional data and (2) due to their ability to select the most
relevant features from a given dataset w.r.t. a target feature.

It is important to highlight that depending on the chosen
parameter settings, such as using smaller window and step
sizes, the interval feature vectors’ data space can expand
considerably. Additionally, the process of vectorization, based
on the sliding window approach, may generate data points
that exhibit some degree of correlation and potential noise.
Consequently, it is important to systematically identify and
remove these features. This is achieved through the application
of information-theoretic relevance metrics (e.g., Gini index or
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Fig. 1: The overview of the sliding window-based statistical feature generation. We first generate subsequences (intervals) with
a fixed-size sliding window and step size. Then, we create vectorized features from these intervals where these features can be
used as input for the sliding window multivariate time series forest (a random forest built on multivariate time series features)

and features are ranked with aggregated relevance scores.

entropy). This meticulous feature selection process ensures the
efficacy of our approach by retaining only the most informative
attributes while discarding redundant ones.

4) Feature Ranking: An important aspect of our proposed
Slim-TSF model is its ability to provide a synchronized and
integrated feature selection and learning process. For ranking
the features, we make use of the feature importance scores,
which quantify the relevance and contribution of individual
features derived from univariate intervals. Various feature
importance scores can be used (such as the mean decrease in
impurity (i.e., the impact of a feature on reducing classification
uncertainty within the model) or feature permutation (i.e., the
extent to which randomly shuffling features’ values affects the
model’s performance)). In essence, for ranking the features, the
sorted feature importance scores from a series of trained Slim-
TSF models are aggregated. Note that the scores are given
for vectorized input data for random forests; however, we are
interested in the ranking of specific intervals of parameters.

Our ranking methodology involves a systematic process
conducted through multiple experiments, denoted by the total
number N, each executed with distinct experimental config-
urations. This is analogous to a grid search process. These
experiments yield individual feature rankings, denoted as exp;,
where j signifies a specific experiment. The ranking, denoted
as 7, is a mapping that assigns a rank ¢ to each feature,
reflecting its position within the ranking. In each experiment,
the features are ranked to create a specific ordering, denoted as
7.4, which designates that feature f has achieved the i*" rank
in that particular experiment. Subsequently, the top-k features
selected for inclusion in the selected feature set, denoted as
SFS;, within each individual experiment j are determined
from the ranking r (i.e., include features whose rank is less
than or equal to k). This selected feature set is represented
as {rri1,752,....,77k}. In the end, the selected feature set
across all experiments are aggregated by surﬂliig the sparse
representation of top-k membership vectors (SF'S;) from each
experiment (as in Eq. [I).

SFS= " SFS, (1)

j=1,N

This approach allows for a systematic and consistent method
of selecting top features across multiple experiments, en-
hancing the robustness and reliability of the feature selection
process. Furthermore, we create a counting vector per each
interval of each parameter, denoted as ct, to represent the
value counts of individual intervals in the selected feature
set SF'S. This counting vector serves as a transformation
function, indicating the frequency with which a given interval
appears within the top-k selections of the feature set.

IV. EXPERIMENTAL EVALUATIONS

The experiments conducted in this study are designed with
two primary objectives. Firstly, they aim to demonstrate the
effectiveness of time series classifiers developed using distinct
interval features and to perform a comprehensive performance
comparison among them. Another key objective is to identify
the intervals within the time series that hold the greatest
relevance to the initial time series. This effort is primarily
designed to offer interpretable insights into our model. It in-
volves pinpointing the specific segments of the time series that
exert significant influence on predictions and understanding the
aggregation strategies that can lead to more accurate outcomes.

A. Data Collection

For the solar flare prediction task, we utilized the SWAN-
SF dataset, an open-source multivariate time series dataset
introduced in [2f. This dataset provides comprehensive space
weather-related physical parameters derived from solar magne-
tograms, integrating data from various solar active regions and
flare observations. Our experiments (both classification and
feature ranking) include the entire 24 active region parameters
available. These parameters were chosen as they are widely
recognized as highly representative features of solar activity.

Notably, flare intensity is determined by the logarithmic
classification of peak X-ray flux, categorized into major flaring
classes (X, M, C, B, or A). For our analysis, we consider



instances labeled with M- and X-class flares as flaring (i.e.,
positive class), while relatively weaker C- and B-class flares
and flare-quiet regions as non-flaring (i.e., negative class). This
binary classification approach allows us to model the flare
forecasting problem as a binary multivariate time series clas-
sification task. Throughout our studies, we employ Partitions
1, 2, 3, and 5 for training purposes, reserving Partition 4 for
testing. Partition 4 was chosen due to its relatively balanced
distribution of flaring and non-flaring instances, facilitating a
more rigorous evaluation of classifier performance.

B. Experimental Settings

In assessing the performance of our model, we adopted a
binary 2 x 2 contingency matrix, complemented by a set of
evaluation metrics suitable for assessing the forecast accuracy.
In this context, True Positives (TPs) and True Negatives repre-
sent instances where the model correctly predicts a flaring or
non-flaring event, respectively. False Positives (FPs) represent
false alarms (incorrect flaring predictions) and False Negatives
represent misses (incorrect non-flaring predictions).

Within our study, we employ two widely recognized skill
scores for rigorous evaluation: the True Skill Statistic score
(TSS, in Eq. [2) and the Heidke Skill Score (HSS, in Eq. [3).
The TSS score quantifies the disparity between the Probability
of Detection (i.e., recall for the positive class) and the Prob-
ability of False Detection (POFD). The HSS score measures
the forecast’s improvement over a climatology-aware random
prediction.

TP FP
TSS = p T FN " FPLTN @)
Hog_ 2 (TP-TN) - (FN-FP)) )

P (FN+TN)+N-(TP+FP)

C. Experiment 1: Window Size Comparison

This experiment aims to investigate the relationship within
our multivariate time series dataset under different window
size configurations so that we can reveal interval features
that hold greater significance for a predictive task, thereby
facilitating the interpretation of the model’s feature selection
process. To pinpoint intervals of interest, we employ our fixed-
size sliding window approach with three specific settings:
window sizes of 8, 15, and 30, each corresponding to step sizes
of 4, 8, and 15, respectively. This methodology effectively
partitions the original time series into additional intervals
based on these pre-defined window sizes. Subsequently, we
associate these candidate intervals with statistical functions,
encompassing measures such as mean, standard deviation, and
slope, to generate descriptive interval features. The primary
objective is to assess the predictive capabilities of these derived
features. To achieve this, we train our Slim-TSF classifier
individually for each window size setting.

It is worth noting that these models are trained on a notably
imbalanced class distribution, with a ratio of approximately
1:50 between our positive (flaring) and negative (non-flaring)

classes, following the original SWAN-SF benchmark dataset.
To address this imbalance, we conduct a set of additional
experiments involving class weight adjustments. Three distinct
sub-experiments are conducted, each revealing unique insights
into the use of only the sliding window slices, secondary
transformations, and the combination of both.

The outcomes of our experiment are presented in Fig.[2aland
illustrating forecast skill scores measured by TSS and HSS
as labeled heatmaps. This evaluation encompasses a range of
class weight settings and pre-defined window sizes. Examining
the results, it is evident that Slim-TSF models developed under
various window size configurations are fairly consistent across
different window size settings with respect to TSS and HSS.
Overall the best results are achieved with features with window
size=8 (on average TSS ~68.9% and HSS ~ 38.6%), but the
difference between different window sizes is not substantial.
We note that by using larger window sizes, one can improve
the data and computational efficiency of the models, trading
off the accuracy.

Furthermore, as we fine-tune class weights (from 1:5 to
1:10), we observe a well-known trend [1]]. The TSS perfor-
mance of our Slim-TSF model experiences a modest increment
with higher class weight allocation for the XM class. However,
this improvement comes at a trade-off, as it corresponds to
a reduction in HSS. It is important to note that the overall
effectiveness of a forecasting system can be compromised if all
predictions are disproportionately assigned to the CBN classes,
potentially leading to lower skill scores (closer to no-skill
baselines). Although the TSS of the Slim-TSF model exhibits
a marginal increase with higher XM class weight, it results in
a relatively diminished HSS skill score and model robustness.

D. Experiment 2: Top-5 Selected Parameters

Building upon the results of the prior experiments, this part
of our experiments focuses on assessing model performance
with a specific focus on the most relevant parameter selec-
tion. Here, we repeat Experiment 1 with only the five most
relevant parameters selected after determining the ranking
of our derived features. In this experiment, our goal is to
compare the predictive capabilities of Slim-TSF trained on
these most representative parameters. We demonstrate the
results of Experiment 2 in Fig. 2 and [2d

The results show that overall the performance of models
trained with selected parameters is similar to those using all
parameters in Experiment 1. We see significant improvements
in models trained with class weight {1:2}. This effect can
be attributed to the reduction in feature redundancy for more
balanced class weight settings (leading to a more streamlined
feature set). In other class weight settings, we observe up to
8% decrease in TSS and up to 5% decrease in HSS. Never-
theless, the best results (i.e., more balanced skill scores (e.g.,
TSS ~0.77, HSS ~0.40 at WS=30 and class weight={1:9})
have fairly similar skill scores. This result demonstrates the
overall effectiveness of our parameter ranking method and its
applicability to reducing the computational cost.
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Fig. 2: Heatmap representation of sliding window multivariate time series forest evaluation with 24 parameters and evaluation
with top-5 selected univariate parameters. The parameter selection process is performed post-hoc and models are retrained
with five highly ranked parameters. The x-axis corresponds to different class weight settings while the y-axis corresponds to
the resulting TSS (a) and HSS (b) scores for each experiment. Three sub-experiments are conducted: (i) using only the sliding
window slices (ii) only the secondary transformation, and (iii) combining both.

E. Experiment 3: Ex-ante Feature Selection

In our last set of experiments, we investigate the effective-
ness of early embedded future selection, this time applied
directly to all statistical features. The rankings of the indi-
vidual features are obtained after training a set of Slim-TSF
classifiers from some considerably smaller random subsets
of all training data. The subsets are obtained after stratified
sampling with replacement (similar to bootstrapping). The
aggregated rankings from classifiers are used to determine the
Top-5 most relevant statistical interval features. Then, a Slim-
TSF classifier is trained only with the Top-5 most relevant
features. By doing so, we create a much leaner training dataset
(using Top-5 features instead of hundreds) for our Slim-TSF
models. This procedure is repeated with different class weight
and window size settings similar to Experiments 1 and 2,
and results are demonstrated in Fig. [3] Note that in this
experiment, we only use the combined features (both interval
and transformed features).

Our results show that Top-5 most relevant features found
by ex-ante feature selection (early embedded selection with
bootstrapping) have particularly high skill scores. We obtain
our overall best performances from window size=15 setting

(with class weights {1:6}, {1:7}, and {1:8}): TSS in 0.81 to
0.86 and HSS in 0.43 to 0.46. These scores are higher than
both Exp 1 and Exp 2, suggesting that highly relevant statis-
tical features, with hyperparameter optimization, can provide
the best results. We note that the experiments with window
size=30 settings show relatively lower performance, which can
be attributed to a lack of fine-grained temporal information.

F. Remarks

Our experimental evaluations show primarily two things: (1)
flare prediction models trained using the Slim-TSF method
can effectively predict flares and (2) the embedded feature
ranking method can convincingly be utilized such that it can
help to identify the most relevant parameters and intervals
within those parameters and/or significantly reduce data size
while maintaining similar skill scores. Specifically, the ex-
ante feature selection experiments (Exp 3) showed that highly
skilled classifiers (with more balanced TSS and HSS) can be
trained using much leaner datasets and much smaller forests.

We note that transformed (pooled) features have less impact
and models solely trained on those features have lower skill
scores. Across different window size settings, we generally ob-
serve better accuracy with lower window size values, meaning
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the temporal granularity of sliced intervals plays an important
role or in other words statistical features derived from higher
window sizes lack the details important for predictive targets.
Overall, our results show better performance in solar flare
forecasting when compared to traditional time series forest
models and deep learning models [I1]].

V. CONCLUSIONS AND FUTURE WORK

This study presents a novel multivariate time series clas-
sifier using interval-based features generated using sliding
window operations that can also be used for ranking important
features, intervals, and transformed pooling features. Our
primary goal in this work is to improve the interpretability
of high-dimensional multivariate time series classifiers. By
combining interval-based feature ranking with random forest
classification, our approach improves the interpretability of the
trained model and enhances its predictive power and resilience
to overfitting, thus making it suitable for a wide range of
classification tasks with potentially noisy high-dimensional
data. An important contribution of our work lies in improving
the understandability of high-dimensional classification pro-
cesses and the investigation of critical sub-intervals within
multivariate time series, particularly their relevance in the
context of solar flare prediction. As for future work, we plan
to expand the temporal granularities of window size/step size
combinations, explore additional ranking metrics, and explore
other data fusion approaches.
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