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Abstract

Context contributes to multiple aspects of human episodic memory including segmentation and
retrieval. The present studies tested if, in adult male and female mice, context influences the
encoding of odors encountered in a single unsupervised sampling session of the type used for the
routine acquisition of episodic memories. The three paradigms used differed in complexity (single vs.
multiple odor cues) and period from sampling to testing. Results show that males consistently encode
odors in a context-dependent manner: the mice discriminated novel from previously sampled cues
when tested in the chamber of initial cue sampling but not in a distinct yet familiar chamber. This
was independent of the interval between cue encounters or the latency from initial sampling to
testing. In contrast, female mice acquired both single cues and the elements of multi-cue episodes,
but recall of that information was dependent upon the surrounding context only when the cues were
presented serially. These results extend the list of episodic memory features expressed by rodents and

also introduce a striking and unexpected sex difference in context effects.
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Introduction

Human episodic memory involves the encoding of multiple events into narrative sequences, minimally
including the identity and location of items and the order in which they appeared (i.e., ‘what’, ‘where’, and
‘when’ information) (Tulving, 1972, 1983; Staniloiu et al., 2020). The requisite encoding occurs routinely as
part of daily life without repetition or explicit rewards, such as a first time walk across a park (Dede et al.,
2016); these features distinguish episodic memory from trial and error learning. Despite the rapid and
spontaneous nature of such "unsupervised" learning (Barlow, 1989), episodic memories can incorporate a
remarkable amount of information and accommodate very different intervals (seconds to minutes) between
cues or events (Dede et al., 2016). The incidental, and generally single-trial, nature of episodic encoding
presents difficulties for rodent studies but the strong tendency of the animals to investigate novel stimuli or
locations can be used to partially compensate for the absence of behavioral shaping (Dix and Aggleton, 1999).
Single trials and novelty form the basis for widely used rodent memory tests including Object Location and
Novel Object Recognition paradigms (Ennaceur and Delacour, 1988; Ennaceur et al., 1997). Several studies of
this type have provided evidence that rats and mice readily learn the identities, locations, and serial order for
multiple cues (Hannesson et al., 2004; Kart-Teke et al., 2006; Fouquet et al., 2010; Allen et al., 2014; Barker
and Warburton, 2020) under conditions not unlike those found in human studies of episodic memory.

However, the extent to which rodents express other characteristics of an episode is uncertain.

We developed a set of relatively simple protocols using multiple odor cues to assess facets of episodic
encoding in rodents; this included a task with serial cue presentation to reflect the typical distribution of
elements and events encountered across time within a behavioral episode (Staniloiu et al., 2020). Using these
paradigms, we verified that that mice and rats acquired ‘what’, ‘where’, and ‘when’ information after one-time
sampling of the stimulus set (Wang et al., 2018b; Cox et al., 2019; Amani et al., 2021; Le et al., 2022a).
Encoding exhibited the temporal flexibility described for human studies in that retention scores were not
detectably different for intervals of 30 sec vs. 5 minutes between cues. A subsequent experiment using the
same testing procedures provided evidence that transfer of episodic information into long-term storage by rats
is promoted by a strong stimulus occurring shortly after the sampling of multiple cues (Quintanilla et al.,

2021), an effect that may be analogous to ‘flashbulb memory’ described for humans (Brown and Kulik, 1977,
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Talarico et al., 2019). Finally, and as with human episodic memory, the hippocampus proved to be critical for

learning the three basic elements of an episode in the multiple odor paradigms (Cox et al., 2019).

The present studies tested if another essential feature of human episodic memory — context-dependency
(Barak et al., 2013; Staudigl and Hanslmayr, 2013) — is also evident in mice using the above odor-based
paradigms and measures of ‘what’ encoding. Retrieval often begins with a memory search for the situation in
which the series of events occurred, followed by readout of specific items (Eacott et al., 2005). There is also
evidence that the critical process of segmenting the flow of experience into individual episodes depends on a
shift in context, as exemplified by the ‘through the doorway’ effect (Smith and Mizumori, 2006; Horner et al.,
2016). Studies in rodents have identified circumstances in which incidental encoding of cue pairs is linked
with context (Dix and Aggleton, 1999; Eacott and Norman, 2004; Norman and Eacott, 2005; O'Brien et al.,
2006; Piterkin et al., 2008; Davis et al., 2013; Seel et al., 2018; Barker and Warburton, 2020). Here we tested
if memory retrieval for material presented in sessions with the above noted episodic characteristics is
dependent upon the context of initial cue exposure, if such effects differ between the sexes and, for females,
between estrous states. There is a sizeable literature describing relative advantages for men and women on
different aspects of episodic memory (Herlitz et al., 1999; Loprinzi and Frith, 2018; Asperholm et al., 2019;
Voyer et al., 2021) but sex differences in context dependency are rarely considered. Our results indicate that
there are marked sex differences in reliance upon context for accessing episodic content and that these context

effects are stronger in male than female mice independent of estrous state.

Materials and Methods.

Adult male and female sighted-FVB129 wild-type mice (2-5 months old) were used. Animals were group
housed (3-5/cage) in rooms (68°F, 55% humidity) on a 12-hr light/dark cycle with lights on at 6:30AM and
food and water were given ad [libitum. Behavioral experiments were performed between 10AM-3PM. Mice
were not handled prior to experimental procedures. For females, estrous cycle stage was assessed by vaginal
lavage (McLean et al., 2012) prior to experimental use to distinguish mice in proestrus (the phase of relatively
high circulating and hippocampal estrogen levels (Kato et al., 2013)) from those outside proestrus (i.e., in

estrus, diestrus and metestrus). Experiments using the simultaneous 4-odor task evaluated females both within



87

88

89

90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107

108
109
110
111

112

and outside proestrus; other tasks employed females outside proestrus. All experiments were conducted in
accordance with the National Institutes of Health Guide for the Care and Use for Laboratory Animals and
protocols approved by the Institutional Animal Care and Use Committee at the University of California,

Irvine.

General Procedures for all behavioral tasks. Naive mice were tested for the effect of context on evidence
for acquisition of cue identity (a.k.a., ‘what’ information) in three tasks that did not entail rehearsal or reward.
This included a single-cue (odor) discrimination task, and tasks involving multiple cues presented serially or
simultaneously (referred to here as the serial cue and 4-odor ‘What’ tasks, respectively). These particular
paradigms were considered important for identification of potential context effects on encoding the identity of
multiple vs. individual cues (4-odor vs single odor tasks), on long term retention of memory for cue identity
(24 hours from sampling to testing for the 4-odor task only), and on encoding cues presented in series and,
thus, over time (serial odor task). All three tasks used odorants previously established to be of equivalent
interest to mice (Wang et al., 2018b; Cox et al., 2019; Le et al., 2022b) (Supplementary Table 1). The
odorants were dissolved in mineral oil and 100 pl was pipetted onto filter paper immediately before behavioral
testing. For odor presentation, the scented filter paper was placed into either a 5.2-cm diameter, 5-cm tall glass
jar with a 15-mm sample port hole in a white metal lid (Wang et al., 2018b; Cox et al., 2019; Le et al., 2022b)
or, for a subset of mice in the serial cue “What’ task, into a 6-cm diameter, 11.25-cm tall pointed plastic
cylinder with a 15-cm sample port on the side. The time spent sampling the odors was measured by offline
analysis from video recordings, that were collected from all behavioral sessions, by observers blind to group
(jars) or by automated quantification of infrared beam breaks (cylinders). Results obtained with the two odor

presentation containers were similar and data were combined.

For all three tasks, on Day 1 mice were first habituated for 20 min each to two distinct arenas (Square:
23w x 30d x14.5h cm rectangle with a checkerboard pattern on opposing walls, other walls were white.
Round: 25-cm diameter cylinder with 24-cm high walls and horizontal stripes on one hemisphere, the other
hemisphere was solid gray) (Fig. 1A). Distant visual cues were the same across all behavioral sessions. The

following day (Day 2), each mouse was placed into one of the two arenas containing unscented containers for
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a short period of exploration before cue presentation.

Single-odor ‘What’ task. On Day 2 each mouse was placed in one of the two arenas (square or round)
containing two odorless containers for 2 minutes. A pair of identically scented (A:A) jars was then introduced
and the mouse was allowed to freely sample the cues for 2 minutes (Fig. 1B) with timing, in this and other
tasks, initiated when both odors had been sampled. The cues were removed and the mouse remained in the
chamber for 10 minutes. This holding time was chosen to approximate the total time from initial odor
exposure to testing in this and the serial cue “What’ task (see below). For testing, the mouse was then placed
into either the same arena as initial odor presentation (SAME) or the different but familiar arena (DIFF) that
contained jars scented with familiar odor A and novel odor D and were allowed to freely sample the scented
jars. Sampling of the test odors during the following 3 minutes was quantified by observers blind to group
from video recordings. For this and other tasks, the arena locations of the novel vs. previously sampled cues
were counterbalanced across mice, as was the arena used for the initial odor exposure (i.e., square vs round).
This paradigm is similar to that employed by O’Brien et. al. (2006) for analysis of context effects on object

recognition in rat with the exception that our studies employed a single trial.

Serial Cue ‘What’ task. On Day 2, after 2 min in the unscented arena, each mouse was presented with a
sequence of three identical-odor pairs (A:A, B:B, C:C), placed in the same fixed locations in the arena for each
pair (Fig. 1A). They were allowed to explore each odorant pair for 2 minutes. There was a 1-min delay
between presentations of successive odor pairs. After the last odor pair presentation, the mouse was moved
briefly to a holding bin (~2 min). They were then placed into either the SAME arena as initial odor series
presentation or the DIFF arena and allowed to explore for 1 minute before being presented with a final test
odor pair that included one odor from the initial sampling series and one novel odor (e.g., A:D). Sampling of

the test odors during the following 3 minutes was quantified from video recordings or records of beam breaks.

Simultaneous 4-odor ‘What’ task. On Day 2 the mice were placed in one of the arenas (square or round)
with unscented jars for 5 minutes. After a one minute delay, four jars, each containing one of 4 distinct scents

(A:B:C:D), were placed at four equidistant locations in the field and mice were allowed to investigate the
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odors for five minutes after which they were returned to their home cage (Fig. 1C). On Day 3, 24 hours after
initial odor exposure, the mice were placed into either the SAME or the DIFF arena containing three of the
originally sampled cues and one novel cue (A:B:C:E) placed in the original cue locations and were allowed to
freely sample the cues for 5 minutes. With this design the acquisition and retention phases are separated 24-
hours thereby allowing tests of females that were in in proestrus or non-proestrus stages on Day 2 only (i.e.,

during initial cue sampling).

Statistics. All data presented in the text and figures are group mean + SEM values. Graphs present either the
cue sampling time (in seconds), the discrimination index (DI), or z-scores. The DI for the single-odor and
serial cue tasks was calculated as: (tnovel— tramitiar) / (torar) X 100, with ‘t” denoting the sampling time in seconds.
For the 4-odor ‘What’ task, the DI was calculated as (tyovel — tmean famitiars) / (totar) X 100. Individual z-scores of
DIs and total cue sampling times for DIFF relative to SAME group mice were calculated as: (individual
valuepirry — mean valuesame))/(standard deviationsame)). Statistical significance (p<0.05) was determined
using GraphPad Prism (v6.0). The two-tailed paired or unpaired t-test was used for comparing two groups. In

plots of quantitative results, asterisks denote level of significance with *p<0.05, **p<0.01 and ***p<0.001.

Results

Context potently affects retention scores for odor cues in male mice.

We tested if encoding the “What’ aspect of episodic-like memory is dependent upon context using three
different tasks that employed overlapping sets of odor cues and did not entail repeated trials or rewards (Cox et
al., 2019). For each, the mice were allowed to initially explore the cues in one of two familiar test chambers
(square or round) and then, for retention testing, they were presented with an initially sampled cue (or cues)
and a novel cue in either the same chamber as initial sampling (SAME) or the different (DIFF) chamber (Fig.

1). In each case, preferential exploration of the novel cue was interpreted as evidence for encoding.

In the simple, single-odor test, male mice spent more time exploring the novel odor vs the familiar odor
when tested in the SAME chamber as initial sampling (Novel 8.57+1.67 vs. Familiar 3.2440.55 seconds;
p=0.04; two-tailed paired t-test). In contrast, mice tested in the DIFF chamber did not show preference for

either cue (Novel 9.72+1.21 vs. Familiar 11.742.29 seconds; p=0.44) (Fig. 2A, left). This resulted in
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significantly different DIs for tests in the SAME vs. DIFF arenas (32.8+11.9 vs. -5.26+9.62, respectively;
p=0.027, two-tailed unpaired t-test) (Fig 2A, right).

Effects of context were also evident in the long delay, simultaneous 4-odor ‘What’ task (Fig. 2B). As
previously reported (Cox et al., 2019; Quintanilla et al., 2021), male mice tested 24 h after initial sampling of
four odors preferentially explored the novel cue vs. the mean of three familiar cues (p=0.002, two-tailed paired
t-test) when retention sessions were conducted in SAME arena. However, when tested in the DIFF context,
mice did not exhibit any bias for the novel odor (p=0.313, Fig. 2B, left), and, in agreement with this, their DI
was notably smaller than those tested in the SAME chamber (DIFF vs. SAME: 4.93+4.21 vs. 28.44+5.93;
p=0.006, two-tailed unpaired t-test) (Fig. 2B, right).

Finally, and in accord with previous studies using unsupervised learning (Hannesson et al., 2004; Dere
et al., 2005; Babb and Crystal, 2006; Cox et al., 2019), male mice presented with a series of cues in the Serial
‘What’ task displayed a clear preference for sampling the novel cue when the retention trial was administered
in the SAME chamber, (p<0.0001). In contrast, mice tested in the DIFF chamber did not preferentially explore
the novel cue (p=0.061, two-tailed paired t-test) (Fig. 2C, left). Thus, mice tested in the SAME chamber
exhibited a significantly higher DI than those tested in the DIFF chamber (p=0.02, two-tailed unpaired t-test)
(Fig. 2C, right).

In male mice there was also an effect of context on the total cue sampling time during the retention trial.
In the single-odor paradigm, the total cue sampling time was greater in mice tested in the DIFF chamber than
those tested in the SAME chamber (p=0.026, two-tailed unpaired t-test) (Fig. 2D). Similarly, in the 4-odor
task, the total sampling time was greater for DIFF vs SAME group mice (p=0.008) despite the 24-hour interval
between sampling and testing (Fig. 2E). In contrast, there was no significant context effect on total sampling

time in the serial cue task (p=0.447) (Fig. 2F).

Context had little effect on episodic memory in females:

A number of studies have described sex differences in human (Herlitz et al., 1999; Asperholm et al.,
2019; Voyer et al., 2021) and rodent (Le et al., 2022b) episodic memory but it is unclear the extent to which

such effects extend to context dependency. The present analysis of context effects on episodic ‘What’
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encoding indicates that there are indeed major male/female differences. In the single-odor task, female mice
that were outside proestrus (non-proestrus) during initial cue sampling, preferentially investigated the novel
cue when retention was assessed in either the SAME (p=0.013, two-tailed paired t-test) or DIFF (p=0.007)
arena (Fig. 3A, left); there was no difference between the DIs for the two groups (p=0.713; two-tailed
unpaired t-test) (Fig. 3A, right). Comparable results were obtained in the free exploration, 4-odor ‘What’ test.
Females outside proestrus during initial sampling, tested in either the SAME or DIFF chamber, preferentially
explored the novel odor (SAME: p=0.006, DIFF: p=0.009, two-tailed paired t-test; Fig. 3B, left) and the DIs
for these two groups were not significantly different (p=0.976; two-tailed unpaired t-test) (Fig. 3B, right).

To identify potential effects of changes in circulating and hippocampal estrogen levels across the estrous
cycle (Kato et al., 2013), the 4-odor task was repeated in a cohort of female mice that were in a relatively high
estrogen state (proestrus) on the day of initial odor exposure. During this session, the total cue sampling time
was similar for mice within and outside proestrus (49.50+4.35 seconds, N=10 and 48.07+10.73 seconds,
N=12, respectively; p=0.44, 2-tailed unpaired t-test). At retention testing, females that initially sampled cues in
proestrus successfully discriminated the novel from the familiar odor when tested in either the SAME or DIFF
arena (p<0.016; Fig. 3C, left), and there was no group difference between the DIs (p=0.496; Fig. 3C, right).
Thus, performance was similar in females that initially sampled cues during estrous cycle stages with higher
(proestrus) and lower (non-proestrus) estrogen levels.

In contrast to performance in the single- and 4-odor tasks, there was a robust effect of context on female
performance in the serial odor task. Non-proestrus females tested in the SAME chamber discriminated the
novel cue whereas those tested in the DIFF chamber did not (p=0.023, Fig. 3D, left). In line with this, the DI
was significantly lower in the DIFF vs the SAME group (p=0.044, Fig. 3D, right).

Finally, and in further contrast to performance in males, there was no difference between females tested
in the SAME vs. DIFF arena with regard to total cue sampling time during retention testing for any group
(non-proestrus females in single-odor (p=0.541), 4-odor (p=0.681) or serial odor (p=0.703) tasks; proestrus
females in 4-odor task (p=0.47); Fig. 3E-H).

For statistical comparison of context effects on male and female performance, we plotted z-scores for

mice tested in the DIFF chamber (normalized to their respective SAME group) for both the discrimination
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indices and total cue sampling times during retention testing in each of the memory tasks. As shown in Figure
4A, there was a striking effect of context on learning (i.e., the DI) in males but virtually no effect of context in
females for both single odor and 4-odor tasks; thus, the male-to-female comparison was highly significant
(p=0.003 and p=0.004, single and 4-odor tasks, respectively; two-tailed unpaired t-test). For the serial odor
task, both sexes did not discriminate the novel cue when tested in the DIFF chamber and thus the sexes had
similar z-scores (p=0.27). Analysis of z-scores for total cue sampling times during retention testing confirmed
that the change in context had significantly greater effect on cue exploration in males as compared to females
for the single-odor (p=0.002) and 4-odor (p=0.033) tasks (Fig. 4B). Results for the serial odor task were again
distinctive in that the sexes had similar z-scores for sampling times (p=0.114). Together these results accord

with the conclusion that context had greater influence on episodic cue recognition in males than in females.

Discussion.

Context has played an important role in the evolution of thinking about the nature and uses of episodic
memory (Federmeier and Sahakyan, 2021) but the manner in which unsupervised experience becomes
associated with particular environments or occasions is still poorly understood. Animal studies, with their
attendant opportunities for experimental manipulations, could be of importance in addressing the issue but
lack an agreed upon description of what constitutes an episodic memory. The paradigms used in the present
experiments borrowed key features from a recent episodic memory study in which human participants had a
first time walk across a university campus (Dede et al., 2016). Accordingly, the results reported here describe
context-dependency in mice using episodic memory paradigms in which multiple cues were sampled on one
unsupervised occasion and the intervals between cue encounters were varied from seconds (4-odor task) to
minutes (serial cue task) in an effort to capture the temporal flexibility that was evident in the human study.

The results obtained using three different testing arrangements confirmed that male mice associate
context with cues sampled in a single unsupervised episode. Specifically, their normal, robust preference for a
novel odor was expressed only when tested in the same environment in which they had previously experienced
the comparator odor. The association of cue with context was evident when the mice initially sampled either a

single odor or multiple odors, simultaneously or in series, and then were presented with an initially sampled
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cue(s) vs. a novel one. These results raise the intriguing possibility that the multiple cue cases are a simple
extension of the events occurring in the single odor task such that context associates with each of the serially
sampled items (Fig. SA). An alternative hypothesis would be that the links form between the multiple cues and
the environmental context associates with one of these, which then prompts recall of the others (Fig. 5B).
Regarding this idea it would be informative to test if the effect of context is stronger for the first cue in a
presented series or the first cue investigated by the animal in a single sampling session as in the 4-odor task.

Remarkably, in contrast to effects in males, the testing context did not influence female performance in
the single odor or 4-odor tasks: The discrimination indices were comparable mice were tested in either the
SAME or the DIFF environment and without obvious effect of the estrous cycle. Males have a significant
advantage in spatial learning (Jonasson, 2005; Andreano and Cabhill, 2009; Asperholm et al., 2019), suggesting
a natural relationship between locations and contexts. That said, the chambers used here were differentiated by
shape and wall patterns rather than by landmarks that could be used to specify particular locations, and this
design may have influenced responses to the environment. Specifically, it is possible that males directed more
attention to the broader environment than females and, accordingly, were more likely to associate it with local
cues. Sex differences are described for exploratory and cue sampling behavior (Piber et al., 2018; Chen et al.,
2021) and include evidence that males navigate relative to geometric cues in the environment whereas females
are influenced by both geometry and landmarks (Korol et al., 2004; Koss and Frick, 2017; Yagi and Galea,
2019). Thus, an alternative possibility is that sex differences context effects could be due to females having
allocated more attention than males to local cues at the expense of encoding information about their
surroundings. The first of these hypotheses predicts that recognition strength for the context absent internal
cues will be stronger in males than females. The allocation of resources argument predicts that females will
outperform males on episodic memory problems other than those that are dependent on space (episodic
‘where’) for which males appear to have clear advantages. Both possibilities are amenable to testing.

Related to the above, males but not females explored the cues for longer periods when tested in the
DIFF chamber (where discrimination failed) as compared to the SAME chamber (where discrimination was
successful). This observation reinforces the conclusion that the previously sampled local cues were

experienced as being novel by the males when encountered in a different context. It has been reported that,
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males continue to explore options in earlier stages of rewarded learning when choices are not clear whereas
females tend to select an option and terminate exploration (Chen et al., 2021). In our tasks the males may have
continued to sample cues presented in the DIFF chamber because they could not identify the previously
sampled cue(s), and thus continued to explore all cues as though they were novel.

The one task in which females did exhibit context dependency entailed presentation of a series of novel
cues. “Context” can include local as well as distant cues (Stark et al., 2018). In the single-odor and 4-odor
tasks, the retention trial re-introduced familiar cue(s); these may have functioned as landmarks and thus as at
least a portion of the “SAME-context” to females regardless of the arena change. Such singular landmarks
were not evident in the serial-odor task design, leaving only the chamber as being unchanged through the
series. Moreover, this serial presentation may have reinforced the chamber as the constant frame of reference
(see Fig. 5A), leading to greater influence of this context in the serial “What” task in females.

Strategies in spatial tasks are reportedly influenced by estrous state with proestrus females exhibiting
patterns similar to males whereas those outside proestrus exhibit cue-based (allocentric) navigation (Fleischer
and Frick, 2023). There is also an extensive literature showing that the performance of female rodents on
various learning problems varies with the estrous cycle ((Warren and Juraska, 1997; Frick and Berger-
Sweeney, 2001; Luine, 2008; Frick et al., 2015; Lovick and Zangrossi, 2021; Blair et al., 2022; Rocks and
Kundakovic, 2023); but also see (Ter Horst et al., 2013; Jayachandran et al., 2022)). Thus, estrous state might
be expected to affect attention to context, and the formation of linkages between elements of context with
episodic content (cue identity) in the female groups. However, we did not observe differences in context
effects on novelty recognition between proestrus and non-proestrus females, an observation that further
discriminates multi-cue episodic learning from more conventional rodent paradigms.

Finally, it is possible that sex differences in brain regions and forms of synaptic plasticity involved in
encoding, contribute to differences in context effects on episodic memory. Recent studies have shown that in
male rodents circuits interconnecting hippocampus with entorhinal, prefrontal and perirhinal cortices are
critical for episodic memory (Cox et al., 2019; Allen et al., 2020; Outram et al., 2022) and that hippocampus
and its associations with prefrontal and perirhinal cortex are important for linking episodic content with

context (Smith and Bulkin, 2014; Barker and Warburton, 2020). Our own chemogenetic studies have shown
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that, in male mice, acquiring information about cue identity and location relies upon hippocampal afferents
from lateral and medial entorhinal cortex, respectively, whereas acquisition of cue-order (episodic ‘when) is
selectively dependent upon hippocampal field CA3 (Cox et al., 2019). The possibility that there are sex
differences in the relative importance of regions critical for episodic encoding, or for linking episodic content
and context, has not been tested. There is, however, evidence from human imaging studies for differences in
regional activation with recall of verbal information (being greater in parahippocampal regions in males, and
in dorsolateral prefrontal cortex in females) and with episodic memory performance (being greater in temporal
lobe in females) (Loprinzi and Frith, 2018). Similarly, we do not know if forms of synaptic plasticity in the
regions linking context with content differ between males and females. Sex differences in threshold and
mechanisms long-term potentiation (LTP), thought to underlie memory encoding, are well-characterized in
hippocampal field CA1 (Vierk et al., 2012; Oberlander and Woolley, 2016; Wang et al., 2018a; Le et al.,
2022b) and distinguish plasticity in this region from forms of LTP in other systems including the entorhinal
afferents to the dentate gyrus (Wang et al., 2018c). It is possible that there are as yet unappreciated sex
differences in plasticity within cortical fields that associate context with episodic content giving rise to
differences in the strength of these associations.

In summary, a rodent type of episodic memory that bears many similarities to the version described for
humans is strikingly dependent on context in males but not females. It is suggested that this is a consequence

of sex differences in learning strategies and their possible neuronal substrates.
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Figure 1. Contextual Episodic Memory Tasks. For all three tasks mice, were familiarized with two
distinct chambers for 20-minutes each on Day 1. A) Serial odor ‘What’ task. On Day 2, mice were
presented with a series of 3 odor pairs (2 min each, 1 min between pairs). Two minutes after the last
cue exposure, retention was assessed by presentation of an odor pair including previously sampled
odor A and a novel odor (e.g., A:D) in either the SAME chamber as initial odor exposures or in the
different (DIFF) chamber for 3 min. B) Single-odor task. Mice were exposed to a single odor pair
(A:A, circles denote scented jars) for 2 min. After a 10-min delay, they were exposed to odor pair
(A:D) in the SAME or DIFF chamber for 3 min. C) 4-odor task. On Day 2 mice were exposed to
four odors (A:B:C:D) simultaneously for 5 min. On Day 3, mice were exposed to four odors

including 3 familiar and one novel odor (A:B:C:E), and allowed to explore for 5 min.
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Figure 2. Context influences the performance of male mice in all three ‘What’ tasks. A) Single-
odor task. Left: Male mice retention-tested in the SAME chamber as initial odor exposure

preferentially sampled the novel odor compared to the previously sampled odor (t , =3.01; *p=0.04;

“
n=5/group; two-tailed paired t-test), whereas mice tested in the DIFF chamber sampled both odors

similarly (t ., =0.8218; p=0.438; n=8/group). Right. The Discrimination Index (DI) was greater for

O

mice tested in the SAME vs. the DIFF chamber (t, ,=2.51; *p=0.027; n>6/group). B) Simultaneous

(12)
4-odor task. Left: Sampling time was greater for the novel odor vs. mean of times sampling the three

previously sampled odors with retention testing in the SAME chamber only (SAME: t(7)=4.612;
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**p=0.002; n=8; DIFF: t(7)=1 .087; p=0.313; n=8). Right. The DI was greater for groups tested in the

SAME vs. the DIFF chamber (t , ,=3.22; **p=0.006; n=8/group). C) Serial odor task. Left: Sampling

(14)
time for novel vs. the previously sampled odor was greater in the SAME as compared to the DIFF

chamber (SAME: t . =11.05; ****p<0.0001; n=11; DIFF: t _=2.019; p=0.061; n=17). Right. The DI

(10) (16)

was greater for SAME vs DIFF group mice (t . =0.8218; *p=0.02; n>11/group). D-F) The total time

()]

sampling the cues during the retention trial was greater in the DIFF chamber compared to the SAME

chamber for both the single-odor task (D; t .. =2.575; *p=0.026; n>5/group) and the 4-odor task (E;

an

ty 4)23. 11; **p=0.0076; n=8/group). In the serial odor task (F), sampling times were comparable for

SAME and DIFF group mice (F, t., =0.773; p=0.447; n>11/group). Statistics: Left panels of A-C: 2-

(26)

tailed paired t-test. Right panels of A-C and Panels D-F: 2-tailed unpaired t-test.

21



511

512

513

514

515

516

Q single-odor (non-proestrus) -b

(A) . Novel O Familiar x 40+ (E) o non-pro.
~ 25 * @ — 40
) — il 2 o
o 20 — < 207 < £ 30
£ 15 ° T o
s ‘© 20+ @ c 2
[=)] c 0=
c 10 N 5 cE}_
35 £ 104 £ 510
g 5 5 @ &
3 o 8 o- T 0
SAME DIFF SAME DIFF 2 SAME DIFF
Q 4-odor (non-proestrus)
(B) [ Novel [] Mean Familiars (F)
o non-pro.
— 20 o 40 = 30
3 ° g
1 o O &
2 2 25 .,
3 5 € 10 v E
E G il
& 0 20 T 0
SAME DIFF SAME DIFF g2 SAME DIFF
4-odor (proestrus)
(C) ? . (G) - proestrus
— o 40 — 40
L T @
o < 30 £ 30
E 5 5 @
= = c
CC,, _E 20 '8 = 20
S E 10 Y E 10
= 5 »
@ e —
SAME DIFF SAME DIFF 2 SAME DIFF
Q serial odor (non-proestrus) ’
(D) I Novel  [] Familiar 40 (H) non-pro.

*

sampling time (s)
- - N
o w o [4)] o
Discrimination Index
— N [9%]
o o o o
1 1 1 1
*
serial odor,
total sampling time (s)
P L] w
o o o o

SAME DIFF SAME DIFF SAME DIFF

Figure 3. Context has little effect on episodic ‘What’ memory in female mice. A) Single-odor
task. Left: In females (non-proestrus), the sampling time for the novel odor was markedly greater
than the previously sampled odor when tested in either the SAME or the DIFF chamber (SAME:

t10)=3.04; *p=0.012; n=11/group. DIFF: tg)=3.61; **p=0.0069; n=9/group). Right: Mice tested in

SAME and DIFF chamber showed robust and comparable discrimination indices (DIs) (t(18=0.031;
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p=0.713; n>9/group). B,C) Simultaneous 4-odor task for non-proestrus (non-pro) (B) and proestrus
(pro) (C) females. Left: For both estrous stages, the sampling time for the novel odor was greater than
the mean time exploring the three previously sampled odors with retention testing in either the
SAME or the DIFF chamber (Shown in B, left for non-proestrus mice, SAME: t=4.187, **
p=0.006, n=7; DIFF: t(7)=3.542, **p=0.009, n=7. Shown in C, left for proestrus mice: SAME:
t3=4.884, *p=0.016; n=4. DIFF: t=5.149; **p=0.004; n=6). Right: The DIs for both non-proestrus
(B, right) and proestrus (C, right) mice were comparable for SAME and DIFF groups (non-proestrus
(B): t13=0.031; p=0.976; n>7/group. Proestrus (C): t3y=0.713; p=0.496; n>4/group). D) Serial Odor
Task. Left: Females preferentially sampled the novel vs. the previously sampled odor with testing in
the SAME chamber but not in the DIFF chamber (SAME: t(55=3.239; *p=0.023; n=6, DIFF:
t(55=0.004; n.s. p=0.997; n=6). Right: The DI was markedly lower with testing in the DIFF vs the
SAME arena (t(10=2.304; *p=0.044; n=6/group). E-H) The total cue sampling time during the
retention trial were similar for SAME and DIFF groups in all tasks (E: Single odor task, t(;5=0.623;
p=0.541; n>9/group. F: 4-odor task — non-proestrus, t(13y=0.421; p=0.68; n>7/group. G: 4-odor task —
proestrus, ts=0.750; p=0.475; n>4/group. H: Serial odor task, t10=0.392; p=0.703; n=6/group).
Statistics: Panels A-D, left: 2-tailed paired t-test. Panels A-D, right and Panels E-H: 2-tailed unpaired

t-test.
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Figure 4. Summary of Z-scores in DIFF group show that context effects on encoding cue
identity are sex- and task-specific. Z-scores for mice from the DIFF-group relative to their
respective SAME-group were calculated to allow comparison of performance by males and females.
A) Z-scores of Discrimination Indices (DIs) show greater effect of context (more greatly negative

scores) for males as compared to females for the single-odor and 4-odor tasks (single-odor: t  , =3.55;

(14)

**p=0.003. 4-odor: t  , =2.16; **p=0.0043; n=8/group). For the serial ‘what’ task, the mean z-scores
p p group

(14)

was more greatly negative in males than females but the difference was not significant (t . =1.146;

1s)

n.s. p=0.27; n>6/group). B) Plot of Z-scores for total cue sampling times during retention testing
shows that for both the single-odor and 4-odor tasks, males spent more time sampling the cues in the

DIFF compared to the SAME context whereas females did not (single-odor: t  , =3.76; **p=0.002. 4-

(14

odor: t 4)=2.37; *p=0.033; male vs female, n=8/group). Sex differences were not evident for

sampling time Z-scores in the Serial ‘What’ task (t ,_=1.674; p=0.114; n>7/group). Z-scores were

(16)
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calculated from results presented in Figure 2A-C for males and Figure 3A, B, and D for non-

proestrus females. Statistics: 2-tailed unpaired t-test.
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Figure 5. Two hypotheses regarding linkages between environmental context and local cues.
The arguments assume that an animal has entered into a previously experienced situation but on this
occasion encounters a series of four objects or events that are available for investigation. A) Distant
elements in the environment form attachments one by one to each of the items in the sequence. The
context will trigger recollection of, and thus enhance familiarity with, the local cues upon re-entry
into the environment. The cues will lack context associations in a different environment and hence
seem less familiar. B) Linkages form between the context and an item that occurs early in a series and
between that early item and a succeeding one. Upon returning to the same environment, the context
will prompt a representation of the early cue, and thereby enhance the sense of familiarity
(recognition) upon actually encountering that cue. The early cue then prompts the representation of a

later one, which strengthens recognition upon its being re-experienced.
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