

1 Sex Differences in the Context Dependency of Episodic Memory

2 Aliza A. Le,^{1**} Linda C. Palmer,^{1**} Jasmine Chavez,¹ Christine M. Gall,^{1,2} and Gary Lynch^{1,3}

3 ¹Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA USA
4 92697

5 ²Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA USA
6 92697

7 ³Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA USA
8 92868

9 ** equal contributions.

10

11 * Correspondence: Gary Lynch. Email: ga.s.lynch@gmail.com

12

13

14

15

16

17 **Keywords: episodic memory, unsupervised learning, context, mouse, behavior, sex differences, female,**
18 **object recognition (Max. 8)**

19

20 **Abstract**

21 Context contributes to multiple aspects of human episodic memory including segmentation and
22 retrieval. The present studies tested if, in adult male and female mice, context influences the
23 encoding of odors encountered in a single unsupervised sampling session of the type used for the
24 routine acquisition of episodic memories. The three paradigms used differed in complexity (single vs.
25 multiple odor cues) and period from sampling to testing. Results show that males consistently encode
26 odors in a context-dependent manner: the mice discriminated novel from previously sampled cues
27 when tested in the chamber of initial cue sampling but not in a distinct yet familiar chamber. This
28 was independent of the interval between cue encounters or the latency from initial sampling to
29 testing. **In contrast, female mice acquired both single cues and the elements of multi-cue episodes,**
30 **but recall of that information was dependent upon the surrounding context only when the cues were**
31 **presented serially.** These results extend the list of episodic memory features expressed by rodents and
32 also introduce a striking and unexpected sex difference in context effects.

33

34 **Introduction**

35 Human episodic memory involves the encoding of multiple events into narrative sequences, minimally
36 including the identity and location of items and the order in which they appeared (i.e., 'what', 'where', and
37 'when' information) (Tulving, 1972, 1983; Staniloiu et al., 2020). The requisite encoding occurs routinely as
38 part of daily life without repetition or explicit rewards, such as a first time walk across a park (Dede et al.,
39 2016); these features distinguish episodic memory from trial and error learning. Despite the rapid and
40 spontaneous nature of such "unsupervised" learning (Barlow, 1989), episodic memories can incorporate a
41 remarkable amount of information and accommodate very different intervals (seconds to minutes) between
42 cues or events (Dede et al., 2016). **The incidental, and generally single-trial, nature of episodic encoding**
43 presents difficulties for rodent studies but the strong tendency of the animals to investigate novel stimuli or
44 locations can be used to partially compensate for the absence of behavioral shaping (Dix and Aggleton, 1999).
45 Single trials and novelty form the basis for widely used rodent memory tests including Object Location and
46 Novel Object Recognition paradigms (Ennaceur and Delacour, 1988; Ennaceur et al., 1997). Several studies of
47 this type have provided evidence that rats and mice readily learn the identities, locations, and serial order for
48 multiple cues (Hannesson et al., 2004; Kart-Teke et al., 2006; Fouquet et al., 2010; Allen et al., 2014; Barker
49 and Warburton, 2020) under conditions not unlike those found in human studies of episodic memory.
50 However, the extent to which rodents express other characteristics of an episode is uncertain.

51 We developed a set of relatively simple **protocols using multiple odor cues to assess facets of episodic**
52 **encoding in rodents; this included a task with serial cue presentation to reflect the typical distribution of**
53 **elements and events encountered across time within a behavioral episode (Staniloiu et al., 2020).** Using these
54 paradigms, we verified that that mice and rats acquired 'what', 'where', and 'when' information after one-time
55 sampling of the stimulus set (Wang et al., 2018b; Cox et al., 2019; Amani et al., 2021; Le et al., 2022a).
56 Encoding exhibited the temporal flexibility described for human studies in that retention scores were not
57 detectably different for intervals of 30 sec vs. 5 minutes between cues. A subsequent experiment using the
58 same testing procedures provided evidence that transfer of episodic information into long-term storage by rats
59 is promoted by a strong stimulus occurring shortly after the sampling of multiple cues (Quintanilla et al.,
60 2021), an effect that may be analogous to 'flashbulb memory' described for humans (Brown and Kulik, 1977;

61 Talarico et al., 2019). Finally, and as with human episodic memory, the hippocampus proved to be critical for
62 learning [the three basic elements of an episode](#) in the multiple odor paradigms (Cox et al., 2019).

63 The present studies tested if another [essential feature of human episodic memory](#) – context-dependency
64 ([Barak et al., 2013; Staudigl and Hanslmayr, 2013](#)) – is also [evident in mice using the above odor-based](#)
65 [paradigms and measures of ‘what’ encoding](#). Retrieval often begins with a memory search for the situation in
66 which the series of events occurred, followed by readout of specific items (Eacott et al., 2005). There is also
67 evidence that the critical process of segmenting the flow of experience into individual episodes depends on a
68 shift in context, as exemplified by the ‘through the doorway’ effect (Smith and Mizumori, 2006; Horner et al.,
69 2016). Studies in rodents have identified circumstances in which incidental encoding of cue pairs [is linked](#)
70 [with context](#) ([Dix and Aggleton, 1999; Eacott and Norman, 2004; Norman and Eacott, 2005; O'Brien et al.,](#)
71 [2006; Piterkin et al., 2008; Davis et al., 2013; Seel et al., 2018; Barker and Warburton, 2020](#)). Here we tested
72 if memory retrieval for material presented in sessions with the above noted episodic characteristics is
73 dependent upon the context of initial cue exposure, if such effects differ between the sexes and, [for females,](#)
74 [between estrous states](#). There is a sizeable literature describing relative advantages for men and women on
75 different aspects of episodic memory ([Herlitz et al., 1999; Loprinzi and Frith, 2018; Asperholm et al., 2019;](#)
76 [Voyer et al., 2021](#)) but [sex differences in context dependency are rarely considered](#). Our results indicate that
77 there are marked sex differences in reliance upon context for accessing episodic content and that these [context](#)
78 [effects are stronger in male than female mice independent of estrous state](#).

79 **Materials and Methods.**

80 Adult male and female sighted-FVB129 wild-type mice (2-5 months old) were used. Animals were group
81 housed (3-5/cage) in rooms (68°F, 55% humidity) on a 12-hr light/dark cycle with lights on at 6:30AM and
82 food and water were given *ad libitum*. Behavioral experiments were performed between 10AM-3PM. [Mice](#)
83 [were not handled prior to experimental procedures](#). For females, estrous cycle stage was assessed by vaginal
84 lavage (McLean et al., 2012) prior to experimental [use to distinguish mice in proestrus \(the phase of relatively](#)
85 [high circulating and hippocampal estrogen levels \(Kato et al., 2013\)\) from those outside proestrus \(i.e., in](#)
86 [estrus, diestrus and metestrus\)](#). Experiments using the simultaneous 4-odor task evaluated females both within

87 and outside proestrus; other tasks employed females outside proestrus. All experiments were conducted in
88 accordance with the National Institutes of Health Guide for the Care and Use for Laboratory Animals and
89 protocols approved by the Institutional Animal Care and Use Committee at the University of California,
90 Irvine.

91 **General Procedures for all behavioral tasks.** Naïve mice were tested for the effect of context on evidence
92 for acquisition of cue identity (a.k.a., ‘what’ information) in three tasks that did not entail rehearsal or reward.
93 This included a single-cue (odor) discrimination task, and tasks involving multiple cues presented serially or
94 simultaneously (referred to here as the serial cue and 4-odor ‘What’ tasks, respectively). These particular
95 paradigms were considered important for identification of potential context effects on encoding the identity of
96 multiple vs. individual cues (4-odor vs single odor tasks), on long term retention of memory for cue identity
97 (24 hours from sampling to testing for the 4-odor task only), and on encoding cues presented in series and,
98 thus, over time (serial odor task). All three tasks used odorants previously established to be of equivalent
99 interest to mice (Wang et al., 2018b; Cox et al., 2019; Le et al., 2022b) (**Supplementary Table 1**). The
100 odorants were dissolved in mineral oil and 100 μ l was pipetted onto filter paper immediately before behavioral
101 testing. For odor presentation, the scented filter paper was placed into either a 5.2-cm diameter, 5-cm tall glass
102 jar with a 15-mm sample port hole in a white metal lid (Wang et al., 2018b; Cox et al., 2019; Le et al., 2022b)
103 or, for a subset of mice in the serial cue ‘What’ task, into a 6-cm diameter, 11.25-cm tall pointed plastic
104 cylinder with a 15-cm sample port on the side. The time spent sampling the odors was measured by offline
105 analysis from video recordings, that were collected from all behavioral sessions, **by observers blind to group**
106 (jars) or by automated quantification of infrared beam breaks (cylinders). Results obtained with the two odor
107 presentation containers were similar and data were combined.

108 For all three tasks, on Day 1 mice were first habituated for 20 min each to two distinct arenas (Square:
109 23w x 30d x14.5h cm rectangle with a checkerboard pattern on opposing walls, other walls were white.
110 Round: 25-cm diameter cylinder with 24-cm high walls and horizontal stripes on one hemisphere, the other
111 hemisphere was solid gray) (**Fig. 1A**). Distant visual cues were the same across all behavioral sessions. The
112 following day (Day 2), each mouse was placed into one of the two arenas containing unscented containers for

113 a short period of exploration before cue presentation.

114 **Single-odor ‘What’ task.** On Day 2 each mouse was placed in one of the two arenas (square or round)
115 containing two odorless containers for 2 minutes. A pair of identically scented (A:A) jars was then introduced
116 and the mouse was allowed to freely sample the cues for 2 minutes (Fig. 1B) with timing, in this and other
117 tasks, initiated when both odors had been sampled. The cues were removed and the mouse remained in the
118 chamber for 10 minutes. This holding time was chosen to approximate the total time from initial odor
119 exposure to testing in this and the serial cue ‘What’ task (see below). For testing, the mouse was then placed
120 into either the same arena as initial odor presentation (SAME) or the different but familiar arena (DIFF) that
121 contained jars scented with familiar odor A and novel odor D and were allowed to freely sample the scented
122 jars. Sampling of the test odors during the following 3 minutes was quantified by observers blind to group
123 from video recordings. For this and other tasks, the arena locations of the novel vs. previously sampled cues
124 were counterbalanced across mice, as was the arena used for the initial odor exposure (i.e., square vs round).
125 This paradigm is similar to that employed by O’Brien et. al. (2006) for analysis of context effects on object
126 recognition in rat with the exception that our studies employed a single trial.

127 **Serial Cue ‘What’ task.** On Day 2, after 2 min in the unscented arena, each mouse was presented with a
128 sequence of three identical-odor pairs (A:A, B:B, C:C), placed in the same fixed locations in the arena for each
129 pair (Fig. 1A). They were allowed to explore each odorant pair for 2 minutes. There was a 1-min delay
130 between presentations of successive odor pairs. After the last odor pair presentation, the mouse was moved
131 briefly to a holding bin (~2 min). They were then placed into either the SAME arena as initial odor series
132 presentation or the DIFF arena and allowed to explore for 1 minute before being presented with a final test
133 odor pair that included one odor from the initial sampling series and one novel odor (e.g., A:D). Sampling of
134 the test odors during the following 3 minutes was quantified from video recordings or records of beam breaks.

135 **Simultaneous 4-odor ‘What’ task.** On Day 2 the mice were placed in one of the arenas (square or round)
136 with unscented jars for 5 minutes. After a one minute delay, four jars, each containing one of 4 distinct scents
137 (A:B:C:D), were placed at four equidistant locations in the field and mice were allowed to investigate the

138 odors for five minutes after which they were returned to their home cage (**Fig. 1C**). On Day 3, 24 hours after
139 initial odor exposure, the mice were placed into either the SAME or the DIFF arena containing three of the
140 originally sampled cues and one novel cue (A:B:C:E) placed in the original cue locations and were allowed to
141 freely sample the cues for 5 minutes. With this design the acquisition and retention phases are separated 24-
142 hours thereby allowing tests of females that were in in proestrus or non-proestrus stages on Day 2 only (i.e.,
143 during initial cue sampling).

144 **Statistics.** All data presented in the text and figures are group mean \pm SEM values. Graphs present either the
145 cue sampling time (in seconds), the discrimination index (DI), or z-scores. The DI for the single-odor and
146 serial cue tasks was calculated as: $(t_{\text{novel}} - t_{\text{familiar}}) / (t_{\text{total}}) \times 100$, with 't' denoting the sampling time in seconds.
147 For the 4-odor 'What' task, the DI was calculated as $(t_{\text{novel}} - t_{\text{mean familiars}}) / (t_{\text{total}}) \times 100$. **Individual z-scores of**
148 **DIs and total cue sampling times for DIFF relative to SAME group mice were calculated as:** $(\text{individual}$
149 $\text{value}_{(\text{DIFF})} - \text{mean value}_{(\text{SAME})}) / (\text{standard deviation}_{(\text{SAME})})$. Statistical significance ($p < 0.05$) was determined
150 using GraphPad Prism (v6.0). The two-tailed paired or unpaired t-test was used for comparing two groups. **In**
151 **plots of quantitative results, asterisks denote level of significance with $*p < 0.05$, $**p \leq 0.01$ and $***p \leq 0.001$.**

152 **Results**

153 Context potently affects retention scores for odor cues in male mice.

154 We tested if encoding the 'What' aspect of episodic-like memory is dependent upon context using three
155 different tasks that employed overlapping sets of odor cues and did not entail repeated trials or rewards (Cox et
156 al., 2019). For each, the mice were allowed to initially explore the cues in one of two familiar test chambers
157 (square or round) and then, for retention testing, they were presented with an initially sampled cue (or cues)
158 and a novel cue in either the same chamber as initial sampling (SAME) or the different (DIFF) chamber (**Fig.**
159 **1**). In each case, preferential exploration of the novel cue was interpreted as evidence for encoding.

160 In the simple, single-odor test, male mice spent more time exploring the novel odor vs the familiar odor
161 when tested in the SAME chamber as initial sampling (Novel 8.57 ± 1.67 vs. Familiar 3.24 ± 0.55 seconds;
162 $p = 0.04$; two-tailed paired t-test). In contrast, mice tested in the DIFF chamber did not show preference for
163 either cue (Novel 9.72 ± 1.21 vs. Familiar 11.7 ± 2.29 seconds; $p = 0.44$) (**Fig. 2A, left**). This resulted in

164 significantly different DIs for tests in the SAME vs. DIFF arenas (32.8 ± 11.9 vs. -5.26 ± 9.62 , respectively;
165 $p=0.027$, two-tailed unpaired t-test) (**Fig. 2A, right**).

166 Effects of context were also evident in the long delay, simultaneous 4-odor ‘What’ task (**Fig. 2B**). As
167 previously reported (Cox et al., 2019; Quintanilla et al., 2021), male mice tested 24 h after initial sampling of
168 four odors preferentially explored the novel cue **vs. the mean of three familiar cues** ($p=0.002$, two-tailed paired
169 **t-test**) when retention sessions were conducted in SAME arena. However, when tested in the DIFF context,
170 mice did not exhibit any bias for the novel odor ($p=0.313$, **Fig. 2B, left**), and, in agreement with this, their DI
171 was notably smaller than those tested in the SAME chamber (DIFF vs. SAME: 4.93 ± 4.21 vs. 28.4 ± 5.93 ;
172 $p=0.006$, two-tailed unpaired t-test) (**Fig. 2B, right**).

173 Finally, and in accord with previous studies using unsupervised learning (Hannesson et al., 2004; Dere
174 et al., 2005; Babb and Crystal, 2006; Cox et al., 2019), male mice presented with a series of cues in the Serial
175 ‘What’ task displayed a clear preference for sampling the novel cue when the retention trial was administered
176 in the SAME chamber, ($p<0.0001$). In contrast, mice tested in the DIFF chamber did not preferentially explore
177 the novel cue ($p=0.061$, two-tailed paired t-test) (**Fig. 2C, left**). Thus, mice tested in the SAME chamber
178 exhibited a significantly higher DI than those tested in the DIFF chamber ($p=0.02$, two-tailed unpaired t-test)
179 (**Fig. 2C, right**).

180 In male mice there was also an effect of context on the total cue sampling time during the retention trial.
181 In the single-odor paradigm, the total cue sampling time was greater in mice tested in the DIFF chamber than
182 those tested in the SAME chamber ($p=0.026$, two-tailed unpaired t-test) (**Fig. 2D**). Similarly, in the 4-odor
183 task, the total sampling time was greater for DIFF vs SAME group mice ($p=0.008$) despite the 24-hour interval
184 between sampling and testing (**Fig. 2E**). In contrast, there was no significant context effect on total sampling
185 time in the serial cue task ($p=0.447$) (**Fig. 2F**).

186 Context had little effect on episodic memory in females:

187 A number of studies have described sex differences in human (Herlitz et al., 1999; Asperholm et al.,
188 2019; Voyer et al., 2021) **and rodent** (Le et al., 2022b) **episodic memory** but it is unclear the extent to which
189 such effects extend to context dependency. **The present analysis of context effects on episodic ‘What’**

190 encoding indicates that there are indeed major male/female differences. In the single-odor task, female mice
191 that were outside proestrus (non-proestrus) during initial cue sampling, preferentially investigated the novel
192 cue when retention was assessed in either the SAME ($p=0.013$, two-tailed paired t-test) or DIFF ($p=0.007$)
193 arena (**Fig. 3A, left**); there was no difference between the DIs for the two groups ($p=0.713$; two-tailed
194 unpaired t-test) (**Fig. 3A, right**). Comparable results were obtained in the free exploration, 4-odor ‘What’ test.
195 Females outside proestrus during initial sampling, tested in either the SAME or DIFF chamber, preferentially
196 explored the novel odor (SAME: $p=0.006$, DIFF: $p=0.009$, two-tailed paired t-test; **Fig. 3B, left**) and the DIs
197 for these two groups were not significantly different ($p=0.976$; two-tailed unpaired t-test) (**Fig. 3B, right**).

198 To identify potential effects of changes in circulating and hippocampal estrogen levels across the estrous
199 cycle (Kato et al., 2013), the 4-odor task was repeated in a cohort of female mice that were in a relatively high
200 estrogen state (proestrus) on the day of initial odor exposure. During this session, the total cue sampling time
201 was similar for mice within and outside proestrus (49.50 ± 4.35 seconds, $N=10$ and 48.07 ± 10.73 seconds,
202 $N=12$, respectively; $p=0.44$, 2-tailed unpaired t-test). At retention testing, females that initially sampled cues in
203 proestrus successfully discriminated the novel from the familiar odor when tested in either the SAME or DIFF
204 arena ($p<0.016$; **Fig. 3C, left**), and there was no group difference between the DIs ($p=0.496$; **Fig. 3C, right**).
205 Thus, performance was similar in females that initially sampled cues during estrous cycle stages with higher
206 (proestrus) and lower (non-proestrus) estrogen levels.

207 In contrast to performance in the single- and 4-odor tasks, there was a robust effect of context on female
208 performance in the serial odor task. Non-proestrus females tested in the SAME chamber discriminated the
209 novel cue whereas those tested in the DIFF chamber did not ($p=0.023$, **Fig. 3D, left**). In line with this, the DI
210 was significantly lower in the DIFF vs the SAME group ($p=0.044$, **Fig. 3D, right**).

211 Finally, and in further contrast to performance in males, there was no difference between females tested
212 in the SAME vs. DIFF arena with regard to total cue sampling time during retention testing for any group
213 (non-proestrus females in single-odor ($p=0.541$), 4-odor ($p=0.681$) or serial odor ($p=0.703$) tasks; proestrus
214 females in 4-odor task ($p=0.47$); **Fig. 3E-H**).

215 For statistical comparison of context effects on male and female performance, we plotted z-scores for
216 mice tested in the DIFF chamber (normalized to their respective SAME group) for both the discrimination

217 indices and total cue sampling times during retention testing in each of the memory tasks. As shown in Figure
218 4A, there was a striking effect of context on learning (i.e., the DI) in males but virtually no effect of context in
219 females for both single odor and 4-odor tasks; thus, the male-to-female comparison was highly significant
220 ($p=0.003$ and $p=0.004$, single and 4-odor tasks, respectively; two-tailed unpaired t-test). For the serial odor
221 task, both sexes did not discriminate the novel cue when tested in the DIFF chamber and thus the sexes had
222 similar z-scores ($p=0.27$). Analysis of z-scores for total cue sampling times during retention testing confirmed
223 that the change in context had significantly greater effect on cue exploration in males as compared to females
224 for the single-odor ($p=0.002$) and 4-odor ($p=0.033$) tasks (Fig. 4B). Results for the serial odor task were again
225 distinctive in that the sexes had similar z-scores for sampling times ($p=0.114$). Together these results accord
226 with the conclusion that context had greater influence on episodic cue recognition in males than in females.

227 **Discussion.**

228 Context has played an important role in the evolution of thinking about the nature and uses of episodic
229 memory (Federmeier and Sahakyan, 2021) but the manner in which unsupervised experience becomes
230 associated with particular environments or occasions is still poorly understood. Animal studies, with their
231 attendant opportunities for experimental manipulations, could be of importance in addressing the issue but
232 lack an agreed upon description of what constitutes an episodic memory. The paradigms used in the present
233 experiments borrowed key features from a recent episodic memory study in which human participants had a
234 first time walk across a university campus (Dede et al., 2016). Accordingly, the results reported here describe
235 context-dependency in mice using episodic memory paradigms in which multiple cues were sampled on one
236 unsupervised occasion and the intervals between cue encounters were varied from seconds (4-odor task) to
237 minutes (serial cue task) in an effort to capture the temporal flexibility that was evident in the human study.

238 The results obtained using three different testing arrangements confirmed that male mice associate
239 context with cues sampled in a single unsupervised episode. Specifically, their normal, robust preference for a
240 novel odor was expressed only when tested in the same environment in which they had previously experienced
241 the comparator odor. The association of cue with context was evident when the mice initially sampled either a
242 single odor or multiple odors, simultaneously or in series, and then were presented with an initially sampled

243 cue(s) vs. a novel one. These results raise the intriguing possibility that the multiple cue cases are a simple
244 extension of the events occurring in the single odor task such that context associates with each of the serially
245 sampled items (**Fig. 5A**). An alternative hypothesis would be that the links form between the multiple cues and
246 the environmental context associates with one of these, which then prompts recall of the others (**Fig. 5B**).
247 Regarding this idea it would be informative to test if the effect of context is stronger for the first cue in a
248 presented series or the first cue investigated by the animal in a single sampling session as in the 4-odor task.

249 Remarkably, in contrast to effects in males, the testing context did not influence female performance in
250 the single odor or 4-odor tasks: The discrimination indices were comparable mice were tested in either the
251 SAME or the DIFF environment and without obvious effect of the estrous cycle. Males have a significant
252 advantage in spatial learning (Jonasson, 2005; Andreano and Cahill, 2009; Asperholm et al., 2019), suggesting
253 a natural relationship between locations and contexts. That said, the chambers used here were differentiated by
254 shape and wall patterns rather than by landmarks that could be used to specify particular locations, and this
255 design may have influenced responses to the environment. Specifically, it is possible that males directed more
256 attention to the broader environment than females and, accordingly, were more likely to associate it with local
257 cues. Sex differences are described for exploratory and cue sampling behavior (Piber et al., 2018; Chen et al.,
258 2021) and include evidence that males navigate relative to geometric cues in the environment whereas females
259 are influenced by both geometry and landmarks (Korol et al., 2004; Koss and Frick, 2017; Yagi and Galea,
260 2019). Thus, an alternative possibility is that sex differences context effects could be due to females having
261 allocated more attention than males to local cues at the expense of encoding information about their
262 surroundings. The first of these hypotheses predicts that recognition strength for the context absent internal
263 cues will be stronger in males than females. The allocation of resources argument predicts that females will
264 outperform males on episodic memory problems other than those that are dependent on space (episodic
265 ‘where’) for which males appear to have clear advantages. Both possibilities are amenable to testing.

266 Related to the above, males but not females explored the cues for longer periods when tested in the
267 DIFF chamber (where discrimination failed) as compared to the SAME chamber (where discrimination was
268 successful). This observation reinforces the conclusion that the previously sampled local cues were
269 experienced as being novel by the males when encountered in a different context. It has been reported that,

270 males continue to explore options in earlier stages of rewarded learning when choices are not clear whereas
271 females tend to select an option and terminate exploration (Chen et al., 2021). In our tasks the males may have
272 continued to sample cues presented in the DIFF chamber because they could not identify the previously
273 sampled cue(s), and thus continued to explore all cues as though they were novel.

274 The one task in which females did exhibit context dependency entailed presentation of a series of novel
275 cues. “Context” can include local as well as distant cues (Stark et al., 2018). In the single-odor and 4-odor
276 tasks, the retention trial re-introduced familiar cue(s); these may have functioned as landmarks and thus as at
277 least a portion of the “SAME-context” to females regardless of the arena change. Such singular landmarks
278 were not evident in the serial-odor task design, leaving only the chamber as being unchanged through the
279 series. Moreover, this serial presentation may have reinforced the chamber as the constant frame of reference
280 (see Fig. 5A), leading to greater influence of this context in the serial “What” task in females.

281 Strategies in spatial tasks are reportedly influenced by estrous state with proestrus females exhibiting
282 patterns similar to males whereas those outside proestrus exhibit cue-based (allocentric) navigation (Fleischer
283 and Frick, 2023). There is also an extensive literature showing that the performance of female rodents on
284 various learning problems varies with the estrous cycle ((Warren and Juraska, 1997; Frick and Berger-
285 Sweeney, 2001; Luine, 2008; Frick et al., 2015; Lovick and Zangrossi, 2021; Blair et al., 2022; Rocks and
286 Kundakovic, 2023); but also see (Ter Horst et al., 2013; Jayachandran et al., 2022)). Thus, estrous state might
287 be expected to affect attention to context, and the formation of linkages between elements of context with
288 episodic content (cue identity) in the female groups. However, we did not observe differences in context
289 effects on novelty recognition between proestrus and non-proestrus females, an observation that further
290 discriminates multi-cue episodic learning from more conventional rodent paradigms.

291 Finally, it is possible that sex differences in brain regions and forms of synaptic plasticity involved in
292 encoding, contribute to differences in context effects on episodic memory. Recent studies have shown that in
293 male rodents circuits interconnecting hippocampus with entorhinal, prefrontal and perirhinal cortices are
294 critical for episodic memory (Cox et al., 2019; Allen et al., 2020; Outram et al., 2022) and that hippocampus
295 and its associations with prefrontal and perirhinal cortex are important for linking episodic content with
296 context (Smith and Bulkin, 2014; Barker and Warburton, 2020). Our own chemogenetic studies have shown

297 that, in male mice, acquiring information about cue identity and location relies upon hippocampal afferents
298 from lateral and medial entorhinal cortex, respectively, whereas acquisition of cue-order (episodic ‘when’) is
299 selectively dependent upon hippocampal field CA3 (Cox et al., 2019). The possibility that there are sex
300 differences in the relative importance of regions critical for episodic encoding, or for linking episodic content
301 and context, has not been tested. There is, however, evidence from human imaging studies for differences in
302 regional activation with recall of verbal information (being greater in parahippocampal regions in males, and
303 in dorsolateral prefrontal cortex in females) and with episodic memory performance (being greater in temporal
304 lobe in females) (Loprinzi and Frith, 2018). Similarly, we do not know if forms of synaptic plasticity in the
305 regions linking context with content differ between males and females. Sex differences in threshold and
306 mechanisms long-term potentiation (LTP), thought to underlie memory encoding, are well-characterized in
307 hippocampal field CA1 (Vierk et al., 2012; Oberlander and Woolley, 2016; Wang et al., 2018a; Le et al.,
308 2022b) and distinguish plasticity in this region from forms of LTP in other systems including the entorhinal
309 afferents to the dentate gyrus (Wang et al., 2018c). It is possible that there are as yet unappreciated sex
310 differences in plasticity within cortical fields that associate context with episodic content giving rise to
311 differences in the strength of these associations.

312 In summary, a rodent type of episodic memory that bears many similarities to the version described for
313 humans is strikingly dependent on context in males but not females. It is suggested that this is a consequence
314 of sex differences in learning strategies and their possible neuronal substrates.

315

316 **Conflict of Interest**

317 The authors declare that the research was conducted in the absence of any commercial or financial
318 relationships that could be construed as a potential conflict of interest.

319

320 **Author Contributions**

321 AAL, LCP and JC executed the experiments
322 AAL, JC, LCP and GL conducted quantitative and statistical analysis
323 GL, AAL and LCP designed the research
324 GL, AAL, LCP, JC and CG wrote and edited and manuscript

325

326 **Funding.**

327 This work was supported by grants from the National Science Foundation (BCS-1941216), the Office
328 of Naval Research (N00014-18-1-2114 and N00014-21-1-2940) and National Institutes of Health
329 Grant HD101642. JC was supported by the NINDS training grant T32 NS04554.

330

331 **REFERENCES**

332 Allen LM, Lesyshyn RA, O'Dell SJ, Allen TA, Fortin NJ (2020) The hippocampus, prefrontal cortex,
333 and perirhinal cortex are critical to incidental order memory. *Behav Brain Res* 379:112215.

334 Allen TA, Morris AM, Mattfeld AT, Stark CE, Fortin NJ (2014) A Sequence of events model of
335 episodic memory shows parallels in rats and humans. *Hippocampus* 24:1178-1188.

336 Amani M, Lauterborn JC, Le AA, Cox BM, Wang W, Quintanilla J, Cox CD, Gall CM, Lynch G
337 (2021) Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. *J
338 Neurosci* 41:2301-2312.

339 Andreano JM, Cahill L (2009) Sex influences on the neurobiology of learning and memory. *Learn
340 Mem* 16:248-266.

341 Asperholm M, Hogman N, Rafi J, Herlitz A (2019) What did you do yesterday? A meta-analysis of
342 sex differences in episodic memory. *Psychol Bull* 145:785-821.

343 Babb SJ, Crystal JD (2006) Episodic-like memory in the rat. *Curr Biol* 16:1317-1321.

344 Barak O, Vakil E, Levy DA (2013) Environmental context effects on episodic memory are dependent
345 on retrieval mode and modulated by neuropsychological status. *Q J Exp Psychol (Hove)*
346 66:2008-2022.

347 Barker GRI, Warburton EC (2020) Putting objects in context: A prefrontal-hippocampal-perirhinal
348 cortex network. *Brain Neurosci Adv* 4:2398212820937621.

349 Barlow HB (1989) Unsupervised learning. *Neural Computation* 1: 295–311.

350 Blair RS, Acca GM, Tsao B, Stevens N, Maren S, Nagaya N (2022) Estrous cycle contributes to
351 state-dependent contextual fear in female rats. *Psychoneuroendocrinology* 141:105776.

352 Brown RE, Kulik J (1977) Flashbulb memories. *Cognition* 5:73-79.

353 Chen CS, Knep E, Han A, Ebitz RB, Grissom NM (2021) Sex differences in learning from
354 exploration. *eLife* 10.

355 Cox BM, Cox CD, Gunn BG, Le AA, Inshishian VC, Gall CM, Lynch G (2019) Acquisition of
356 temporal order requires an intact CA3 commissural/associational (C/A) feedback system in
357 mice. *Commun Biol* 2:251.

358 Davis KE, Easton A, Eacott MJ, Gigg J (2013) Episodic-like memory for what-where-which
359 occasion is selectively impaired in the 3xTgAD mouse model of Alzheimer's disease. *Journal
360 of Alzheimer's disease : JAD* 33:681-698.

361 Dede AJ, Frascino JC, Wixted JT, Squire LR (2016) Learning and remembering real-world events
362 after medial temporal lobe damage. *Proc Natl Acad Sci U S A* 113:13480-13485.

363 Dere E, Huston JP, De Souza Silva MA (2005) Integrated memory for objects, places, and temporal
364 order: evidence for episodic-like memory in mice. *Neurobiol Learn Mem* 84:214-221.

365 Dix SL, Aggleton JP (1999) Extending the spontaneous preference test of recognition: evidence of
366 object-location and object-context recognition. *Behav Brain Res* 99:191-200.

367 Eacott MJ, Norman G (2004) Integrated memory for object, place, and context in rats: a possible
368 model of episodic-like memory? *J Neurosci* 24:1948-1953.

369 Eacott MJ, Easton A, Zinkivskay A (2005) Recollection in an episodic-like memory task in the rat.
370 *Learn Mem* 12:221-223.

371 Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1:
372 Behavioral data. *Behav Brain Res* 31:47-59.

373 Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location
374 memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex,
375 the cingulum bundle and the fornix. *Exp Brain Res* 113:509-519.

376 Federmeier KD, Sahakyan L, eds (2021) The Context of Cognition: Emerging Perspectives:
377 Academic Press.

378 Fleischer AW, Frick KM (2023) New perspectives on sex differences in learning and memory.
379 *Trends Endocrinol Metab* 34:526-538.

380 Fouquet C, Tobin C, Rondi-Reig L (2010) A new approach for modeling episodic memory from
381 rodents to humans: the temporal order memory. *Behav Brain Res* 215:172-179.

382 Frick KM, Berger-Sweeney J (2001) Spatial reference memory and neocortical neurochemistry vary
383 with the estrous cycle in C57BL/6 mice. *Behav Neurosci* 115:229-237.

384 Frick KM, Kim J, Tuscher JJ, Fortress AM (2015) Sex steroid hormones matter for learning and
385 memory: estrogenic regulation of hippocampal function in male and female rodents. *Learn
386 Mem* 22:472-493.

387 Hannesson DK, Howland JG, Phillips AG (2004) Interaction between perirhinal and medial
388 prefrontal cortex is required for temporal order but not recognition memory for objects in rats.
389 *J Neurosci* 24:4596-4604.

390 Herlitz A, Airaksinen E, Nordstrom E (1999) Sex differences in episodic memory: the impact of
391 verbal and visuospatial ability. *Neuropsychology* 13:590-597.

392 Horner AJ, Bisby JA, Wang A, Bogus K, Burgess N (2016) The role of spatial boundaries in shaping
393 long-term event representations. *Cognition* 154:151-164.

394 Jayachandran M, Langius P, Pazos Rego F, Vertes RP, Allen TA (2022) Sex and estrous cycle in
395 memory for sequences of events in rats. *Behav Neurosci*.

396 Jonasson Z (2005) Meta-analysis of sex differences in rodent models of learning and memory: a
397 review of behavioral and biological data. *Neurosci Biobehav Rev* 28:811-825.

398 Kart-Teke E, De Souza Silva MA, Huston JP, Dere E (2006) Wistar rats show episodic-like memory
399 for unique experiences. *Neurobiol Learn Mem* 85:173-182.

400 Kato A, Hojo Y, Higo S, Komatsuzaki Y, Murakami G, Yoshino H, Uebayashi M, Kawato S (2013)
401 Female hippocampal estrogens have a significant correlation with cyclic fluctuation of
402 hippocampal spines. *Frontiers in neural circuits* 7:149.

403 Korol DL, Malin EL, Borden KA, Busby RA, Couper-Leo J (2004) Shifts in preferred learning
404 strategy across the estrous cycle in female rats. *Hormones and behavior* 45:330-338.

405 Koss WA, Frick KM (2017) Sex differences in hippocampal function. *J Neurosci Res* 95:539-562.

406 Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM (2022a) Persistent sexually
407 dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and
408 episodic memory in rodents. *Neurobiol Dis* 162:105565.

409 Le AA, Lauterborn JC, Jia Y, Wang W, Cox CD, Gall CM, Lynch G (2022b) Prepubescent female
410 rodents have enhanced hippocampal LTP and learning relative to males, reversing in
411 adulthood as inhibition increases. *Nat Neurosci* 25:180-190.

412 Loprinzi PD, Frith E (2018) The Role of Sex in Memory Function: Considerations and
413 Recommendations in the Context of Exercise. *J Clin Med* 7.

414 Lovick TA, Zangrossi H (2021) Effect of Estrous Cycle on Behavior of Females in Rodent Tests of
415 Anxiety. *Front Psychiatry* 12:711065.

416 Luine VN (2008) Sex steroids and cognitive function. *J Neuroendocrinol* 20:866-872.

417 McLean AC, Valenzuela N, Fai S, Bennett SA (2012) Performing vaginal lavage, crystal violet
418 staining, and vaginal cytological evaluation for mouse estrous cycle staging identification.
419 *Journal of visualized experiments* : JoVE:e4389.

420 Norman G, Eacott MJ (2005) Dissociable effects of lesions to the perirhinal cortex and the postrhinal
421 cortex on memory for context and objects in rats. *Behav Neurosci* 119:557-566.

422 O'Brien N, Lehmann H, Lecluse V, Mumby DG (2006) Enhanced context-dependency of object
423 recognition in rats with hippocampal lesions. *Behav Brain Res* 170:156-162.

424 Oberlander JG, Woolley CS (2016) 17 β -Estradiol Acutely Potentiates Glutamatergic Synaptic
425 Transmission in the Hippocampus through Distinct Mechanisms in Males and Females. *J
426 Neurosci* 36:2677-2690.

427 Outram AR, Brown MW, Warburton EC, Barker GRI (2022) A critical role for long-term
428 potentiation mechanisms in the maintenance of object recognition memory in perirhinal
429 cortex revealed by the infusion of zeta inhibitory pseudosubstrate. *Front Behav Neurosci*
430 16:970291.

431 Piber D, Nowacki J, Mueller SC, Wingenfeld K, Otte C (2018) Sex effects on spatial learning but not
432 on spatial memory retrieval in healthy young adults. *Behav Brain Res* 336:44-50.

433 Piterkin P, Cole E, Cossette MP, Gaskin S, Mumby DG (2008) A limited role for the hippocampus in
434 the modulation of novel-object preference by contextual cues. *Learn Mem* 15:785-791.

435 Quintanilla J, Cox BM, Gall CM, Mahler SV, Lynch G (2021) Retrograde enhancement of episodic
436 learning by a postlearning stimulus. *Learn Mem* 28:82-86.

437 Rocks D, Kundakovic M (2023) Hippocampus-based behavioral, structural, and molecular dynamics
438 across the estrous cycle. *J Neuroendocrinol* 35:e13216.

439 Seel SV, Eacott MJ, Langston RF, Easton A (2018) Cholinergic input to the hippocampus is not
440 required for a model of episodic memory in the rat, even with multiple consecutive events.
441 *Behav Brain Res* 354:48-54.

442 Smith DM, Mizumori SJ (2006) Hippocampal place cells, context, and episodic memory.
443 *Hippocampus* 16:716-729.

444 Smith DM, Bulkin DA (2014) The form and function of hippocampal context representations.
445 *Neurosci Biobehav Rev* 40:52-61.

446 Staniloiu A, Kordon A, Markowitsch HJ (2020) Quo vadis 'episodic memory'? - Past, present, and
447 perspective. *Neuropsychologia* 141:107362.

448 Stark SM, Reagh ZM, Yassa MA, Stark CEL (2018) What's in a context? Cautions, limitations, and
449 potential paths forward. *Neurosci Lett* 680:77-87.

450 Staudigl T, Hanslmayr S (2013) Theta oscillations at encoding mediate the context-dependent nature
451 of human episodic memory. *Curr Biol* 23:1101-1106.

452 Talarico JM, Bohn A, Wessel I (2019) The role of event relevance and congruence to social groups in
453 flashbulb memory formation. *Memory* 27:985-997.

454 Ter Horst JP, Kentrop J, Arp M, Hubens CJ, de Kloet ER, Oitzl MS (2013) Spatial learning of female
455 mice: a role of the mineralocorticoid receptor during stress and the estrous cycle. *Front Behav
456 Neurosci* 7:56.

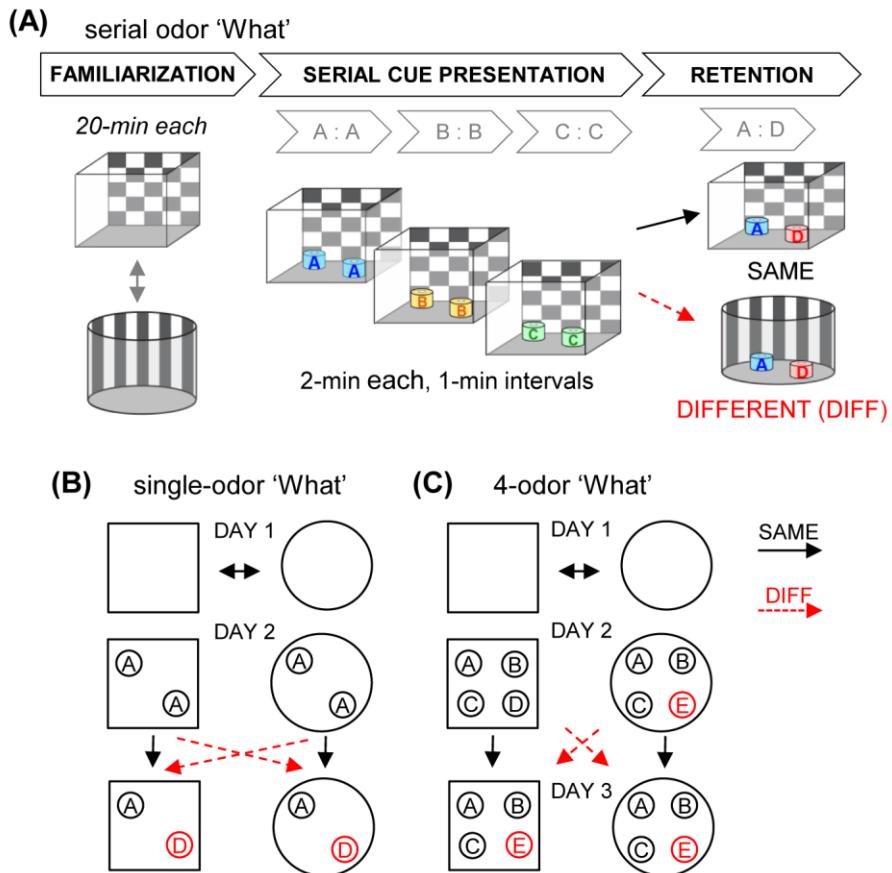
457 Tulving E (1972) Episodic and semantic memory. In: *Organization of memory*. New York:
458 Academic Press.

459 Tulving E (1983) Elements of episodic memory. Oxford, Oxfordshire, UK: Oxford University Press.

460 Vierk R, Glassmeier G, Zhou L, Brandt N, Fester L, Dudzinski D, Wilkars W, Bender RA, Lewerenz
461 M, Gloger S, Graser L, Schwarz J, Rune GM (2012) Aromatase inhibition abolishes LTP
462 generation in female but not in male mice. *J Neurosci* 32:8116-8126.

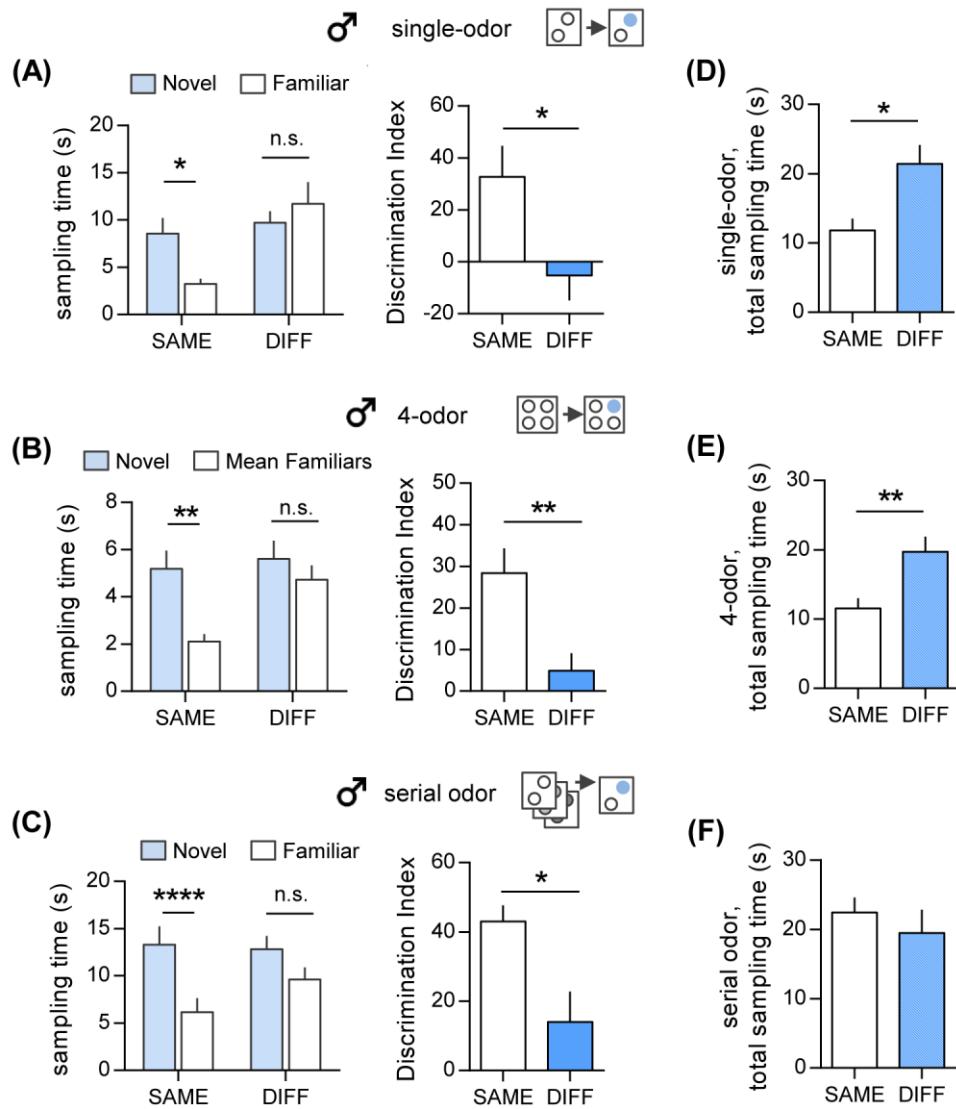
463 Voyer D, Saint Aubin J, Altman K, Gallant G (2021) Sex differences in verbal working memory: A
464 systematic review and meta-analysis. *Psychol Bull* 147:352-398.

465 Wang W, Le AA, Hou B, Lauterborn JC, Cox CD, Levin ER, Lynch G, Gall CM (2018a) Memory-
466 related synaptic plasticity is sexually dimorphic in rodent hippocampus. *J Neurosci* 38:7935-
467 7951.


468 Wang W, Cox BM, Jia Y, Le AA, Cox CD, Jung KM, Hou B, Piomelli D, Gall CM, Lynch G
469 (2018b) Treating a novel plasticity defect rescues episodic memory in Fragile X model mice.
470 *Mol Psychiatry* 23:1798-1806.

471 Wang W, Jia Y, Pham DT, Palmer LC, Jung KM, Cox CD, Rumbaugh G, Piomelli D, Gall CM,
472 Lynch G (2018c) Atypical Endocannabinoid Signaling Initiates a New Form of Memory-
473 Related Plasticity at a Cortical Input to Hippocampus. *Cereb Cortex* 28:2253-2266.

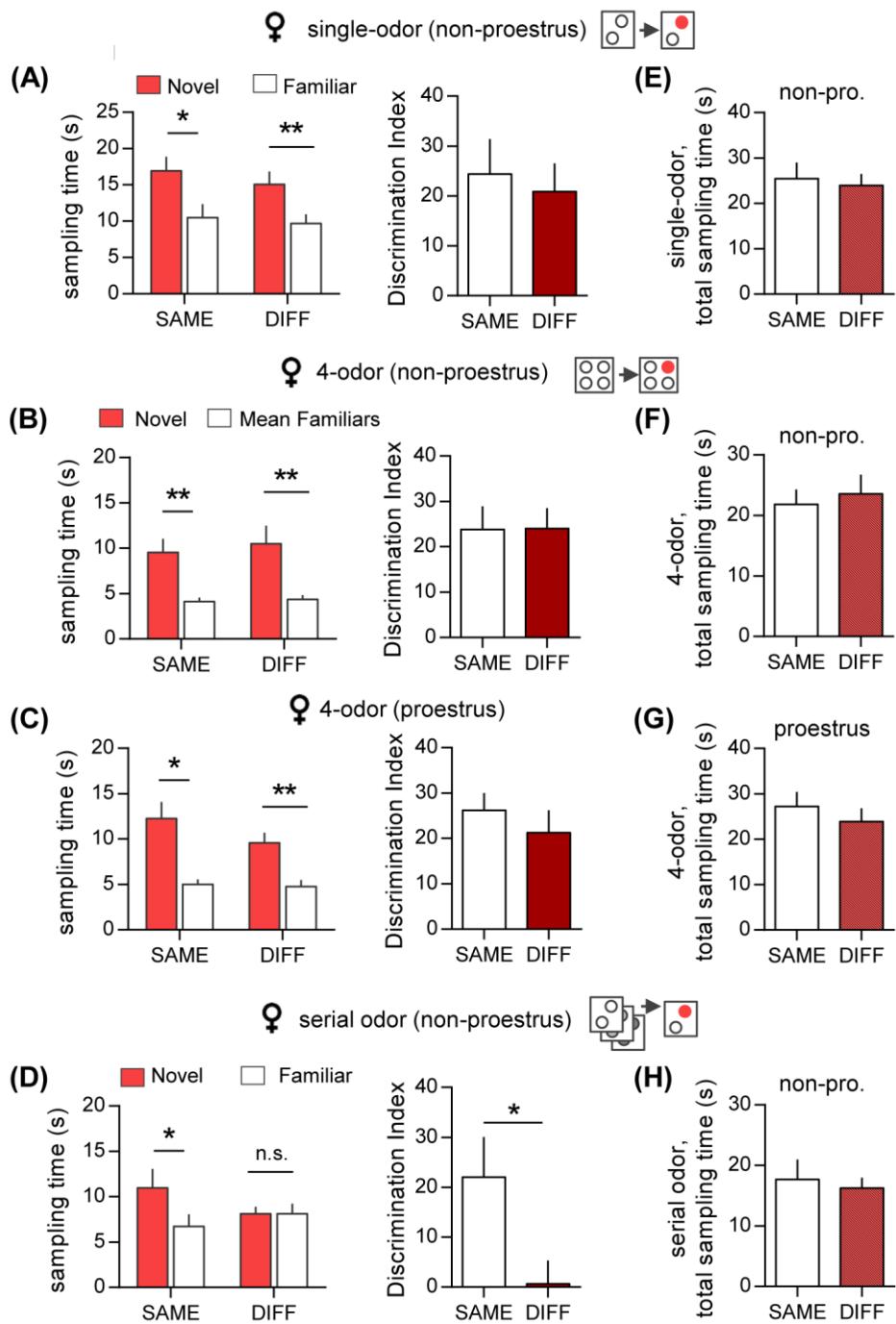
474 Warren SG, Juraska JM (1997) Spatial and nonspatial learning across the rat estrous cycle. *Behav
475 Neurosci* 111:259-266.


476 Yagi S, Galea LAM (2019) Sex differences in hippocampal cognition and neurogenesis.
477 *Neuropsychopharmacology* 44:200-213.

478

480

481 **Figure 1. Contextual Episodic Memory Tasks.** For all three tasks mice, were familiarized with two
 482 distinct chambers for 20-minutes each on Day 1. **A)** Serial odor 'What' task. On Day 2, mice were
 483 presented with a series of 3 odor pairs (2 min each, 1 min between pairs). Two minutes after the last
 484 cue exposure, retention was assessed by presentation of an odor pair including previously sampled
 485 odor A and a novel odor (e.g., A:D) in either the SAME chamber as initial odor exposures or in the
 486 different (DIFF) chamber for 3 min. **B)** Single-odor task. Mice were exposed to a single odor pair
 487 (A:A, circles denote scented jars) for 2 min. After a 10-min delay, they were exposed to odor pair
 488 (A:D) in the SAME or DIFF chamber for 3 min. **C)** 4-odor task. On Day 2 mice were exposed to
 489 four odors (A:B:C:D) simultaneously for 5 min. On Day 3, mice were exposed to four odors
 490 including 3 familiar and one novel odor (A:B:C:E), and allowed to explore for 5 min.

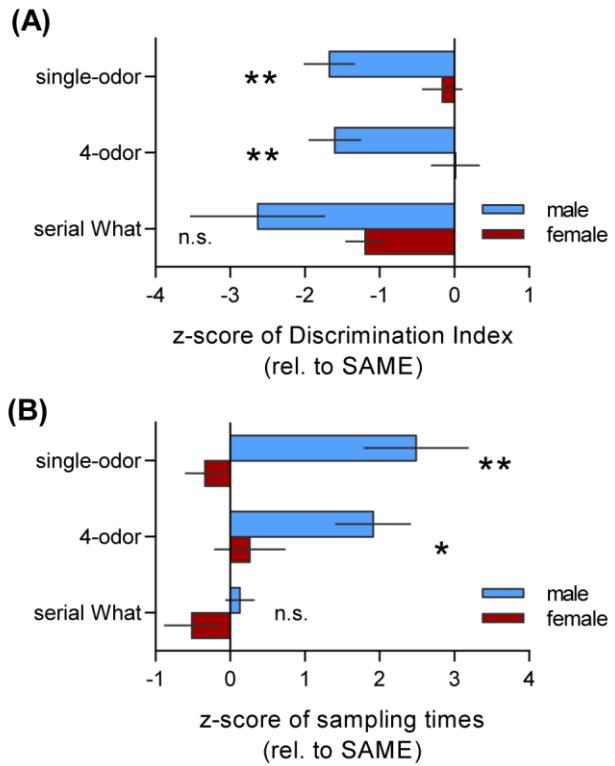


491

492 **Figure 2. Context influences the performance of male mice in all three 'What' tasks. A) Single-**
 493 **odor task. Left:** Male mice retention-tested in the SAME chamber as initial odor exposure
 494 preferentially sampled the novel odor compared to the previously sampled odor ($t_{(4)}=3.01$; $*p=0.04$;
 495 $n=5/\text{group}$; two-tailed paired t-test), whereas mice tested in the DIFF chamber sampled both odors
 496 similarly ($t_{(7)}=0.8218$; $p=0.438$; $n=8/\text{group}$). **Right.** The Discrimination Index (DI) was greater for
 497 mice tested in the SAME vs. the DIFF chamber ($t_{(12)}=2.51$; $*p=0.027$; $n\geq6/\text{group}$). **B) Simultaneous**
 498 **4-odor task. Left:** Sampling time was greater for the novel odor vs. mean of times sampling the three
 499 previously sampled odors with retention testing in the SAME chamber only (SAME: $t_{(7)}=4.612$;

500 **p=0.002; n=8; DIFF: $t_{(7)}=1.087$; p=0.313; n=8). *Right*. The DI was greater for groups tested in the
501 SAME vs. the DIFF chamber ($t_{(14)}=3.22$; **p=0.006; n=8/group). **C)** Serial odor task. *Left*: Sampling
502 time for novel vs. the previously sampled odor was greater in the SAME as compared to the DIFF
503 chamber (SAME: $t_{(10)}=11.05$; ****p<0.0001; n=11; DIFF: $t_{(16)}=2.019$; p=0.061; n=17). *Right*. The DI
504 was greater for SAME vs DIFF group mice ($t_{(7)}=0.8218$; *p=0.02; n≥11/group). **D-F)** The total time
505 sampling the cues during the retention trial was greater in the DIFF chamber compared to the SAME
506 chamber for both the single-odor task (D; $t_{(11)}=2.575$; *p=0.026; n≥5/group) and the 4-odor task (E;
507 $t_{(14)}=3.11$; **p=0.0076; n=8/group). In the serial odor task (F), sampling times were comparable for
508 SAME and DIFF group mice (F, $t_{(26)}=0.773$; p=0.447; n≥11/group). Statistics: Left panels of A-C: 2-
509 tailed paired t-test. Right panels of A-C and Panels D-F: 2-tailed unpaired t-test.

510



511

512 **Figure 3. Context has little effect on episodic ‘What’ memory in female mice. A) Single-odor**
 513 **task. Left:** In females (non-proestrus), the sampling time for the novel odor was markedly greater
 514 than the previously sampled odor when tested in either the SAME or the DIFF chamber (SAME:
 515 $t_{(10)}=3.04$; $*p=0.012$; $n=11$ /group. DIFF: $t_{(8)}=3.61$; $**p=0.0069$; $n=9$ /group). Right: Mice tested in
 516 SAME and DIFF chamber showed robust and comparable discrimination indices (DIs) ($t_{(18)}=0.031$;

517 p=0.713; n \geq 9/group). **B,C**) Simultaneous 4-odor task for non-proestrus (non-pro) (B) and proestrus
518 (pro) (C) females. *Left*: For both estrous stages, the sampling time for the novel odor was greater than
519 the mean time exploring the three previously sampled odors with retention testing in either the
520 SAME or the DIFF chamber (Shown in B, left for non-proestrus mice, SAME: $t_{(6)}=4.187$, **
521 p=0.006, n=7; DIFF: $t_{(7)}=3.542$, **p=0.009, n=7. Shown in C, left for proestrus mice: SAME:
522 $t_{(3)}=4.884$, *p=0.016; n=4. DIFF: $t_{(6)}=5.149$; **p=0.004; n=6). Right: The DIs for both non-proestrus
523 (B, right) and proestrus (C, right) mice were comparable for SAME and DIFF groups (non-proestrus
524 (B): $t_{(13)}=0.031$; p=0.976; n \geq 7/group. Proestrus (C): $t_{(8)}=0.713$; p=0.496; n \geq 4/group). **D**) Serial Odor
525 Task. *Left*: Females preferentially sampled the novel vs. the previously sampled odor with testing in
526 the SAME chamber but not in the DIFF chamber (SAME: $t_{(5)}=3.239$; *p=0.023; n=6, DIFF:
527 $t_{(5)}=0.004$; n.s. p=0.997; n=6). Right: The DI was markedly lower with testing in the DIFF vs the
528 SAME arena ($t_{(10)}=2.304$; *p=0.044; n=6/group). **E-H**) The total cue sampling time during the
529 retention trial were similar for SAME and DIFF groups in all tasks (E: Single odor task, $t_{(18)}=0.623$;
530 p=0.541; n \geq 9/group. F: 4-odor task – non-proestrus, $t_{(13)}=0.421$; p=0.68; n \geq 7/group. G: 4-odor task –
531 proestrus, $t_{(8)}=0.750$; p=0.475; n \geq 4/group. H: Serial odor task, $t_{(10)}=0.392$; p=0.703; n=6/group).
532 Statistics: Panels A-D, left: 2-tailed paired t-test. Panels A-D, right and Panels E-H: 2-tailed unpaired
533 t-test.

534

535

536 **Figure 4. Summary of Z-scores in DIFF group show that context effects on encoding cue**

537 **identity are sex- and task-specific.** Z-scores for mice from the DIFF-group relative to their

538 respective SAME-group were calculated to allow comparison of performance by males and females.

539 **A)** Z-scores of Discrimination Indices (DIs) show greater effect of context (more greatly negative

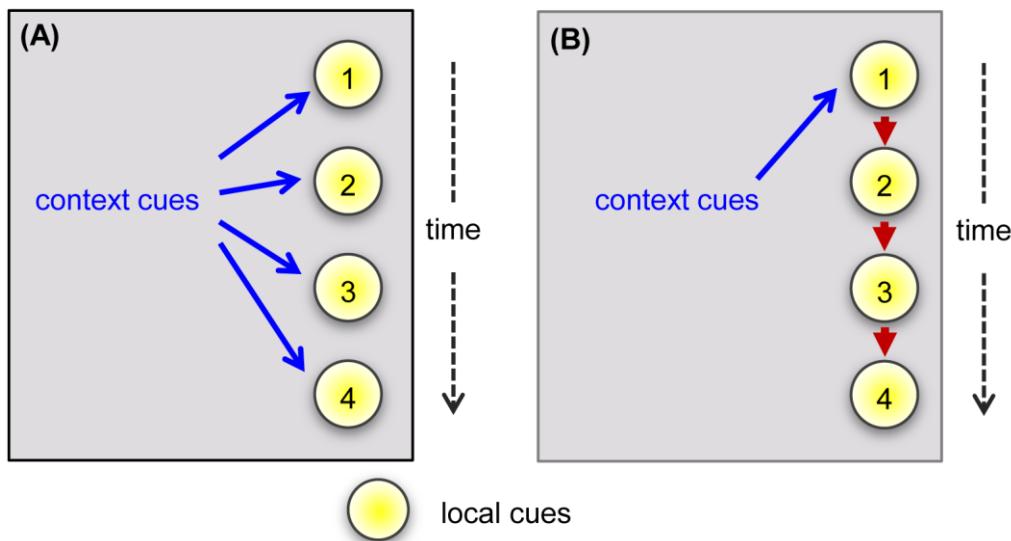
540 scores) for males as compared to females for the single-odor and 4-odor tasks (single-odor: $t_{(14)}=3.55$;

541 $**p=0.003$. 4-odor: $t_{(14)}=2.16$; $**p=0.0043$; $n=8/\text{group}$). For the serial ‘what’ task, the mean z-scores

542 was more greatly negative in males than females but the difference was not significant ($t_{(15)}=1.146$;

543 n.s. $p=0.27$; $n\geq 6/\text{group}$). **B)** Plot of Z-scores for total cue sampling times during retention testing

544 shows that for both the single-odor and 4-odor tasks, males spent more time sampling the cues in the


545 DIFF compared to the SAME context whereas females did not (single-odor: $t_{(14)}=3.76$; $**p=0.002$. 4-

546 odor: $t_{(14)}=2.37$; $*p=0.033$; male vs female, $n=8/\text{group}$). Sex differences were not evident for

547 sampling time Z-scores in the Serial ‘What’ task ($t_{(16)}=1.674$; $p=0.114$; $n\geq 7/\text{group}$). Z-scores were

548 calculated from results presented in Figure 2A-C for males and Figure 3A, B, and D for non-
549 proestrus females. Statistics: 2-tailed unpaired t-test.

550

551

552 **Figure 5. Two hypotheses regarding linkages between environmental context and local cues.**

553 The arguments assume that an animal has entered into a previously experienced situation but on this
554 occasion encounters a series of four objects or events that are available for investigation. **A)** Distant
555 elements in the environment form attachments one by one to each of the items in the sequence. The
556 context will trigger recollection of, and thus enhance familiarity with, the local cues upon re-entry
557 into the environment. The cues will lack context associations in a different environment and hence
558 seem less familiar. **B)** Linkages form between the context and an item that occurs early in a series and
559 between that early item and a succeeding one. Upon returning to the same environment, the context
560 will prompt a representation of the early cue, and thereby enhance the sense of familiarity
561 (recognition) upon actually encountering that cue. The early cue then prompts the representation of a
562 later one, which strengthens recognition upon its being re-experienced.