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Abstract—Entanglement distribution is a critical task in quan-
tum networks. Since the distributed entanglement can suffer
from noise in the channel, it is necessary to develop methods
that distill higher quality entanglement from the shared noisy
entangled states. In this work, we propose a protocol to distill
multi-qubit Greenberger-Horne-Zeilinger (GHZ) states among
the nodes of a network using quantum error correcting codes.
The method builds upon a Bell state distillation protocol by
Wilde et al. (2007) that we recently generalized to 3-qubit GHZ
states. The key technical result that enables our protocol shows
how measuring a Pauli operator, or in general a set of code
stabilizers, on one subsystem of a multipartite GHZ state affects
the other subsystems. The design and analysis of the protocol
is driven by the stabilizer formalism for measurements, and
we provide discussions to elucidate the steps of the protocol.
A similar approach can be applied to distill other multipartite
entangled states as long as they are stabilizer states.

Index Terms—Quantum networks, stabilizer codes, GHZ
states, stabilizer formalism, entanglement distillation

I. INTRODUCTION

QUANTUM networks are envisaged to interconnect multi-
ple quantum-enabled nodes that are physically far apart.

Compared to classical networks, a key advantage in quantum
networks is the possibility of entangling different subsets of
nodes and using this preshared entanglement as a resource
in network protocols. Since nodes can be very far from
each other, quantum repeaters will have to be inserted into
the network for mitigating the severe losses in direct node-
to-node channels [1], [2]. Moreover, each of these nodes
could be built using different quantum technologies, such as
trapped-ions or superconducting qubits, but they must be able
to interface with the network. Hence, we need to develop
methods for distributing high-quality entanglement between
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nodes through repeaters, and these methods should in princi-
ple be technology-agnostic. Typical entanglement distribution
schemes are heralded and hence inefficient. Since long-term
repeater architectures are designed to include quantum error
correction (QEC) capabilities [3], it is pertinent to investigate
entanglement distribution schemes that leverage QEC.

The idea of using quantum error correcting codes (QECCs)
to distill entangled states was first proposed by Bennett et
al. in their seminal paper on mixed state entanglement and
QEC [4]. In their approach, Alice locally produces k perfect
Bell pairs and then uses a QECC to protect the k halves from
all pairs that are to be transmitted to Bob. The transmission
happens through multiple uses of quantum teleportation, where
the preshared entangled resources between Alice and Bob
are noisy. Hence, the k halves are explicitly encoded by
Alice using an [[n, k]] QECC, then transmitted via quantum
teleportation, and finally error corrected and decoded by Bob.

In 2007, Wilde et al. [5] used a different approach to distill
Bell pairs via QEC (see Fig. 1). Here, Alice generates n perfect
Bell pairs and sends one half of each pair to Bob through a
noisy channel. Then, she picks an [[n, k]] stabilizer code [6],
[7] and measures the (n−k) stabilizers on her n qubits (from
all pairs). Due to a well-known “matrix transpose” property
of Bell states (3), besides projecting her qubits onto the code
subspace (modulo some Pauli corrections), her measurements
simultaneously project Bob’s qubits to an equivalent code’s
subspace. Alice classically communicates her syndrome to
Bob, which he combines with his own syndrome to correct
errors on his qubits. If Bob’s error correction succeeds, then
Alice’s and Bob’s qubits hold k perfect Bell pairs in the k pairs
of logical qubits, which can be transformed into physical Bell
pairs by inversion of the encoding unitary on both parties.
Therefore, this protocol does not have an explicit encoding
step as in the Bennett et al. protocol, and Alice’s measurement
induces the encoding. Note that there are no errors on her
qubits that the syndrome measurement is supposed to correct.

While the protocol is clear, it is not obvious why the k
logical qubits form logical Bell pairs just before the decoding
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Fig. 1: The QEC based protocol by Wilde et al. [5] to distill
Bell pairs between Alice and Bob. Figure taken from [5].

(unencoding) step. After introducing some background and
notation in Section II, we use the stabilizer formalism for mea-
surements [8] to briefly clarify the reason for this phenomenon.
We refer the interested reader to [9] for a detailed discussion
using an explicit example. Then, we extend the protocol
beyond Bell states, where we distill `-qubit GHZ states using
stabilizer codes. In order to develop this protocol, we establish
a technical result that shows how stabilizer measurements on
one subsystem of a GHZ state produces a joint code on all
the other subsystems. We had proven this result and developed
the protocol for ` = 3 in [9], and here we generalize to any `.

Our work is well compatible with recent work on quantum
repeaters that exploit QEC. In [3], the authors considered a hy-
brid repeater scheme where the physical qubits actually belong
to the subspace of the Gottesman-Kitaev-Preskill (GKP) code,
and there is an outer stabilizer code imposed on these GKP
qubits. Using the [[4, 2, 2]] code and the [[7, 1, 3]] Steane code as
examples, they showed that the GKP analog information from
the inner round of error correction can help correct more errors
than these outer codes can normally correct. Thus, our QEC
based entanglement distillation protocol can be implemented
in such repeater architectures. Recently, quantum low-density
parity-check (QLDPC) codes with linearly scaling rate and
distance have been constructed [10]–[12], and the advantages
of concatenating the GKP code with QLDPC codes has been
demonstrated [13]. Hence, employing concatenated QLDPC-
GKP codes in our protocol could lead to high-rate high-output-
fidelity entanglement distillation in quantum networks.

II. BACKGROUND AND NOTATION

Let n denote the number of qubits in a quantum system.
Given binary (row) vectors a, b ∈ Fn2 , we will denote an n-
qubit Hermitian Pauli matrix by E(a, b), where ai = 1 (resp.
bi = 1) indicates Pauli X (resp. Z) on qubit i, ai = bi = 1
indicates Pauli Y on qubit i, and ai = bi = 0 indicates identity
on qubit i. The weight of a Pauli is the number of qubits on
which it acts non-trivially. For example, for n = 3 qubits,
E([1, 0, 1], [0, 1, 1]) = X ⊗ Z ⊗ Y and its weight is 3. Since

E(a, b) is Hermitian and unitary, it has eigenvalues ±1 and
E(a, b)2 = IN , where N := 2n. The n-qubit Pauli group is

Pn := {ıκE(a, b), a, b ∈ Fn2 , κ ∈ Z4 = {0, 1, 2, 3}}, (1)

where ı :=
√
−1. Two Paulis E(a, b) and E(c, d) commute

or anticommute depending on the symplectic inner product
〈[a, b], [c, d]〉s := adT + bcT (mod 2): if the inner product is 0
then they commute, if it is 1 then they anticommute.

An r-dimensional stabilizer group S is a commutative
subgroup of Pn that is generated by r commuting Hermitian
Paulis such that −IN /∈ S . The common +1 eigenspace of
(the elements of) S is called an [[n, k, d]] stabilizer code Q(S),
where k := n− r and d is the minimum weight of any Pauli
E(a, b) /∈ S that commutes with every element of S [6], [7]. If
the generators of S are {εiE(ai, bi), i = 1, 2, . . . , r}, where
εi ∈ {±1}, then the projector onto the subspace Q(S) is

ΠS =
r∏
i=1

(IN + εiE(ai, bi))

2
. (2)

When r = n, S is said to be a maximal stabilizer group
where Q(S) is a unique state |ψ(S)〉 up to an unimportant
global phase. Such a state is called a stabilizer state. Given a
stabilizer state, the stabilizer formalism [8] provides a recipe
to update S when a Pauli measurement is performed on the
state. Let νE(c, d) be measured on the state to obtain a result
µ ∈ {±1}. Then, one of the following is applicable:

1) If 〈[ai, bi], [c, d]〉s = 0 for all i ∈ {1, . . . , r}, then S
remains unchanged because µνE(c, d) ∈ S already.

2) If 〈[ai, bi], [c, d]〉s = 1 for exactly one i ∈ {1, . . . , r},
then replace εiE(ai, bi) with µνE(c, d).

3) If 〈[ai, bi], [c, d]〉s = 1 for i ∈ A ⊆ {1, . . . , r}, then
replace εjE(aj , bj) with µνE(c, d) for one j ∈ A,
and for every other i ∈ A, replace the stabilizer with
εiE(ai, bi)·εjE(aj , bj) (which commutes with E(c, d)).
See [9] for details on binary arithmetic for Paulis.

Let |Φ+
n 〉AB :=

(
|00〉AB+|11〉AB√

2

)⊗n
= 1√

2n

∑
x∈Fn

2
|x〉A |x〉B.

It is well-known that this state is stabilized by S(|Φ+
n 〉AB) =

〈XAXB, ZAZB〉⊗n. It is also known that |Φ+
n 〉AB satisfies the

following matrix identity for any matrix M [4], [5]:

(MA ⊗ IB)
∣∣Φ+
n

〉
AB = (IA ⊗MT

B )
∣∣Φ+

〉
AB . (3)

When M is a projector, one can replace M by M2 and
apply this property to only one M to see that the operator
on the right hand side becomes MA ⊗MT

B . Thus, projecting
Alice’s qubits by M induces a simultaneous projection of
Bob’s qubits by MT . In particular, when M = ΠS , which is
induced by measuring the stabilizer generators of S on Alice’s
qubits, Bob’s qubits are projected onto the subspace of the
“transpose” code whose projector is ΠT

S . By transposing (2),
it is clear that the stabilizer generators for this transpose code
are {εiE(ai, bi)

T }, where E(ai, bi)
T = (−1)aib

T
i E(ai, bi)

because Y T = −Y but X and Z are symmetric.
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III. CODE BASED ENTANGLEMENT DISTILLATION

A. Bell Pair Distillation using Stabilizer Codes

We begin by using the stabilizer formalism to explain why,
before the decoding step, the logical qubits of Alice and Bob
form k Bell pairs in the distillation protocol by Wilde et al. [5]
that we discussed in the Introduction.

Initially, Alice generates the 2n-qubit stabilizer state
|Φ+
n 〉AB, which can be simulated by creating the stabilizer

group S(|Φ+
n 〉AB). This group has 2n commuting generators,

two for each Bell pair. Now, Alice chooses some [[n, k, d]]
stabilizer code Q(S) and measures the r = n − k stabilizer
generators of S on qubits marked ‘A’. We can use the stabilizer
formalism in Section II to evolve the stabilizer group through
each measurement. Crucially, the rules of the stabilizer formal-
ism guarantee that after each step the new set of generators
still mutually commute. Hence, after r steps, we will have
Alice’s code stabilizers belonging in the evolved group. Due
to the Bell matrix identity in (3) (for projector ΠS ), we know
that Bob’s qubits would have been simultaneously projected
onto the subspace of the “transpose” code. Thus, Bob’s code
stabilizers must also belong to the evolved group, and we have
2r = 2(n− k) code stabilizer generators in total.

The Pauli error from the channel can only affect the signs
of these stabilizers, which are assumed to be fixed later by
Bob’s decoder. The remaining 2k generators of the evolved
group mutually commute and also commute with all these
code stabilizers. Each of these 2k operators must act both on
Alice’s and Bob’s qubits, and since they are not themselves
stabilizers of the code, the Alice (resp. Bob) component of
each operator must be a logical operator for Alice’s (resp.
Bob’s) code. With some thought, one can appropriately define
logical X and logical Z operators for the codes of Alice and
Bob to conclude that these 2k operators correspond to logical
XAXB and logical ZAZB for the k pairs of logical qubits.
Hence, in the Wilde et al. protocol, this is why the logical
qubits of Alice and Bob form logical Bell pairs just before
the decoding step. When the encoding unitaries are inverted
on both parties, these logical Bell pairs are converted into
physical Bell pairs that are of higher quality than the n noisy
Bell pairs initially shared between Alice and Bob. For a more
detailed discussion of this phenomenon, see [9].

B. Multi-Qubit GHZ Distillation

Given this understanding of the Bell pair distillation pro-
tocol, it is natural to extend it to distill `-qubit GHZ states,∣∣∣GHZ`

〉
= (|00···0〉+|11···1〉)√

2
. The case of ` = 3, the standard

GHZ state, was recently solved in [9]. Here, we extend the
protocol to any ` > 3 and use ` = 4 for simplicity. Unless we
include the superscript `, |GHZ〉 denotes the 4-qubit state.

Consider n copies of the 4-qubit GHZ state where the
4 qubits of each copy are marked ‘A’, ‘B’, ‘C’, and ‘D’.
Similar to the case of the standard Bell state, the qubits can
be rearranged to rewrite the joint state as

|GHZn〉ABCD =
1√
2n

∑
x∈Fn

2

|x〉A |x〉B |x〉C |x〉D . (4)

Each GHZ state has the following associated stabilizer group:

SGHZ = 〈ZAZBICID, IAZBZCID, IAIBZCZD, XAXBXCXD〉.

Hence, the stabilizers for |GHZn〉ABCD are S⊗nGHZ. Next, we
need to generalize the Bell matrix identity (3) to the GHZ
case and identify how Pauli measurements on one subsystem
affect the other subsystems. We begin with a simple lemma.

Lemma 1. Let M =
∑
x,y∈Fn

2
Mxy |x〉 〈y| ∈ C2n×2n be any

matrix acting on qubits ‘A’. Then,

(MA1
⊗ I)

∣∣∣GHZ`n
〉

A1···A`

=
(
IA1
⊗
(
M̂T

)) ∣∣∣GHZ`n
〉

A1···A`

;

‘GHZ-map’ : M 7→ M̂ :=
∑

x,y∈Fn
2

Mxy |x〉 〈y|⊗(`−1) .

Proof: Similar to the Bell state case, we calculate

MA1

∣∣∣GHZ`n
〉

A1···A`

=
1√
2n

∑
x,y∈Fn

2

Mxy |x〉A1
|y〉A2

· · · |y〉A`

=
1√
2n

∑
x,y

|x〉A1
(MT )yx |y〉A2

· · · |y〉A`

=

(
IA1
⊗
(
M̂T

)
A2···A`

) ∣∣∣GHZ`n
〉

A1···A`

This completes the proof and establishes the identity.
Next, we establish some properties of the GHZ-map, which

are straightforward to prove (see [9] for proof of ` = 3).

Lemma 2. The GHZ-map M ∈ C2n×2n 7→ M̂ ∈
C2(`−1)n×2(`−1)n

is an algebra homomorphism [14]:
(a) Linear: If M = αA+ βB, where α, β ∈ C, then M̂ =

αÂ+ βB̂.
(b) Multiplicative: If M = AB, then M̂ = ÂB̂.
(c) Projector-preserving: If M2 = M , then M̂2 = M̂ .

Consider performing stabilizer measurements on Alice’s
qubits. This corresponds to the case where M = ΠS for some
stabilizer group S . The third property above clarifies that this
also induces a projection on the remaining qubits. However, we
want to understand whether it projects onto a stabilizer code
and, if so, then we also want to know the structure of this
induced code. The above lemma greatly simplifies this pursuit
since the code projector (2) is a product of sums. Note that
we seek to expand Π̂T

S , and that the transpose map commutes
with the GHZ-map. Due to the multiplicativity of the GHZ-
map, it is sufficient to consider only the case r = 1 in ΠS ,
where there is a single stabilizer generator εE(a, b). Now, due
to the linearity of the GHZ-map, we only need to determine
ÎN and Ê(a, b), since E(a, b)T = (−1)ab

T

E(a, b). Using this
approach, we arrive at the following main technical result.

Theorem 3. Given n copies of the `-qubit GHZ state with
subsystems A1,A2, . . . ,A`, measuring E(a, b) on the n qubits
of subsystem A1 and obtaining the result ε ∈ {±1} is
equivalent to measuring the following with results +1 on the
qubits of the remaining (`− 1) subsystems:

ε(−1)(
∑`−2

i=1

∑`−1
j>i bi∗bj)a

T ⊗̀
t=2

E(a, bt−1)TAt
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= ε(−1)(b+
∑`−2

i=1

∑`−1
j>i bi∗bj)a

T ⊗̀
t=2

E(a, bt−1)At and

{ZA2,iZA3,i = E(0, ei)A2 ⊗ E(0, ei)A3 ,

ZA3,iZA4,i = E(0, ei)A3 ⊗ E(0, ei)A4 , . . . ,

ZA`−1,iZA`,i = E(0, ei)A`−1
⊗ E(0, ei)A`

; i = 1, 2, . . . , n},

where b1, b2, . . . , b`−1 ∈ Fn2 satisfy b1 ⊕ b2 ⊕ · · · ⊕ b`−1 = b,
x ∗ y denotes the element-wise product of two vectors, ZAt,i

refers to Z on i-th qubit of subsystem At, and ei is the standard
basis vector with the 1 in the i-th position.

Proof: The proof is a direct generalization of the ` = 3
case. See [9] for the details.

Example 1. Consider ` = 3, n = 1 and the case when M =
I+Z
2 = I+E(0,1)

2 , with a = 0, b = 1 = b1, b2 = 0. Then,
Î = I⊗I+Z⊗Z

2 and ̂E(0, 1)T = (E(0, 1)T ⊗ E(0, 0)) · Î =

(Z⊗I)·Î . Therefore, the stabilizers for BC are 〈Z⊗I, Z⊗Z〉.
If we had an X-measurement for ‘A’, where a = 1, b = 0,

then E(a, b)T ⊗E(a, 0) = X⊗X . Combined with the Z⊗Z
from Î , the qubits on BC are projected to the Bell state.

More interestingly, if we consider a Y -measurement for ‘A’,
where a = b = 1, then E(a, b)T⊗E(a, 0) = Y T⊗X = −Y ⊗
X . Thus, assuming the measurement result is +1, the new BC
stabilizers are 〈−Y ⊗X,Z⊗Z〉. It can be verified that the post-
measurement state for this case will be (|0〉+ı|1〉)√

2
⊗ (|00〉−ı|11〉)√

2
,

which is stabilized by the above stabilizer.

Remark 4. There are two special cases that eliminate the sign
in the new joint stabilizer. One can set b1 = b and b2 = b3 =
· · · = b`−1 = 0 [9], like in Example 1, in which case bi∗bj = 0
always. More generally, one can define {bi : bi 6= 0} such that
bi ∗ bj = 0 while b1 ⊕ b2 ⊕ · · · ⊕ b`−1 = b still holds, i.e.,
splitting the entries of b into (`− 1) disjoint groups.

As we desired, the above result shows how a Pauli mea-
surement on one subsystem, A1, of (multiple copies of) the
GHZ state affects the remaining subsystems. All the GHZ
stabilizers involving subsystems A2,A3, . . . ,A` are retained.
Hence, the post-measurement state is “GHZ-like” on these
(`− 1) subsystems but with an additional globally entangling
stabilizer. This is akin to the globally entangling all-X stabi-
lizer for the standard GHZ state, but it depends on the Pauli
operator being measured on A1. Note that, since the Pauli
measurement randomly projects onto a subspace, the induced
stabilizers given by the theorem do not uniquely determine
the post-measurement state on the (` − 1) subsystems. The
degrees of freedom for the state will be quantified shortly in
a more general setting. One might argue that this theorem
can be obtained by directly applying the stabilizer formalism
to SGHZ. However, some thought clarifies that arriving at the
conclusions rigorously takes at least an equal amount of effort.

In the context of measuring a set of (n − k) stabilizer
generators of a code (on qubits A1), the above result confirms
that this induces a joint stabilizer code on the remaining (`−1)
subsystems. There are n(`−1) qubits on these subsystems and

each code stabilizer generator contributes a stabilizer generator
for this induced code. Besides, as stated in the theorem,
there are n(` − 2) GHZ stabilizers on all pairs of adjacent
subsystems, {AjAj+1 ; j = 2, . . . , `− 1}, independent of the
code stabilizers being measured. Hence, the induced code has
(n − k) + n(` − 2) stabilizer generators, which means it is
an [[n(` − 1), k]] code and the post-measurement state has
k logical degrees of freedom. The minimum distance of the
induced code will depend on the minimum distance of the
A1-code as well as the new GHZ stabilizers and the choice of
{bi}. In [15], for ` = 3, only the special case of Theorem 3
with b1 = b, b2 = b3 = · · · = b`−1 = 0 was considered.
Since this leads to purely X-type stabilizers for the remaining
subsystems, a local diagonal Clifford operation was prescribed
to fix the stabilizers. Such techniques can also be applied in
the more general Theorem 3 based on the choices of bi.

We will now complete this paper with the overall description
of the protocol. More details can be found in [9].

C. The Distillation Protocol

The protocol is showed on the left side of Fig. 2 for ` = 3.
We will restrict ourselves to CSS codes here, since most
good codes found in the literature are of this type. However,
if necessary, the protocol can be generalized to arbitrary
stabilizer codes using some additional details from [15], where
that initial protocol turned out to be less scalable.

For any ` ≥ 3, A1 generates n ideal copies of the `-qubit
GHZ state, names the qubits of each copy A1 through A`,
chooses some [[n, k]] code Q(S) defined by a stabilizer S ,
and measures the (n − k) generators of S on qubits A1.
Then, A1 applies Theorem 3 to determine the induced code
Q
(
S(`−1)

)
on the remaining subsystems. Let us again set

` = 4 for simplicity. For tracking the protocol, we can initially
create a table whose rows are the binary representations of the
generators of S⊗nGHZ (similar to [9]). Group the n ZAiZBiICiIDi

generators in the first part of the table, the n IAi
ZBi

ZCi
IDi

generators in the second part, the n IAi
IBi
ZCi

ZDi
in the third

part, and finally the n XAi
XBi

XCi
XDi

in the fourth part. If
there is a purely Z-type generator, E(0, b)A, for S , then it
will commute with the first three parts and only affect the
last part based on the stabilizer formalism. Moreover, by an
appropriate linear combination of the rows of the first part,
one can produce the element E(0, b)A⊗E(0, b)B, which when
multiplied by the new code stabilizer produces the stabilizer
E(0, b)B on purely subsystem B. By a similar trick in the
second part and subsequently in the third part, one can produce
single-subsystem stabilizers E(0, b)C and E(0, b)D as well.
Hence, it suffices to only consider stabilizers E(a, b)A, a 6= 0.

Such stabilizers transform into the multiple-subsystem sta-
bilizers described by Theorem 3. Now, qubits of B, C, and D
need to be transmitted over a noisy channel to the respective
nodes, based on the network topology. For those nodes to be
able to correct errors, a code needs to be imposed purely on
each subsystem before transmission of the respective qubits.
Let A be connected to B. Then, based on the choice of
b1, b2, b3 in Theorem 3, A measures code stabilizers E(a, b1)B
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Fig. 2: (left) QEC-based distillation protocol for GHZ states. (right) Threshold of the protocol on a lifted product code family.

on qubits B. With some thought, one sees that these stabi-
lizers only affect the second part of the table. Now, since
±E(a, b1)B ⊗ E(a, b2)C ⊗ E(a, b3)D is already a stabilizer,
by multiplying with E(a, b1)B we obtain a code on B and a
residual code jointly on C and D. The qubits of B can be
transmitted to node B (along with necessary classical sign
information of stabilizers), which can perform error correction.

If A is not connected to C and D, then A has to send those
qubits to B. Thus, it appears that A has to perform stabilizer
measurements as above not only on B but on C and D as
well. However, this can be relegated to subsequent nodes to
reduce the burden on A. Let A also send qubits C and D
to node B along with qubits B. There is some joint Pauli
error on B, C, and D, and the error correction of B only
fixes the error part on B. If B measures code stabilizers on
C, then the preexisting Pauli error can be transformed into
an effective Pauli error after the code was imposed on C.
This enables node C to correct this error as well as any error
encountered while B sends qubits C. A similar statement holds
for D as well. Thus, the protocol can be stated as follows: for
every edge connected to a node, the node performs stabilizer
measurements on the respective subsystem to impose a code
on the qubits of the recipient on that edge. The correctness
of the protocol relies on carefully tracking signs of stabilizers
based on such measurements at each node. Once all qubits are
distributed, each node uses the logical Paulis of their respective
codes [9] to determine and invert the encoding unitary. This
converts the k logical GHZ states into k perfect physical GHZ
states, provided all error corrections were successful.

In Fig. 2 (right), we plot the threshold of the protocol for
` = 3 on a family of lifted product codes under iterative min-
sum decoding. A more detailed discussion can be found in [9].
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