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Abstract—Quantum repeaters are essential to realizing long-
range entanglement distribution networks. To achieve enhanced
rates of high-fidelity entanglement distribution, we investigate
how entanglement distillation can be used on trapped-ion-based
quantum repeater networks. Entanglement distillation is the
process of distilling from a large number of copies of low-
fidelity entangled qubits a fewer number of copies of higher-
fidelity entangled qubits. It has been shown that quantum error-
correcting codes (QECCs) can be used to devise protocols for
entanglement distillation. In this paper, we consider entanglement
distillation based on three lifted-product (LP) quantum low
density parity check (QLPDC) codes ([[544, 80, 12]], [[714, 100,
16]], and [[1020, 136, 20]]) on trapped-ion repeater networks
with spatial and time multiplexing over various total distances
with different inter-repeater spacing to calculate the end-to-end
entanglement rates that they enable. The reported rates assume
entanglement over each elementary link succeeds synchronously
and do not assume any constraint on the number of ions
present in each trap. We furthermore assume that distillation
occurs at every elementary link and that the entanglement
swaps are ideal. Our findings can be considered as groundwork
for implementing more efficient distillation and communication
protocols on trapped ion networks.

I. INTRODUCTION

In order to realize the full potential of quantum computing,
it is essential to inter-connect quantum computers to form
quantum networks [1], [2]. Quantum networks that can
reliably transfer quantum states and distribute entanglement
have been investigated on various qubit platforms, such as
superconducting circuits [3], [4], NV centers in diamond [5]–
[8], and trapped ions [9], [10]. Protocols for quantum
communication across these platforms are being developed
and generally involve the use of photons and optical
networks [11]–[14]. One significant challenge in developing
these optically mediated quantum networks is overcoming
a steeply unfavorable rate-loss trade-off [15], [16]. The
entanglement distribution capacity between two parties
under unlimited rounds of local operations and classical
communication (LOCC) is given by C(η) = − log2(1 − η)
ebits per channel-use [15], where η is the transmissivity
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of the channel connecting the parties, and an ebit refers
to a pair of maximally entangled qubits. When η � 1,
C(η) ∝ η. Since the transmissivity η of an optical link in
long-distance communications decreases exponentially with
distance as e−αl, with α being the fiber loss coefficient per
unit length (typically 0.2 dB/km) and l being the length of
the fiber, the entanglement distribution capacity also decays
exponentially with distance.

Quantum repeaters have been shown to mitigate the
rate-loss trade-off and increase entanglement distribution
rates [17]–[20]. In the context of entanglement distribution-
based networks, quantum repeaters are specialized quantum
processors that establish and store entanglement over smaller
distances for which the transmission loss is not as great, and
use entanglement swapping to extend the entanglement over
longer distances. Trapped-ion systems have become a favored
platform for repeater protocols, because they support qubits
with long coherence times [21], which is useful for storing
entanglement, and optically active ions, which can interface
with the network by generating ion-photon entanglement.
Trapped-ion systems also support high-fidelity quantum logic
gates and exhibit a potential for scalability, making them
promising platforms for quantum networking [9].

Repeater architecture based on dual-species trapped ion
(DSTI) modules developed by Santra et al. [12] has been
shown to exhibit rates that exceed those possible with
direct transmission. These dual species modules consist of a
communication ion, used to optically herald entanglement, and
a memory ion, used to store quantum states for longer times.
Already, protocols for DSTI repeater line networks on trapped
ion systems with temporal and spatial multiplexing have been
investigated to maximize entanglement distribution rates. In
our previous work [11], which analyzed a quantum repeater
protocol considering ion resources, ion species, number of
repeaters, and time and spatial multiplexing, we reported
enhanced rates of up to 20000 ebits/second (where an ebit
is a maximally entangled qubit pair) at 200km end-to-
end distance with repeaters placed every 2km for DSTI
modules with 138Ba+ as communication ions and 171Yb+ as
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memory ions and assuming reasonable values for operating
parameters. In this work, we investigate how entanglement
distillation, the process of distilling from a large number of
copies of low-fidelity entangled qubits a fewer number of
copies of higher-fidelity entangled qubits, can be incorporated
into these repeater protocols to further increase the range of
communications, i.e., to distribute entanglement at enhanced
rates over larger distances.

In this article, we analyze the rate of successfully
performing one round of distillation on every elementary
link in a repeater network, which we will also refer to
as the end-to-end entanglement rate. We use results from
Rengaswamy et al. [22], [23] to obtain the probability of
failure of entanglement distillation of Bell pairs with the lifted
product (LP) quantum low density parity check (QLDPC)
codes, specifically the [[n, k, d]] = [[544, 80, 12]], [[714, 100,
16]], and the [[1020, 136, 20]] codes. We combine these rates
with the framework from Dhara et al. [11] to calculate the
end-to-end rates using trapped ion repeaters with spatial and
time multiplexing. We assume that entanglement is heralded
at each elementary link synchronously, entanglement swaps
are ideal (meaning that they succeed deterministically and
incur no or negligible error in the ebits), successful distillation
guarantees that the distilled ebits are of perfect fidelity, there
is no constraint on the number of memory and optical ions,
and gate operations used in the entanglement distillation are
ideal and incur no error. Our results suggest that incorporating
entanglement distillation in repeater protocols has the potential
to further enhance entanglement distribution rates at farther
total end to end distances at rates well above the direct
transmission capacity and over repeater schemes that do not
employ entanglement distillation.

This article is organized as follows. In section II, we further
explain the trapped-ion repeater architecture we consider. In
section III, we provide an overview of the quantum error-
based entanglement distillation and report the results from
Rengaswamy et al. that we use in our rate calculation. In
section IV, we present our results for the end-to-end rates
with distillation using the LP codes at every elementary link.
Finally, in section VI, we present our conclusions.

II. REPEATER ARCHITECTURE AND PROTOCOL OUTLINE

The architecture for the trapped ion repeater network that
we consider in this article is adopted from Dhara et al. [11],
where the repeaters consist of DSTI modules that contain
138Ba+ ions as the communication ions, and 171Yb+ ions
as the memory ions. These trapped ion repeaters have been
shown to enhance entanglement distribution rates beyond the
direct transmission capacity. Thus far there are two different
types of quantum repeaters, namely, "one-way" quantum error
correction and forward transmission based, or "two-way"
entanglement distribution and quantum teleportation based,
and three distinct generations of quantum repeaters [17].
In this article, we consider two-way 2G quantum repeaters.
Two-way repeaters operate by generating distinct ebits over
smaller segments of the network which we refer to as

elementary links, then use entanglement swaps to extend these
local entanglements to eventually be shared between the end
parties on the channel. 2G quantum repeaters use heralded
entanglement generation and employ quantum error correction.
Here we use quantum error correction in two different ways: i)
in the form of repetition codes as implemented by spatial and
time multiplexed generation of ebits over elementary links, and
ii) in the form of codes for entanglement distillation across the
elementary links.

For example, consider a network over some total distance
Lo, separated into r + 1 elementary links using r repeaters,
where there is a repeater or end node at each end
of an elementary link. In two-way quantum repeaters,
first, entanglement is established across each elementary
link via linear optical Bell state measurements (BSMs)
between adjacent repeaters, which has some probability p ∝
exp(−αLo/(r + 1)) of succeeding. The clock cycle duration
τ of a repeater refers to the rate at which the repeater nodes
attempt ion-photon entanglement generation. We assume that
all nodes share the same clock cycle. We also assume that the
swap operation that transfers entanglement from optical ions
to the memory ions via ion-ion gates produces a negligible
error.

The use of the repetition code in the form of spatial and
time multiplexing helps boost the probability of successfully
heralding entanglement along each elementary link [18], [24]–
[26]. Spatial multiplexing refers to attempting entanglement
M ∈ Z+ times in parallel through distinct optical fibers
in space. Time multiplexing refers to attempting to herald
entanglement m ∈ Z+ times over blocks of τ seconds. Time
multiplexing does not require multiple physical channels, but
achieves the same effect of boosting the heralding rate. In
general, the achievable entanglement generation rate with both
spatial and time multiplexed two-way repeaters is given as

R(Lo, r,m) =
(1− (1− p)mM )r+1

mτ
. (1)

The repeaterless bound on the entanglement generation
capacity for multiplexed quantum communications (in ebits/s
units), which we will also refer to as the PLOB bound and
forms the baseline, is given by:

Cdirect(η,M, τ) = −M
τ

log2(1− η) ebits/s, (2)

Optimizing over M,m, and r, the entanglement generation
rate with multiplexed repeaters can beat the PLOB bound.

Here, we investigate if we can further improve the
entanglement distribution rates of repeater networks by adding
distillation protocols to each elementary link in the network.
We consider a distillation step based on the protocol from
Rengaswamy et. al [22], [23]. The entanglement distillation
is performed on the ebits which were just heralded. We
assume that successful distillation produces ebits with perfect
fidelity. Then, entanglement swap operations are performed at
each node to extend the entanglement over longer distances,
which in this paper we assume are ideal and succeed
deterministically. Figure 1 shows entanglement distillation
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across each elementary link followed by an entanglement
swap.

Fig. 1: Entanglement is first heralded between qubits in
adjacent nodes (black dots), then are distilled, then swapped.
We assume that successful distillation produces ebits with
perfect fidelity. The blue lines represent entanglements, where
heavier line weight represents a higher number of copies of
the entanglement. [27].

Table I summarizes the parameters of our trapped-ion
repeater network and their values used in our end-to-end rate
calculations.

Parameter Associated Meaning Value

τ Clock cycle duration 0.1µs
τg Ion-ion gate/measurement time 0.1µs
τo Communication ion lifetime 50µs
Lo Total network distance variable
M Degree of spatial multiplexing 10
m Degree of time multiplexing variable
η Transmissivity 0.2dB
ηc Coupling Collection Efficiency 0.3
ηd Detection Efficiency 0.8
εg Ion-ion gate error rate 0
q Probability of successful distillation variable
r Number of repeaters variable

[[n, k, d]] Parameters of the QEC code variable

TABLE I: Timing parameters associated with trapped-ion
repeaters.

Fig. 2: Nodes A and B use an [[n, k, d]] QEC to distill n
Werner pairs. This distillation algorithm is performed on every
elementary link between all nodes in our repeater network.

Fig. 3: LP code entanglement distillation simulation results.
We interpret the initial fidelity (F0) of the n Werner pairs as 1-
ε, where ε is the depolarizing probability. Figure A generally
suggests that distillation using longer code lengths is more
likely to succeed than using shorter code lengths. Figure B is
a zoomed-in view of the top right of the graph in Figure A,
which reveals a threshold where distillation using the shorter
codes outperforms distillation using the longer codes.

The values for L0 are variable over a range of 30km to
500 km. The time multiplexing parameter m is optimized to
maximize the end-to-end rate and thus is also variable. We
obtain the probability q that distillation succeeds at one link
from Rengaswamy’s results and thus calculate the probability
of performing successful distillation at all links as qr+1.
We consider three different LP codes where [[n, k, d]] =
[[544, 80, 12]], [[714, 100, 16]], [[1020, 136, 20]]. Note that n
also refers to the number of noisy entangled qubit pairs that
much be generated initially at each node.
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(a) None of the protocols beat the PLOB
bound.

(b) All protocols beat the PLOB bound at
total distances above 115.75 km.

(c) All protocols beat the PLOB bound at total distances above
166.25 km

Fig. 4: Comparison of rates across different starting fidelities and inter-repeater spacings using the [[544, 80, 12]] code.
Distillation performed with higher initial fidelities beat the PLOB bound at larger total distances.

Fig. 5: Comparison of rates across different starting fidelities.
The protocol with F0 = 0.9 performs much worse than those
with higher fidelities. There appears to be a crossover point
where F0 = 0.97 outperforms F0 = 0.95 at higher total
distances.

III. QUANTUM ERROR CORRECTION BASED
ENTANGLEMENT DISTILLATION

Many quantum error correction (QEC) protocols using
[[n, k, d]] quantum error correcting codes (QECCs) have been
developed to detect and correct coherent errors in quantum
states due to external noise [28], [29]. For the purposes of
entanglement distillation, we are concerned with the so-called
stabilizer codes. An [[n, k, d]] stabilizer code is defined as a
commutative subgroup of the Pauli group, Pn = {iκE1 ⊗
E2⊗ ...⊗En, Ei ∈ I,X,Z, Y , κ ∈ Z4}, that does not contain
−In. We consider the algorithm outlined by Regnaswamy et
al. [22], [23] to be used for entanglement distillation at every
elementary link of our repeater network. The general steps for
distillation between a pair of nodes (let the left node be node
A, and the right node be node B) in a network are illustrated
in Fig. 2.

It is assumed that all nodes in the network will use
a common choice of an [[n, k, d]] QECC to use in the
entanglement distillation procedure. Initially, each entangled
qubit pair is represented as a Werner state

ρ = (1− ε)Φ+ +
ε

3
(Φ− + Ψ+ + Ψ−) (3)

where Φ+ = |Φ+〉 〈Φ+|, Φ− = |Φ−〉 〈Φ−|, Φ+ = |Ψ+〉 〈Ψ+|,
Ψ− = |Ψ−〉 〈Φ−| are the maximally entangled Bell state
density operators, where |Φ±〉 = (|0, 1〉 ± |1, 0〉)/2 and
|Ψ±〉 = (|0, 0〉 ± |1, 1〉)/2 represent the maximally entangled
Bell states in the computational Z basis. The Werner state
accounts for possible errors from noise that may be present
in the initial states and the probabilistic nature of the
entanglement generation if the generation is unheralded. F0 =
1− ε, where ε is some depolarizing probability, is defined as
the fidelity of the entangled state.

Node A and node B each begin with one qubit from each
of n Werner pairs. Node A first measures each of its n − k
code stabilizers on its n qubits and obtains a syndrome for
each measurement. The syndromes and the stabilizers are sent
to node B over a noiseless classical channel. Node B then
also measures those stabilizer generators on its n qubits, and
obtains its own syndromes. The results with the information of
Node A’s syndromes are used to determine whether corrections
of any Pauli errors need to be performed. After performing
any necessary corrections, the procedure produces k pairs of
logical qubits if the channel error was correctable. Otherwise
there is still some unknown error on the final k qubits.
More detail on this algorithm can be found in Ref. [30]. The
[[n, k, d]] codes that we chose for the entanglement distillation
are the [[544, 80, 12]], [[714, 100, 16]], and the [[1020, 136,
20]] LP QLPDC codes, a type of CSS code. QLDPC codes
are block codes that have a parity check matrix H in which
every row and column of H is "sparse". The advantages of
QLDPC codes are that the syndromes can be measured with
sparse interactions (only order n interactions instead of n2)
and they support practical decoding algorithms. Also, QLDPC
codes are flexible; it is possible to construct them for arbitrary
rates, lengths, and code distances. They are also good codes in
the sense that the code distance scales linearly with the length
of the code. For more detail on the construction and definition
of QLDPC codes, refer to [31]–[35].

We use the results from Rengaswamy et al. to obtain
the probability of success of the distillation on entangled
bell pairs for the [[544, 80, 12]], [[714, 100, 16]], and the
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(a) All protocols beat the PLOB bound at total
distances above 166.25 km.

(b) All protocols beat the PLOB bound at total
distances above 167.5 km.

(c) All protocols beat the PLOB bound at total
distances above 171 km

Fig. 6: Comparison of rates across different choice of QECC used for distillation with starting fidelity of 0.97. The protocols
employing larger QECCs beat the PLOB bound at greater distances.

(a) The protocol with the larger code produces
better rates than smaller code families.

(b) At distances above 187.4 km, the 1020 code
protocol produces the best rates.

(c) Extending these curves, there appears to be
similar thresholding behavior where at larger
distances, the 1020 protocol outperforms the
others.

Fig. 7: Comparison of rates across different code lengths and different initial starting fidelities. The protocols with higher
fidelities F0 = 0.95 and F0 = 0.97 exhibit a threshold below which the 544 code performs the best and above which the 1020
code performs the best. This threshold appears to increase as F0 increases.

[[1020, 136, 20]] LP codes. Figure 3 shows the logical error
rate for these codes, which we take as the probability that the
distillation based on the codes fails, for various depolarizing
probability values (ε). Here we take the initial fidelity F0 of
the entangled bell pairs as 1− ε. The results show how longer
codes generally have lower failure probability and how higher
initial fidelity yields lower failure probability.

IV. RESULTS

Our results show how factors such as inter-repeater spacing,
initial fidelity (F0), and code family (either the [[544, 80, 12]],
[[714, 100, 16]], and [[1020, 136, 20]] impact the end-to-end
rate at different total distances L0, where the end-to-end rate
refers to the probability of successfully performing distillation
on every elementary link in the network.

Figure 4 shows how the initial fidelity of the bell pairs
affects the rates, as well as the threshold distance where the
distillation protocol beats the PLOB bound. We observe that
for initial fidelity of 0.9 and choice of code of [[544, 80, 12]],
none of the repeater protocols beat the PLOB bound. We also
notice that for lower fidelities, the repeater protocol beats the

PLOB bound at a lower distance. The plots in figure 4 are also
generally representative of the behavior for the higher codes
[[714, 100, 16]] and [[1020, 136, 20]], with the exception
that the protocol with F0 = 0.9 for both of the higher codes
will beat the PLOB bound. For both of the higher codes, we
similarly notice that lower fidelities beat the PLOB bound at
lower distances.

Figure 5 shows a better visualization of how the initial
fidelities change the end-to-end rate for the [[544, 80, 12]]
code. We observe that the protocol with F0 = 0.9 has the worst
rate which declines exponentially with distance. F0 = 0.95
and F0 = 0.97 exhibit higher rates that remain almost constant
over distance. The rate for F0 = 0.97, the higher fidelity, is
worse than the rate for F0 = 0.95. Figure 5 is representative
of the behavior for the higher codes as well, as they exhibit the
same relationship between F0 and end-to-end rate; the rates
for protocols with F0 = 0.9 decay exponentially with distance,
while the rates for protocols with F0 = 0.95 and F0 = 0.97
remain almost constant, with the rates for F0 = 0.95 being
slightly better than those for F0 = 0.97.

Figure 6 shows how the choice of code family impacts
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(a) At distances above 187.4 km, the 1020 code
produces the best results.

(b) At distances above 305 km, the 1020 code
produces the best results.

(c) At distances above 391.7 km, the 1020 code
produces the best results.

Fig. 8: Comparison of rates across different inter-repeater spacing. Increasing the inter-repeater spacing worsens the overall
rate for each protocol. It also increases the threshold at which the longer 1020 code outperforms the shorter codes.

end-to-end rate for fixed fidelity and the threshold distance
at which the repeater protocols beat the PLOB bound. We
observe generally that lower code families beat the PLOB
bound at lower distances. We also note how generally the
smaller codes have higher rates for the same distances, and
how larger inter-repeater spacing also worsens the rate. Figure
6 is representative of the behavior fixed at the other fidelities
F0 = 0.9 and F0 = 0.95.

Figure 7 is a better visualization showing how the choice
in code family for fixed inter-repeater spacing and fidelity
impacts the overall rate. For protocols with F0 = 0.9, the
largest code, [[1020, 136, 20]] yields the best rates, while
the smallest code, [[544, 80, 12]] performs the worst. For
F0 = 0.95 and F0 = 0.97, there appears to be a threshold.
For distances underneath this threshold, the largest code has
the worst rates, and the smallest code has the best rates. But
above the threshold, the behavior reverses and the largest code
performs the best, similar to the behavior for the protocol for
F0 = 0.9. For F0 = 0.97, this threshold appears to be beyond
L0 = 500 km. The plots in Figure 7 are also representative of
the behavior for the other inter-repeater spacings as well.

Figure 8 demonstrates how the inter-repeater spacing
impacts the rate and threshold where the protocols with
different codes beat each other. Increasing the inter-repeater
spacing appears to worsen the rates for all repeater protocols;
this relationship is consistent also with the trend in Figure
6. Increasing the inter-repeater spacing also increases the
threshold at which the larger codes beat the shorter ones.
The protocols for F0 = 0.9 do not exhibit any thresholding
behavior; the largest code has strictly better rates for all inter-
repeater spacings similar to the behavior shown in Figure 7A.

V. CONCLUSIONS

In general, we found interesting relationships between
factors such as inter-repeater spacing, choice of QEC, initial
fidelity and end-to-end rate for entanglement distillation
enabled trapped ion repeaters. All protocols beat the PLOB
at some threshold distance except for the protocols with the
[[544, 80, 12]] code at elementary link fidelity F0 = 0.9
(Fig. 4). This is probably due to the lower probability of

success of distillation of the small [[544, 80, 12]] code and
low initial fidelity. From Rengaswamy et al. [22]’s results, we
see that distillation with higher codes on ebits with higher
initial fidelity is more likely to succeed. Increasing initial
fidelity (holding code and spacing constant) improves the
rate. The protocols with F0 = 0.9 have the worst rate
which decreases exponentially with distance. Again, this can
probably be attributed to the fact that lower initial fidelity
exponentially deteriorates the probability of success of the
distillation. Protocols with F0 = 0.95 have the best rate which
is almost constant with distance. Protocols with F0 = 0.97
exhibit slightly worse rates than those with F0 = 0.95,
but also remain almost constant with increasing L0. The
threshold where the repeater protocols beat the PLOB bound
also increases with increasing initial fidelity (Figs. 4 and
5). Increasing the QEC code length (holding spacing and
fidelity constant) increases the threshold where the repeater
protocol beats the PLOB bound (Fig. 6). Increasing code
length (holding spacing and fidelity constant) affects the end-
to-end rates as well. For protocols with F0 = 0.9, longer codes
perform strictly better. For the higher fidelities, a threshold
appears; for protocols with F0 = 0.95, below the threshold
at short distances, shorter codes perform better but at long
distances, longer codes perform better. For protocols with
F0 = 0.97, there appears to be similar thresholding behavior at
distances beyond 500 km (Fig. 7). Increasing the inter-repeater
spacing (holding code and fidelity constant), worsens the end-
to-end rate. The results in Figs. 6 and 9 show that lower
inter-repeater spacings have better rates. Increasing the inter-
repeater spacing also increases the threshold where higher
codes beat lower codes as shown in Fig. 8. Future work may
include asynchronous cases, where success elementary links
are stored beyond a time block in the long lifetime trapped
ion qubits, considering ion number requirements, considering
distillation not on every elementary link, considering iterative
distillation, and considering end-to-end distillation.

REFERENCES

[1] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for
the road ahead,” Science, vol. 362, Oct. 2018.

1170

Authorized licensed use limited to: University of Arizona. Downloaded on July 24,2024 at 06:22:42 UTC from IEEE Xplore.  Restrictions apply. 



[2] R. Van Meter, Quantum Networking. John Wiley & Sons, May 2014.
[3] H. Yan, Y. Zhong, H.-S. Chang, A. Bienfait, M.-H. Chou, C. R. Conner,

É. Dumur, J. Grebel, R. G. Povey, and A. N. Cleland, “Entanglement
purification and protection in a superconducting quantum network,”
Phys. Rev. Lett., vol. 128, p. 080504, Feb. 2022.

[4] Z.-Q. Yin, W. L. Yang, L. Sun, and L. M. Duan, “Quantum network
of superconducting qubits through an optomechanical interface,” Phys.
Rev. A, vol. 91, p. 012333, Jan. 2015.

[5] M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C.
Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman,
L. Dos Santos Martins, B. Dirkse, S. Wehner, and R. Hanson,
“Realization of a multinode quantum network of remote solid-state
qubits,” Science, vol. 372, pp. 259–264, Apr. 2021.

[6] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans,
S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen,
M. Markham, and R. Hanson, “Entanglement distillation between solid-
state quantum network nodes,” Science, vol. 356, pp. 928–932, June
2017.

[7] K. Nemoto, M. Trupke, S. J. Devitt, B. Scharfenberger, K. Buczak,
J. Schmiedmayer, and W. J. Munro, “Photonic quantum networks formed
from NVâ centers,” Sci. Rep., vol. 6, p. 26284, May 2016.

[8] L. Childress and R. Hanson, “Diamond NV centers for quantum
computing and quantum networks,” MRS Bull., vol. 38, pp. 134–138,
Feb. 2013.

[9] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G.
Ballance, K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance,
“High-Rate, High-Fidelity entanglement of qubits across an elementary
quantum network,” Phys. Rev. Lett., vol. 124, p. 110501, Mar. 2020.

[10] L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with
trapped ions,” Rev. Mod. Phys., vol. 82, pp. 1209–1224, Apr. 2010.

[11] P. Dhara, N. M. Linke, E. Waks, S. Guha, and K. P. Seshadreesan,
“Multiplexed quantum repeaters based on dual-species trapped-ion
systems,” Phys. Rev. A, vol. 105, p. 022623, Feb. 2022.

[12] S. Santra, S. Muralidharan, M. Lichtman, L. Jiang, C. Monroe, and
V. S. Malinovsky, “Quantum repeaters based on two species trapped
ions,” New J. Phys., vol. 21, p. 073002, July 2019.

[13] I. V. Inlek, C. Crocker, M. Lichtman, K. Sosnova, and C. Monroe,
“Multispecies Trapped-Ion node for quantum networking,” Phys. Rev.
Lett., vol. 118, p. 250502, June 2017.

[14] L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe, “Scalable
trapped ion quantum computation with a probabilistic Ion-Photon
mapping,” Jan. 2004.

[15] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental
limits of repeaterless quantum communications,” Nat. Commun., vol. 8,
p. 15043, Apr. 2017.

[16] M. Takeoka, S. Guha, and M. M. Wilde, “Fundamental rate-loss tradeoff
for optical quantum key distribution,” Nat. Commun., vol. 5, p. 5235,
Oct. 2014.

[17] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, “Optimal architectures for long distance quantum
communication,” Sci. Rep., vol. 6, p. 20463, Feb. 2016.

[18] S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon,
and W. Tittel, “Rate-loss analysis of an efficient quantum repeater
architecture,” Phys. Rev. A, vol. 92, p. 022357, Aug. 2015.

[19] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, “Inside quantum
repeaters,” IEEE J. Sel. Top. Quantum Electron., vol. 21, pp. 78–90,
May 2015.

[20] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The
role of imperfect local operations in quantum communication,” Phys.
Rev. Lett., vol. 81, pp. 5932–5935, Dec. 1998.

[21] Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L.-M. Duan,
D. Yum, and K. Kim, “Single-qubit quantum memory exceeding ten-
minute coherence time,” Nat. Photonics, vol. 11, pp. 646–650, Sept.
2017.

[22] N. Rengaswamy, N. Raveendran, A. Raina, and B. Vasić, “Entanglement
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