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ABSTRACT: Introducing functionality onto PE surfaces is a longstanding challenge in polymer science, driven by the need for
polymer materials with improved adhesion and antifouling properties. Herein, we report surface-initiated hydrogen atom transfer-
reversible addition—fragmentation chain transfer (SI HAT-RAFT) as a robust method to grow high-density brush polymers from PE
surfaces. We demonstrate that, under mild conditions, direct initiation from the C—H bonds of PE surfaces allows for the graft
polymerization of a variety of (meth)acrylate monomers. The resulting polymer brushes reached several hundred nanometers in
thickness with densities of ca. 0.62 chains/nm? compared to the current standard of ~0.28 chains/nm® Finally, we show that our
method is capable of dramatically improving the adhesive properties of PE surfaces. This work enables the preparation of PE with

diverse surface functionalities for potential use in biomedical, industrial, and battery applications.

P olyethylene (PE) is ubiquitous in our society, with over
100 million tons produced annually." The widespread use
of PE is enabled by its superior bulk properties and low cost;
PE is strong, tough, lightweight, and chemically resistant.
Despite these advantages, poor surface properties such as low
adhesivity and wettability limit its use in applications such as
battery membranes, packaging, and automotive materials, all of
which require interfacing with other plastics, metals, and
solvents.”” Furthermore, the surface of PE contains only
unactivated C—C and C—H bonds, making it challenging to
modify." This difficulty in functionalization hampers the
synthesis of PEs with high-performance surfaces such as
antifouling biomedical implants, antibacterial high-touch
surfaces, or chemically selective filtration membranes. A
method to imbue PE surfaces with improved or novel
properties would facilitate the development of next generation
polymeric materials.

Previous attempts to modify the surface chemistry of PE
have relied on either oxidation of the PE surface or
impregnating PE films with a photosensitizer. In the first
case, oxidative functionalization to yield carboxylic acids or free
radicals on the surface is carried out under harsh conditions
using strong acids or plasma.’~® This approach requires
specialized equipment and often leads to degradation of PE
chains at the surface.’” Furthermore, the resulting small
molecule functionality tends to migrate into the bulk of the
polymer to lower surface energy, leading to a short lifetime of
functionalization.’ In the second case, a PE film is first soaked
in benzophenone photosensitizer, dried, and finally polymer is
grafted from the sensitized surface under UV irradiation.'’™ "
While this method is often used to prepare biomedical
materials,"* its multistep nature and frequently reported low
grafting densities make it difficult to efficiently functionalize PE
surfaces.
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In 2020, our group reported hydrogen atom transfer
reversible addition—fragmentation chain transfer (HAT-
RAFT) polymerization, a method to directly initiate controlled
polymerization from hydridic to neutral polarity C—H bonds."”
We demonstrated that using visible light, a benzophenone
photocatalyst, and a disulfide, we can initiate controlled
polymerization of acrylic monomers directly from a variety of
H atom sources, including cyclohexane. We hypothesized that
because both cyclohexane and PE have C—H bonds with
similar polarities, our HAT-RAFT method could be applied to
grafting polymers from PE substrates. In the proposed
mechanism of HAT-RAFT, the photocatalyst performing
HAT is turned over by the disulfide species, allowing each
photocatalyst to abstract multiple hydrogen atoms. We
envisioned that this turnover would generate high-density
polymer brushes, and that the vast scope of acrylic monomers
available would make possible a wide range of surface
functionalities. Here, we report surface-initiated HAT-RAFT
(SI HAT-RAFT) as a method for the synthesis of high-density
brush polymers on PE surfaces (Figure 1).

We began our studies by layering a solution of
benzophenone derivative (1), bis(trithiocarbonate) disulfide
species (2), tert-butyl acrylate, and dioxane on top of a high-
density polyethylene (HDPE) film and covering it with a glass
slide before irradiating with visible light from a compact
fluorescent light (Figure 2a, reaction setup depicted in the SI).
We chose HDPE as a starting point due to its attractive bulk
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Figure 1. Surface-initiated HAT-RAFT leverages direct initiation
from the surface of PE to allow for facile synthesis of high-density
brushes.
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Figure 2. (a) Standard reaction conditions for SI HAT-RAFT from
PE. (b) IR spectra of unfunctionalized HDPE and HDPE-g-P'BuA.
(c) Static water contact angle for HDPE and HDPE-g-PNaA.

properties and wide range of potential applications. Dioxane, a
solvent with suitably hydridic C—H bonds for HAT-RAFT,
was selected because surface-initiated RAFT systems typically
require a sacrificial chain transfer agent; dioxane-initiated
chains in solution likely promote surface polymerization by
fac111tat1n§ chain transfer in surface-bound polymer
chains.' Following irradiation, we detected carbonyl and
C—O bond stretches in the IR, indicating that poly(tert-butyl
acrylate) (P‘BA) was successfully installed on the surface of PE
(Figure 2b). Upon basic hydrolysis of P'BA to poly(sodium
acrylate) (PNaA), the static water contact angle of the surface

decreased from 98° to 63° indicating a dramatic increase in
the hydrophilicity of the surface (Figure 2c).

We then carried out a series of control experiments to verify
that the polymer observed on the surface was in fact grafted
covalently via the HAT-RAFT process. Free P'BA drop-cast
onto an HDPE surface washed away easily, suggesting no
adhesion of P'BA to HDPE in the absence of covalent bonds
between the surface and the grafted polymer (Table 1).

Table 1. SI HAT-RAFT Controls

/(’\/)’ 1(0.04 M), 2 (0.04 M) N
n
Buo” o dioxane, CFL O'Bu

HDPE
surface
3°12H25

1

Conditions Strong IR stretch at 1730 cm™

Standard Conditions +
Drop cast P'BuA onto HDPE

Thermal RAFT

No light

No disulfide

PET instead of HDPE -

Additionally, subjecting HDPE to thermal RAFT polymer-
ization conditions yielded no polymer on the surface,
confirming that generation of radicals alone is not enough to
graft from HDPE. We also found that under standard SI HAT-
RAFT conditions but in the absence of light, polymerization
does not proceed.

Interestingly, under normal SI HAT-RAFT conditions but in
the absence of disulfide, negligible polymer is observed by IR
(Table 1). This suggests that despite the relatively high
concentration of photocatalyst as compared to surface C—H
bonds, the presence of disulfide to turn over the photocatalyst
is crucial to attain significant amounts of brush polymer on the
surface. In our proposed mechanism, the photocatalyst initiates
chains both from the PE surface and from the dioxane in
solution. Due to its ether functionality, the C—H bonds of
dioxane are better polarity matched to the electrophilic
photocatalyst than the C—H bonds of the PE surface. It is
likely that in absence of the disulfide species, the photocatalyst
does a small amount of initiation from the surface which is
difficult to observe by IR, as well as a significant amount of the
more kinetically favorable initiation from dioxane. Without the
disulfide species to turn over the photocatalyst, it is not
possible to achieve a significant amount of hydrogen atom
abstraction from the PE surface. The X-ray-photoelectron
spectroscopy (XPS) data showed sulfur from the disulfide in
the grafted PE, supporting the presence of chains capped by
the disulfide as in the solution HAT-RAFT process (SI).
Finally, we subjected PET (polyethylene terephthalate) to our
standard surface polymerization conditions. Because the C—H
bonds present in PET are acidic, we anticipated that the kinetic
barrier to HAT would be too high for functionalization. As
expected, we were unable to graft P‘BA from a PET surface due
to the electron-poor nature of the polyester. Together, these
results suggest that surface-initiated HAT-RAFT is likely to
proceed through our proposed mechanism and operates with
similar kinetic selectivity to the solution polymerization.
Visible light from the CFL excites the benzophenone
photocatalyst, which abstracts a hydrogen atom from PE to
generate a carbon centered radical. This radical adds into
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Having shown that we can grow polyacrylates from a PE
surface, we set out to better characterize the brush polymers
produced through microscopy experiments. A silicon wafer was
spin-coated with linear low-density polyethylene (LLDPE) to
form the substrate and then grafted with P'‘BA. LLDPE was
used for brush characterization due to its greater solution
processability relative to HDPE. Atomic force microscopy
(AFM) was used to assess brush thickness (Figure 3). For our
LLDPE-g-P‘BA sample, we achieved a brush thickness of 260
nm. In uncontrolled, photosensitized systems, brush thick-
nesses up to 160 nm have been achieved,'* and in ATRP
polymerizations from PE copolymers, only ~50 nm of polymer
brush have been attained.'” Excitingly, we are also able to tune
film thickness by controlling the reaction time; after 1 h, we
achieve a brush thickness of 34 nm, and after 4 h, we reach 108
nm of brush thickness (SI).

To investigate the brush density achieved by ST HAT-RAFT
from PE, we carried out a swelling study of an LLDPE-g-PNaA
surface (Figure 3b). According to classic scaling laws for
polyelectrolyte brushes, the ratio of swollen to dry brush
thickness can be described as a function of grafting density,
independent of molecular weight.”” After incubation in a pH 9
buffer solution for 10 min, the film thickness increased from
450 to 600 nm. This swelling ratio corresponds to a brush
density of 0.62 chains/nm® (see the SI for calculation). In
comparison, Takahara and co-workers estimate that their SI-
ATRP system from HDPE copolymers has a grafting density of

Figure 3. (a) AFM measurement of LLDPE-g-P'BuA brush thickness.
Brush thickness is assessed by comparing the depth of a scratch
(pictured here by optical microscopy) in an LLDPE film before and
after grafting. (b) AFM swelling study of LLDPE-g-PNaA in pH 9
buffer solution shows the wet film swells 63% relative to the dry film.
The dashed lines denote the average film height over the scan
distance.

0.28 chains/nm>'"’ Other reports employing uncontrolled,
photosensitized polymerization strategies from PE typically do
not quantify brush density.”''~">*" This high grafting density
is also supported by following the water contact angle as
polymerization proceeds. After an initial decrease over the first
hour of polymerization, the water contact angle remains
relatively constant (SI). This behavior is consistent with brush
polymers in the high-density regime.”’ We believe that the
high grafting density is due to the photocatalyst turnover by
the CTA, allowing for multiple cycles of hydrogen atom
transfer. Currently, there are no other methods for grafting
from PE surfaces that report such a high grafting density.

To demonstrate the diversity of PE surfaces accessible with
SI HAT-RAFT, grafted polymer surfaces were prepared using a
variety of acrylate and methacrylate monomers (Figure 4).
Static water contact angles ranging from 63° to 86° are
accessible, showing that hydrophilicity is tunable by the choice
of monomer. Hydrophilicity can also be tuned by protonating
or deprotonating the brushes. For example, in their protonated
form, PAA brushes have a water contact angle of 72°. In their
deprotonated, water-soluble PNaA form, the water contact
angle falls to 63°. In the interest of synthesizing biomedically
relevant surfaces, we examined a sulfobetaine zwitterion
acrylate and a PEG acrylate. The sulfobetaine monomer has
previously been shown to prevent bacteria from adhering to
surfaces,”” making it a promising candidate for creating
antifouling PEs. While the water contact angle observed for
this monomer is relatively high compared to other sulfobetaine
brushes,”” likely due to low grafting density, we anticipate that
further optimization of SI HAT-RAFT for zwitterionic
monomers will facilitate the synthesis of more hydrophilic
surfaces. Poly(PEG) acrylates are currently of interest as a
replacement for traditional linear PEG polymers, where they
may be used to minimize nonspecific binding or to aid in drug
delivery.”* PEG coated PEs are also desirable for their use in Li
ion battery separators, where they have been shown to improve
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Figure 4. Monomer scope of SI HAT-RAFT, where a is the standard
reaction condition: photocatalyst 1 (1 equiv), CTA 2 (1 equiv),
monomer (200 equiv), and dioxane (0.04 M in CTA) irradiated with
a CFL at room temperature in a nitrogen atmosphere for 16 h. For the
sulfobetaine zwitterion and the PEG derivative, water was used in
place of dioxane. For the sulfobetaine zwitterion, the reaction was run
at half the overall concentration due to poor monomer solubility.

conductivity relative to HDPE alone.” Excitingly, surface
polymerization of a PEG acrylate from HDPE decreased the
water contact angle of the surface to 65°, providing a highly
hydrophilic surface. HDPE-g-poly(PEG acrylate) surfaces
could be promising candidates for applications in biomedical
or battery science.

Finally, an important implication of modifying the surface
properties of PE is improving its adhesion to other materials
such as plastics, metals, or paint. To probe the ability of surface
functionalized PE to adhere to paint, we prepared an HDPE-g-
[PMMA-co-P"BuA] brush polymer surface and an unfunction-
alized HDPE surface and coated both substrates with acrylic
paint (Figure S). Although the exact composition of most
acrylic paints is proprietary, acrylic paint is most commonly
composed of PMMA and P"BuA copolymers.”® For this
reason, we selected PMMA-co-P"BuA as brushes for our paint
test. Using a simple tape test, we observed a dramatic
improvement in the ability of HDPE-g-[PMMA-co-P"BuA] to
adhere to paint, in stark contrast with the unfunctionalized
HDPE. We propose that the grafted surface was better able to
interact with acrylic paint because of its similar chemical
structure. In addition to adhesion to paint, we performed lap
shear testing to probe the adhesion of surface modified PE to
aluminum. Unfunctionalized LDPE is unable to form a lap
joint with aluminum (SI). In contrast, LDPE-g-PMMA adheres
to aluminum with a shear strength of 1.1 + 0.2 MPa (SI).
Improved adhesion of HDPE to paint and aluminum
demonstrates the utility of SI HAT-RAFT as a platform for
tuning the surface properties of PE.

We developed a robust, highly diversifiable method to grow
high density brush polymers from PE surfaces. The SI HAT-
RAFT method presented achieved the highest reported brush
thicknesses and densities grafting from PE surfaces, and we can
access brush polymer surfaces composed of a wide variety of
(meth)acrylate monomers. Finally, we demonstrated the
improvement in adhesion, an important surface property,

Scotch Tape Test

Figure 5. Tape test for acrylic paint adhesion of HDPE (left) and
HDPE-g-[PMMA-co-P"BuA] (right).

upon grafting brush polymers from PE. We envision that this
method will also be amenable to curved surfaces and the
interior of tubes with flow technology, while functionalization
of the interior of closed vessels may be challenging. Improving
the surface properties of PE opens the door to using PE in
applications including battery science, antimicrobial surfaces,
and filtration. This work addresses the long-standing challenge
in polymer science of facile and robust access to PEs with
enhanced surface properties.
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