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Marked temporal point process models (MTPPs) aim to model event sequences and event markers (associ-
ated features) in continuous time. These models have been applied to various application domains where
capturing event dynamics in continuous time is beneficial, such as education systems, social networks, and
recommender systems. However, current MTPPs suffer from two major limitations, i.e., inefficient represen-
tation of event dynamic’s influence on marker distribution and losing fine-grained representation of histor-
ical marker distributions in the modeling. Motivated by these limitations, we propose a novel model called
Marked Point Processes with Memory-Enhanced Neural Networks (MoMENTt) that can capture the bidirec-
tional interrelations between markers and event dynamics while providing fine-grained marker representa-
tions. Specifically, MoMENTL is constructed of two concurrent networks: Recurrent Activity Updater (RAU) to
capture model event dynamics and Memory-Enhanced Marker Updater (MEMU) to represent markers. Both
RAU and MEMU components are designed to update each other at every step to model the bidirectional
influence of markers and event dynamics. To obtain a fine-grained representation of maker distributions,
MEMU is devised with external memories that model detailed marker-level features with latent component
vectors. Our extensive experiments on six real-world user interaction datasets demonstrate that MoMENt can
accurately represent users’ activity dynamics, boosting time, type, and marker predictions, as well as recom-
mendation performance up to 76.5%, 65.6%, 77.2%, and 57.7%, respectively, compared to baseline approaches.
Furthermore, our case studies show the effectiveness of MoOMEN in providing meaningful and fine-grained
interpretations of user-system relations over time, e.g., how user choices influence their future preferences
in the recommendation domain.
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1 INTRODUCTION

Modern online systems such as social media, e-commerce platforms, and online learning systems
produce a massive amount of user-system interaction data on a daily basis. Such data contain rich
information about user behaviors, such as when they interact (i.e., interaction time), how they
interact (i.e., types of interactions such as ordering a product vs. browsing it), and what possible
feedback they receive or provide (i.e., markers, such as the rating value they provide to a product).
For example, in an e-commerce platform, a user may rate (a type of interaction) a product on Friday
night (time) as a five-star product (marker). Likewise, in an online learning system, a student may
attempt a quiz (a type of interactive event) on Monday morning (time) and provide a correct an-
swer (marker). Recent research has shown that the timings of these interactive events, particularly
their historical intensities, provide meaningful representations of users’ true interactive events and
hence are important for the prediction of their upcoming behaviors [17, 18].

Marked Temporal Point Process models (MTPPs) [32] are particular types of Temporal
Point Process models (TPPs) [12] that represent activity timings along with their associated
markers. A marked temporal point process is characterized by its activity intensity function, de-
fined as a continuous function of time and markers, conditioned on activity history. This condi-
tional intensity function allows an MTPP to model activity dynamics in continuous time without
a need for discretization. Due to their ability to model activity timings and markers in continuous
time, MTPPs are beneficial for application domains such as social networks, recommender systems,
or education where modeling and predicting user activity timings and feedback (i.e., markers) are
essential.

Despite the successful applications of MTPPs in various domains, they still suffer from two ma-
jor limitations: ineffective representation of the influence of activity dynamics on marker distribu-
tions and the lack of fine-grained representation of historical marker distributions, which hinders
model interpretation. First, most MTPPs cannot efficiently model the comprehensive interrelation-
ships between marker distribution and activity dynamics. Traditional MTPPs usually specify the
empirical conditional intensity function as a function of markers and capture the potential influ-
ence of markers on future activities. However, their underlying assumption is that the markers are
iid. and invariant to the activity arrival times. This limits the models’ ability to predict markers
and fully capture the underlying dynamics of the data. Additionally, in these methods, the strict
parameterization of the intensity function leads to model misspecification and overfitting. More re-
cently, neural MTPPs have been proposed to resolve the strict parameterization issue in traditional
MTPPs by using RNNs to model and define intensity functions [9, 17, 71]. These models can achieve
higher capacity compared to traditional MTPPs, by allowing a more flexible representation of the
data. However, they still fail to comprehensively capture the complex interrelationships between
marker and activity timing dynamics. Recent attempts of MTPPs either model markers and activity
timestamps via a shared hidden state in one RNN [17] or as two independent dimensions via two
RNNs [9, 71]. The first approach assumes that the markers and the activity timings follow exactly
the same dynamics. So, the model cannot distinguish between the possibly different dynamics that
these two may have. The second approach leads to the assumption that the marker sequence and
the activity timings do not have any influence on each other at each time step and can only change
independently. We argue that modeling the interrelations between marker and activity dynamics
is crucial for MTPPs in applications with complex relationships between the markers and timings
and that the simplified assumptions in current MTPPs are inadequate for such applications. First,
user activity dynamics and markers do not necessarily follow the same dynamics. For example,
in online education, improvement of student learning performance in an online course does not
necessarily come after intense studying activities. In fact, directly associating study intensity and
learning performance has been shown to result in contradictory conclusions [30]. Likewise, in an
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e-commerce platform, a user’s less frequent purchasing behaviors (e.g., purchases of electronics
compared with groceries) do not always suggest the user’s less interest in those products. These
behaviors may be explained by a combination of factors, such as various consumption cycles of
different products [26].

As a result, modeling activity dynamics and markers via the same representation may be inad-
equate for such complicated cases (i.e., the first approach). On the other hand, although activity
dynamics and markers may not follow exactly the same dynamics, some interrelationships be-
tween markers and activity dynamics may exist. For example, a student’s future choice of when to
practice a topic (activity dynamics) may depend on how knowledgeable the student is in that topic
(observed by student performance as markers). Likewise, their current knowledge also depends
on their historical practicing behavior, such as how (e.g., which learning materials they used)
and when they practiced. As a result, not modeling the relationship between activity dynamics
and markers may reduce the model’s descriptive power of user interaction data (i.e., the second
approach). As the second limitation, modern neural MTPPs model activity histories as abstract
state vectors in RNNs. This representation of history can result in losing fine-grained activity-
level features in RNN updates and diluting the marker and activity dynamic interpretations. This
is particularly deficient for application domains, such as recommendation and education, where
understanding and interpreting user behavior is an essential task. Combined with the interrela-
tionship problem mentioned above, the interpretability problem will be even more complicated.
In that case, the critical understanding of how marker and activity dynamics interrelate will be
compromised, thus making it even harder to explain the data dynamics.

To address the above limitations, we propose a novel neural MTPP model: Marked Point Pro-
cesses via Memory-Enhanced Neural Networks (MoMENT) that captures and represents the
bidirectional relations between markers and activities while revealing the detailed patterns in their
dynamics. To this end, we model activities and their markers as two concurrent networks in Mo-
MENt updating each other with historical activity dynamics at each step. Specifically, for marker
dynamics, we rely on a Memory-Augmented Neural Network (MANN) [23] that can provide
structured memory slots to achieve more stable and stronger performance than standard RNNs.
We propose Recurrent Activity Updater (RAU) and Memory-Enhanced Marker Updater
(MEMU) in MoMENT that respectively model activity dynamics and markers, and capture the
influence of markers on activities and vice versa (addressing the first limitation). The RAU com-
ponent extends a Long short-term memory (LSTM) network to model activity dynamics while
considering the markers. Furthermore, the MEMU component in MoMENT utilizes external memo-
ries to obtain a fine-grained representation of maker distributions (addressing the interpretability
limitation in the state of the art).

We formulate MoMENTt based on the problem of user activity modeling in continuous time. The
prediction layer in MOMENT is designed to predict user activity time, type, and outcome (markers)
simultaneously. For activity time modeling in the prediction layer, we propose a new activity dis-
tribution model that has the flexibility of neural representations in the deep Hawkes models while
keeping the interpretability of the traditional Hawkes intensity functions. Unlike the traditional
Hawkes processes, MOMENLt’s formulation of intensity function allows for all positive, negative,
and neutral types of internal influence from past activities to future ones. Additionally, unlike the
more recent neural Hawkes process models, MoMENt’s intensity function is interpretable.

Our extensive experiments on six real-world datasets show consistent improvements in Mo-
MENTLt over the state-of-the-art approaches, demonstrating the power of MoMENt in accurately
describing and predicting user interaction timings and types. Specifically, the performance of Mo-
MENt compared to 16 baseline models and their variations in two application domains, demon-
strate significant improvements in all classification, prediction, and ranking tasks. This includes
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up to 77.2% gain in AUC in student marker prediction, 65.6% gain in ACC in student activity type
prediction, 76.5% improvement in RMSE in student activity time prediction, and 57.7% average
gain in HR@10 in the recommender system’s next item prediction. Our ablation studies, removing
the time and type inputs from the model, demonstrate the significance of MoMENt’s contribu-
tion in modeling the activity to marker influence, in addition to the marker to activity influence.
Furthermore, our case studies and interpretation analyses show the effectiveness of MoMENt in
representing user-system relations over time in a fine-grained manner to demonstrate meaningful
associations with the temporal patterns of user interactions.
To summarize, the main contributions of this work are:

— Introducing a novel neural MTPP model, MoMENt, that captures and represents the bidirec-
tional relations between markers and activities;

— Proposing a new activity distribution model with multiple influence types that has the inter-
pretability of the traditional Hawkes intensity functions while benefiting from the flexibility
of neural representations in the deep Hawkes models;

— Introducing MoMEN’s prediction layer that can simultaneously predict activity time, type,
and marker according to the historical activity information;

— Proposing the MEMU component, a novel MANN-based architecture that can model fine-
grained activity and marker-level features while including activity dynamics information;
— Presenting the RAU component, an LSTM-based architecture to model activity dynamics,

given fine-grained marker information;

— Thorough experiments to study the performance of MOMENT, extensive ablation studies, and
analysis and interoperability of MoMENTL.

In the following, we first provide a brief overview of related work (Section 2) and backgrounds
(Section 3). Then, we introduce our problem formulation (Section 4) and the MoOMENt model (Sec-
tion 5), including the MEMU and RAU units. Finally, in Section 6, we present our experiments on six
real-world datasets in two application domains. We evaluate MOMENt by studying its predictive
performance, ablation study, and interpretation and analysis of its discovered interrelationships.

2 RELATED WORK

Temporal Point Processes are stochastic processes that model events characterized by their
timings. Unlike discrete models such as time series or conventional sequential models that rely on
the discretizations of time, temporal point process models aim to describe the dynamic of events in
continuous time. For this reason, they are advantageous for many real-world applications where
understanding temporal patterns of the data and predicting future event dynamics are important,
such as financial applications (e.g., [2, 43]), education (e.g., [38, 73, 74]), or information diffusion
modeling (e.g., [5, 19, 20]).

Marked temporal point processes, as a special family of point process models, characterize ac-
tivities not only by their timings but also their associated features (i.e., markers). In traditional
approaches, marked temporal point process models (MTPPs) typically use markers to parame-
terize the activity intensity function, assuming that activity intensity is affected by the marker
distributions. For example, Mishra et al. [46] assume that an X (formerly known as Twitter) user’s
social influence decides the popularity of their tweets, and parameterized the intensity of a user’s
tweets being retweeted as a function of the user’s number of followers (marker) as a proxy of their
influence (i.e., markers). A similar approach was proposed by Zhao et al. [79], where the model-
ing of the number of followers and timestamps are realized by the Cox process. This method of
parameterization typically necessitates domain knowledge and preliminary research, because the
properties of markers and how they define activity intensities vary depending on the applications
and datasets.
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Recently, neural TPPs have been proposed that use RNNs to model time dependencies and avoid
misspecification that most traditional point processes suffer, e.g., intensity functions characterize
the activity dynamics following a rigid form [17, 70, 71, 78, 84]. Apart from providing a more
flexible formulation, another important contribution of neural TPPs is the efficient integration of
marker modeling with modeling sequence activities and their times. For example, Du et al. [17]
propose to model a point process using RNN and use the hidden state at each time step to repre-
sent the intensity function of both marker embedding and activity embedding, which captures the
effect of both historical markers and activity timestamps. However, this representation of intensity
is not sufficient when the underlying dynamics of markers and activity times are not similar. In
more recent literature on neural marked point process models, a more common approach is used by
summing up the representations of markers and activity timestamps modeled by two independent
RNNs. As a result, the interrelationship between markers and activity timestamps and how their
historical dynamics affect each other’s future is not directly modeled. For example, Xiao et al. [71]
use two LSTMs that independently model the sequence of markers and the sequence of activity
timings. An improvement of this model is then proposed by Xiao et al. [70] where self-attention
was added to increase the model’s interpretability of time dependencies. Similarly, Choi et al. [9]
add an attention mechanism on top of two independent RNNs. Furthermore, as another limita-
tion, the above approaches model markers via standard RNNs or LSTMs that forcefully represent
the historical information as an abstract vector, which is not only hard to interpret but also com-
promises the fine-grained representation of markers. Our proposed work is the first to model the
bidirectional influence between markers and activities, propose an interpretable intensity function
to model positive and negative influence types while maintaining the flexibility of deep represen-
tations, capture the fine-grained marker dynamic distributions, and predict event time, type, and
markers simultaneously.

User Activity Modeling in online systems has become one of the most important tasks for
understanding user preferences and intentions. For example, in modern online education systems
such as online teaching and tutoring platforms, modeling students’ learning behaviors and quan-
tifying students’ knowledge as they learn is an essential task [22, 50, 52, 64, 76]. In recent devel-
opments of student learning and knowledge modeling, for example, Long-short term memory
(LSTM) [52], memory-augmented neural network (MANN) [76], and encoder-decoder [22]
have been employed to model student evolving knowledge using their ordered learning activities
as input. More recently, more efforts have been made to take activity timestamps or the dura-
tion between activities into account, to better represent the temporal aspects of student learn-
ing [8, 22, 56, 61]. For example, Wang et al. [61] use Hawkes process’s intensity function to model
students’ learning timings to capture the relatedness between students’ skill sets. However, none
of these methods predicts students’ future activity time or takes into account multiple types of
learning materials, making them insufficient for accurately representing students’ learning pro-
cesses [48, 51].

Another application domain that has made extensive use of user activity modeling is recom-
mender systems, with the goal of suggesting useful items to users by inferring their intention to
consume or like a given item. Due to the advantage of modeling user interaction dynamics over
static methods such as collaborative-filtering-based methods [3, 34, 37, 53], sequential modeling
has become one of the most popular approaches for this task. Nonetheless, conventional sequen-
tial methods mostly consider only the orders of users’ activities without taking into account their
timings, with the underlying assumption that users’ behaviors and preferences are time-invariant
and linear to their orders [16, 40, 68, 75, 82]. More recently, some time-aware sequential models
have been proposed to tackle this limitation [4, 7, 66, 67, 69, 83]. For example, Wang et al. [62]
propose to combine the Hawkes process with collaborative filtering with a focus on the repeated
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consumption of each item. With a customized kernel function, more recently, Wang et al. [63]
propose Chorus to model the dynamics of item relations by learning graph representations of
items over time. Wang et al. [60] further propose an improvement over Chorus by introducing the
Fourier transform, which is subsequently leveraged by the self-attention mechanism to obtain a
dynamic historical representation of user activities. Nevertheless, these methods lack the bidirec-
tional influence and the interpretability of users’ evolving preferences or interests in items over
time that is modeled by our work.

3 TEMPORAL POINT PROCESS BACKGROUND

A temporal point process (TPP) can be defined as a set of points (e.g., events) that fall randomly
in time. This temporal representation is ideal for modeling a collection of events, such as user
activities, that are characterized by their arrival timestamps. Temporal point process models are
methods that describe and model these point processes that can be characterized by the conditional
density function f, as a function of time ¢, given the historical observations of event timings ;.
The joint density function for the realization of historical observations {x', ..., xX}, can be obtained
as:

K
fot o) = [ TG 1 He). o)
=1

Where x” can take the form of activity time for the 7' activity for conventional TPPs, or the
representation of both activity time and available relevant markers. For ease of computation and
a better interpretation, it is common to use an alternative conditional event intensity function
A(t|Hyn), usually simplified as A*(¢) in the literature [11]. A(¢|Hyn) represents the conditional
intensity distribution of activity arrivals conditioned on the history Hy» = {x,...,x"} up to time
t where x" is the most recent event before t. It is a function of f¢t|,n) and its corresponding
cumulative distribution function, F(t|Hyn):

[t Hen) f(#|Hn)
L= FQlHem) 1= [7, f(s|Hon)ds

M) = @)

From the above, we see that an intensity function is the core of TPPs that defines the activity
dynamics in continuous time. In the following, we provide an overview of some of the most rep-
resentative TPPs characterized by their intensity functions in the literature.

— Poisson Process is a classic member of the point process family, which can be categorized
into homogeneous Poisson processes and non-homogeneous Poisson processes. The former
has a simplistic assumption that activities arrive with a constant rate y, i.e., A(t) = g > 0. On
the other hand, with a more general assumption, a non-homogenous process model allows
the rate of activity arrivals to be a function of time instead of a constant number, i.e., A(t) =
u(t), usually with its intensity function customized to the specific applications [28, 31, 39, 55].

— Hawkes Process or self-exciting point process is the most widely-adopted point process
family, within which activities are assumed to be “self-exciting”, meaning that historical
activities have a triggering or “exciting” effect on the future ones. These processes are char-
acterized by an intensity function A(t) = u + 3, -, #(t — t;), where p is the base rate which
describes the activities that naturally arrive as a result of external factors, and ¢ is a kernel
function that describes the total effects of previous activities on activity arrivals at time ¢,
summed over the entire history. An important equivalent view of Hawkes processes is the
branching structure [25], which divides activities into the concepts of “immigrants” and “off-
springs.” In this interpretation, “immigrants” represent the activities that are externally trig-
gered by the environment (characterized by p), and “offsprings” represent the activities that
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are internally self-excited by immigrants (characterized by ¢). Due to this assumption’s fit-
ness to many real-world scenarios, such as in social media, Hawkes process models with dif-
ferent intensity functions have been proposed and applied to many practical machine learn-
ing tasks. Particularly, different kernel functions ¢, such as exponential (e.g., [18]), Gaussian
(e.g., [72]), and power-law (e.g., [46]) have been proposed for different applications.

— Self-correcting Process, unlike Hawkes processes, assumes that historical activities have
an inhibiting effect on future ones. These processes are characterized by an intensity func-
tion A(t) = exp(ut — 3., <, @), where y and « are positive numbers. From this function we
see that when an activity arrives, the intensity is divided by exp(a) > 1, which describes
the scenarios where the arrival of a new activity decreases the chances of future arrivals
of activities as if the process is self-correcting itself to its regularity. With this assumption,
self-correcting process models are most popularly used to describe well-dispersed activity
occurrences, such as the modeling of earthquakes after aftershocks [49, 54].

— Recurrent TPPs modeled by deep networks and RNNs have been proposed more re-
cently to obtain a more flexible formulation of the intensity function. Hidden representa-
tions of the recurrent neural networks are used to describe the time dependencies (e.g., self-
exciting) and to represent the intensity of the process. For example, Du et al. [17] were the
first to propose to use RNN to both capture past and current activity dependencies via the
following intensity function: A(t) = exp(v’' - h; + w!(t — t;) + b"), where the three terms
respectively represent past influence, current influence, and base intensity. Since such inten-
sity function formulations via RNNs are not tailored to a specific scenario or application,
they are easier to be adopted from one domain to another [17, 44, 70]. More recently, moti-
vated by transformers [59], the self-attention framework has been used to characterize the
intensity function [77, 78, 84]. Self-attention captures different weights of past activities in
determining the future activity intensity. Furthermore, more complex structures, such as re-
current graph networks [6, 13], sequential variational autoencoders [15], and convolutional
neural networks [81], have been used to model interactions or relationships between various
events in learning event dynamics.

Nevertheless, current MTPPs do not model the bidirectional influence between markers and
activities, do not include interpretable intensity functions to model positive and negative influence
types while maintaining the flexibility of deep representations, do not capture the fine-grained
marker dynamic distributions, and do not predict time, type, and markers simultaneously. We
address all of these shortcomings in this paper.

4 PROBLEM FORMULATION

We focus on the problem of user activity modeling, considering its importance and its wide range
of applications, such as in recommender systems [38, 62, 65] and student sequence modeling [9, 73,
74]. Suppose we are given N users and their interactions with Q items. The collection of all users’
activities on items can be represented as S = {S%, ..., SV}, with S’ representing user i’s sequence
of activities. Also, suppose that user i’s j-th activity is associated with its timestamp t]’.' , its type

yj’:, item-level attributes, such as item id qid;- or item tag ¢/ ;’ as well as the observed user-item

interaction outcome r}, i.e., marker. In this way, a user sequence that contains K activities can be

_’,
represented as a collection of 5-tuples: {(¢;,y;, q;d, q;, rj)lj = 1,...,K} '. Note that some of these

observations may be missing for some activities, such as missing ¢/, or unobserved r, which will

1We omit user index i for presentation simplicity.
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be padded as —1. Our goal is to predict users’ future activity times, types, and outcomes, given
their interaction history, by modeling the complex trends in the activity and interaction outcome
dynamics and the associations between them.

Under this formulation, we consider the following four assumptions. First, we consider the his-
torical influence of past activities on future activities (i.e., activity2activity influence). This assump-
tion corresponds to the time dependency assumption that has been used in many point process
families, such as in Hawkes processes, e.g., a user’s historical activities can trigger follow-up activ-
ities. For example, in an online course, a student watching a video lecture may lead to follow-up
activities such as trying out related quiz questions. Similarly, a user who bought a product (e.g.,
nail polish) online may consequently buy more related products (e.g., nail polish remover). Sec-
ond, we assume the influence of past markers on future activities (i.e., marker2activity influence),
which is a common assumption that has been used in MTPPs, where the markers are assumed to
be predictive of the future activity intensity. For example, a student who has failed a quiz may
follow up with activities such as reviewing related lectures, and a user who has had a satisfactory
purchase from a website in the past may interact with it more often in the future.

Third, to better describe the complex dynamics presented in the data, instead of assuming that
markers are i.i.d., we assume the historical influence of markers on the future marker distribution
(i.e., marker2marker influence). In other words, the marker distribution can change over time, as
a reflection of the evolving user-system relationship and the markers’ historical distributions. For
example, students’ past grades, as a reflection of their evolving knowledge of course concepts,
can be predictive of their future grades. Or, user satisfaction, as a reflection of the user-system
relationship can evolve according to the user’s historical satisfaction with the system.

Finally, we assume the influence of historical activities on the markers’ future distribution (i.e.,
activity2marker influence). For example, students’ historical learning activities and their study
pace can affect their future grades. Likewise, a series of intense browsing activities in the sys-
tem may conclude with the user’s satisfactory purchase. The first two assumptions above have
been widely used in the literature on point process modeling. However, the last two assumptions,
namely activity2marker and marker2marker influences, have been largely overlooked in the liter-
ature. We argue that these two assumptions are essential in the simultaneous modeling of user
activities and their markers, and we build MoMENt to include these assumptions in addition to
the widely used ones.

5 MARKED POINT PROCESSES VIA MEMORY-ENHANCED NEURAL NETWORKS
(MoMENt)

In this section, we formally introduce our model, Marked Point Processes via Memory-Enhanced
Neural Networks (MoMENTt). An overview of MoMENT is presented in Figure 1. For each sequence
step, it includes an input layer, a Recurrent Activity Updater (RAU), a Memory-Enhanced
Marker Updater (MEMU), and a prediction layer.

At step j, in the input layer, the 5-tuple (t;, y;, qj.d, qf ,7) is used as input and is embedded to
obtain activity dynamic embedding e,; and marker embedding ey ; (Section 5.1). To capture the
complex dynamics of user activities and markers, we model them via two modules. Activity dy-
namic embedding is modeled by Recurrent Activity Updater (RAU) to capture the historical influ-
ence of activity arrivals and markers on the future activity dynamics i.e., activity2activity (full yel-
low arrow) and marker2activity (dashed green arrow) (Section 5.3). In parallel, Memory-Enhanced
Marker Updater (MEMU) is proposed to model the influences of historical markers and activity
dynamics on the future marker distributions, i.e., marker2marker (dash-dotted red arrow) and ac-
tivity2marker (dotted purple arrow). Inspired by Memory-Augmented Neural Networks (MANNS),
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Prediction layer
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eaj J
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Fig. 1. Overview of the proposed model MoOMENL that consists of input layer, Recurrent Activity Updater
(RAU), Memory-Enhanced Marker Updater (MEMU), and prediction layer. Four influence types, namely
activity2marker, marker2marker, activity2activity, and marker2activity, are captured during RAU and
MEMU updates.

MEMU utilizes external memory matrices to represent each user’s evolving relationship with all
items, to provide a fine-grained representation of marker distribution (Section 5.2).

Note that since MOMENL has separate RAU and MEMU components, the activities and markers
do not need to follow the exact same dynamics. At the same time, RAU and MEMU components
are not modeled independently. Rather, the activity2marker and marker2activity connections allow
the two components to communicate and coordinate. Finally, the obtained hidden representations
of RAU and MEMU are used to respectively predict the next activity time f;,1 and type §;.1, as well
as activity marker 7, in the prediction layer (Section 5.4). The details of each model component
are provided below.

5.1 Input Layer

For activity type y;, we first represent it as a one-hot vector y;. As point processes can have many
types, we optionally apply a linear transformation on y; to obtain a more compact activity type
representation ey, = Wyyj. Furthermore, we represent the timing of activity x; as the inter-arrival

time between the j*" and (j — 1)*" activities. That is, if the j’* activity takes place at time tj, we
set x; = t; — tj_1. This is in accordance with the definition of point processes, which is based on
inter-arrival times. Finally, we use e,; = [x;; eyj] to represent activity dynamic embedding. To

encode item id ¢i%, we generate its one-hot representation q'¢ ;- For categorical item feature qf ,

we also generate its one-hot representation qf ; if it is singular, otherwise we apply a multi-label
Binarizer that binarizes multi labels into 1 or 0. For categorical marker r;, we similarly first obtain
its one-hot representation r;. As each user-item interaction outcome depends on the item, we con-
catenate item-level features with the marker to obtain the marker embedding e;; = [q' i q sl
To also encode time information and to provide more interpretability, we follow Li et al. [42] to use
a time mask in obtaining the final marker representation ey,. This mask is used in an element-wise
product with marker representation e, so that less important historical activities and their influ-
ence will be masked. To do this, we first create a time context vector c, for the time representation
x by computing ¢, = 0(Wy¢(x) + bp). ¢ is a nonlinear transformation of log(x), implemented
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as a feedforward neural network; and Wy, and by, are weight matrix and bias vectors to linearly
transform ¢(x). Then, by performing an element-wise product of ¢, and e, we create the final
time-masked marker embedding e,,. Eventually, we have e;, = €; © cx = €, © 0(WP(x) + bpy).

5.2 Memory-Enhanced Marker Updater (MEMU)

The proposed Memory-Enhanced Marker Updater aims to increase model interpretability while
capturing two important dependencies that have been overlooked by the literature, namely the
marker2marker influence, and activity2marker influence. Conventionally, markers and activity
timings are modeled via standard RNNs or LSTMs. Such methods express the history of a given
sequence as an abstract dense vector, which compromises fine-grained features of markers that
relate to user-system relationship, and also is hard to interpret. Memory-Augmented Neural Net-
works (MANNS), on the other hand, are forms of neural networks that have shown to achieve
more effective performances than standard RNNs while providing fine-grained and meaningful
interpretations [23], especially in application domains with complex marker features and associa-
tions [64, 76]. MANNSs achieve this by using external memory matrices to enable read and write
operations [23, 57] that provide structured memory slots leading to local state storage and trans-
actions. However, MANNSs have not been considered for MTPPs before.

Motivated by the limitation of using RNNs to model marked point processes, we propose an
adaptation of the Key-Value Memory Network [45] to enhance the representation of markers dur-
ing RNN updates. A Key-Value Memory Network is a special type of MANN that consists of a key
matrix and a value matrix that respectively store static keys and dynamic values over time. We
propose to use the key matrix M € R to model item-level features, supposing all items have
C latent components and each component is measured by dj. latent variables. The key matrix is set
to be static, assuming that item features do not change over time. Furthermore, we use the value
matrix M € RE*4 to model the user-item relationship with all C item components at step j, de-
scribed by d, latent variables. M7 is set to be dynamic to capture the user’s evolving relationship
with the system. The above key-value structure to model the markers offers extra modeling flexi-
bility because of the evolving value matrix vs. the static key matrix. It also provides a fine-grained
explanation of the data based on the mapping interpretation from the value to the key (e.g., student
knowledge of all concepts as an explanation of learning outcomes).

We define MEMU as M]Z.’ = MEMU(en;, hj-1, MF, M;’_l), where the current state of marker M;’ is
updated by the current marker embedding ey ;, the previous hidden state of activity dynamics h;_;
(will be introduced in Section 5.3, which presents RAU), the static key matrix, and the previous
state of marker M?_,. An illustration of MEMU is given in Figure 2.

Specifically, MEMU is defined as follows:

Cj = [hj_l;emj], (3)
q; = Wgej, “)
qu,-

a; = softmax , 5

’ ( Va: ) ¥

Vj = WVeju‘T,, (6)
s = (a/ V), )
Mvj = tanh(WMM;)_l + SjuMT + bM), (8)
Zj = O'(WzM;} + SjllZT + bz), (9)
MY =Z;0 MY, +(1-2;) 0 M. (10)
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Fig. 2. An illustration of MEMU.

In Equation (3), we first concatenate the current marker embedding e, ; with the previous hidden
state h;_; from RAU to obtain e;. The resulting embedding is multiplied with the embedding ma-
trix W, to obtain an embedding vector q; of length dy, via Equation (4). A scaled dot-product [59]
is applied to the resulting embedding q; and key matrix M¥, followed by a softmax via Equa-
tion (5), to obtain a weight vector a; of length C. The obtained weight a; can be interpreted as the
correlation between the current item and all item components, considering the user’s historical
interactions. Next, by using Equation (6), the original embedding vector e; is embedded in matrix
V; € R® which can be interpreted as a fine-grained representation of the interaction outcome
(i.e., marker) of all C components. This representation is finally multiplied with the weight vector
a; via Equation (7) to get the weighted fine-grained outcome in terms of C components, consider-
ing historical influences of interactions. The resulting representation of the outcome is then used
to update the user-item relationship in the next state, i.e., M7, via Equations (8)-(10). These equa-
tions follow a routine similar to GRU [10], to allow “adding” and “erasing” the historical effects
of both user interaction dynamics (i.e., s; computed based on h) and user relationship with items
(i.e., MJ”) However, note that, unlike prior versions of MANNES, like [45, 76], MEMU keeps track of
the dynamics for both marker sequence and the previous hidden state of activity dynamics from
the RAU component that will be introduced shortly. As a result, MEMU’s formulation is different
from the previously introduced MANN-like structure in the literature.

5.3 Recurrent Activity Updater (RAU)

Now we introduce the framework of our Recurrent Activity Updater (RAU), defined as (hj,c;) =
RAU(e,;, hj_1,¢j1, M;.’). We can see that the output contains the current hidden state h;, and the
cell state c;, which respectively have the same interpretations as they have in Long Short Term
Memory (LSTM) [29]. The input data on the other hand contains the current activity embedding
€ajs the previous hidden state h;_;, the previous cell state c;_;, and finally the current state of
the value matrix M? from the MEMU component. The core idea of this updater is to adopt the
LSTM framework to update h; taking into account the effect of historical activities in terms of
their timings and types (i.e., h;_; and c;_;) as well as the historical influence of markers (i.e., M;.’_l)
on future activities. An illustration of RAU is given in Figure 3. More specifically, RAU is defined
via the following equations:

ij =0'(Wieaj + Uihjfl + Vicjfl + PIM;Uyl + bi), (11)
f; :O'(eraj +Ughj_y + Vgej_ + PfM;)yf + bf), (12)
¢; =f; ® ¢j_; +i; © tanh( (13)

Weea; + Uchjy + Veej—1 + PcMYye +be),
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Fig. 3. An illustration of RAU.

0j = 0(Woea; + Ughjg + Vocj_1 + PoMYy, + b)), (14)
hj = 0j o tanh(cj). (15)

As we can see in the above equations, similar to LSTM, considering the previous influence of
activities (i.e., hj_;) and markers (i.e., M;.’), RAU updates its input state i, forget state £, cell state c;,
output o, and hidden state h respectively in Equations (11)—(15). We see that during computation
of the forget gate and cell state, the influence further past to the future activities are allowed to
be forgotten, while newer information is allowed to be added. As a result, by using the defined
framework, RAU is able to model the long-term dependencies of historical activities and markers.

RAU’s design has a straightforward structure compared to MAMU, which should model the
complex item, marker, and user-item relationship information. Modeling activity dynamics in RAU
is less complicated, as its input e,; is less complex than MAMU, and RAU’s abstract and coarse-
grained dynamic state would suffice for perfectly capturing such dynamics.

5.4 Prediction Layer

The prediction layer consists of three components which respectively predict activity time, type,
and outcome for users.

5.4.1 Activity Time Prediction. In this task, we aim to predict when a user will have her/his
next activity. This is achieved via two steps: activity time distribution modeling, and predicting
inter-arrival time.

Activity time distribution modeling. By definition, a point process can be characterized by its
intensity function of time A* conditioning on the history of activities. Naturally, since h; represents
the historical influence of activity dynamics, the intensity function of user interaction sequence
can be represented as a function of h;. More specifically, we propose to use the following function
to define A™:

A*(t) = relu{b, + a(h;) exp ( — p(h;)(t - x;))}, where (16)
a(h;) = tanh (w_h;). (18)

In Equation (16), b; can be interpreted as the base rate, or the number of activities that naturally
arrive due to external effects; ar(h;) defined in Equation (18) describes the number of activities at
t that arrive due to the influence of the previous activities (e.g., the past activities triggering the
future ones).

For the activation function, we choose tanh due to its flexibility in transforming the values to
the range of [-1, +1], to capture various possible time dependencies, such as self-triggering (i.e.,
a > 0), self-inhibiting (i.e., @ < 0), or memoryless (i.e., « = 0) in each time step. Finally, f, as
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defined in Equation (17), explains how fast the influence of the past activities decays over time,
described by an exponential function in Equation (16). To model this decay rate, we first linearly
transform h by multiplying it with a weight vector W, and then project it to the positive space,
denoted as (.)+, assuming that the past influence decreases over time.

This intensity function has a similar structure to the intensity function of the most widely used
point processes, i.e., Hawkes processes, with the following improvements: 1. Unlike traditional
Hawkes processes that restrict « to be positive (i.e., strictly triggering effects) and invariant to
time, a(h;) defined above allows the internal influence from past activities to be negative, or 0.
This formulation provides a more flexible representation of complex time dependencies, such as
self-inhibiting or Poisson-like dependencies; 2. Compared with the more recent Hawkes process
models with neural representations that are hard to interpret, this intensity function has the
interpretation of several key phenomenons described in traditional point processes, such as the
decaying internal influence, that are characterized by « and .

Inter-arrival time modeling. Inspired by the sampling strategy used in traditional TPPs, we
predict the inter-arrival time between the current activity and the future one as a way to estimate
the next activity timing fj+1. This routine is realized as follows:

F10) = X)) exp (— / t A*(r)dr), (19)
gj+1 = tanh(wy log (f*(1;)) + bg), (20)
Xj41 = relu (w{ gji1 + by), (21)
fj+1 = tj + )ACj+1. (22)

More specifically, we first obtain the conditional arrival distribution f*(t) that describes the dis-
tribution of inter-arrival times via Equation (19) that describes its relationship to the intensity
function A*. Once we have f*(t), we can predict inter-arrival time x;,; using Equations (20)-(21).
We feed the log density log(f*(t;)) to a fully connected network and choose relu as the last acti-
vation function to guarantee the idle time to be non-negative. The prediction of the next activity
time can be then computed via Equation (22), which sums up the current activity time ¢; and the
predicted next inter-arrival time x;,4.

54.2  Activity Type Prediction. Our goal in this task is to predict the type of (j + 1)!* activity
7j+1, before observing the activity information, such as item id or tag. For that, we compute the
probability of y;.1 being of type ys € Y via a softmax function defined as below:

exp(wy "h; +by)

. 23
Zydelyl exp(wy Th; +by) (23)

P(yj+1 = yd|hj) =

Then, the yg € Y that gives the highest P(y;.1) will be used as the predicted 3.1

5.4.3 Marker Prediction. In this task, we aim to predict the user’s interaction outcome at step
Jj + 1 (or marker rj.1), given this step’s item. For the prediction of marker r;,;, we first obtain the
user’s current relationship with the system items via Equation (24) to get a column vector v. This
vector is then concatenated with item-level features and passed through a fully-connected network
with activation function ¢; of choice so that both the item information and the user’s relationship
with the items can be encoded in Equation (25). The final prediction of marker 7., is computed
via Equation (26) using another fully connected layer, where ¢, can be an activation function of
choice, such as sigmoid for binary markers.
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vi=(a/M?)", (24)
njy = ¢y (W' [Vj?qidjﬂ?quﬂ])’ (25)
Fje1 = G2 (Wp mjs1 + bp). (26)

5.5 Objective Function

The final loss £ is the sum of the losses of activity time prediction .£L;, type prediction £,, and
marker prediction £,, which are respectively defined as follows:

L=L+ -Ey + L, (27)
Ki (2i i
_J ?Ll ijl(tj - tj)z (28)
= N o
Nx Y., K!
N K; |Y]| ) )
Ly==). ), ) wky;logd] (29)
i=1 j=1 k=1
N K;
Z wcr Iogp] +w,(1-7] ) (30)

—_

i=1 j=1

log (1 - )) rj#=1-

For time prediction, we use the mean squared loss £;. We use weighted cross entropy for type
prediction loss £L,. For the prediction of marker £L,, we use binary cross-entropy *. For activi-
ties that have a missing marker r, we mask the loss via indicator function 1 ri#-1- Similar to the
performance prediction function defined in Equation (26), Equation (30) can be replaced by mean
squared loss for numerical markers.

5.6 Computational Complexity of MOMENt

The computational complexity of MoMENt is an additive measure of the complexity of the RAU
and MEMU components which are compatible with state-of-the-art RNNs, like LSTM and DKVMN.
Specifically, for MEMU, for each sequence step, the time complexity is of O(C%*d,, + Cd; + Cdj. +
did;j + Cdy + didp), where C is the number of latent components (as in MF), d;j is the input ey, ’s
dimensionality, dj is the number of latent variables for each component (as in Mk ), dy, is the user-
item relationship features (as in M?), and dj, is RAU’s hidden state size. For comparison, DKVMN
has a computational complexity of O(C%d,, + Cd; + Cdj. + did;) for each step. Meaning that MEMU
has an O(Cdy, + didy) more computations compared to DKVMN. This additional computational
need is because of the Equations (3), (4), and (6) in which the activity2marker influence is added
to the model. Since C, dy, and dj, are all latent features, they are usually set within a similar range.
As a result, the additional term O(Cdy, + didy) would be negligible compared to the overall com-
putational complexity of DKVMN, especially its first term (C2d,,).

For the RAU component, the time complexity of each step is O(dfl + dpd; + Cdpd,,). For com-
parison, other sequential models, such as LSTM or RNN have a complexity of O(dfl + dpd;) in
each step. The term Cdjd,, is added to RAU’s computational complexity because of having M?
in RAU to model the marker2activity influence. While this additional term is larger than LSTM’s
computational complexity, it is similar to that of DKVMN.

2Can be replaced by cross-entropy or regression loss for categorical or numerical r
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Table 1. Descriptive Stats of the Datasets

Dataset Activity Types #. of #. of #.of | #. of | Missing | Correct Avg (std).
users | activities | items | tags | Marker | Answer | Inter-arrival Time
Junyi Problem; Hint 2,063 658K 1,880 8 15.3% 68.8% | 21.56 (57.54) mins
EdNet Problem; Lecture;Explanation | 709 282K 12,502 | 185 71.8% 42.5% 3.54 (29.5) mins
KDD-Algebra Problem 574 809K 1,084 | 112 0% 74.5% | 46.17 (85.13) mins
MovieLens Rating 943 94K 1,682 | 19 0% 56.6% 5.79 (15.97) days
Amazon-Grocery Rating 1,342 47K 7,342 | 126 0% 76.7% | 55.40 (29.98) days
Yelp Rating 1,988 106K 10,230 | 508 0% 66.0% 22.97 (17.45) days

Overall, the computational complexity of MoMENt would be O(C%*d,, + Cdyd, + Cd; + Cdy +
did; + didp + dﬁ) per step which is comparable to the state-of-the-art key-value memory-based
recurrent models.

6 EXPERIMENTS

This section presents our experiments to evaluate the proposed model for user activity modeling °.
We evaluate the model by assessing models’ prediction performances on users’ future activity
timings, types, and markers (Section 6.4). An ablation study is also performed to explore the im-
portance of our assumptions (Section 6.5). Finally, we present a qualitative analysis of MoMENt in
capturing interpretable user-system relation that evolves over time, as well as user-system interac-
tion dynamics temporally (Section 6.6). Before presenting the evaluation results, we first describe
the datasets (Section 6.1), then the baseline approaches (Section 6.2), and the experimental setups
(Section 6.3).

6.1 Datasets

We use the following six real-world datasets that contain users’ online activities considering two
tasks: (1) student learning and knowledge modeling in online courses and (2) item recommenda-
tion to online users. To ensure that TPPs have enough training trajectory, users with less than
20 activities are excluded from this study. The descriptive statistics of these datasets are provided
in Table 1 and an overview of the datasets is given as follows.

Student Learning Datasets

—Junyi Academy * dataset comes from a Chinese e-learning website, which contains the
trace data of students’ learning, including attempting math problems and checking the hints.
The system labels the learning material with math areas. These areas are used as tags in
this dataset. In this and the following two student learning datasets, we use the outcome of
attempting a problem (either correct or incorrect) as the marker.

— EdNet ° is an Al tutoring platform that assists students in preparing for the TOEIC exam °.
Four flavors of data sets with different detail levels are provided. We specifically use the KT4
set, which contains the most information, including student learning interactions with three
types of learning materials: questions, lectures, and explanations.

— KDD-Algebra 7 is a dataset released for KDD Cup 2010 Educational Data Mining Challenge,
which includes multi-type learning interactions of students with a computer-aided tutoring
system for algebra. The labeled knowledge components are used as tags.

30ur code can be found at https://github.com/persai-lab/2024- TKDD-moment
*https://pslcdatashop.web.cmu.edu/Project?id=244
Shttps://github.com/riiid/ednet

Shttps://www.ets.org/toeic

https://pslcdatashop.web.cmu.edu/KDDCup/
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Recommendation Datasets

— MovieLense-100k ® is a widely used benchmark dataset for recommender systems evalua-
tions, which contains user ratings of movies and movie information, such as their genres. We
use movie genres in this dataset as tags. The movie ratings ranging from 1 to 5 are used as
markers. If a rating is greater than or equal to 3.5, we treat it as a positive marker; otherwise,
negative. The same method is used for the following two datasets.

— Amazon-Grocery ’ is an e-commerce dataset that contains products in the department of
Grocery and Gourmet Food from Amazon. Product categories are used as tags.

— Yelp '° is another benchmark dataset for recommender system evaluations, which contains
user reviews on food businesses, as well as business information such as location and cate-
gories, which are used as tags.

6.2 Baseline Approaches

In this section, we introduce 16 baseline approaches that are used in our evaluations. We consider
six state-of-the-art temporal point process models. To better evaluate our proposed model under
the aforementioned tasks, we also include another ten state-of-the-art recent developments in stu-
dent modeling and recommendation systems.

Temporal Point Process Models. We consider the following state-of-the-art temporal point pro-
cess models as baseline approaches, which will be evaluated on all six datasets.

— Poisson Process [36] is a classic TPP that models activities by assuming they happen at a
constant rate.

— GMHP [72] is a multivariate Hawkes process model that represents each activity type as a
dimension. The dependencies among types are captured by the Granger causality graph [14].

— RMTPP [17] is an RNN-based point process model that uses a standard RNN to model activ-
ity times and markers. It only models one set of markers, and the original framework uses
activity type as the marker. Following this design, we use RMTPP-y and RMTPP-r to denote
the model that respectively predicts learning material type and grade as markers.

— ERPP [71] is a similar approach that models activities and external features via two LSTMs.
Similar to RMTPP, we consider two variations when the outcome (ERPP-r) and activity type
(ERPP-y) are used as markers.

— SAHP [78] is one of the most recent neural-based Hawkes process models. It employs self-
attention to capture the historical influences of activities on future ones. This model was
originally designed for multi-type point processes and can be used to predict activity types
(similar to treating type as a marker). For a more general marker prediction, we obtain the
marker embedding in the same manner as the proposed event type embedding and consider
the resulting variation SAHP-r as a baseline as well.

— THP [84] is a concurrent work to SAHP that employs a similar transformer architecture,
within which a type-specific intensity function was proposed. Similarly, we also consider
a variation THP-y by altering the intensity function as a marker-specific one, to obtain a
more general marker prediction framework.

Student Learning Models. The following student activity learning and knowledge tracing mod-
els are used as baseline approaches and will be applied to the three student learning activity
datasets for evaluation.

8https://grouplens.org/datasets/MovieLens-100k/
“http://jmcauley.ucsd.edu/data/amazon/
Ohttps://www.yelp.com/dataset
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— DKT [52] is the first attempt that integrates deep learning into student knowledge tracing
while predicting student grades. Hidden states are learned as a summary of past knowledge
via an RNN.

— DKT-Forgetting [47] is similar to DKT but uses time differences between exercises as extra
features.

— DKVMN [76] is based on a Key-Value-Memory-Network that models static knowledge con-
cepts and dynamic students’ knowledge and performances over time.

— HawkesKT [61] is a recent first attempt at student knowledge tracing and performance
prediction via point processes. Even though Hawkes intensity was adopted, the model is not
designed to predict activity time nor considers multiple learning material types.

— MVKM [80] is the first student knowledge acquisition model that considers multi-type learn-
ing activities. Latent concepts are learned from tensor decomposition to represent the se-
quential orders of learning and are assumed to be shared across graded and non-graded
activities.

Recommendation Models. We also consider the following Top-N recommendation models as
baseline approaches for the evaluation of the model on the three recommendation datasets.

— BPRMF [53] is a matrix-factorization-based method that uses Bayesian Personalized Rank-
ing objective function for the optimization.

— GRU4Rec [27] is a session-based sequential recommendation model that utilizes GRU to
model the ranking scores.

—SLRC [62] is a collaborative filtering model that used the Hawkes intensity function to
model the temporal aspects of historical activities.

— TiSASRec [41] is a sequential model that utilizes self-attention and inter-arrival times be-
tween historical activities.

— KDA [60] is a Fourier-based temporal method that is combined with knowledge graphs for
item relation modeling.

6.3 Experimental Setup

TPPs typically use historical observations from a sequence to make meaningful and accurate fu-
ture predictions of the same sequence based on the intensity function. We adopt this convention
for modeling student learning activities, using the first 20 activities of all students as training, a
randomly selected 20% of students and their later 20 activities as validation, and the remaining
80% of students and their later 20 activities as testing. For the task of recommendation, following
the widely-adopted leave-one-out strategy in the literature [33, 41, 60, 63], we use the last positive
item for testing, the second last item for validation, and the most recent 50 activities before valida-
tion as the training. Following the same convention, we randomly sample 100 negative items and
generate recommendations with the ground truth item together based on the likelihood of each
item being positive.

For the optimization, we use Adam [35] in the training process. Each model’s hyperparameters
are tuned separately using the validation set using Optuna [1]. Optuna is an open-source hyper-
parameter optimization framework that efficiently searches for the best hyperparameter values
by parallelization and pruning. For batch size and initial learning rate, we search on respectively
{16,32, 64,128} and {0.01,0.001,0.0001, 0.00001}. For the proposed model MoMENt, the hidden
state size for RAU is searched in {32, 64, 128, 256, 512}. Hidden state size for the fully connected net-
work in {256, 512}, concept number C in {5, 10, 20, 50, 100}, d,, and di. in {16, 32, 64, 128}. For both
RMTPP and ERPP, the hidden state dimension is searched on {32, 64, 128, 256, 512, 1024}. In GMHP,
the decay rate is searched in {1, 10, 50, 100, 500, 1000, 1500, 2000}. For each sequence, the best
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decay rate that leads to the smallest negative likelihood is selected. For THP, the number of
attention heads and the number of self-attention layers are respectively searched in {1, 2,4, 8},
and d, and di respectively in {16,32,64,128}, the hidden state dimension is searched on
{32, 64,128, 256,512}. For SAHP, the number of attention heads and the number of layers are re-
spectively searched in {1, 2, 4, 8}, the hidden state dimension is searched on {32, 64, 128, 256, 512},
the hidden state dimension is searched on {32, 64, 128, 256, 512}. For DKT, we search the hidden
state dimension in {32, 64, 128, 256, 512}. In EdNet, the best learning rate, batch size, and hidden
state dimension are respectively 0.01, 32, 512, and in Junyi, they are respectively 0.01, 64, and 512,
and in KDD they are respectively 0.01, 32, and 512. For DKVMN, We search memory size in the
range of {1, 2,5, 10, 20,50}, state dimensions in {10, 50, 100, 200}, the hidden state dimension in
{32, 64,128, 256,512}. For MVKM, we apply grid search on the student latent feature dimension
K from 1 to 45 with step size 5, the question latent feature dimension C in {1,2,---,9,10}, the
penalty weight  in {0.01,0.05,0.1,0.5,1, 2,3}, the Markovian step m in {1,2,---,10}, and the
learning resource importance parameter y[’] in {0.05,0.1,0.2,0.5,1, 2}. in EdNet, the best student
latent feature dimension, question latent feature dimension, penalty weight, and Markovian step
are respectively 3, 3, 0.01, and 1. For BPRMF, GRU4Rec, and TiSASRec, we search the sizes of em-
bedding and hidden state in {32, 64, 128, 256, 512}. For KDA, we searched the number of attention
heads in {1, 2, 4, 8}, hidden state size in {32, 64, 128, 256,512}, number of self-attention layers in
{1, 2, 4,8} and attention hidden size in {1, 2, 4, 8}.

6.4 Model Evaluation

In this section, we present and evaluate model prediction performance. Given that all TPPs can
be used to model point processes and thus can be adopted into different scenarios, they are eval-
uated in all six datasets. Additionally, all student learning models are evaluated using the three
student learning datasets and all recommendation models are applied to the three recommenda-
tion datasets.

6.4.1 Performance Evaluation in Student Learning Datasets. In student learning datasets, the
task of activity time prediction aims to predict the next study time of a student within the system,
given their historical studying time and performance in the prior learning materials (up until step
Jj)- The goal of activity type prediction is to predict what kind of activity (e.g., a problem vs. a hint)
a student will take at step j + 1, given the student’s historical studying data. In marker prediction,
the goal is to predict the student’s performance (e.g., correct or incorrect) in the given learning
material (item ID and features) at step j+1 and given their historical studying time and performance
in the past.

To evaluate activity type and marker predictions, we use the area under the receiver op-
erating characteristic curve (AUC) and accuracy (ACC). For time prediction, we use Root-
mean-square deviation (RMSE). Since Algebra 2005-2006 only contains one activity type, no
type prediction is presented for this dataset. Note that, except for the proposed model MoMENT,
none of the baseline approaches can simultaneously predict activity time ¢, activity type y, and
outcome r as the marker.

Model performance comparison is given in Table 2. First, we see that compared with all base-
lines, MOMENT achieves better student grade prediction (i.e., marker prediction) than all baseline
approaches, showing the importance of modeling the influence of activity dynamics on marker
distribution and vice versa. It can also be observed that variants of recent advanced TPPs such
as SAHP-r and THP-r generally outperform state-of-the-art student models. This suggests that
modeling the temporal aspects of student learning via intensity function improves the model’s
descriptive power of the data and therefore explains the superiority of these models.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 155. Publication date: April 2024.



MoMENt: Marked Point Processes with Memory-Enhanced Neural Networks 155:19

Table 2. Performance Comparison in Student Learning Datasets

Dataset Metric | MoMENt | sapp | SAHP | ppp | THP | RMIPP | RMTPP | ERPP | ERPP | 5 L 0 GMHP | HawkeskT | DKVMN | DKT | - PXT° | yvient
-r -r -y -r -y -r Forgetting
marker AUC | 0837 - 0765 - 0758 B 0.680 - 0.715 E B 0.730 0785 | 0.742| 0735 0.769
‘marker ACC | 0.855" -~ o7t - 0.764 B 0.742 - 0.760 - - 0.754 0810 |0.725| 0742 0.776
Junyi type AUC | 0.681" | 0677 | - | 0.640 | - 0,500 - 0510 | - = 0.668 - - = - -
type ACC_| 0935 | 0901 | - | 0875 | - 0.780 - 0846 | - - 0716 - - - - -
time RMSE | 9.023" | 10.716 | 9.771 | 11.204 | 11.109 | 14.645 | 14.371 | 10.150 | 8.900 | 54.3 8.851 - - - - -
marker AUC | 0.898" - 0865 | - 0.838 B 0563 B 0512 E B 0.797 0837 | 0747 | 0763 0564
‘marker ACC | 0.909™" o878 | - 0.851 - 0563 - 0513 - B 0.746 0845 | 0790 | 0814 0519
EdNet | type AUC | 0704 | 0505 | - | 0.674 | - 0563 - 0604 | - - 0425 - = = - -
type ACC_| 09667 | 0901 | - | 0873 - 0.853 - 0898 | - - 0517 - - - - -
time RMSE | 7.890 | 10.476 | 9.097 | 9.134 | 9.608 | 17.833 | 17.486 | 15.317 | 14.198 | 46.634 | 14.441 - - - - -
KDD. | marker AUC | 0.863° 0819 0.799 0.500 0,500 - - 0.723 0625 | 0714 | 0765 0.654
Algebra marker ACC | 0.887"" 0.842 0.809 0.762 0741 - - 0.726 0779 |0761] 0715 0.748
time RMSE | 9.111" 9.744 10342 1119 11.08 73.781 | 38.781 - = = = =

Best (bold) and second-best (underlined) are highlighted. Statistically significant differences between MoMENt and the
best on confidence levels of 99% (p-value < 0.01), 95% (p-value < 0.05), and 90% (p-value < 0.1) are respectively
marked with ***, ** and *.

In terms of time prediction, compared with all TPPs that predict the next activity time, we ob-
serve that MoOMENTt achieves significantly lower time prediction RMSE in EdNet and KDD-algebra
datasets. This shows that marker2activity modeling in MoOMENT results in better activity time pre-
dictions compared to the other baselines. Only in Junyi GMHP achieves the smallest RMSE among
all models. A possible reason is that in this dataset, student learning dynamics are less complex
due to fewer concepts. Therefore, GMHP’s simple but effective intensity function may capture the
data dynamics well, resulting in more accurate time prediction. We should note that as another
traditional TPP, Poisson process has the worst performance in time prediction, suggesting that
activity arrivals follow a more complicated distribution than the “memoryless” constant rate. An-
other interesting observation is that TPP variants (e.g., SAHP-r) usually predict time better than
their original model (e.g., SAHP), suggesting a strong association between marker r with time
distribution and its importance in time prediction.

MoMENT is also shown to achieve better type prediction performance, usually by large margins.
Combining with the model’s performances in time prediction, it demonstrates that MoOMENt can
accurately capture activity arrival patterns, suggesting that successfully capturing activity2activity
and marker2activity influences in RAU results in higher model capacity. To conclude, MoMENT is
the first model that can simultaneously predict when (studying time), how (learning material type),
and how much (grades) the students learn. It consistently outperforms all baseline approaches in
terms of type and grade prediction across all datasets and all baseline approaches in terms of
time prediction in more complex datasets. MOMENt’s superiority suggests the effectiveness and
importance of modeling the bidirectional influences between markers and activities.

6.4.2  Evaluating MOMENt on Recommendation Datasets. Table 3 shows the Top-N recommen-
dation performance of all TPPs and recommendation baselines. Two widely used metrics namely
hit ratio (HR) and Normalized discounted cumulative gain (NDCG) at 5 and 10 are used as
the evaluation metrics for this experiment. As shown in the table, MoOMENt outperforms all the
baselines on all datasets in HR@5, HR@10, and NDCG@10. This shows the effectiveness of Mo-
MENt in successfully capturing bidirectional influences to improve the recommendations. In the
Yelp dataset, we see that KDA is the strongest baseline. A possible explanation is that this dataset
has a more complex and larger tag system on all the items (i.e., restaurants) compared with the
other two datasets. Since KDA uses customized knowledge graph embeddings as an additional
source of knowledge, this complex tag system potentially helps KDA to have a more accurate
representation of the items and outperform other baselines.

We also observe that among all baselines, the state-of-the-art temporal point processes such as
SAHP-r and THP-r generally achieve more competitive performances compared to others. This
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Table 3. Performance Comparison in Recommendation Datasets

Dataset Metric MoMENt | SAHP-r | THP-r | RMTPP-r | ERPP-r | TiSASRec | SLRC | KDA | BPRMF | GRU4Rec
HR@5 0.428 | 0.412 0.409 0.387 0.367 0.357 0.387 | 0.402 | 0.318 0.345
MovieLens HR@10 0.609 | 0.579 0.570 0.528 0.531 0.529 0.414 | 0.547 | 0.484 0.491
NDCG@5 0.266 | 0.256 0.249 0.240 0.239 0.254 0.215 | 0.254 | 0.159 0.228
NDCG@10 0.317 | 0.310 0.291 0.282 0.279 0.293 0.256 | 0.308 | 0.201 0.276
HR@5 0.491 0.479 0.481 0.471 0.418 0.386 0.395 | 0.433 | 0.410 0.419
Amazon-Grocery HR@10 0.556 0.530 0.538 0.529 0.519 0.481 0.452 | 0.533 | 0.501 0.505
NDCG@5 0.389 0.332 0.364 0.354 0.323 0.281 0.252 | 0.267 | 0.269 0.289
NDCG@10 0.410 0.389 0.401 0.396 0.382 0.321 0.294 | 0.398 | 0.333 0.316
HR@5 0.463 0.401 0.392 0.408 0.413 0.284 0.402 | 0.422 | 0.380 0.280
Yelp HR@10 0.626 0.567 0.554 0.549 0.537 0.535 0.609 | 0.617 | 0.598 0.460
NDCG@5 0.299 0.267 0.250 0.267 0.259 0.278 0.264 | 0.303 | 0.258 0.175
NDCG@10 0.393 0.345 0.317 0.324 0.348 0.375 0.378 | 0.381 | 0.377 0.233

Best (bold) and second-best (underlined) are highlighted.

Table 5. Ablation Study in

Table 4. Ablation Study in Student Learning Datasets Recommendation Datasets

Dataset Metric MoMENt | MoMENt\t | MoMENt\y | MoMENt-t\y
marker AUC | 0.837 0.826 0.831 0.816 Dataset Metric MoMENt | MoMENTt\t
marker ACC | 0.855 0.835 0.840 0.798 HR@5 0.428 0.398
Junyi type AUC 0.631 0.524 - = . HR@10 0.609 0.577
typc ACC | 0935 | 0883 = = MovieLens NDCG@5 | 0.266 0.236
time RMSE | 9.023 - 9.904 - NDCG@10 | 0.317 0.272
marker AUC | 0.898 0.873 0.861 0.855 HR@5 0.491 0.467
marker ACC | 0.909 0.875 0.863 0.856 HR@10 0556 0530
EdNet type AUC 0.704 0.677 - = Amazon-Grocery NDCG@5 | 0.389 0375
:ypeIS\?SCE g'zgg 0959 m— - NDCG@10 | 0.410 0383
1me N - .. -
marker AUC 0.863 0.849 - - PII{ls@SO g‘égz 3283
KDD-Algebra | marker ACC 0.887 0.852 - - Yelp @1 . 607
time RMSE 9.111 — — — NDCG@5 0.299 0.258
NDCG@10 | 0.393 0.302

improved performance is possible due to an efficient historical activity2activity influence captured
by self-attention weights while learning from the intensity function. Recent Top-N recommenda-
tion models that employ the intensity functions to capture time dependencies such as KDA and
SLRC also achieve promising performances. We also see that more traditional approaches that ei-
ther do not model time (GRU4Rec and BPRMF) or only capture the durations between activities
while ignoring activity dynamics such as the decaying historical influence (TiSASRec) are only
shown to achieve moderate performances across all recommendation datasets. These two observa-
tions together suggest the importance of modeling user temporal dynamics in accurately depicting
the dynamics of user behavior.

In summary, MoMENt is the only method that models the temporal aspects of user activities
via an intensity function that also captures important dependencies such as marker2activity and
marker2marker influences, which possibly explain its better performance over baseline approaches
across different datasets.

6.5 Ablation Study

In this ablation study, we assess the importance of activity2marker influence which has
been largely neglected by the literature. We specifically consider MoMENt\#, MoMENt\y, and
MoMENTt\t\y which are variants of the proposed model by respectively masking time input ,
type input y, and both t and y from the full model MoMENL. Since the Algebra 2005-2006 dataset
in the Knowledge Tracing domain and all datasets in the recommendation domain only have one
type of activity, only the results of MoOMENTt\t are meaningful and presented.

The results of student activity modeling and top-N recommendation are shown in Tables 4 and 5,
respectively. In the student learning datasets, the goal is to predict student future learning time,
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type, and outcome (i.e., marker). Table 4 results show that MoMENTt outperforms all variants across
all datasets in all predictions. Comparing all the variants, we see that MoMENt\#\y achieves the
lowest performance of marker prediction. This result demonstrates that simultaneously modeling
time, type, and marker are essential to capture the complex dynamics of student learning for all
the prediction tasks. We also notice that in EdNet, masking type (MoMENTt\y) results in a less
competitive marker prediction performance than masking time (i.e., MOMENTt\¢), whereas, in Junyi,
this observation is reversed. This is potentially related to the more types of learning materials that
are provided in EdNet. Having more learning materials may lead to more complex knowledge
dynamics in students, e.g., when students switch from one learning material type to another.

Next, we look at the task of Top-N recommendation results in Table 5. In this task, the models
rank and return the top N items based on their likelihood of having a positive marker (i.e., a positive
rating). We observe that the proposed MoMENt outperforms the variant MoMENTt\t usually by
large margins. Similar to student activity modeling, this result highlights the significance of activity
time in representing user activity dynamics and marker distributions (positive or negative ratings).
In other words, a user’s future interactions with items are not only associated with the past items
they interacted with but also with when they interacted with them.

To summarize, our ablation study demonstrates the importance of modeling activity dynamics
in terms of time and type, as well as their relationship to marker distribution, which is consistent
with our observations and conclusions in the model performance comparison in Section 6.4.

6.6 Interpretation and Analysis

In this section, we present different interpretations that MoMENT can provide with two case studies
from the two application domains. Within each case study, the analysis is divided into two parts:
we first demonstrate MoMENt’s ability to capture a fine-grained interpretation of user-system
relations over time. Furthermore, we present an analysis to show the temporal patterns of user
interactions, where we analyze how users’ historical behavior can have an influence on users’
future activities.

6.6.1 Understanding Student Learning Dynamics in Online Courses. Modeling student learning
activities while quantifying student knowledge is an essential task in the education domain. Under-
standing students’ knowledge of course concepts can be beneficial for improving teaching or tutor-
ing quality, where students’ strengths and weaknesses can be better assessed. Although research
has shown that learning is a multifaceted process, modeling and predicting students’ studying
time (or time to study) and learning material type, in relation to student knowledge and perfor-
mance has not been fully studied in the literature. This section aims to demonstrate how to use
the interpretation that MoMENTt provides to fill this gap.

Consider an online course. Suppose there are C knowledge concepts covered by the course learn-
ing materials. Then, the features of those course concepts and the student’s mastery of them at
step j can be represented by the static key matrix MF and dynamic value matrix M;’, respectively.
To obtain the student’s knowledge representation in the concepts, we pass the learned value ma-
trix M;’ (z), namely the z'" row of the value matrix M? at step j through Equation (24)—(26) using
the learned parameters after training. The resulting value can be interpreted as the student’s un-
derstanding of concept C, at step j during practice. This step is iterated over all training steps
Jj € [1,K] for all concepts z € [1, C] to obtain the student’s changing knowledge over time.

A sample student from Junyi Academy and their evolving knowledge states of three latent con-
cepts over 20 practicing steps are given in Figure 4. As it is shown in the figure, the student prac-
ticed five problems with Mean and Median tags and provided wrong answers in them (steps 1-5
marked in red (X) in the top row). During this practice, we notice that the student’s knowledge
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Fig. 4. Changing knowledge states of a sample student from Junyi over 20 practice steps (x-axis) w.r.t. con-
cepts C1, Ca, and C3 (y-axis). The problem tags are given below the braces (e.g., multiplication problems for
the last two steps). The markers r are given in the top row, with red (X), green (v'), and yellow (h) representing
wrong answers, correct answers, and hint-checking, respectively. Cell shades in the three concept (bottom)
rows represent the degrees of the student’s understanding, ranging from yellow (low) to purple (high).

representation of concepts 2 and 3 (C, and Cs) starts to drop, which suggests that these two con-
cepts are the most related to this question. A possible explanation is that by getting the wrong
answers, the student got more and more confused over these concepts. Then, we observe that the
student started to check the hints related to these tags (steps 6-9 in yellow (h)), probably wanting
to learn how to answer the problems better. During this hint-checking process, their knowledge
of these two concepts (especially concept 2) increases, which also suggests their relatedness to
the problems. Furthermore, it indicates that checking these hints helps the student gain a bet-
ter understanding of these concepts, to later obtain correct answers (steps 10-13 in green (V)),
and have a much faster knowledge gain. Later, when the student moves on to another tag (i.e.,
Subtraction), they only gain a marginally better understanding of concepts 2 and 3 over hints.
This observation might suggest that these hints are not sufficient for this student’s knowledge
gain in those concepts. It may also explain why the student is not attempting to answer the Sub-
traction question at the end of the hint-checking, as they may not feel confident enough to do
so, given their current knowledge. Another observation is that the student’s understanding of
concept 1 has been generally decreasing over time. One possible explanation is that not practic-
ing the related questions to this concept frequently enough has led to the forgetting of this con-
cept. This case study shows how one can visualize MoMENTt’s learned parameters to represent
a student’s knowledge gain over their practice activities, figure out the concepts they are strug-
gling with, and find out the effective learning materials associated with different concepts for
the student.

In addition to knowledge gain visualization, we also study the temporal aspects of student learn-
ing, which is studied and represented as the following two aspects: studying student learning in-
tensities in continuous time, and temporal activity dependencies within the trajectory of student
learning. Modeling the temporal aspects of student learning has been increasingly shown to be
critical in capturing the true engagement of students in various important applications such as
procrastination modeling [73] and the modeling of knowledge forgetting [58]. To examine stu-
dent learning dynamics in continuous time, we present the sample student’s learning intensities
as a function of time while they are interacting with different learning materials (i.e., answering
problems and checking hints). The activity sequence intensities of the sample student of Figure 4
is presented in the upper plot in Figure 5. Furthermore, to understand the temporal activity de-
pendencies or the influence of students’ historical learning on their future learning activities, we
compute an influence matrix between activities. In this matrix, we show the contribution of each
historical j* activity on the later i activity where i > j. This lower-triangular influence matrix is
presented in the lower plot in Figure 5.
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Fig. 5. Temporal patterns of student learning, represented by learning intensity (upper) and influence matrix
of historical learning on the future (lower). Upper: intensities of student learning dynamics (y-axis) as a
continuous function of time ¢ (x-axis). Dots represent problem (red) or hint (blue) activity types happening
in student sequence over time. The intensities of problem and hint activities (as a function of time) are shown
by the continuous red and blue lines in the plot. The colored-shaded areas have the same meaning as the
color-coded markers: red for the wrong problem attempts, green for the correct problem attempts, and yellow
for hint checking. Lower: the influence matrix, showing influences of historical activities on the future ones
for the same sample student during practice. The cell in jh row and ith column represents the influence of
activity at step j on the later ith activity, with a darker shape representing a higher influence. The markers of
activities are provided on the diagonal, where red (X), green (v'), and yellow (h) respectively represent wrong
answer, correct answer, and hint-checking.

More specifically, the upper plot in Figure 5 shows occurrences of problem (red) or hint (blue)
activities of the sample student’s sequence as dots on the X-axis. The X-axis represents continuous
time, marking 0 as the time the student started their activities. The red (problems) and blue (hints)
curved line plots show the modeled intensities of student learning dynamics (1*(¢) in Equation (16))
as continuous functions of time ¢. For example, when the student has intense problem-solving ac-
tivities, the modeled problem activity intensity function (red curve) increases rapidly and drops
gradually when the student switches to another activity type (e.g., hint-checking). Additionally,
the plot area is color-coded according to the student performance markers. We use red for show-
ing wrong problem attempts, green for correct problem attempts, and yellow for hint-checking
activities.

For the influence matrix shown in the bottom part of Figure 5, we compute the expected inten-
sity at the ih activity that was contributed by the j™ activity [24] via the Hawkes component in
Equation (16). Here, the influence of the j® activity on the later i activity is represented by the
cell at j column and i™ row in the influence matrix. The X and Y-Axes in this influence matrix
show the time step of the student activity sequence, as opposed to the continuous time value pre-
sented in the upper plot of Figure 5. Additionally, we show the activity markers on the diagonal
of the influence matrix, where red (X), green (v'), and yellow (h) respectively represent wrong
answer, correct answer, and hint-checking. For example, the 6™ column of the influence matrix
shows checking a hint at step 6 and its association with getting a correct answer in later steps.

As shown in Figure 5, the student’s first few steps of practice have a high and lasting effect on
the later activities. This phenomenon is represented by the darker cells under the diagonal of the
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influence matrix in steps 2-9, shown within the green box. A possible explanation is that getting
wrong answers in a row (steps 1-5) makes the student realize that they lack some knowledge in
answering these problems (as also shown in steps 1-5 of Figure 4, where the student knowledge
in C, and Cs decreases). Therefore, the student starts to check the hints (steps 6-9) intensively,
trying to understand the concepts related to their previous few attempts. This intensity is shown
in the upper plot of Figure 5 by the steep increase in the hint-checking intensity curve (the blue
curve) around time 15, which is aligned with attempt step 6 in the influence matrix. As the student
continues practicing, the influences from the past wrong answers on the later activities start to
decay. This is possibly because these previous problems start to have less and less associations
with the student’s later practices. This reduction in associations is shown by the fading shades on
the columns of the influence matrix in the green box.

Another interesting pattern can be found in the student’s later steps of learning, where the
student answers multiple problems correctly (e.g., steps 10-13 in the blue box of the influence ma-
trix). The upper plot indicates that the student has a steady pace during these steps, as shown by
the unperturbed and moderately sloped problem activity intensity curve and the spaced-out red
dots before time 25. In these attempts, the influence matrix shows that the learning activities have
strong associations with their most recent prior activity and weaker associations with the earlier
ones. A potential reason for this short-term influence could be the activity marker or the correct-
ness of the student response. Namely, answering a question correctly has a small influence on the
student’s following few activities, probably because the student does not feel the urge to practice
intensively or check hints, as opposed to when they needed to correct themselves after giving a
wrong answer. Rather, the student is shown to try the next problems using a similar pace and get
a good understanding of the problems (also suggested by the fast increase of knowledge in C; in
Figure 4). The above analyses demonstrate how MoMENTt can be used in providing interpretations
of when and how students learn and the associations between their practice intensity, activity
types, knowledge, and performance.

6.6.2 Understanding User Movie-Watching Dynamics. In the recommender system application,
we also start with our analysis of the user-system relationship captured by MoMENt. For that,
we analyze the user’s evolving relationship to item latent components. We consider one sample
user from the MovieLens dataset for visualization and analysis, as shown in Figure 6. Similar to
Section 6.6.1, we use the z'" row of the value matrix M at step j and the learned parameters after
training to obtain the user’s evolving relation to each component C,, which under this setting can
be interpreted as the user’s interest in different movie latent features. The ground truth markers
are again provided in the top row of Figure 6, with red (X) and green (v') respectively representing
negative and positive user ratings. The movie genres are represented as a heat map with a binary
color scheme in the lower plot of Figure 6). Here, a bright cell at the j* column and g™ row rep-
resents that the movie that the user watched at the j™ step has a genre of the g row, and a dark
cell represents that it does not. For example, the last movie of this sample user is of the genres of
Fantasy and Sci-Fi.

As shown in Figure 6, the user mostly tries Fantasy movies, especially at the beginning of their
sequence. The user then tries a few Crime movies (steps 24-37) between fantasy movies. While
the user is watching these Crime movies, their represented interest in component 3 (Cs) decreases,
and once the user switches back to the fantasy movies it keeps staying low. This suggests that
component 3 is likely to be mostly associated with some common elements in Crime movies (e.g.,
heist or robbery), and when this user is exposed to such elements repetitively, their general interest
in component 3 decreases. This observation matches the ground truth markers where the user
gives some negative ratings to the Crime movies during these steps. Unlike Cs, components 1 and
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Fig. 6. Upper: The user’s evolving interest w.r.t. three learned components of movies (y-axis) over 50 steps
(x-axis). Markers, i.e., positive and negative ratings, are respectively shown in green and red on the top row of
this plot. Lower: tags (genres) for the watched movies in the above 50 steps. A white cell in a row represents
the movie of the genre of the corresponding row, and black represents the opposite. The top 10 genres are
shown in this plot.

2 may be more related to the elements in Fantasy movies (e.g., magic and fairy tales) which matches
their fast increase while the user is watching this genre and giving positive ratings to them.

To analyze the dynamics of user-system interactions, we present the influences of the historical
movie-watching experience on the later ones (lower) and the intensity of movie watching (upper)
of the sample user in Figure 7. The upper plot in Figure 7 shows occurrences of movie-watching
activities of the sample user’s sequence as dots on the continuous-time X-axis. The red curve plot
shows the modeled movie-watching intensity function of the target user (1*(¢) in Equation (16)).
The plot area is color-coded according to the user’s feedback markers (green for positive and red
for negative feedback). The influence matrix in the bottom part of Figure 7 is computed similarly
to the knowledge tracing influence matrix. Similar to the color-coded areas of the upper plot, the
activity markers are color-coded on the diagonal of the influence matrix, with red (X) for the
negative and green (V') for the positive experience.

As shown in the figure, examples of two different influence patterns can be observed and pre-
sented in green and blue boxes. As we see in the green box of the influence matrix, the first several
Fantasy movies that the user watches have a lasting and strong influence on the user’s future
choices of movies to watch. This is demonstrated by the darker blue cells in columns and rows 1 to
10 in the influence matrix. As an example of such influence, suppose that the user watches Harry
Potter 1 which may consequently motivate them to watch the next few movies in the series to com-
plete the story. During this time that the watching experience is positive, we also see a growing
intensity trend, represented by the red intensity function curve in the upper plot. One explanation
for this lasting effect and intense activities is that the user enjoyed the good movies from the past
and, therefore is willing to try more within a shorter time (i.e., bursts of activity clusters). More
interestingly, this phenomenon is also in line with the study that reveals the association between
binge-watching-like behavior and the dopamine released by human brains [21], which possibly
explains the high fast-growing intensity and interests (as shown in Figure 6) during these bursts
of activities.

Another interesting pattern is shown in the blue box in Figure 7 where the influence of the past
activities is not very strong and lasting, suggested by the darker area only close to the diagonal.
In other words, these movies have less influence on the user’s future choices of movies to watch.
During the steps, we see that the user gives mostly negative ratings to the watched movies. Com-
bined with the observation from the upper plot where the intensity of movie-watching activities
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Fig. 7. Dynamics of user movie-watching experience. Upper: intensities of movie-watching (y-axis) as a con-
tinuous function of time (x-axis). Lower: the influence of historical movie-watching experience on the future.
Cell in the jt" row and the ith column represents the influence of the movie watched at step j on the later ith
movie, with a darker shade representing a higher influence. The markers are given on the diagonal, where
green and red respectively represent positive and negative ratings.

decreased, a possible explanation is that after watching a Crime movie that the user did not enjoy,
the user is less motivated to watch more movies. These discovered patterns show that MoMENt
can be effective in providing meaningful explanations of when and how users interact with the
system and the associations between their interaction dynamics, continuous time intensity, and
interests.

7 DISCUSSION

In this section, we summarize the experiment results and discuss the limitations of MoMENt. The
experiment results demonstrate that modeling the bidirectional influences of activity dynamics
on marker distribution (activity2marker) and vice versa (marker2activity) is essential for better
marker prediction. This was shown in Sections 6.4.1 and 6.4.2, where MoMENt outperformed the
baseline methods in the tasks of student grade prediction and top-N recommendations, respec-
tively. Similarly, our experiments in the education domain show the importance of these bidirec-
tional influences in activity type predictions.

Likewise, the superior performance of MoMENt compared to the baselines in activity time pre-
dictions in the more complex datasets indicates the fundamental importance of bidirectional in-
fluence modeling. We noted that in one of the less complicated datasets (i.e., Junyi) one baseline
(GMHP) achieves the smallest RMSE among all models. This result can be attributed to Junyi’s
more straightforward learning dynamics, with fewer concepts, and GMHP’s simple but effective
intensity function. However, we showed that overly simple and “memoryless” TPPs, such as the
Poisson process, are inadequate to capture user activity dynamics. Additionally, GMHP does not
have the ability to predict activity markers. Combining the results of MoOMENt’s performance in
time, type, and marker predictions suggests that the RAU component can successfully capture the
activity2activity and marker2activity influences, the MEMU component can effectively model ac-
tivity2marker and marker2marker influences, and thus MoMENt can accurately capture activity
arrival patterns with a higher model capacity.
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We further studied the activity2marker influence in more detail via our ablation study by mask-
ing type and time inputs from the model. Our results in both application domains indicate the sig-
nificance of activity time modeling for an accurate representation of user activity dynamics and
marker distributions. Specifically, we showed that modeling time and type together is essential
for better performance in all the prediction tasks. Similar to the results presented in Section 6.4.1,
the importance of type vs. time modeling varies by the complexity of the datasets. For instance,
the time component played a more important role in marker predictions in the less complicated
dataset Junyi.

To obtain further understanding of what is learned by MoMENt, we performed an interpretation
and analysis study in Section 6.6. Our visualization and analyses of the learned model demonstrate
that MOMENT can be used to interpret when and how users interact with the system and the associ-
ations between their interaction dynamics, continuous time intensity, and underlying interaction
factors. More specifically, visualization of MoMENt’s learned components explains which items
and activity types are associated with the discovered concepts and how a user’s relationship with
these components (and items) changes over time. Also, MOMENt’s influence matrix illustrates
which activities have long-lasting influences on other activities in accordance with activity feed-
backs (markers). Coupled with the intensity plot, these visualizations can be used to demonstrate
what types of activities and their feedbacks (markers) relate to intense vs. steady activity timings
in users.

Together, these analyses can unveil remarkable observations. For example, our case study in
the education domain showed that the target student’s past failures had a large influence on their
consequent fast-paced hint-checking activities to learn the missing concepts, followed up by the
more steady and regularly-timed successful attempts on the learned concepts. In recommender
systems, our analyses revealed how a user’s positive experience in one genre led to more frequent
subsequent consumption of the same genre, and their exploration of another genre with a negative
experience was associated with less frequent and more spaced system interactions. These analyses
showed that a user’s future interactions with items are not only associated with the past items they
interacted with but also with when they interacted with them.

Although MoMENt was shown to be successful in our experiments and interpretable in our
analyses, there are some limitations in this work that suggest new directions for future work.
For example, in the design of our input layer, we use one-hot encoding e; to represent markers,
which can increase the memory complexity with a larger number of items and item tags, compared
to using other embedding methods, such as hashing. Although in some of our baselines, e.g., in
GRU4Rec [27], using one-hot encoding was shown to work better than using an embedding layer,
exploring different embedding strategies in the input layer may show improvements in model
performance or complexity.

Also, we designed the MEMU component to have a MANN-like structure and the RAU compo-
nent to have an LSTM-like structure. Although these structures perfectly fit our applications and
were shown to have superior performance compared to the baselines, our design is limited in not
exploring other architectures for these two components. For example, while our experiments show
that having a simpler LSTM-like structure in the MEMU component would not suffice to capture
the detailed marker dynamics, we have not explored a more complex MANN-like structure for
the RAU component. Exploring other designs for the MEMU and RAU components would be a
worthwhile direction for future works.

Finally, as MoMENT relies on historical events to model the dynamics and perform predictions,
it is not evaluated in the extreme settings, such as in the cold-start setting with shorter sequences.
In the future, the model can be adapted, or novel models can be researched to perform well in such
extreme settings.
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8 CONCLUSIONS

In this paper, we proposed a novel marked point process model MoMENTt that captures impor-
tant fine-grained and interpretable bidirectional influences between activity dynamics and activ-
ity markers that have been overlooked by the literature. More specifically, our proposed Recur-
rent Activity Updater (RAU) component in MoMENt models complex user activity dynamics in
terms of time and type while capturing the important activity2activity influence as well as the
marker2activity influence. In parallel, MoOMENt’s Memory-Enhanced Marker Updater (MEMU)
captures marker2marker and activity2marker influences. The key-value memory structure in
MEMU provides a fine-grained explanation of the user interaction outcomes (marker) dynamics.
Additionally, in the prediction layer of MoMENTt, we proposed a flexible and interpretable activity
time distribution model that can capture positive, negative, and neutral influences of past activities
on future ones.

We formulated MoMENt according to the user activity modeling problem and applied it to the
tasks of student activity modeling in online education systems as well as Top-N recommendations.
MoMENTL is the only model that has the ability to predict activity type, time, and marker at the same
time. To evaluate MoMENTt, we conducted extensive time, type, and marker prediction experiments
comparing with 16 baselines as well as ablation studies on six real-world datasets and demon-
strated its effectiveness in all the given tasks. Furthermore, to showcase the interpretability of Mo-
MENTt and the interrelationships it can capture between activity timings and markers, we presented
two case studies in each of the student modeling and recommendation application domains. Our
case study reveals interpretable representations of user-system relations over time and provides
meaningful insights into how users’ future interactions are influenced by their past experiences.
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