Auxo: Efficient Federated Learning via Scalable Client
Clustering

Jiachen Liu
University of Michigan
amberljc@umich.edu

Fan Lai
University of Illinois
Urbana-Champaign

Yinwei Dai
Princeton University
yinweid@cs.princeton.edu

fanlai@illinois.edu

Aditya Akella

University of Texas at Austin
akella@cs.utexas.edu

ABSTRACT

Federated learning (FL) is an emerging machine learning
(ML) paradigm that enables heterogeneous edge devices to
collaboratively train ML models without revealing their raw
data to a logically centralized server. However, beyond the
heterogeneous device capacity, FL participants often exhibit
differences in their data distributions, which are not inde-
pendent and identically distributed (Non-IID). Many existing
works present point solutions to address issues like slow
convergence, low final accuracy, and bias in FL, all stemming
from client heterogeneity.

In this paper, we explore an additional layer of complex-
ity to mitigate such heterogeneity by grouping clients with
statistically similar data distributions (cohorts). We propose
Auxo to gradually identify such cohorts in large-scale, low-
availability, and resource-constrained FL populations. Auxo
then adaptively determines how to train cohort-specific mod-
els in order to achieve better model performance and ensure
resource efficiency. Our extensive evaluations show that,
by identifying cohorts with smaller heterogeneity and per-
forming efficient cohort-based training, Auxo boosts various
existing FL solutions in terms of final accuracy (2.1%-8.2%),
convergence time (up to 2.2x), and model bias (4.8% - 53.8%).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC °23, October 30-November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0387-4/23/11...$15.00
https://doi.org/10.1145/3620678.3624651

Harsha V. Madhyastha

University of Southern California
madhyast@usc.edu

Mosharaf Chowdhury

University of Michigan
mosharaf@umich.edu

CCS CONCEPTS

« Computing methodologies — Distributed artificial
intelligence.

KEYWORDS

Federated Learning, Unsupervised Learning

ACM Reference Format:

Jiachen Liu, Fan Lai, Yinwei Dai, Aditya Akella, Harsha V. Mad-
hyastha, and Mosharaf Chowdhury. 2023. Auxo: Efficient Federated
Learning via Scalable Client Clustering. In ACM Symposium on
Cloud Computing (SoCC °23), October 30-November 1, 2023, Santa
Cruz, CA, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/
10.1145/3620678.3624651

1 INTRODUCTION

Federated learning (FL) enables distributed clients to collab-
oratively train an ML model without centralizing their local
data to the cloud. It circumvents the systematic privacy risk
and cost of data transfers in centrally collecting user data.
Hence, FL is increasingly being adopted by many popular
applications, such as Google’s Gboard [21], Apple’s Siri [57],
NVIDIA’s medical platform [43], Meta’s Ads recommenda-
tion [53], and WeBank risk prediction [50].

Federated Learning (FL) typically involves a substantial
number of clients, ranging from hundreds to millions, and
the training process can span days or even weeks [84]. Given
the limited availability and resource constraints of client
devices, only a fraction of clients contribute to each round
of training in practice. Therefore, it is essential to reduce
the training time while accommodating these practical con-
straints. However, FL encounters unique challenges stem-
ming from statistical heterogeneity among user data, which
contributes significantly to extended training time and sub-
optimal model performance [44, 47, 73, 89]. Several studies
that try to mitigate the effect of statistical heterogeneity,
such as FedYoGi [59], g-FedAvg [42], FTFA [13], have shown

https://doi.org/10.1145/3620678.3624651
https://doi.org/10.1145/3620678.3624651
https://doi.org/10.1145/3620678.3624651

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

that their convergence speed depends on the degree of het-
erogeneity, both theoretically and empirically (§2.2).

We explore the possibility of mitigating this issue at its
core by grouping clients with similar data distributions,
known as cohorts [86] (§2.3). If a population has K cohorts,
training K separate models — one for each cohort with lower
statistical heterogeneity — can boost the performance of
many existing FL algorithms that are complementary to
ours and focus on convergence [38, 41, 59], fairness opti-
mization [42], communication efficiency [3, 31, 65], etc.

Although recent works attempted to identify cohorts and
train separate models for them [11, 22, 47, 83], they are
not applicable to real-world FL deployments. This is be-
cause unlike easy-to-deploy solutions such as FedAvg and
FedYoGi [51, 59], clustering clients at scale and in the wild
poses unique challenges (§2.4). Existing solutions often ig-
nore the scale and sparsity of the device participation. They
also ignore the constraints on availability and capacity of
end-user devices, which calls for low-overhead algorithms.

We propose Auxo to enable 1) scalable cohort identifi-
cation to reduce intra-cohort heterogeneity in large-scale
and limited-availability FL scenarios; and 2) efficient cohort-
based training to facilitate most FL optimizations, such as
faster training completion and better model accuracy, with-
out additional resource requirements. Auxo addresses the
following challenges toward practical FL deployment (§4).
First, unlike existing clustering strategies which require ex-
haustive passes through all clients [67], on-demand device
availability [11], or additional on-device training for every
participant [16, 22], Auxo introduces a more flexible client
clustering solution. It allows sporadic client availability, re-
spects client resource constraints, and maintains client pri-
vacy. Auxo can progressively identify cohorts and scalably
cluster clients based on their gradients in spite of the ab-
sence of anchored gradients for straightforward comparison.
Second, unlike expensive and ad-hoc hyper-parameter tun-
ing stages used in existing solutions, Auxo progressively
generates the appropriate number of cohorts and identifies
suitable timings to create them. Thus, Auxo maximizes the
use of limited client resources to enhance training speed and
model performance.! Finally, we design a scalable system
to support efficient cohort clustering and training at scale
while being robust to uncertainties (e.g., failure tolerance
and unfavorable settings) at scale (§5).

We have implemented (§6) and evaluated (§7) Auxo on a
wide variety of real-world FL datasets, tasks, and algorithms
at scale. Compared to existing solutions, Auxo improves the
performance for various FL algorithms, such as better model

1We refer to the number of participants that contribute to a round of FL
training as training resource throughout this paper.

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

I'Server : :
:: 0) Client '
: —
: , S
: ©
: :
\

___________ ’

Figure 1: Traditional FL overview. The server first
selects from available clients and sends out model
weights. Clients train the updated model on their local
dataset. After training is finished, clients report their
model gradient to the server.

accuracy (2.1%-8.2%) and convergence speed (up to 2.2X) and
smaller bias of model accuracy (4.8% - 53.8%).
Overall, we make the following contributions in this paper:

(1) We propose a systematic clustering mechanism to iden-
tify cohorts for the practical large-scale, low-availability
and resource-constrained FL setting.

(2) We identify a sweet spot for jointly optimizing model
convergence and training cost, and provide analytical
insights to ensure good model performance.

(3) We implement and evaluate Auxo at scale, showing
large improvements in final accuracy, convergence
time, and model fairness over the state-of-the-art. Auxo
is open-source and available on GitHub.?

2 BACKGROUND AND MOTIVATION

We start with a brief introduction of federated learning (§2.1),
followed by the challenges it faces in real-world settings (§2.2
) . Next, we describe some opportunities to improve FL that
motivates our work (§2.3). Finally, we explain the limitations
of related works that motivate our algorithm and system

design (§2.4).

2.1 Federated Learning

A typical cross-device FL system consists of two primary
components (Figure 1): A logically centralized cloud server
that maintains a single global model and many distributed
clients with private local data. The overall lifecycle of an FL
training round can be divided into three broad stages.

(1) Selection stage: Clients check in with the server con-
tinuously to announce their availability for FL compu-
tation. The server selects a number of participants for
that round based on its client selection strategy.

(2) Execution stage: The selected participants download
the current model from the server and perform server-
specified computation on their local data.

Zhttps://github.com/SymbioticLab/FedScale/tree/master/examples/auxo

Auxo: Efficient Federated Learning via Scalable Client Clustering

-—— Best 10% Acc...
Worst 10% Acc.

N
o
N
o

=== Best 10% Acc.
Worst 10% Acc.

e 380

260 \ >60

© :]

g) s

Y 40— Avg:-Acc. v 40 o

< < Non-IID
® ©

c c

i ic

(9.00 0.25 0.50 0.75 1.00
Norm. System Heterogeneity

8.00 0.25 0.50 0.75 1.00
Norm. Stats. Heterogeneity

(a) Statistical heterogeneity. (b) System heterogeneity.

Figure 2: The impact of heterogeneity on final accuracy.

(3 Aggregation stage: Participants that successfully com-
plete the execution stage send model updates back to
the server. The server aggregates the updates to final-
ize an updated model for the next round.

2.2 Heterogeneity Challenges in FL

Unlike centralized ML, FL faces unique challenges in terms
of statistical and system heterogeneity. The former refers to
the varying data volumes and difference of data distribution
across clients, which hinders model convergence; the latter
refers to variations in system characteristics among partici-
pants’ devices, which results in large differences in training
performance. Increasing heterogeneity in either dimension
leads to poor performance.

Impact of statistical heterogeneity. Under large statistical
heterogeneity across clients, poor model accuracy, training
time and fairness are often exacerbated, because the model
is deployed on individual clients but is often trained over
all the clients. Existing works that address statistical hetero-
geneity in FL assume bounded heterogeneity to simplify the
problem complexity [41, 44, 59, 89]. However, we notice this
does not hold in practical FL settings, which leads to great
performance degradation under larger statistical heterogene-
ity.> Indeed, our analysis of FedYoGi [59] (a state-of-the-art
FL algorithm) on Openlmage [56] (an FL image dataset), in
Figure 2a shows that the model accuracy and its fairness
across clients worsens with increasing statistical heterogene-
ity. To achieve the same model performance under larger
heterogeneity, more communication and/or computation
costs are needed. This is true for personalization algorithms
as well [73].

Impact of system heterogeneity. Heterogeneity of system-
level characteristics raise challenges such as fault tolerance
and straggler mitigation [30, 41]. Over-commitment [10],
which discards updates from slowest-responding partici-
pants, is commonly used to reduce the impact of stragglers,

3In this experiment, we measure the statistical heterogeneity among a set
of clients using the popular L2 distance on their data distributions [38].

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

1.0 -
ez X 60
208 -
& 8
£0.6 B0
e 3 .

v —

= 0.4] — opentmg Y 100 cI!ents
g Femnist f 20 200 clients
5 0-2) — Speecd @ —— 400 clients
4 —— Reddit = 0

. 5 10 0 20 40 60

Clusters Time (h)

Figure 3: Intra-cluster
heterogeneity in real
datasets.

Figure 4: Diminishing re-
turn when adding more
participants.

but it may lead to participation bias against slow devices.
Figure 2b shows the final accuracy of the Openlmage task
under different degrees of system heterogeneity (variance of
system speed). For each experiment, we control the round
duration and the number of successful participants to be
the same; as a result, participation bias exacerbates with in-
creasing system heterogeneity. Since participation bias may
enhance statistical heterogeneity in another form, the final
accuracy decreases with increasing system heterogeneity
(albeit at a slower rate than statistical heterogeneity).

2.3 Opportunities

The opportunity for improving FL training performance,
therefore, lies in decreasing heterogeneity especially the
statistical heterogeneity based on the observation of the pre-
vious subsection. By identifying statistically homogeneous
groups and performing FL within each group, we may be
able to boost model performance of most FL algorithms that
are suffered by the heterogeneity.

Despite large statistical heterogeneity across the entire FL
client population, there exist groups of statistically similar
clients in most large populations. Figure 3 shows that for four
representative FL workloads [36] in the real world. We use
K-means clustering (with increasing values of K) on clients’
data distribution by their L2-distance metric. As the number
of clusters increases from one (i.e., traditional FL with one
global model) to larger values, we observe a small number
of statistically similar groups emerge for most datasets.

However, training K models to converge may need more
training resources compared to training one model. As shown
in Figure 4, increasing training resources has diminishing
returns on the model convergence, which presents the pri-
mary opportunity leveraged in this work: instead of letting
all available clients contribute to a single global model, it may
be more beneficial to partition them into several cohorts, each
with smaller heterogeneity.

2.4 Limitations of Existing Clustered FL

Recent efforts in the ML community have (theoretically) ex-
plored to create smaller groups of statistically similar clients.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

_____________________________________ @ Matching @ Feedback
! Cohort Coordinator ! D REGISE ™,
] i — Reques —3 Traini —
i | Cohort Manager || Request Handler | ! a rAiming Update
i | Meta Store ||Resource Manager| E D Request ¢™———72 Training Update —
i E R t L Traini

| Cohort 0.0 Cohort 0.1 . | 0 i —— £
i | Selector 0.0 | [Selector 0.1 | : G — Request i/ Training

E |Aggregator 0.0| |Aggregator 0.1 | E Z, / f

Request C:‘, \
| VAT

ﬂ Cohort 0

Aggregation) Cohort 0.0 //

& Feedback \ %
.S/ Aggregation

w ¥

i ﬁ Cohort 1

: C’:) Cohort Coordinator

wds

LL{)'; & Feedback

gséﬁc 1d

Cohort 0.1 —

Figure 5: Auxo architecture. Auxo Figure 6: Auxo lifecycle. Clients check in with their affinity requests, and
server guides Auxo clients to train participate training within matched cohorts. Cohorts are gradually identi-

on their best-fit cohorts.

CFL FL+HC FlexCFL IFCA Auxo
Partial part. X v v v v
Low avail. X X Vv v v
Res. constraint | X X X X v
Training perf. | X X X X v

Table 1: Comparing Auxo with existing Clustered FL.

Yet, existing clustered FL algorithms often fall short across
multiple dimensions in practical deployments, which moti-
vates us to design systems support for efficient cohort iden-
tification and training. We empirically show the superior
performance of Auxo over them too (§7.2).

Scalability. FL in practice often involves millions of clients,
and only a small fraction (~5% [10, 36]) are available to par-
ticipate in during a time window. Such low availability and
partial participation limit the available information for clus-
tering algorithms. This, unfortunately, is ignored by CFL [67],
multi-center [47] and FL+HC [11], making their deployment
impractical as they require a complete pass over the entire
population to identify clusters. Furthermore, clients usually
have limited on-board resources, but IFCA [22], FlexCFL [16],
ICFL [83], k-FED [15] and FL+HC require extra computation
for every client to assign them to a cluster. This imposes
a significant computational and communication burden on
already resource-constrained devices and diverts resources
away from the primary task of model training. For exam-
ple, IFCA initiates multiple global models and broadcasts all
models for each participant to choose from in each round;
and FlexCFL and FL+HC require pre-training for every client
to identify their clusters.

fied based on participants response.

Efficiency. In addition to the challenge of identifying sta-
tistically similar groups at scale, how to leverage those simi-
lar groups to improve model performance introduces new
trade-offs in deciding the right number of cohorts and time
to partition. Given a fixed amount of resources, generating
more cohorts results in smaller heterogeneity; but it divides
up the fixed training resource and unique training data per
cohort, which hurts model convergence and generalizability.
Moreover, partitioning clients too early can lead to model
bias as the model is not generalized well by training on vari-
ous clients, while partitioning too late can result in model
variance over high heterogeneity. Unfortunately, most exist-
ing clustered FL algorithms are unaware of these tradeofts,
and rely on ad-hoc hyper-parameter tuning, which is pro-
hibitively expensive as FL training can take many days and
consume a large amount of resources.

In conclusion, as detailed in Table 1, an effective client
clustering solution in Federated Learning (FL) should take
into account the following realistic constraints:

(1) Partial participation: The algorithm should accommo-
date FL training that involves only a fraction of total
participants in each round.

(2) Low availability: The algorithm should respect clients’
sporadic availability, without necessitating participa-
tion from any clients at a specified time.

(3) Resource constraints: The algorithm should avoid de-
manding additional on-device computation for per-
forming clustering.

(4) Training performance: The algorithm should optimize
model performance—focusing on convergence and gen-
eralizability—within the constraints of a fixed training

Auxo: Efficient Federated Learning via Scalable Client Clustering

resource. This includes consideration of how cluster-
ing the FL population might positively impact perfor-
mance despite reduced heterogeneity.

3 AUXO OVERVIEW

Auxo progressively reduces the intra-group heterogeneity
and improves the model performance through cohort iden-
tification and cohort-based training toward practical FL. In
this section, we introduce the cohort abstraction, provide
an overview of how Auxo manages cohorts in a distributed
fashion and fits into the FL life cycle.

3.1 Cohort Abstraction

Instead of training only one global model, Auxo trains a
model separately for each group of clients that shares simi-
lar statistical data characteristics. We refer to each of these
groups, which can perform independent FL training over
more homogeneous clients than the overall population, as a
cohort Cp,(m € [1, M]) with two associated properties:

(1) A cohort should hold a specialized model that targets
on it data distribution with smaller heterogeneity.

(2) A cohort should have enough members |C,| to form a
meaningful group and deliver the benefit of partition.

Traditional (i.e., cohort-agnostic) FL training has a single
cohort with unbounded heterogeneity among the members.

3.2 Auxo Architecture
Auxo server consists of two primary components (Figure 5):

(1) Alogically centralized cohort coordinator performs
three main functions. First, it manages existing cohorts
for fault tolerance. Second, it matches clients to their
best-fit cohorts. Finally, it monitors the progress of
cohort training and identification in order to decide
cohort partition when it observes an opportunity for
better model convergence .

(2) A set of cohorts each performs independent FL train-
ing. Each cohort contains traditional FL components
such as aggregator and client selector. On top of tradi-
tional FL training activities, each cohort continuously
identifies its internal composition, reports its progress
to the coordinator and waits for the partition instruc-
tion from the coordinator.

FL Lifecycle in Auxo. As shown in Figure 6, following the
traditional FL stages in Section 2.1, Auxo adds a matching
stage (0) and a feedback stage (4) before and after the
traditional round.

(0 Matching stage: When checking in, clients using
Auxo optionally include an affinity request (a hint
about their cohort preference) to the cohort coordi-
nator. If it took part in the training of one or more

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

cohorts in the past, its preference is dependent on pre-
vious feedback. Otherwise, it has no preference. The
cohort coordinator forwards the affinity request to the
corresponding cohort based on its search algorithm
and client’s request.

(D - (® Traditional FL stages: Each cohort starts a tra-
ditional FL training round independently after contin-
uously receiving its client requests from the cohort
coordinator. These traditional stages include client se-
lection, client training, server aggregation, and so on.

(4 Feedback stage: After the traditional FL round fin-
ishes, each cohort updates the affinity feedback for
its current participants based on the Auxo clustering
algorithm (§4). Then, each participant receives an affin-
ity feedback — w.r.t. the cohort it trained with — and
updates the corresponding affinity record for submit-
ting requests in a future round of FL training. During
this stage, each cohort also reports its training and
identification progress to the cohort coordinator.

Resource management: Auxo jointly maximizes model
convergence and resource efficiency in two ways. First, its
scalable cohort identification algorithm does not require ex-
tra on-device computation and uses the same amount of
resources as traditional FL algorithms(§4.1- §4.3). Second,
it carefully chooses the number of cohorts and time to par-
tition to theoretically guarantee better model convergence
and generalizability despite each cohort having less training
resources than the previous global model (§4.4).

Threat model and robustness. Like state-of-the-art pro-
duction FL systems [10, 30, 75], Auxo considers an honest-but-
curious centralized server for aggregation, which can infer
any information without interfering with the FL training.
Auxo also assumes that most clients are honest (correct), and
only a small fraction can act maliciously under the control
of a bad actor [70]. We elaborate on how Auxo can provide
robustness under this threat model in Section 5.2.

4 AUXO CLUSTERING

In this section, we present the core clustering algorithm used
in Auxo to identify cohorts (§4.1- §4.3). Then, we introduce
the systems techniques to enable cohort-based training under
realistic constraints (§4.4).

4.1 Problem Formulation and Overview

Auxo aims to accurately cluster clients by their statistical
heterogeneity into appropriate cohorts under the following
real-world FL constraints:

(1) Scalability: The participants £" in each round are only
a small fraction of all clients (N), i.e., |P"| < N. How
to identify cohorts and cluster clients at scale under
such low client availability?

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

(2) Resource Efficiency: How to conduct the clustering
process without incurring overhead on devices, such
as extra model training and client participation that
do not contribute to model training?

(3) Information Deficiency: The information available to
today’s FL central server is limited to such as gradi-
ents and training loss. How to cluster clients without
requesting additional information from clients?

Problem Formulation: The input to the server is a list of
participants along with their gradients collected over train-
ing rounds based on these two constraints. Intuitively, the
gradient of client relies on its local dataset x; and the received
model weights (unique for the round r and cohort m), and
this gradient is multi-dimensional, embedding more infor-
mation than its counterparts (e.g., training loss). As such,
we can formulate the input of the clustering algorithm in
each round r as {{g}, (x;) }icpr, }me[1.M,], Where g}, (x;) is the
gradient of participant i , P, is the participants list, and M,
is the number of cohorts.

The output is the cohort membership {S; € [1, M]} for
each client i € [1, N]. Following the objective of traditional
clustering algorithms [48], Auxo also aims to minimize the
average intra-cohort heterogeneity (J) defined as:

M
-y o
J_,,,Z:l2|{x|s :m}|SZ [lxi = ;1% (1)

,S,-:m

Intuitively, we can model it as a clustering problem {x;, ..., xx } —

{S1, ... SN}, whereas doing so encounters new challenges.

(1) How to derive client data similarity without direct
access to data and without iterating all but part of the
clustering objects every round.

(2) How to assign new incoming clients to the best-fit
cohort without prior information after Auxo generates
more than one cohorts.

Following this problem definition and challenge, Algo-
rithm 1 illustrates the overview of Auxo clustering mecha-
nism, which consists of an online cluster algorithm to cluster
clients at scale (§4.2) and the cohort selection for individual
FL clients (§4.3). Note that, Auxo’s clustering algorithm can
operate in the background, imposing no additional overhead
on the training process.

4.2 Online Clustering

Auxo resorts to the similarity of clients’ gradients to cap-
ture their statistical similarity. Our design is inspired by the
recent advances in ML theory [67, 69], which show that
the data heterogeneity can attribute to the gradient diver-
gence [41] and a smaller heterogeneity would have smaller
gradient divergence for the same initial model weight. Here,
we measure such gradient divergence using the widely-used

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

Algorithm 1: Auxo Clustering Algorithm

Input: Participants list £, Exploration factor €
Output: Client-cohort membership list Sp
M «— 1;

Sp « 0;

: Rpym < 0;

: LZ),M — N/A
: for each roundr = 1,2, ... do

Pl ={ilSi=m,i e P}

for each cohort m =1, .., M in parallel do
10: | Rpr, = Auxo-Clustering (P,)

11: Spr = CohortSelection(Rer ,€,1)

12: return Sp

> Initialize the number of cohorts.
> Initialize client-cohort membership.
> Initialize client-cohort reward.

> Initialize client-cohort cluster id.

13: Function ClientClustering (Participants list P},):

/* Identify clusters on the fly. (4.4) */
14: if r == 1 then
15: | Lpy,m = Kmeans(gh, (xpr,), K).
16: else
17: Pr ={i|lLim = k,i € P} },Vk € [0,K)
15 Ck = g (x,). VE € [0.K)
19: Lpr m = argming ||g;, (xpr,) = Ckll2

/* Decide partitioning to start separate training. (4.2) */
20: if PartitionCriteria(m)then
21: M=M+K-1
22: Rpmik =Rpm+01x1(Lp,, ==k),Vk €

[0, K)

/* Update rewards for cohort selection. (4.4) */
23: if M > 1 then
24: Rpr m = ExploitReward(Rer m, xor)
25: Rpr mw=ExploreReward(Rpr ,m’), Vm # m’
26: return Rpr,
27: Function CohortSelection((Reward list Rpr , €,1)):
28: for client i in P}, do
29: if random(0,1) > €” then
30: ‘ S;=random(0, M)
31: else
32: | Si=argmaxR,
33: return Spr,

cosine similarity [82] among the input batch of gradients
gh,(xi),i € P! to investigate client similarity.* Compared to
other counterparts such as L-2 distance which does not take
into account the direction of the gradients, cosine similarity
better quantifies how similarly their needed model changes
are directed.

4Cosine similarity measures the similarity between two vectors of an inner
product space [82].

Auxo: Efficient Federated Learning via Scalable Client Clustering

However, the sporadic participation of clients in each train-
ing round limits the data available for clustering algorithms
to a subset of the entire client population at any given time.
Traditional clustering algorithms, such as K-means and KNN,
require a complete pass of the population, rendering them
inapplicable here. Mini-batch clustering algorithms [68], on
the other hand, operate on small batches of the population
each round, maintain a running centroid for cluster assign-
ments. Nonetheless, this strategy cannot directly be applied
in our case because we only know the gradients g/, (xp)
and not the raw data xp. Further, since the gradient g/, ()
depends on the initial model of round r and client data - both
unknown and different across rounds and cohorts. These
complexities preclude us from maintaining absolute clus-
ter centroids over successive rounds in a straightforward
manner, making naive mini-batch clustering infeasible.

Algorithm 1 outlines how Auxo starts with one cohort
for the entire FL population, and then adaptively identifies
cohorts based on gradients of mini-batch clients. After us-
ing K-means to initialize the cluster prototype (Line 15), in
each round, Auxo collects the training feedback from the
clients and assigns clients to their closest clusters (Line 17).
Meanwhile, Auxo incrementally refines cluster centers based
on the gradients of newly assigned clients in each round
(Line 18). With repeated cluster updating and clients as-
signment, Auxo can effectively identify the clusters at scale
(Line 19). Each new cohort starts with the parent cohort
model weights with the same architecture, performs conven-
tional FL steps separately, and converges to different model
weights. Once discernible clusters emerge and certain par-
tition criteria are fulfilled (e.g., enough participants left for
model convergence after partition), Auxo decides to spawn
cohorts based on these pre-identified clusters (Line 20) and
train cohort models separately within their corresponding
client groups. At runtime, Auxo adaptively decides the right
time and the right number of cohorts to partition to find the
sweet spot of model performance and the resource consump-
tion of training multiple cohorts (§ 4.4).

4.3 Cohort Selection

Although clustering captures the membership of already-
identified clients, doing so for a new client is unkown a priori,
since we neither have access to client data nor have absolute
cohort centers that can inform a new client to choose the
closest cohort. This challenge is further amplified by the large
training population, wherein more FL clients participate in
model training for the first time than not.

To address this, Auxo adopts an exploration-exploitation
strategy to efficiently identify the cohort membership for
new participants (Line 11). This allows us to first randomly
assign a new client to a cohort. After getting the feedback

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

on how well the client fits in that cohort, Auxo attempts
to identify a more suitable cohort for it the next time it
participates again.

Auxo uses reward-based decaying e-greedy selection [72]
to help the client find the best-fit cohort (Line 11). With an
aim to maximize the expected reward for each client, there
is a 1 — € probability of selecting a cohort with a maximum
reward and a € probability of selecting cohorts randomly,
where € € [0, 1] is the exploration factor that decays over
time to account for the latest information. Intuitively, smaller
gradient divergence compared to the members within the
explored cohort means a better fit and gives a higher re-
ward. Hence, Auxo calculates the relative divergence be-
tween the client gradients and the explored cohort center.
This is done by first estimating the cohort center via aver-

aging the client gradients within the cohort #; . " . to
be D = g}, (xpy,) - Ginry |2, where gin(xpr)

represents the estimated cluster centers for cohort m. Next,
we take the popular approach to identify outlier clients [4].
Specifically, we consider clients as outliers if their distance
to the cohort center exceeds the threshold, which is calcu-
lated as the sum of the mean and the standard deviation
of D, denoted as avg(D) + std(D). If the client gradient dis-
tance to the cohort center is larger than this threshold, this
client is not considered as the cohort member. As such, the
instant reward becomes AR =1 — W(D)—}M(D)D, where the
client with a negative AR would be considered as an out-
lier of the cohort. Then, Auxo updates the reward between
each client and its explored cohort with a decay factor y as
Rpr m =y * AR+ (1—y) *Rpr m, y=0.2 by default in popular
exploration-exploitation designs.

Efficient cohort exploration. During exploration, there may
exist multiple cohorts for a client to try out with. To improve
the searching efficiency and save device training resources,
during both training and deployment, Auxo enables a new
client to perform a binary search to find the most appropri-
ate cohort by predicting the rewards for other unexplored
cohorts m’ through function ExploreReward() (Line 25):

RPI‘
m 7
—,)+1,Vm m'.

Reppm += g,

The intuition behind the cohort search is that the client
may perform similar to or receive similar rewards from the
cohorts that are closer/similar to the previously explored
ones, and vice versa. To find out the cohort similarity, we
first define the distance (d) between two cohorts to be the dis-
tance to their lowest common ancestral cohorts based on the
hierarchical cluster relationship among cohorts. Given an ex-
plored cohort m and the reward AR, for a participant, Auxo
calculates the distance d and updates the rewards for unex-
plored cohorts to be inversely proportional to their distance.
For example, if a client receives a negative reward for the

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Cohort 0
Cohort 0.0 Cohort 0.1
Cohort 0.0.0 Cohort 0.0.1
X a (AR=-3,L=0)
Cohort 0.0.0 Cohort 0.0.1 Cohort 0.1
d 1 0 2
AR, | -3/1+1)=-15 S3/(0+1) =3 -3/2+1) =-1

Figure 7: Reward update based on the hierarchical
structure among all cohorts.

chosen cohort, then he is more likely to explore another fur-
thest cohort with higher reward given by ExploreReward()
next time.

Taking Figure 7 as an example, a new client a explores
Cohorty .1 and receives the corresponding feedback rewards
-3. Then, with the intuition that the client may have similar
performance on a closer cohort, Auxo calculates the distance
between Cohorty o1 and other cohorts. As shown in Table 7,
Auxo updates the rewards to be inversely proportional to
the cohort distance d,,y: AR,y = dAil Since Cohorty 1 and
Cohorty; have a larger distance ’ﬁetween them, Cohorty
ends up with a relatively higher reward and has higher prob-
ability to be explored by client a in the future.

4.4 Cohort-Based Training

While clustering reduces heterogeneity within a cohort, gen-
erating a larger number of cohorts may dilute available re-
sources for each individual cohort when operating under
fixed training resources. Consequently, this leads to a new
trade-off between resource efficiency and model convergence.
As shown in Figure 3, generating more cohorts has dimin-
ishing returns in terms of heterogeneity. In a setting where
total training resources are fixed, allocating resources to a
larger number of cohorts implies fewer resources for each,
which may negatively affect model convergence. Conversely,
having too few cohorts is insufficient for adequately address-
ing intra-cohort heterogeneity. Therefore, Auxo faces the
challenge of optimally determining both the number of co-
horts and the timing for their creation to balance resource
efficiency and model performance effectively.

Intuitively, the decision to generate new cohorts should be
based on the extent of client heterogeneity and the available
training resource budget post-partition. When client hetero-
geneity is significant and the resource budget is sufficient,
the creation of additional cohorts is warranted to further
reduce client heterogeneity. On the other hand, when these

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

conditions are not met, the creation of new cohorts should
be deferred.

We next provide analytical insights to ground our strategy.
Prior works in ML theory [32, 44, 59, 89] have shown that the
convergence rate of FL training is largely dominated by het-
erogeneity. We start by analyzing the relationship between
heterogeneity and training resources in theory. Inspired by
the convergence analysis of FedAvg [32], we establish the
following Lemma. More detailed proof are available in Ap-
pendix A.

LEmMMA 4.1. If the population and training resources are
partitioned into up to K cohorts, to theoretically achieve bet-
ter model convergence, intra-cohort heterogeneity should be

reduced by VK times when the training resource |P| is larger

than a, /lifl a is a constant setting that elaborates the rela-

0
tionship between model convergence and training resources.

From Lemma 4.1, we notice that the number of generated
cohorts rely on the expected reduced heterogeneity and a
lower bound of training resources. As such, Auxo actively
monitors the gradient divergence within each cohort at run-
time to estimate the potential heterogeneity reduction.

When a sufficient decrease (e.g., \/LE) in intra-cohort het-

erogeneity and ample post-partition training resources are
detected, Auxo autonomously partitions the population into
a maximum of K cohorts, allotting equal training resources
to each. This strategy theoretically enhances model conver-
gence through cohort-based training in Auxo. As for some
FL datasets with larger heterogeneity, FL developers can fur-
ther improve model convergence by dynamically raising the
resource budget to allow generating more cohorts.

In addition to deciding the right number of cohorts, the
time to cohort partition is also critical to model convergence.
As cohort partitioning may reduce the unique training data
for each cohort model, the trade-off between model bias
and variance can be affected by the time of partition. On
the one hand, hard partitioning of the entire population
at the beginning could reduce heterogeneity, but it could
also reduce the amount of unique training data for each
cohort model, leading to poor model generalizability. On the
other hand, late partitioning exposes the model to diverse
training data but leads to worse model variance due to high
heterogeneity. These also guide the reuse of identified cohorts
to facilitate other FL tasks.

From the sensitive analysis of cohort partition time (§7.4),
we found the model convergence is not sensitive to exact
partition time as long as cohorts are not partitioned at the
beginning or the end of the training. We report more results
about the effect of partition time on model convergence in
Section 7.4.

Auxo: Efficient Federated Learning via Scalable Client Clustering

(mmm=====—------- Affinity
Request

Cohort Coordinator

1

1

1

1 Cohort Tree ! i

! 1 Affinity | Co; R,,L,
: Coh(l)rt 0.0 Coholrt O.l@: Feedback

Figure 8: Scalable Design Overview a. Cohort affinity
feedback. b. Client affinity request. c. Cohort coordina-
tor request match.

Finally, the start time of gradient-based clustering can
impact the efficiency of the process. In the early stages of
training, gradients are often large and may not adequately
capture the distributional features of the data. However, as
the model approaches convergence, the gradients become
more informative indicators of data similarities. Thus, it is
crucial for Auxo to judiciously select the optimal starting
point for clustering so as not to delay the cohort identifica-
tion. Detailed results discussing the effect of the clustering
start time on model convergence can be found in Section 7.4.

5 AUXO SYSTEM DESIGN

In this section, we discuss how to design a practical and
robust system on top of the clustering algorithm under real-
world challenges.

5.1 Distributed Auxo

As the scale of training grows, the server faces more server
challenges for tremendous storage, fault tolerance, and client
privacy in order to maintain the cohort and client informa-
tion. Thus, Auxo designs a solution to use a soft-state server
that offloads cohort-related information to individual clients
to mitigate these challenges. In this subsection, we describe
how to implement the proposed clustering algorithm in a
distributed fashion, while achieving the same objective.

Firstly, we introduce affinity message, which is a light-
weight message containing all necessary state information
needed to identify cohorts in a distributed fashion. Affin-
ity message consists of two pieces of information between
a client and a cohort to enable efficient state transmission:
(Reward R € R, Cluster index L € [0, K)). The reward implies
how well the client fits for this cohort. The cluster index ex-
presses the client’s cluster membership within this cohort
and is used to indicate its future cohort index.

Through exchanging affinity messages between different
components, Auxo encourages similar clients to collaborate
more in a distributed fashion. As shown in Figure 8, we next
describe (a) how a cohort informs its relationship with

its participants, (b) how clients request for their preferred

SoCC 23, October 30-November 1, 2023, Santa Cruz, CA, USA

cohort based on the affinity feedback and (c) how the cohort

coordinator matches different requests.

Affinity Feedback. At the end of each round, every cohort
computes the affinity feedback to inform participants about
their relationship with the cohort. These affinity feedback
correspond to the clustering results returned by Algorithm 1
Line 8 (reward R) and Line 19 (cluster index L). These cluster-
ing results would be sent back to the participants respectively
in the format of affinity messages, which informs the par-
ticipant about whether the cohort is a good fit and which
sub-cohort to select after partitioning.

Client Reaction . After receiving the affinity feedback from
the cohort, the client would update its affinity records itself
based on the equation in Algorithm 1 Line 24- 25 and copy the
cluster index directly. Following the same decaying e—greedy
selection method (§4.3), clients select the cohort to train by
themselves. Then, clients ready to participate would submit
the corresponding affinity request to the cohort coordinator.

Request Match. After receiving the affinity request, the co-
hort coordinator matches each client to the cohort it requests.
Note that only the leaf cohort in the cohort tree would be re-
turned as it conducts actual FL training inside. The requested
cohort may not be the leaf cohort because some clients may
not be aware of the cohort partitioning, which is not yet
transparent to all clients. In this case, the cohort coordinator
should assist clients to select their best-fit cohort through
finding the closest leaf cohort indicated by the requested
cohort and cluster index in the affinity message.

After finding a proper cohort, cohort coordinator would
forward this affinity request to the corresponding cohort
to initiate traditional FL rounds. Moreover, these forwarded
affinity requests provide each cohort with all necessary input
to conduct the clustering algorithms. Thus, after receiving
the gradients from its participants, each cohort is able to run
the Algorithm 1 independently to compute the aforemen-
tioned affinity feedback.

5.2 Resilient Auxo

Fault Tolerance. Auxo enables fast recovery to minimize
the impact on the model training. Upon a cohort process
failure in the server, the cohort coordinator spawns a new
cohort process. The new cohort loads the model from the
latest checkpoint and restarts the incomplete round.

If the cohort coordinator fails, cohort processes would
continue their current independent FL training and wait
until a new cohort coordinator to be re-spawned. Clients
checking in within that recovery period would be ignored.

Finally, Auxo is resilient to client failures just like tradi-
tional FL by design. Most client failure handlers, which are
orthogonal to Auxo, can be applied directly. In addition, a

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

failed client, who may lose its own affinity records, would
restart exploring again. We empirically show that Auxo can
tolerate a certain amount of such client failures while con-
tinuing to benefit the FL training (§7.5).

Robustness. Based on Auxo’s threat model, Auxo can nat-
urally cooperate with some existing privacy-preserving ap-
proaches [19, 52, 54] to address potential threats from both
the server and clients. To handle the honest-but-curious
server, Auxo can be used with local differential privacy (LDP),
which is used to provide user-level privacy guarantees. Since
differential privacy is immune to post-processing [18] and
Auxo’s clustering is post-processing, Auxo incurs no addi-
tional privacy loss.

To handle a small fraction of unreliable clients [6, 8], Auxo
can be used with existing adversary-resilient solutions [12,
71]. For Auxo-specialized adversaries, such as fake affinity
requests, Auxo detects anomalies by comparing its position
in the cluster with its claimed affinity (Algorithm 1 Line 8).
If a significant discrepancy is detected, Auxo will detect and
blacklist it. In Section 7.5, we empirically evaluate Auxo’s
robustness under these scenarios.

6 IMPLEMENTATION

We have implemented Auxo as an independent Python li-
brary (1,664 lines) to serve existing FL frameworks (e.g.,
TFF [1] and PySyft [2]), and integrated it with FedScale [36]
for evaluations. Auxo abstracts away the cohort identifica-
tion and partition so that FL developers can easily try out
their FL algorithms or datasets on top of Auxo without any
modifications.

Auxo’s implementation consists of the three components
described in Section 3: The cohort coordinator manages and
spawns cohort processes, which initiate FL training tasks.
Clients continuously submit their training requests based
on their availability and affinity records. Then, the cohort
coordinator takes client training requests as input and for-
wards the requests to corresponding cohorts. Each cohort
process conducts conventional FL training with the assigned
available clients independently. At the end of each individ-
ual round, the Auxo clustering algorithm runs within every
cohort and reports clustering results to each participant over
the network. All training metadata and model weights are
checkpointed periodically for fault tolerance. Meanwhile,
the cohort coordinator continuously monitors the progress
of cohorts for resource management and failure recovery.

7 EVALUATION

We evaluate Auxo’s effectiveness for six different ML tasks
as well as different choices of FL algorithms. Our evaluation

shows the following key highlights:

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

Dataset #Clients #Samples
Google Speech [76] 2,618 105K
FEMNIST [14] 3,400 640K
Openlmage-Easy 10,133 1M
Openlmage [56] 13,771 1.3M
Amazon Review [33] 42,031 2M
Reddit [60] 63,058 5M

Table 2: Statistics of the six datasets in evaluation.

(1) Auxo speeds up model convergence on different FL
datasets up to 2.2, while improving final test accu-
racy by 3.4%-8.2%. Auxo cooperates with existing FL
efforts (e.g., personalization) and boosts final test ac-
curacy by 2.1%-6.7%. Auxo can mitigate model bias
across devices by 4.8% and 53.8% and improve resource
efficiency (§7.2).

(2) Auxo outperforms existing clustered FL solutions up
to 4.8X in time and 5.2X in resources (§7.3).

(3) Auxo performs well across a broad range of its param-
eter settings (§7.4).

7.1 Experiment Setup

Evaluation environment. We use 24 NVIDIA Tesla P100
GPUs on CloudLab [17] to emulate the large-scale client
training in our evaluations. The client data distribution fol-
lows the real-world partition, where client data can vary
in quantities, data, and label distribution. We use the open-
source benchmark FedScale [36] with standardized setup
including realistic device capacity, data, and client availabil-
ity traces. We report the simulated wall clock time by relying
on these realistic FL system and data traces.

Datasets and models. We run three categories of applica-
tions with six FL datasets [36] of different scale factors using
real-world partitions, whose statistics are reported in Table 2.
The clients for all datasets can check-in with Auxo multiple
times following the availability trace.

(1) Speech Recognition: We train Resnet-34 [27] on a small-
scale Google Speech dataset with 35 commands.

(2) Image Classification: We train Resnet-18 on small-scale
FEMNIST with 62 handwritten digits to classify. Also,
we train ShuffleNet [87] and MobileNet [66] on middle-
scale Openlmage with 596 classes to classify, whereas
OpenImage-Easy only has 60 classes.

(3) Language Modeling: We train logistic regression (LR)
on middle-scale Amazon Review for ratings predic-
tion, and Albert model [39] on large Reddit for word
prediction.

These applications are widely used in real end-device ap-
plications [80], and these models are lightweight.

Auxo: Efficient Federated Learning via Scalable Client Clustering

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

Task Dataset Model Target Acc. Auxo Speedup Auxo Acc. Impr.
FEMNIST ResNet-18 82.2% 1.2x 7.3%
MobileNet 56.5% 1.3% 4.8%
) . Openlmg
Image Classification ShuffleNet 58.2% 2.2x 5.0%
MobileNet 65.4% 1.4% 3.4%
Openlmg-Easy

ShuffleNet 64.8% 1.2x 4.4%
. Amazon Review Logistic Regression 65.3% 1.2% 8.2%

Language Modeling

Reddit Albert 7 perplexity 1% 0 perplexity

Speech Recognition = Google Speech ResNet-34 78.5% 1.5% 5.7%

Table 3: Summary of improvements on time to accuracy. We target the highest accuracy attainable by YoGi.

<60 360 e 3]
2 /_'/w 2 - S60 o 260 =
> P > > > Y
Sa0| / ® 40 /‘ 8 ®
5 5 540 540 /
o / [} 1o} [}
O 1% 1% 1%
<20 / —— Auxo + YoGi | I 20 —— Auxo + YoGi | < 20 —— Auxo+YoGi | T o9 —— Auxo + YoGi
ki YoGi 2 YoGi & YoGi 2 YoGi

00 20 40 60 O0 20 40 60 00 20 40 60 00 20 40 60

Time (h) Time (h) Time (h) Time (h)
(a) ShuffleNet (Openlmg) (b) MobileNet (OpenIlmg) (c) ShuffleNet (OpenImg-E) (d) MobileNet (OpenIlmg-E)

—_ ~~W . _ /—/____ 150 “
Kol X 80 /-PM X 80 5 +— Auxo + YoGi
> z60{ / 260 / 2100 YoGi
o © © =
540 5 / 5 ,]
3 g 40| | g 40 7/ s :
<20 —— Auxo +YoGi | I 20 —— Auxo + YoGi | < 20 — Auxo + YoGi | & 50 \
@ YoGi @ { YoGi @ J/ YoGi ~——

OO 5 10 15 00 20 40 00 20 40 60 00 20 40 60

Time (h) Time (h) Time (h) Time (h)
(e) LR (Amazon) (f) ResNet (FEMNIST) (g) ResNet (Google Speech) (h) Albert (Reddit)

Figure 9: Time-to-Accuracy performance on different dataset. For the language modeling (LM) task, a lower
perplexity is better. The solid line reflects the average test accuracy. The shaded portion covers the test accuracy

performance among all cohorts generated by Auxo.

Parameters. We follow the standardized experiment and
parameter settings in FedScale. We adopt an over-commitment
strategy to mitigate stragglers which allow 25% failures or
stragglers every round as in real FL deployments [10]. We
set the number of participants per round to be 200, the local
minibatch size to be 6, and the initial learning rate to be 4e-5
for the Albert model, and 0.05 for other models. And we use
the linear scaling rule [23] to scale the learning rate.

Metrics. The time-to-accuracy performance, final test accu-
racy, and model bias are our key metrics. We use the cohort
member’s test data, which follows the realistic data partition,
to evaluate each cohort model. The test data would be the
global test data if we end up with one global model. For each

experiment, we report the average top-1 accuracy based on
the results over 3 runs.

7.2 End-to-End Performance

Auxo’s performance on different datasets. We first evaluate
Auxo’s performance on different real-world FL datasets. In
the following experiments, we adopt YoGi as the FL algorithm
because it outperforms other FL algorithms most of the time.
Table 3 summarizes the key time-to-accuracy performance
of all datasets, where we tease apart the overall improvement
with statistical and system ones. We quantify the time-to-
accuracy as speedup by Auxo, which measures how many
times Auxo can speed up to achieve the target accuracy
compared to the baseline time cost. Figure 9 reports the

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

] 60 /—J-/—'—’_ 3 60 g 60 R 60
> > - >
@40 / @ 40 g 40 @ 40
S S 5 S
o 3 o]
<20 / —— Auxo + YoGi | T 20 —— Auxo + qFedAvg | < 20 / —— Auxo + FedProx |20 —— Auxo + Pyramid
§ YoGi § / gFedAvg § FedProx ﬁ Pyramid
% 20 40 60 % 20 40 60 % 20 40 60 % 10 20 30
Time (h) Time (h) Time (h) Time (h)
(a) Yogi (b) q-Fedavg (c) FedProx (d) PyramidFL + YoGi

Figure 10: Auxo with different FL algorithms.

timeline of training to achieve different accuracy, as different
cohorts perform FL asynchronously. The shaded portion
covers the test accuracy among all cohorts generated by
Auxo.

We notice that Auxo speeds up the wall-clock time to
reach target accuracy up to 2.2X faster. Moreover, the final
accuracy for different datasets is improved by 3.4%-8.2%. The
benefit of Auxo varies over datasets. For most of the datasets,
Auxo can achieve significant final accuracy improvement.
Nevertheless, Auxo does not improve Reddit task because the
clients’ texting behavior is similar to each other that makes
it hard to identify significant groups as shown in Figure 3.
Hence, Auxo decides not to partition into multiple cohorts
to maximize the benefit of clustering in FL training.

Auxo’s performance on different FL algorithms. We then
evaluate Auxo’s performance on ShuffleNet-Openlmage with
different FL Algorithms, which are complementary to Auxo.
We refer to YoGi running atop Auxo as YoGi+Auxo, and
similarly for FedProx, q-FedAvg and PyramidFL+YoGi.

As shown in Figure 10, Auxo speeds up the time to reach
the target accuracy of baseline algorithms, from 1.2X to 2.2x
faster and improve the final test accuracy by 3%-6.8%.

As for the personalization algorithm FTFA, we adopt the
cohort models generated by Auxo to conduct local training
using FTFA on corresponding cohort members. In addition to
faster convergence of the initial model, Auxo also improves
the average test accuracy of FTFA from 63.18% to 67.40%
with local fine-tuning.

Auxo’s benefit on resource efficiency. We finally show that
Auxo can optimize resource efficiency on Openlmg dataset
by saving 55% training resources. We also account for the
affinity maintaining overhead into the client resource usage,
which is around 0.02% of the total resource consumption.

Auxo’s benefit on model bias. We show that Auxo can also
mitigate the model bias due to smaller intra-cohort statistical
heterogeneity. We report the variance of the final accuracy
distributions, the worst and best 10% test accuracy in Table 4.
Our experiment show that the variance of test accuracy is
decreased for all the datasets by 4.8% and 53.8%.

380 380
260 Auxo 260 Auxo
g Baseline g Baseline
g40 FL+HC 940 FL+HC
< 20 FlexCFL < 20 FlexCFL
%] %]
Q@ — IFCA @ —— IFCA

% 20 40 % 20000 40000

Time (h) Training resources

(a) Accuracy-Time (b) Accuracy-Resource

Figure 11: Comparison with clustered FL (FEMNIST).

7.3 Clustered FL Comparison

We compare Auxo with four existing clustered FL algorithms
CFL, FL+HC, FlexCFL, and IFCA in terms of three metrics:
time-to-accuracy, resource-to-accuracy, and final accuracy.
Since these algorithms do not meet some real-world FL con-
straints (Table 1), we simplify the settings accordingly.

We compare with CFL in small-scale settings (~ 100 clients)
from the FEMNIST dataset to meet their full participation
assumption. We observe little difference between CFL, Auxo,
and baseline (i.e., no cohorts) in terms of time and resources
used due to the absence of significant clusters within small
populations. However, this highlights the need for large-
scale FL settings, where CFL cannot even be applied as it
does not support partial participation.

To compare with FL+HC, FlexCFL and IFCA, we conduct
experiments with the full FEMNIST and Amazon Review
datasets without the client availability traces to align with
their constraints. As shown in Table 5 and Figure 11, Auxo
achieve better time efficiency 1.4 X —4.8% and better resource
efficiency 1.3 X —4.8x compared to the related works espe-
cially for the large-scale Amazon dataset, due to our efficient
and scalable algorithm design. Also, our result for IFCA are
consistent with Motley [77].

7.4 Sensitivity Analysis

Impact of different degrees of heterogeneity. We generate
different statistical heterogeneity by applying affine shift [61]

Auxo: Efficient Federated Learning via Scalable Client Clustering

Dataset | Setting Worst 10% Best 10% Variance
(%) (%)

Openlmg | Auxo 38 83 267
Baseline 34 79 296
Openlmg | Auxo 38 88 234
-Easy Baseline 33 84 273
Review Auxo 50 100 460
Baseline 32 100 995
FEMNIST | Auxo 63 97 171
Baseline 60 93 185
Speech Auxo 57 100 479
Baseline 52 100 503

Table 4: Summary of improvements on model bias.

FL+HC FlexCFL IFCA Auxo
Speedup 1.7% 1.3% 0.5 2.4X
FEMNIST | Efficiency | 1.6X 1.8% 0.5% 2.4X

Final acc. 5.8% 7.1% 1.3% 9.1%
Amazon | Speedup 0.4% 0.4% 0.5 23X
Review | Efficiency | 0.4% 0.5% 0.5% 2.1
Final acc. | -2.9% -2.7% 0.6% 5.4%

Table 5: Summary of improvements over baseline (i.e.,
no cohorts) in terms of time, resource and accuracy.

on Openlmage, then we evaluate Auxo with YoGi across dif-
ferent degrees of statistical heterogeneity. Figure 13a reports
the final test accuracy as well as top 10% and worst 10%
client test accuracy on different degrees of heterogeneity.
We observe that Auxo can improve model accuracy and mit-
igate model bias under different degrees of heterogeneity.
Moreover, similar to the previous experiment, Auxo achieves
faster time-to-accuracy performance from 1.2X to 1.8x.

Impact of time to partition. We investigate the impact of
different cohort partition times on the model convergence.
As mentioned in Section 4.4, the partition time relates to the
trade-off between model generalizability and intra-cohort
heterogeneity. As shown in Figure 13b, we choose differ-
ent partition times with the same cohort composition and
report the test accuracy to time performance on FEMNIST.
We observe that cohort-based training all outperform the
baseline experiment with one cohort. However, early parti-
tions such as FlexCFL and IFCA are worse than intermediate
partitions, because it sacrifices the model generalizability.
Similarly, late partition after convergence as CFL does not
outperform intermediate partition, because it slows down the
model convergence to a smaller heterogeneous population.

Impact of time to start clustering. We investigate the im-
pact of the clustering start time on the model convergence. As
mentioned in Section 4.4, different clustering start time may
affect the clustering accuracy and efficiency. To quantify how
well the gradient similarity correlates with data similarity, we

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

W

Correlation
o

—— Correlation
1% 100 200 300
Round

Figure 12: Impact of cluster start time.

21%1(Gi=G) (Di-D)
VIL (Gi=G)? T, (Di-D)*’
where D and G are pairwise data similarity and gradient
similarity. As shown in Figure 12, the similarity correlation
slightly increases over training rounds, which suggests a
slightly later cluster start time.

use Pearson correlation coefficient r =

Impact of the number of cohorts. We investigate the impact
of the number of cohorts generated by Auxo, which relates
to the trade-off between training resources and intra-cohort
heterogeneity (§4.4). As shown in Figure 13c, we observe
that the model convergence is negatively affected once the
number of cohorts exceeds 4 under the same resource bud-
get. By further comparing the reduce of heterogeneity with
different number of cohorts indicated in Figure 3, this result
verifies that better model convergence can be achieved as
long as the heterogeneity can proportionally compensate the
reduced training resources

7.5 Auxo Resilience

Impact of differential privacy. Auxo is robust to local differ-
ential privacy (LDP). LDP is used to protect user-level privacy
by adding Gaussian noise to the client update before sending
it to the server, but it hurts model accuracy. We evaluate
Auxo’s performance under LDP for a learning task on the
Amazon Review dataset. To achieve (g, §)-differential privacy,
where § = 107° based on the training scale and € = 2,4, 8, we
set the noise scale o = 1.0,0.77, 0.6. As shown in Figure 14a,
Auxo can still benefit FL training across different differential
privacy guarantees.

Impact of malicious attacks. We investigate the robustness
of Auxo by manually involving corrupted clients. Following
a popular adversarial ML setting that introduces local model
poisoning [20], we randomly flip the ground-truth data la-
bels for these corrupted clients. As shown in Figure 14b, we
introduce different percentages of corrupted clients to the
Openlmg task. We set the percentage of corruption below
15%, which is a practical percentage under the real-world set-
ting [20]. We observe that Auxo still improves performance
across different degrees of corruption through identifying
malicious clients and eliminating their interference.

Impact of unstable client. Finally, we show Auxo is ro-
bust with unstable clients who fail to maintain their affinity
records, which may result in less accurate clustering results.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

.80
S —_ — —~601
560 \ X80 S N P

> >
© 060 9
340 £ —— Baseline g 40 —— 1 cohort
£ : o 40 Early Pattition < 2 cohorts
T 20— Auxo + YoGl % 50! —— Mid Partition 2201/ 4 cohorts
£ YoGi o —— Late Partition R --- 8 cohorts

8.00 0.25 0.50 0.75 1.00 C'0 20 40 60 00 20 40
Normalized Heterogeneity Time (h) Time (h)

(a) Different degrees of heterogeneity.

(b) Different partition time.

(c) Different number of cohorts.

Figure 13: Sensitivity analysis.

~
w

_ _70 70
X —}— Auxo + YoGi ® 2
70 i
E YoGi 560 \ gGO \
365 2 !
2 250 - 250 ;
= 60 = —— Auxo + YoGi = —— Auxo + YoGi
©

£ 2 YoGi 2 YoGi
“ 55 * a0 * a0

2 4 8 ®© 0 5 10 15 0 10 20

(g, 1075)-Differential Privacy

(a) Local DP.

Percentage of Corrupted Data (%)

(b) Corrupted client.

Percentage of Affinity loss (%)

(c) Client affinity loss.

Figure 14: Robustness of Auxo under different scenarios.

We consider loss rates from 0% to 20% and report the corre-
sponding final test accuracy in Figure 14c. We notice Auxo
outperforms the baseline across different affinity loss rates.

8 RELATED WORK

Distributed Machine Learning. Distributed ML in data cen-
ters has been well-studied [49, 55, 85], where homogeneous
data and workers are assumed [24]. With the same train-
ing goal, FL raises its unique challenges including the data
heterogeneity and system heterogeneity. As a result, Auxo
aims at speeding up the training process through directly
reducing the intra-cohort heterogeneity at scale.

Federated Learning. FL is a distributed machine learning
paradigm [10, 34] with two key challenges: statistical and
system heterogeneity. State-of-the-art FL algorithms try to
tackle these two challenges and optimize different targets
including model convergence [38, 41, 45, 46, 59, 88], fair-
ness [40, 42], privacy [9, 62-64], efficiency [5, 26, 51, 79],
and robustness [25, 40]. However, they underperform in FL
because they do not tackle the root cause of FL challenges
but mitigate the negative effect caused by heterogeneity.

Federated Analytics. There has been significant work on
geo-distributed data analytics [29, 35, 58, 74]. They mainly
optimize the execution latency [37] and resource efficiency [28,
78]. To further preserve privacy for distributed data, Or-
chard [64] and Honeycrisp [63] have been proposed to enable
large-scale differentially private analytics. Helen [91] and

Cerebro [90] allow multiple parties to securely train models
without revealing their data.

Traditional Clustering Algorithms. Clustering algorithms [7,
81] are used in popular data mining techniques, which usu-
ally assume access to all data. However, under FL setting, it
is non-trivial to design a clustering algorithm because of the
unavailability of data. Auxo proposes a clustering algorithm
that can be applicable to the FL settings.

FL Client Clustering. In order to leverage the nature of
clusters in real-world FL dataset, many algorithms have been
proposed to identify the clusters among FL clients. However,
existing clustered FL solutions [11, 16, 22, 67] mainly suffer
from scalability and practicality, which are hard to adapt
to large-scale, low-participation, and resource-constraint FL
training. Considering all real-world constraints, Auxo build
a practical system to identify cohorts and benefit FL training.

9 CONCLUSION

We presented Auxo, which builds on top of the observation
that there exist natural groups of statistically similar clients
(cohorts) in large real-world FL populations. Auxo identifies
cohorts with reduced intra-cohort heterogeneity at scale,
addressing heterogeneity-borne FL challenges at their roots.
Auxo proposes an efficient algorithm and practical system
that can be applied under real-world FL constraints to signif-
icantly benefit FL training in terms of model convergence,
final accuracy, and model bias.

Auxo: Efficient Federated Learning via Scalable Client Clustering

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers, our shepherd
Matthias Boehm and SymbioticLab members for their valu-
able comments and suggestions that improved the paper.
We thank the CloudLab team for providing GPU servers for
Auxo experiments. This work was supported in part by NSF
grant CNS-2106184 and a grant from Cisco.

REFERENCES

[1] 2018. TensorFlow Federated. https://www.tensorflow.org/federated.

[2] 2019. PySyft. https://github.com/OpenMined/PySyft.

[3] Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and

Suhaib A. Fahmy. 2023. Resource-Efficient Federated Learning. (2023).

Vaibhav Aggarwal, Vaibhav Gupta, Prayag Singh, Kiran Sharma, and

Neetu Sharma. 2019. Detection of Spatial Outlier by Using Improved Z-

Score Test. In 2019 3rd International Conference on Trends in Electronics

and Informatics (ICOEI). 788-790. https://doi.org/10.1109/ICOEL2019.

8862582

[5] Dan Alistarh, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016.
QSGD: Randomized Quantization for Communication-Optimal Sto-
chastic Gradient Descent. In NeurIPS.

[6] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and
Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In
AISTATS.

[7] P. Berkhin. 2006. A Survey of Clustering Data Mining Techniques.
Springer Berlin Heidelberg.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning
Attacks against Support Vector Machines. In ICML.

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and

Karn Seth. 2017. Practical Secure Aggregation for Privacy-Preserving

Machine Learning. In CCS.

Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry

Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Kone¢ny,

Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt,

David Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards

Federated Learning at Scale: System Design. In MLSys.

Christopher Briggs, Zhong Fan, and Péter Andras. 2020. Federated

learning with hierarchical clustering of local updates to improve train-

ing on non-IID data. IJCNN (2020).

Yudong Chen, Lili Su, and Jiaming Xu. 2019. Distributed Statistical

Machine Learning in Adversarial Settings: Byzantine Gradient Descent.

ACM SIGMETRICS (2019).

Gary Cheng, Karan N. Chadha, and John C. Duchi. 2021. Fine-

tuning is Fine in Federated Learning. CoRR abs/2108.07313 (2021).

arXiv:2108.07313 https://arxiv.org/abs/2108.07313

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik.

2017. EMNIST: Extending MNIST to handwritten letters. In IJCNN.

[15] Don Kurian Dennis, Tian Li, and Virginia Smith. 2021. Heterogeneity

for the Win: One-Shot Federated Clustering. In ICML.

Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang

Chen, and Yujuan Tan. 2021. Flexible Clustered Federated Learning

for Client-Level Data Distribution Shift. IEEE TPDS (2021).

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-

son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-

eration of CloudLab. In ATC.

[4

=

[10

[t

(11

—

[12

—

[13

=

(14

=

[16

—

[17

—

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

[18] C.Dwork and A. Roth. 2014. The Algorithmic Foundations of Differential
Privacy. https://books.google.com/books?id=Z3p8swEACAA]

[19] Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rap-
por: Randomized aggregatable privacy-preserving ordinal response.
In ACM SIGSAC.

[20] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
2020. Local Model Poisoning Attacks to Byzantine-Robust Federated
Learning. SEC (2020).

[21] GBoard. 2020. Federated Learning: Collaborative Machine Learning
without Centralized Training Data. https://ai.googleblog.com/2017/
04/federated-learning-collaborative.html. Accessed August 29, 2021.

[22] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran.
2020. An Efficient Framework for Clustered Federated Learning. In
NeurIPS.

[23] Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. 2017. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017).

[24] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Honggiang Liu, and Chuanxiong Guo. 2019.
Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In
NSDL

[25] Hanxi Guo, Hao Wang, Tao Song, Yang Hua, Zhangcheng Lv, Xiulang
Jin, Zhengui Xue, Ruhui Ma, and Haibing Guan. 2021. Siren: Byzantine-
robust federated learning via proactive alarming. In Proceedings of the
ACM SoCC.

[26] Peizhen Guo, Bo Hu, and Wenjun Hu. 2021. Mistify: Automating DNN
Model Porting for On-Device Inference at the Edge. In NSDL

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR.

[28] Charlie Hou, Kiran K Thekumparampil, Giulia Fanti, and Sewoong Oh.
2018. Reducing the communication cost of federated learning through
multistage optimization. (2018).

[29] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R. Ganger, Phillip B. Gibbons, and Onur Mutlu. 2017. Gaia:
Geo-Distributed Machine Learning Approaching LAN Speeds. In NSDL

[30] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Michael G.
Rabbat, Ashkan Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel
Ustinov, Harish Srinivas, Kaikai Wang, Anthony Shoumikhin, Jesik
Min, and Mani Malek. 2022. Papaya: Practical, Private, and Scalable
Federated Learning. In MLSys.

[31] Zhifeng Jiang, Wei Wang, Baochun Li, and Bo Li. 2022. Pisces: Efficient
Federated Learning via Guided Asynchronous Training. In SoCC.

[32] SaiPraneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddji,
Sebastian Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Sto-
chastic Controlled Averaging for Federated Learning. In ICML.

[33] Phillip Keung, Yichao Lu, Gyorgy Szarvas, and Noah A. Smith. 2020.
The Multilingual Amazon Reviews Corpus. CoRR abs/2010.02573
(2020). arXiv:2010.02573 https://arxiv.org/abs/2010.02573

[34] Nicolas Kourtellis, Kleomenis Katevas, and Diego Perino. 2020. Flaas:
Federated learning as a service. In Proceedings of the 1st workshop on
distributed machine learning.

[35] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha. 2018. To
Relay or Not to Relay for Inter-Cloud Transfers?. In HotCloud. USENIX
Association.

[36] Fan Lai, Yinwei Dai, Sanjay S. Singapuram, Jiachen Liu, Xiangfeng Zhu,
Harsha V. Madhyastha, and Mosharaf Chowdhury. 2022. FedScale:
Benchmarking Model and System Performance of Federated Learning
at Scale. In ICML.

[37] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf
Chowdhury. 2020. Sol: Fast Distributed Computation Over Slow Net-
works. In NSDI.

https://www.tensorflow.org/federated
https://github.com/OpenMined/PySyft
https://doi.org/10.1109/ICOEI.2019.8862582
https://doi.org/10.1109/ICOEI.2019.8862582
https://arxiv.org/abs/2108.07313
https://books.google.com/books?id=Z3p8swEACAAJ
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://arxiv.org/abs/2010.02573

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

[38] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowd-
hury. 2021. Oort: Efficient Federated Learning via Guided Participant
Selection. In OSDL

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,

Piyush Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for

Self-supervised Learning of Language Representations. In ICLR.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021.

Ditto: Fair and Robust Federated Learning Through Personalization.

In ICML.

[41] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. 2020. In MLSys.

[42] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2020.
Fair Resource Allocation in Federated Learning. In ICLR.

[43] Wengqi Li, Fausto Milletari, Daguang Xu, Nicola Rieke, Jonny Han-
cox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin,
M. Jorge Cardoso, and Andrew Feng. [n.d.]. Privacy-Preserving Feder-
ated Brain Tumour Segmentation. Springer-Verlag.

[44] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua

Zhang. 2020. On the Convergence of FedAvg on Non-IID Data. In

ICLR.

Zitao Li, Bolin Ding, Ce Zhang, Ninghui Li, and Jingren Zhou. 2021.

Federated matrix factorization with privacy guarantee. VLDB (2021).

[46] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. [n.d.].

Projected federated averaging with heterogeneous differential privacy.

VLDB ([n.d.]).

Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and

Jing Jiang. 2022. Multi-center federated learning: clients clustering for

better personalization. WWW (2022).

[48] J MacQueen. 1967. Classification and analysis of multivariate obser-
vations. In 5th Berkeley Symp. Math. Statist. Probability. University of
California Los Angeles LA USA, 281-297.

[49] Luo Mai, Guo Li, Marcel Wagenlander, Konstantinos Fertakis, Andrei-
Octavian Brabete, and Peter Pietzuch. 2020. KungFu: Making Training
in Distributed Machine Learning Adaptive. In OSDL

[50] Brendan McMahan and Daniel Ramage. 2017. Utilization of
FATE in Risk Management of Credit in Small and Micro En-
terprises. https://www.fedai.org/cases/utilization- of-fate-in-risk-
management-of/credit-in-small-and-micro-enterprises/. Accessed
August 31, 2021.

[51] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In AISTATS.

[52] H.Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.

2018. Learning Differentially Private Recurrent Language Models. In

ICLR.

Meta. 2021. What Are Privacy-Enhancing Technologies (PETs) and

How Will They Apply to Ads? https://about.fb.com/news/2021/08/

privacy-enhancing-technologies-and-ads/. Accessed Nov 25, 2021.

Lorenzo Minto, Moritz Haller, Benjamin Livshits, and Hamed Haddadi.

2021. Stronger Privacy for Federated Collaborative Filtering With Implicit

Feedback.

[55] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei

Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN

Training. In SOSP.

Openlmg. 2018. Google Open Images Dataset. https://storage.

googleapis.com/openimages/web/index.html.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluiv-

ers, Rogier C. van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist,

Chris Vandevelde, Sudeep Agarwal, Julien Freudiger, Andrew Byde,

Abhishek Bhowmick, Gaurav Kapoor, Si Beaumont, Aine Cahill, Do-

minic Hughes, Omid Javidbakht, Fei Dong, Rehan Rishi, and Stanley

(39

[

[40

=

(45

=

(47

—

[53

—_

[54

[l

(56

—

(57

—

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]

[71]

[72]
[73]

[74]

[75]

[76]

(771

[78]

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

Hung. 2021. Federated Evaluation and Tuning for On-Device Per-
sonalization: System Design & Applications. CoRR abs/2102.08503
(2021).

Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula,
Aditya Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency
Geo-Distributed Data Analytics. In SSIGCOMM.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Kone¢ny, Sanjiv Kumar, and Hugh Brendan McMa-
han. 2021. Adaptive Federated Optimization. In ICLR.

Reddit. 2021. Reddit Comment Data. https://files.pushshift.io/reddit/
comments/.

Amirhossein Reisizadeh, Farzan Farnia, Ramtin Pedarsani, and Ali
Jadbabaie. 2020. Robust Federated Learning: The Case of Affine Distri-
bution Shifts. In NeurIPS.

Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel, and
Andreas Haeberlen. 2021. Mycelium: Large-Scale Distributed Graph
Queries with Differential Privacy. In SOSP.

Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen.
2019. Honeycrisp: Large-scale Differentially Private Aggregation With-
out a Trusted Core. In SOSP.

Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce.
2020. Orchard: Differentially Private Analytics at Scale. In OSDL
Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion
Stoica, Vladimir Braverman, Joseph Gonzalez, and Raman Arora. 2020.
FetchSGD: communication-efficient federated learning with sketching.
ICML.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In CVPR.

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. 2021. Clus-
tered Federated Learning: Model-Agnostic Distributed Multitask Op-
timization Under Privacy Constraints. IEEE Transactions on Neural
Networks and Learning Systems (2021).

D. Sculley. 2010. Web-Scale k-Means Clustering. In WWW.

Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolu-
tional Neural Networks: A Core-Set Approach. In ICLR.

Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ra-
mage. 2022. Back to the Drawing Board: A Critical Evaluation of
Poisoning Attacks on Federated Learning. IEEE SP (2022).

Jinhyun So, Basak Giiler, and A Salman Avestimehr. 2020. Byzantine-
resilient secure federated learning. IEEE Journal on Selected Areas in
Communications (2020).

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning:
An introduction. MIT press.

Xueyang Tang, Song Guo, and Jingcai Guo. 2022. Personalized Feder-
ated Learning with Clustered Generalization. I[JCAI (2022).

Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella.
2016. CLARINET: WAN-Aware Optimization for Analytics Queries. In
OSDIL

Ewen Wang, Ajay Kannan, Yuefeng Liang, Boyi Chen, and Mosharaf
Chowdhury. 2023. FLINT: A Platform for Federated Learning Integra-
tion. In MLSys.

Pete Warden. 2018. Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. In arxiv.org/abs/1804.03209.
Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu,
and Virginia Smith. 2022. Motley: Benchmarking Heterogeneity and
Personalization in Federated Learning. FL-NeurIPS (2022).

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett,
and Harsha V. Madhyastha. 2013. SPANStore: Cost-Effective Geo-
Replicated Storage Spanning Multiple Cloud Services. In SOSP.

https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of/credit-in-small-and-micro-enterprises/
https://www.fedai.org/cases/utilization-of-fate-in-risk-management-of/credit-in-small-and-micro-enterprises/
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://about.fb.com/news/2021/08/privacy-enhancing-technologies-and-ads/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/

Auxo: Efficient Federated Learning via Scalable Client Clustering

[79] Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao,

(80

[81
(82

(83

(84

(85

(86

(87

(88

(89

[90

[91

[t

[

=

=

—

—

[t

—

[t

—

Weirui Kuang, Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. Fed-
eratedscope: A flexible federated learning platform for heterogeneity.
VLDB (2023).

Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin Liu,
and Xuanzhe Liu. 2018. When Mobile Apps Going Deep: An Empirical
Study of Mobile Deep Learning. CoRR abs/1812.05448 (2018).

Rui Xu and D. Wunsch. 2005. Survey of clustering algorithms. IEEE
Transactions on Neural Networks (2005).

Ye Xue, Diego Klabjan, and Yuan Luo. 2022. Aggregation Delayed
Federated Learning. IEEE International Conference on Big Data (2022).
Yihan Yan, Xiaojun Tong, and Shen Wang. 2023. Clustered Federated
Learning in Heterogeneous Environment. IEEE Transactions on Neural
Networks and Learning Systems (2023).

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li,
Nicholas Kong, Daniel Ramage, and Francoise Beaufays. 2018. Applied
federated learning: Improving google keyboard query suggestions.
arXiv preprint arXiv:1812.02903 (2018).

Peifeng Yu, Jiachen Liu, and Mosharaf Chowdhury. 2021. Fluid:
Resource-Aware Hyperparameter Tuning Engine. In MLSys.

Honglin Yuan, Warren Richard Morningstar, Lin Ning, and Karan
Singhal. 2022. What Do We Mean by Generalization in Federated
Learning?. In ICLR.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shuf-
fleNet: An Extremely Efficient Convolutional Neural Network for Mo-
bile Devices. In CVPR.

Yuchen Zhao, Payam Barnaghi, and Hamed Haddadi. 2022. Multi-
modal Federated Learning on IoT Data. In 2022 IEEE/ACM Seventh
International Conference on Internet-of-Things Design and Implementa-
tion (IoTDI).

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. 2018. Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582 (2018).

Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit
Panda, and Ion Stoica. 2021. Cerebro: A Platform for Multi-Party
Cryptographic Collaborative Learning. In USENIX Security.

Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez, and Ion Sto-
ica. 2019. Helen: Maliciously Secure Coopetitive Learning for Linear
Models. In IEEE S&P.

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

SoCC ’23, October 30-November 1, 2023, Santa Cruz, CA, USA

A PROOF OF LEMMA 4.1

We first make precise some definitions that are related to the

proof from SCAFFOLD and then see the proof of Lemma 4.1.

A.1 Additional definitions

Assumption 1. g;(w) is unbiased stochastic gradient of f;
with bounded variance, where f; represents the loss function
on client i.

Ex, [llg:(w) = VA(W)II*] < 0% Vi, x.
where w is the aggregated server model. Note that ¢ only
bounds the variance within clients not across clients.

Assumption 2. {f;} are f-smooth and satisfy:
IVfitw) = V(@) < pllw = o], Vi, w, 0.
Assumption 3. f; is p-convex for p > 0 and satisfies:

(VE(w),0—w) < —(Vfi(w) - V£(0) + §||w—v||2>,vn w0,

Assumption 4. (G, B)-BGD or Bounded Gradient Similarity:

there exist constants G > 0 and B > 1 such that
N
1
N Z IVAW)IF < G*+ B2V S (), Vw.
=

A.2 Theoretical Results

Lemma 1. If the population and training resources are
partitioned into up to K cohorts, to theoretically achieve
better model convergence, intra-cohort heterogeneity should
be reduced by VK times when the training resource |P|
1%l
]2
SCAFFOLD that elaborates the relationship between model
convergence and training resources.

is larger than a a is a constant setting specified in

Proof. We first borrow the proof of convergence analysis
on FedAvg (Theorem 1) from SCAFFOLD following the same
assumptions mentioned above:

BLF (] - £ < 31w’ - w'|PpeE
2 2
+r7(2 (1+ %) 8G L _)) R
~ 1
Vﬁ < n < m

where P denotes the training resources, k is the number
local steps, 7; is the local step-size, 74 is the global step-size
and 77 = kn;n, is the effective step-size

Since we only care about the effect of training resources P
and heterogeneity G on the convergence analysis, we further
simplify the right hand side equation to be

6 G?
h(P,G) = P +pG* + &

J. Liu, F. Lai, Y. Dai, A. Akella, H. V. Madhyastha, M. Chowdhury

where 0,7y, p and ¢ are constant settings. Since we propor-
tionally partition the population and training resources, we
can assume (1 — %) to be constant before and after partition.

In order to have no worse model convergence bound after
partitioning, we need h(P, G) to be non-increasing with the
reduction of training resources P. As proposed in Lemma 4.1,
Auxo partitions K cohorts when the intra-cohort heterogene-
1ty can be reduced by VK times, which approx1mately give

be constant as the one before partltlon B By substituting
thlS relationship into A(P, G), we can derive the lower bound
for the range of training resources required to achieve better
convergence bound:

9P0 ~
18k7ﬁ 62 -

	Abstract
	1 Introduction
	2 BACKGROUND AND MOTIVATION
	2.1 Federated Learning
	2.2 Heterogeneity Challenges in FL
	2.3 Opportunities
	2.4 Limitations of Existing Clustered FL

	3 Auxo OVERVIEW
	3.1 Cohort Abstraction
	3.2 Auxo Architecture

	4 Auxo Clustering
	4.1 Problem Formulation and Overview
	4.2 Online Clustering
	4.3 Cohort Selection
	4.4 Cohort-Based Training

	5 Auxo System Design
	5.1 Distributed Auxo
	5.2 Resilient Auxo

	6 IMPLEMENTATION
	7 EVALUATION
	7.1 Experiment Setup
	7.2 End-to-End Performance
	7.3 Clustered FL Comparison
	7.4 Sensitivity Analysis
	7.5 Auxo Resilience

	8 Related Work
	9 Conclusion
	References
	A Proof of Lemma 4.1
	A.1 Additional definitions
	A.2 Theoretical Results

