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ABSTRACT
Federated learning (FL) is an emerging machine learning

(ML) paradigm that enables heterogeneous edge devices to

collaboratively train ML models without revealing their raw

data to a logically centralized server. However, beyond the

heterogeneous device capacity, FL participants often exhibit

differences in their data distributions, which are not inde-

pendent and identically distributed (Non-IID). Many existing

works present point solutions to address issues like slow

convergence, low final accuracy, and bias in FL, all stemming

from client heterogeneity.

In this paper, we explore an additional layer of complex-

ity to mitigate such heterogeneity by grouping clients with

statistically similar data distributions (cohorts). We propose

Auxo to gradually identify such cohorts in large-scale, low-

availability, and resource-constrained FL populations. Auxo

then adaptively determines how to train cohort-specific mod-

els in order to achieve better model performance and ensure

resource efficiency. Our extensive evaluations show that,

by identifying cohorts with smaller heterogeneity and per-

forming efficient cohort-based training, Auxo boosts various

existing FL solutions in terms of final accuracy (2.1%–8.2%),

convergence time (up to 2.2×), and model bias (4.8% - 53.8%).
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1 INTRODUCTION
Federated learning (FL) enables distributed clients to collab-

oratively train an ML model without centralizing their local

data to the cloud. It circumvents the systematic privacy risk

and cost of data transfers in centrally collecting user data.

Hence, FL is increasingly being adopted by many popular

applications, such as Google’s Gboard [21], Apple’s Siri [57],

NVIDIA’s medical platform [43], Meta’s Ads recommenda-

tion [53], and WeBank risk prediction [50].

Federated Learning (FL) typically involves a substantial

number of clients, ranging from hundreds to millions, and

the training process can span days or even weeks [84]. Given

the limited availability and resource constraints of client

devices, only a fraction of clients contribute to each round

of training in practice. Therefore, it is essential to reduce

the training time while accommodating these practical con-

straints. However, FL encounters unique challenges stem-

ming from statistical heterogeneity among user data, which

contributes significantly to extended training time and sub-

optimal model performance [44, 47, 73, 89]. Several studies

that try to mitigate the effect of statistical heterogeneity,

such as FedYoGi [59], q-FedAvg [42], FTFA [13], have shown

https://doi.org/10.1145/3620678.3624651
https://doi.org/10.1145/3620678.3624651
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that their convergence speed depends on the degree of het-

erogeneity, both theoretically and empirically (§2.2).

We explore the possibility of mitigating this issue at its

core by grouping clients with similar data distributions,

known as cohorts [86] (§2.3). If a population has 𝐾 cohorts,

training 𝐾 separate models – one for each cohort with lower

statistical heterogeneity – can boost the performance of

many existing FL algorithms that are complementary to

ours and focus on convergence [38, 41, 59], fairness opti-

mization [42], communication efficiency [3, 31, 65], etc.

Although recent works attempted to identify cohorts and

train separate models for them [11, 22, 47, 83], they are

not applicable to real-world FL deployments. This is be-

cause unlike easy-to-deploy solutions such as FedAvg and

FedYoGi [51, 59], clustering clients at scale and in the wild

poses unique challenges (§2.4). Existing solutions often ig-

nore the scale and sparsity of the device participation. They

also ignore the constraints on availability and capacity of

end-user devices, which calls for low-overhead algorithms.

We propose Auxo to enable 1) scalable cohort identifi-

cation to reduce intra-cohort heterogeneity in large-scale

and limited-availability FL scenarios; and 2) efficient cohort-

based training to facilitate most FL optimizations, such as

faster training completion and better model accuracy, with-

out additional resource requirements. Auxo addresses the

following challenges toward practical FL deployment (§4).

First, unlike existing clustering strategies which require ex-

haustive passes through all clients [67], on-demand device

availability [11], or additional on-device training for every

participant [16, 22], Auxo introduces a more flexible client

clustering solution. It allows sporadic client availability, re-

spects client resource constraints, and maintains client pri-

vacy. Auxo can progressively identify cohorts and scalably

cluster clients based on their gradients in spite of the ab-

sence of anchored gradients for straightforward comparison.

Second, unlike expensive and ad-hoc hyper-parameter tun-

ing stages used in existing solutions, Auxo progressively

generates the appropriate number of cohorts and identifies

suitable timings to create them. Thus, Auxo maximizes the

use of limited client resources to enhance training speed and

model performance.
1
Finally, we design a scalable system

to support efficient cohort clustering and training at scale

while being robust to uncertainties (e.g., failure tolerance

and unfavorable settings) at scale (§5).

We have implemented (§6) and evaluated (§7) Auxo on a

wide variety of real-world FL datasets, tasks, and algorithms

at scale. Compared to existing solutions, Auxo improves the

performance for various FL algorithms, such as better model

1
We refer to the number of participants that contribute to a round of FL

training as training resource throughout this paper.
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Figure 1: Traditional FL overview. The server first
selects from available clients and sends out model
weights. Clients train the updated model on their local
dataset. After training is finished, clients report their
model gradient to the server.

accuracy (2.1%-8.2%) and convergence speed (up to 2.2×) and
smaller bias of model accuracy (4.8% - 53.8%).

Overall, we make the following contributions in this paper:

(1) We propose a systematic clusteringmechanism to iden-

tify cohorts for the practical large-scale, low-availability

and resource-constrained FL setting.

(2) We identify a sweet spot for jointly optimizing model

convergence and training cost, and provide analytical

insights to ensure good model performance.

(3) We implement and evaluate Auxo at scale, showing

large improvements in final accuracy, convergence

time, andmodel fairness over the state-of-the-art. Auxo

is open-source and available on GitHub.
2

2 BACKGROUND AND MOTIVATION
We start with a brief introduction of federated learning (§2.1),

followed by the challenges it faces in real-world settings (§2.2

) . Next, we describe some opportunities to improve FL that

motivates our work (§2.3). Finally, we explain the limitations

of related works that motivate our algorithm and system

design (§2.4).

2.1 Federated Learning
A typical cross-device FL system consists of two primary

components (Figure 1): A logically centralized cloud server
that maintains a single global model and many distributed

clients with private local data. The overall lifecycle of an FL

training round can be divided into three broad stages.

1 Selection stage: Clients check in with the server con-

tinuously to announce their availability for FL compu-

tation. The server selects a number of participants for
that round based on its client selection strategy.

2 Execution stage: The selected participants download

the current model from the server and perform server-

specified computation on their local data.

2
https://github.com/SymbioticLab/FedScale/tree/master/examples/auxo
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(a) Statistical heterogeneity.
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(b) System heterogeneity.

Figure 2: The impact of heterogeneity onfinal accuracy.

3 Aggregation stage: Participants that successfully com-

plete the execution stage send model updates back to

the server. The server aggregates the updates to final-

ize an updated model for the next round.

2.2 Heterogeneity Challenges in FL
Unlike centralized ML, FL faces unique challenges in terms

of statistical and system heterogeneity. The former refers to

the varying data volumes and difference of data distribution

across clients, which hinders model convergence; the latter

refers to variations in system characteristics among partici-

pants’ devices, which results in large differences in training

performance. Increasing heterogeneity in either dimension

leads to poor performance.

Impact of statistical heterogeneity. Under large statistical
heterogeneity across clients, poor model accuracy, training

time and fairness are often exacerbated, because the model

is deployed on individual clients but is often trained over

all the clients. Existing works that address statistical hetero-

geneity in FL assume bounded heterogeneity to simplify the

problem complexity [41, 44, 59, 89]. However, we notice this

does not hold in practical FL settings, which leads to great

performance degradation under larger statistical heterogene-

ity.
3
Indeed, our analysis of FedYoGi [59] (a state-of-the-art

FL algorithm) on OpenImage [56] (an FL image dataset), in

Figure 2a shows that the model accuracy and its fairness

across clients worsens with increasing statistical heterogene-

ity. To achieve the same model performance under larger

heterogeneity, more communication and/or computation

costs are needed. This is true for personalization algorithms

as well [73].

Impact of system heterogeneity. Heterogeneity of system-

level characteristics raise challenges such as fault tolerance

and straggler mitigation [30, 41]. Over-commitment [10],

which discards updates from slowest-responding partici-

pants, is commonly used to reduce the impact of stragglers,

3
In this experiment, we measure the statistical heterogeneity among a set

of clients using the popular L2 distance on their data distributions [38].
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Figure 3: Intra-cluster
heterogeneity in real
datasets.
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Figure 4: Diminishing re-
turn when adding more
participants.

but it may lead to participation bias against slow devices.

Figure 2b shows the final accuracy of the OpenImage task

under different degrees of system heterogeneity (variance of

system speed). For each experiment, we control the round

duration and the number of successful participants to be

the same; as a result, participation bias exacerbates with in-

creasing system heterogeneity. Since participation bias may

enhance statistical heterogeneity in another form, the final

accuracy decreases with increasing system heterogeneity

(albeit at a slower rate than statistical heterogeneity).

2.3 Opportunities
The opportunity for improving FL training performance,

therefore, lies in decreasing heterogeneity especially the

statistical heterogeneity based on the observation of the pre-

vious subsection. By identifying statistically homogeneous

groups and performing FL within each group, we may be

able to boost model performance of most FL algorithms that

are suffered by the heterogeneity.

Despite large statistical heterogeneity across the entire FL

client population, there exist groups of statistically similar

clients in most large populations. Figure 3 shows that for four

representative FL workloads [36] in the real world. We use

K-means clustering (with increasing values of K) on clients’

data distribution by their L2-distance metric. As the number

of clusters increases from one (i.e., traditional FL with one

global model) to larger values, we observe a small number

of statistically similar groups emerge for most datasets.

However, training K models to converge may need more

training resources compared to training onemodel. As shown

in Figure 4, increasing training resources has diminishing

returns on the model convergence, which presents the pri-

mary opportunity leveraged in this work: instead of letting
all available clients contribute to a single global model, it may
be more beneficial to partition them into several cohorts, each
with smaller heterogeneity.

2.4 Limitations of Existing Clustered FL
Recent efforts in the ML community have (theoretically) ex-

plored to create smaller groups of statistically similar clients.
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Figure 5: Auxo architecture. Auxo
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Figure 6: Auxo lifecycle. Clients check in with their affinity requests, and
participate training within matched cohorts. Cohorts are gradually identi-
fied based on participants response.

CFL FL+HC FlexCFL IFCA Auxo

Partial part. × ✓ ✓ ✓ ✓
Low avail. × × ✓ ✓ ✓

Res. constraint × × × × ✓
Training perf. × × × × ✓

Table 1: Comparing Auxo with existing Clustered FL.

Yet, existing clustered FL algorithms often fall short across

multiple dimensions in practical deployments, which moti-

vates us to design systems support for efficient cohort iden-

tification and training. We empirically show the superior

performance of Auxo over them too (§7.2).

Scalability. FL in practice often involves millions of clients,

and only a small fraction (∼5% [10, 36]) are available to par-

ticipate in during a time window. Such low availability and

partial participation limit the available information for clus-

tering algorithms. This, unfortunately, is ignored by CFL [67],

multi-center [47] and FL+HC [11], making their deployment

impractical as they require a complete pass over the entire

population to identify clusters. Furthermore, clients usually

have limited on-board resources, but IFCA [22], FlexCFL [16],

ICFL [83], k-FED [15] and FL+HC require extra computation

for every client to assign them to a cluster. This imposes

a significant computational and communication burden on

already resource-constrained devices and diverts resources

away from the primary task of model training. For exam-

ple, IFCA initiates multiple global models and broadcasts all

models for each participant to choose from in each round;

and FlexCFL and FL+HC require pre-training for every client

to identify their clusters.

Efficiency. In addition to the challenge of identifying sta-

tistically similar groups at scale, how to leverage those simi-

lar groups to improve model performance introduces new

trade-offs in deciding the right number of cohorts and time

to partition. Given a fixed amount of resources, generating

more cohorts results in smaller heterogeneity; but it divides

up the fixed training resource and unique training data per

cohort, which hurts model convergence and generalizability.

Moreover, partitioning clients too early can lead to model

bias as the model is not generalized well by training on vari-

ous clients, while partitioning too late can result in model

variance over high heterogeneity. Unfortunately, most exist-

ing clustered FL algorithms are unaware of these tradeoffs,

and rely on ad-hoc hyper-parameter tuning, which is pro-

hibitively expensive as FL training can take many days and

consume a large amount of resources.

In conclusion, as detailed in Table 1, an effective client

clustering solution in Federated Learning (FL) should take

into account the following realistic constraints:

(1) Partial participation: The algorithm should accommo-

date FL training that involves only a fraction of total

participants in each round.

(2) Low availability: The algorithm should respect clients’

sporadic availability, without necessitating participa-

tion from any clients at a specified time.

(3) Resource constraints: The algorithm should avoid de-

manding additional on-device computation for per-

forming clustering.

(4) Training performance: The algorithm should optimize

model performance—focusing on convergence and gen-

eralizability—within the constraints of a fixed training
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resource. This includes consideration of how cluster-

ing the FL population might positively impact perfor-

mance despite reduced heterogeneity.

3 AUXO OVERVIEW
Auxo progressively reduces the intra-group heterogeneity

and improves the model performance through cohort iden-

tification and cohort-based training toward practical FL. In

this section, we introduce the cohort abstraction, provide

an overview of how Auxo manages cohorts in a distributed

fashion and fits into the FL life cycle.

3.1 Cohort Abstraction
Instead of training only one global model, Auxo trains a

model separately for each group of clients that shares simi-

lar statistical data characteristics. We refer to each of these

groups, which can perform independent FL training over

more homogeneous clients than the overall population, as a

cohort 𝐶𝑚 (𝑚 ∈ [1, 𝑀]) with two associated properties:

(1) A cohort should hold a specialized model that targets

on it data distribution with smaller heterogeneity.

(2) A cohort should have enough members |𝐶𝑚 | to form a

meaningful group and deliver the benefit of partition.

Traditional (i.e., cohort-agnostic) FL training has a single

cohort with unbounded heterogeneity among the members.

3.2 Auxo Architecture
Auxo server consists of two primary components (Figure 5):

(1) A logically centralized cohort coordinator performs

three main functions. First, it manages existing cohorts

for fault tolerance. Second, it matches clients to their

best-fit cohorts. Finally, it monitors the progress of

cohort training and identification in order to decide

cohort partition when it observes an opportunity for

better model convergence .

(2) A set of cohorts each performs independent FL train-

ing. Each cohort contains traditional FL components

such as aggregator and client selector. On top of tradi-

tional FL training activities, each cohort continuously

identifies its internal composition, reports its progress

to the coordinator and waits for the partition instruc-

tion from the coordinator.

FL Lifecycle in Auxo. As shown in Figure 6, following the

traditional FL stages in Section 2.1, Auxo adds a matching

stage 0 and a feedback stage 4 before and after the

traditional round.

0 Matching stage: When checking in, clients using

Auxo optionally include an affinity request (a hint

about their cohort preference) to the cohort coordi-

nator. If it took part in the training of one or more

cohorts in the past, its preference is dependent on pre-

vious feedback. Otherwise, it has no preference. The

cohort coordinator forwards the affinity request to the

corresponding cohort based on its search algorithm

and client’s request.

1 - 3 Traditional FL stages: Each cohort starts a tra-

ditional FL training round independently after contin-

uously receiving its client requests from the cohort

coordinator. These traditional stages include client se-

lection, client training, server aggregation, and so on.

4 Feedback stage: After the traditional FL round fin-

ishes, each cohort updates the affinity feedback for

its current participants based on the Auxo clustering

algorithm (§4). Then, each participant receives an affin-

ity feedback – w.r.t. the cohort it trained with — and

updates the corresponding affinity record for submit-

ting requests in a future round of FL training. During

this stage, each cohort also reports its training and

identification progress to the cohort coordinator.

Resource management: Auxo jointly maximizes model

convergence and resource efficiency in two ways. First, its

scalable cohort identification algorithm does not require ex-

tra on-device computation and uses the same amount of

resources as traditional FL algorithms(§4.1- §4.3). Second,

it carefully chooses the number of cohorts and time to par-

tition to theoretically guarantee better model convergence

and generalizability despite each cohort having less training

resources than the previous global model (§4.4).

Threat model and robustness. Like state-of-the-art pro-
duction FL systems [10, 30, 75], Auxo considers an honest-but-
curious centralized server for aggregation, which can infer

any information without interfering with the FL training.

Auxo also assumes that most clients are honest (correct), and

only a small fraction can act maliciously under the control

of a bad actor [70]. We elaborate on how Auxo can provide

robustness under this threat model in Section 5.2.

4 AUXO CLUSTERING
In this section, we present the core clustering algorithm used

in Auxo to identify cohorts (§4.1- §4.3). Then, we introduce

the systems techniques to enable cohort-based training under

realistic constraints (§4.4).

4.1 Problem Formulation and Overview
Auxo aims to accurately cluster clients by their statistical

heterogeneity into appropriate cohorts under the following

real-world FL constraints:

(1) Scalability: The participants P𝑟 in each round are only
a small fraction of all clients (𝑁 ), i.e., |P𝑟 | ≪ 𝑁 . How

to identify cohorts and cluster clients at scale under

such low client availability?
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(2) Resource Efficiency: How to conduct the clustering

process without incurring overhead on devices, such

as extra model training and client participation that

do not contribute to model training?

(3) Information Deficiency: The information available to

today’s FL central server is limited to such as gradi-

ents and training loss. How to cluster clients without

requesting additional information from clients?

Problem Formulation: The input to the server is a list of

participants along with their gradients collected over train-

ing rounds based on these two constraints. Intuitively, the

gradient of client relies on its local dataset 𝑥𝑖 and the received

model weights (unique for the round 𝑟 and cohort𝑚), and

this gradient is multi-dimensional, embedding more infor-

mation than its counterparts (e.g., training loss). As such,

we can formulate the input of the clustering algorithm in

each round 𝑟 as {{𝑔𝑟𝑚 (𝑥𝑖 )}𝑖∈P𝑟𝑚 }𝑚∈[1,𝑀𝑟 ] , where𝑔𝑟𝑚 (𝑥𝑖 ) is the
gradient of participant 𝑖 , P𝑟𝑚 is the participants list, and𝑀𝑟

is the number of cohorts.

The output is the cohort membership {𝑆𝑖 ∈ [1, 𝑀]} for
each client 𝑖 ∈ [1, 𝑁 ]. Following the objective of traditional
clustering algorithms [48], Auxo also aims to minimize the

average intra-cohort heterogeneity (𝐽 ) defined as:

𝐽 =

𝑀∑︁
𝑚=1

1

2|{𝑥 |𝑆𝑥 =𝑚}|
∑︁

𝑆𝑖 ,𝑆 𝑗=𝑚

| |𝑥𝑖 − 𝑥 𝑗 | |2 . (1)

Intuitively, we canmodel it as a clustering problem {𝑥1, ..., 𝑥𝑁 } →
{𝑆1, ..., 𝑆𝑁 }, whereas doing so encounters new challenges.

(1) How to derive client data similarity without direct

access to data and without iterating all but part of the

clustering objects every round.

(2) How to assign new incoming clients to the best-fit

cohort without prior information after Auxo generates

more than one cohorts.

Following this problem definition and challenge, Algo-

rithm 1 illustrates the overview of Auxo clustering mecha-

nism, which consists of an online cluster algorithm to cluster

clients at scale (§4.2) and the cohort selection for individual

FL clients (§4.3). Note that, Auxo’s clustering algorithm can

operate in the background, imposing no additional overhead

on the training process.

4.2 Online Clustering
Auxo resorts to the similarity of clients’ gradients to cap-

ture their statistical similarity. Our design is inspired by the

recent advances in ML theory [67, 69], which show that

the data heterogeneity can attribute to the gradient diver-

gence [41] and a smaller heterogeneity would have smaller

gradient divergence for the same initial model weight. Here,

we measure such gradient divergence using the widely-used

Algorithm 1: Auxo Clustering Algorithm

1: Input: Participants list P, Exploration factor 𝜖

2: Output: Client-cohort membership list 𝑆D
3: 𝑀 ← 1; ⊲ Initialize the number of cohorts.

4: 𝑆D ← 0; ⊲ Initialize client-cohort membership.

5: 𝑅D,𝑀 ← 0; ⊲ Initialize client-cohort reward.

6: 𝐿D,𝑀 ← 𝑁 /𝐴. ⊲ Initialize client-cohort cluster id.

7: for each round 𝑟 = 1, 2, ... do
8: P𝑟𝑚 = {𝑖 |𝑆𝑖 =𝑚, 𝑖 ∈ P𝑟 }
9: for each cohort𝑚 = 1, ..., 𝑀 in parallel do
10: 𝑅P𝑟𝑚 = Auxo-Clustering (P𝑟𝑚 )

11: 𝑆P𝑟𝑚 = CohortSelection(𝑅P𝑟𝑚 , 𝜖, 𝑟 )
12: return 𝑆D

13: Function ClientClustering(Participants list P𝑟𝑚):
/* Identify clusters on the fly. (4.4) */

14: if 𝑟 == 1 then
15: 𝐿P𝑟𝑚,𝑚 = Kmeans(𝑔𝑟𝑚 (𝑥P𝑟𝑚 ), 𝐾).
16: else
17: P𝑘 = {𝑖 |𝐿𝑖,𝑚 = 𝑘, 𝑖 ∈ P𝑟𝑚},∀𝑘 ∈ [0, 𝐾)
18: 𝐶𝑘 = {𝑔𝑟𝑚 (𝑥P𝑗 ),∀𝑘 ∈ [0, 𝐾)
19: 𝐿P𝑟𝑚,𝑚 = 𝑎𝑟𝑔min𝑘 | |𝑔𝑟𝑚 (𝑥P𝑟𝑚 ) −𝐶𝑘 | |2

/* Decide partitioning to start separate training. (4.2) */

20: if PartitionCriteria(m) then
21: 𝑀 = 𝑀 + 𝐾 − 1
22: 𝑅D,𝑚+𝑘 = 𝑅D,𝑚 + 0.1 ∗ 1(𝐿D,𝑚 == 𝑘),∀𝑘 ∈

[0, 𝐾)
/* Update rewards for cohort selection. (4.4) */

23: if 𝑀 > 1 then
24: 𝑅P𝑟𝑚,𝑚 = ExploitReward(𝑅P𝑟𝑚,𝑚, 𝑥P𝑟𝑚 )
25: 𝑅P𝑟𝑚,𝑚′=ExploreReward(𝑅P𝑟𝑚 ,𝑚

′
), ∀𝑚 ≠𝑚′

26: return 𝑅P𝑟𝑚

27: Function CohortSelection( (Reward list 𝑅P𝑟𝑚 , 𝜖, 𝑟 )):
28: for client i in P𝑟𝑚 do
29: if random(0,1) > 𝜖𝑟 then
30: 𝑆𝑖=random(0, M)

31: else
32: 𝑆𝑖 = argmax𝑅𝑖

33: return 𝑆P𝑟𝑚

cosine similarity [82] among the input batch of gradients

𝑔𝑟𝑚 (𝑥𝑖 ), 𝑖 ∈ P𝑟𝑚 to investigate client similarity.
4
Compared to

other counterparts such as L-2 distance which does not take

into account the direction of the gradients, cosine similarity

better quantifies how similarly their needed model changes

are directed.

4
Cosine similarity measures the similarity between two vectors of an inner

product space [82].
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However, the sporadic participation of clients in each train-

ing round limits the data available for clustering algorithms

to a subset of the entire client population at any given time.

Traditional clustering algorithms, such as K-means and KNN,

require a complete pass of the population, rendering them

inapplicable here. Mini-batch clustering algorithms [68], on

the other hand, operate on small batches of the population

each round, maintain a running centroid for cluster assign-

ments. Nonetheless, this strategy cannot directly be applied

in our case because we only know the gradients 𝑔𝑟𝑚 (𝑥P𝑚𝑟 )
and not the raw data 𝑥P . Further, since the gradient 𝑔𝑟𝑚 (·)
depends on the initial model of round 𝑟 and client data - both

unknown and different across rounds and cohorts. These

complexities preclude us from maintaining absolute clus-

ter centroids over successive rounds in a straightforward

manner, making naive mini-batch clustering infeasible.

Algorithm 1 outlines how Auxo starts with one cohort

for the entire FL population, and then adaptively identifies

cohorts based on gradients of mini-batch clients. After us-

ing K-means to initialize the cluster prototype (Line 15), in

each round, Auxo collects the training feedback from the

clients and assigns clients to their closest clusters (Line 17).

Meanwhile, Auxo incrementally refines cluster centers based

on the gradients of newly assigned clients in each round

(Line 18). With repeated cluster updating and clients as-

signment, Auxo can effectively identify the clusters at scale

(Line 19). Each new cohort starts with the parent cohort

model weights with the same architecture, performs conven-

tional FL steps separately, and converges to different model

weights. Once discernible clusters emerge and certain par-

tition criteria are fulfilled (e.g., enough participants left for

model convergence after partition), Auxo decides to spawn

cohorts based on these pre-identified clusters (Line 20) and

train cohort models separately within their corresponding

client groups. At runtime, Auxo adaptively decides the right

time and the right number of cohorts to partition to find the

sweet spot of model performance and the resource consump-

tion of training multiple cohorts (§ 4.4).

4.3 Cohort Selection
Although clustering captures the membership of already-

identified clients, doing so for a new client is unkown a priori,

since we neither have access to client data nor have absolute

cohort centers that can inform a new client to choose the

closest cohort. This challenge is further amplified by the large

training population, wherein more FL clients participate in

model training for the first time than not.

To address this, Auxo adopts an exploration-exploitation
strategy to efficiently identify the cohort membership for

new participants (Line 11). This allows us to first randomly

assign a new client to a cohort. After getting the feedback

on how well the client fits in that cohort, Auxo attempts

to identify a more suitable cohort for it the next time it

participates again.

Auxo uses reward-based decaying 𝜖-greedy selection [72]

to help the client find the best-fit cohort (Line 11). With an

aim to maximize the expected reward for each client, there

is a 1 − 𝜖 probability of selecting a cohort with a maximum

reward and a 𝜖 probability of selecting cohorts randomly,

where 𝜖 ∈ [0, 1] is the exploration factor that decays over

time to account for the latest information. Intuitively, smaller

gradient divergence compared to the members within the

explored cohort means a better fit and gives a higher re-

ward. Hence, Auxo calculates the relative divergence be-

tween the client gradients and the explored cohort center.

This is done by first estimating the cohort center via aver-

aging the client gradients within the cohort P𝑟
𝑚,𝐾𝑛𝑜𝑤𝑛

, to

be 𝐷 = | |𝑔𝑟𝑚 (𝑥P𝑟𝑚 ) − 𝑔𝑟𝑚 (𝑥P𝑟𝑚,𝐾𝑛𝑜𝑤𝑛 ) | |2, where 𝑔
𝑟
𝑚 (𝑥P𝑟𝑚,𝐾𝑛𝑜𝑤𝑛 )

represents the estimated cluster centers for cohort𝑚. Next,

we take the popular approach to identify outlier clients [4].

Specifically, we consider clients as outliers if their distance

to the cohort center exceeds the threshold, which is calcu-

lated as the sum of the mean and the standard deviation

of 𝐷 , denoted as 𝑎𝑣𝑔(𝐷) + 𝑠𝑡𝑑 (𝐷). If the client gradient dis-
tance to the cohort center is larger than this threshold, this

client is not considered as the cohort member. As such, the

instant reward becomes Δ𝑅 = 1 − 1

𝑎𝑣𝑔 (𝐷)+𝑠𝑡𝑑 (𝐷)𝐷 , where the

client with a negative Δ𝑅 would be considered as an out-

lier of the cohort. Then, Auxo updates the reward between

each client and its explored cohort with a decay factor 𝛾 as

𝑅P𝑟𝑚,𝑚 = 𝛾 ∗Δ𝑅 + (1−𝛾) ∗𝑅P𝑟𝑚,𝑚 , 𝛾=0.2 by default in popular

exploration-exploitation designs.

Efficient cohort exploration. During exploration, there may

exist multiple cohorts for a client to try out with. To improve

the searching efficiency and save device training resources,

during both training and deployment, Auxo enables a new

client to perform a binary search to find the most appropri-

ate cohort by predicting the rewards for other unexplored

cohorts 𝑚′ through function ExploreReward() (Line 25):

𝑅P𝑟𝑚,𝑚′ +=
𝑅P𝑟𝑚

𝑑 (𝑚,𝑚′)+1 ,∀𝑚 ≠𝑚′.
The intuition behind the cohort search is that the client

may perform similar to or receive similar rewards from the

cohorts that are closer/similar to the previously explored

ones, and vice versa. To find out the cohort similarity, we

first define the distance (𝑑) between two cohorts to be the dis-

tance to their lowest common ancestral cohorts based on the

hierarchical cluster relationship among cohorts. Given an ex-

plored cohort𝑚 and the reward Δ𝑅𝑚 for a participant, Auxo

calculates the distance 𝑑 and updates the rewards for unex-

plored cohorts to be inversely proportional to their distance.

For example, if a client receives a negative reward for the
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Figure 7: Reward update based on the hierarchical
structure among all cohorts.

chosen cohort, then he is more likely to explore another fur-

thest cohort with higher reward given by ExploreReward()
next time.

Taking Figure 7 as an example, a new client 𝑎 explores

𝐶𝑜ℎ𝑜𝑟𝑡0.0.1 and receives the corresponding feedback rewards

-3. Then, with the intuition that the client may have similar

performance on a closer cohort, Auxo calculates the distance

between 𝐶𝑜ℎ𝑜𝑟𝑡0.0.1 and other cohorts. As shown in Table 7,

Auxo updates the rewards to be inversely proportional to

the cohort distance 𝑑𝑚′ : Δ𝑅𝑚′ =
Δ𝑅

𝑑𝑚′+1 Since 𝐶𝑜ℎ𝑜𝑟𝑡0.0.1 and

𝐶𝑜ℎ𝑜𝑟𝑡0.1 have a larger distance between them, 𝐶𝑜ℎ𝑜𝑟𝑡0.1
ends up with a relatively higher reward and has higher prob-

ability to be explored by client 𝑎 in the future.

4.4 Cohort-Based Training
While clustering reduces heterogeneity within a cohort, gen-

erating a larger number of cohorts may dilute available re-

sources for each individual cohort when operating under

fixed training resources. Consequently, this leads to a new

trade-off between resource efficiency andmodel convergence.

As shown in Figure 3, generating more cohorts has dimin-

ishing returns in terms of heterogeneity. In a setting where

total training resources are fixed, allocating resources to a

larger number of cohorts implies fewer resources for each,

which may negatively affect model convergence. Conversely,

having too few cohorts is insufficient for adequately address-

ing intra-cohort heterogeneity. Therefore, Auxo faces the

challenge of optimally determining both the number of co-

horts and the timing for their creation to balance resource

efficiency and model performance effectively.

Intuitively, the decision to generate new cohorts should be

based on the extent of client heterogeneity and the available

training resource budget post-partition. When client hetero-

geneity is significant and the resource budget is sufficient,

the creation of additional cohorts is warranted to further

reduce client heterogeneity. On the other hand, when these

conditions are not met, the creation of new cohorts should

be deferred.

We next provide analytical insights to ground our strategy.

Prior works in ML theory [32, 44, 59, 89] have shown that the

convergence rate of FL training is largely dominated by het-

erogeneity. We start by analyzing the relationship between

heterogeneity and training resources in theory. Inspired by

the convergence analysis of FedAvg [32], we establish the

following Lemma. More detailed proof are available in Ap-

pendix A.

Lemma 4.1. If the population and training resources are
partitioned into up to 𝐾 cohorts, to theoretically achieve bet-
ter model convergence, intra-cohort heterogeneity should be
reduced by

√
𝐾 times when the training resource |P | is larger

than 𝛼
√︃
|P0 |
𝐽 2
0

. 𝛼 is a constant setting that elaborates the rela-
tionship between model convergence and training resources.

From Lemma 4.1, we notice that the number of generated

cohorts rely on the expected reduced heterogeneity and a

lower bound of training resources. As such, Auxo actively

monitors the gradient divergence within each cohort at run-

time to estimate the potential heterogeneity reduction.

When a sufficient decrease (e.g.,
1√
𝐾
) in intra-cohort het-

erogeneity and ample post-partition training resources are

detected, Auxo autonomously partitions the population into

a maximum of 𝐾 cohorts, allotting equal training resources

to each. This strategy theoretically enhances model conver-

gence through cohort-based training in Auxo. As for some

FL datasets with larger heterogeneity, FL developers can fur-

ther improve model convergence by dynamically raising the

resource budget to allow generating more cohorts.

In addition to deciding the right number of cohorts, the

time to cohort partition is also critical to model convergence.

As cohort partitioning may reduce the unique training data

for each cohort model, the trade-off between model bias

and variance can be affected by the time of partition. On

the one hand, hard partitioning of the entire population

at the beginning could reduce heterogeneity, but it could

also reduce the amount of unique training data for each

cohort model, leading to poor model generalizability. On the

other hand, late partitioning exposes the model to diverse

training data but leads to worse model variance due to high

heterogeneity. These also guide the reuse of identified cohorts
to facilitate other FL tasks.

From the sensitive analysis of cohort partition time (§7.4),

we found the model convergence is not sensitive to exact

partition time as long as cohorts are not partitioned at the

beginning or the end of the training. We report more results

about the effect of partition time on model convergence in

Section 7.4.
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Figure 8: Scalable Design Overview a. Cohort affinity
feedback. b. Client affinity request. c. Cohort coordina-
tor request match.

Finally, the start time of gradient-based clustering can

impact the efficiency of the process. In the early stages of

training, gradients are often large and may not adequately

capture the distributional features of the data. However, as

the model approaches convergence, the gradients become

more informative indicators of data similarities. Thus, it is

crucial for Auxo to judiciously select the optimal starting

point for clustering so as not to delay the cohort identifica-

tion. Detailed results discussing the effect of the clustering

start time on model convergence can be found in Section 7.4.

5 AUXO SYSTEM DESIGN
In this section, we discuss how to design a practical and

robust system on top of the clustering algorithm under real-

world challenges.

5.1 Distributed Auxo
As the scale of training grows, the server faces more server

challenges for tremendous storage, fault tolerance, and client

privacy in order to maintain the cohort and client informa-

tion. Thus, Auxo designs a solution to use a soft-state server

that offloads cohort-related information to individual clients

to mitigate these challenges. In this subsection, we describe

how to implement the proposed clustering algorithm in a

distributed fashion, while achieving the same objective.

Firstly, we introduce affinity message, which is a light-

weight message containing all necessary state information

needed to identify cohorts in a distributed fashion. Affin-

ity message consists of two pieces of information between

a client and a cohort to enable efficient state transmission:

(Reward 𝑅 ∈ R, Cluster index 𝐿 ∈ [0, 𝐾)). The reward implies

how well the client fits for this cohort. The cluster index ex-

presses the client’s cluster membership within this cohort

and is used to indicate its future cohort index.

Through exchanging affinity messages between different

components, Auxo encourages similar clients to collaborate

more in a distributed fashion. As shown in Figure 8, we next

describe a how a cohort informs its relationship with

its participants, b how clients request for their preferred

cohort based on the affinity feedback and c how the cohort

coordinator matches different requests.

Affinity Feedback. At the end of each round, every cohort

computes the affinity feedback to inform participants about

their relationship with the cohort. These affinity feedback

correspond to the clustering results returned by Algorithm 1

Line 8 (reward 𝑅) and Line 19 (cluster index 𝐿). These cluster-

ing results would be sent back to the participants respectively

in the format of affinity messages, which informs the par-

ticipant about whether the cohort is a good fit and which

sub-cohort to select after partitioning.

Client Reaction . After receiving the affinity feedback from

the cohort, the client would update its affinity records itself

based on the equation in Algorithm 1 Line 24- 25 and copy the

cluster index directly. Following the same decaying 𝜖−greedy
selection method (§4.3), clients select the cohort to train by

themselves. Then, clients ready to participate would submit

the corresponding affinity request to the cohort coordinator.

Request Match. After receiving the affinity request, the co-

hort coordinator matches each client to the cohort it requests.

Note that only the leaf cohort in the cohort tree would be re-

turned as it conducts actual FL training inside. The requested

cohort may not be the leaf cohort because some clients may

not be aware of the cohort partitioning, which is not yet

transparent to all clients. In this case, the cohort coordinator

should assist clients to select their best-fit cohort through

finding the closest leaf cohort indicated by the requested

cohort and cluster index in the affinity message.

After finding a proper cohort, cohort coordinator would

forward this affinity request to the corresponding cohort

to initiate traditional FL rounds. Moreover, these forwarded

affinity requests provide each cohort with all necessary input

to conduct the clustering algorithms. Thus, after receiving

the gradients from its participants, each cohort is able to run

the Algorithm 1 independently to compute the aforemen-

tioned affinity feedback.

5.2 Resilient Auxo
Fault Tolerance. Auxo enables fast recovery to minimize

the impact on the model training. Upon a cohort process

failure in the server, the cohort coordinator spawns a new

cohort process. The new cohort loads the model from the

latest checkpoint and restarts the incomplete round.

If the cohort coordinator fails, cohort processes would

continue their current independent FL training and wait

until a new cohort coordinator to be re-spawned. Clients

checking in within that recovery period would be ignored.

Finally, Auxo is resilient to client failures just like tradi-

tional FL by design. Most client failure handlers, which are

orthogonal to Auxo, can be applied directly. In addition, a
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failed client, who may lose its own affinity records, would

restart exploring again. We empirically show that Auxo can

tolerate a certain amount of such client failures while con-

tinuing to benefit the FL training (§7.5).

Robustness. Based on Auxo’s threat model, Auxo can nat-

urally cooperate with some existing privacy-preserving ap-

proaches [19, 52, 54] to address potential threats from both

the server and clients. To handle the honest-but-curious

server, Auxo can be used with local differential privacy (LDP),

which is used to provide user-level privacy guarantees. Since

differential privacy is immune to post-processing [18] and

Auxo’s clustering is post-processing, Auxo incurs no addi-

tional privacy loss.

To handle a small fraction of unreliable clients [6, 8], Auxo

can be used with existing adversary-resilient solutions [12,

71]. For Auxo-specialized adversaries, such as fake affinity

requests, Auxo detects anomalies by comparing its position

in the cluster with its claimed affinity (Algorithm 1 Line 8).

If a significant discrepancy is detected, Auxo will detect and

blacklist it. In Section 7.5, we empirically evaluate Auxo’s

robustness under these scenarios.

6 IMPLEMENTATION
We have implemented Auxo as an independent Python li-

brary (1, 664 lines) to serve existing FL frameworks (e.g.,

TFF [1] and PySyft [2]), and integrated it with FedScale [36]

for evaluations. Auxo abstracts away the cohort identifica-

tion and partition so that FL developers can easily try out

their FL algorithms or datasets on top of Auxo without any

modifications.

Auxo’s implementation consists of the three components

described in Section 3: The cohort coordinator manages and

spawns cohort processes, which initiate FL training tasks.

Clients continuously submit their training requests based

on their availability and affinity records. Then, the cohort

coordinator takes client training requests as input and for-

wards the requests to corresponding cohorts. Each cohort

process conducts conventional FL training with the assigned

available clients independently. At the end of each individ-

ual round, the Auxo clustering algorithm runs within every

cohort and reports clustering results to each participant over

the network. All training metadata and model weights are

checkpointed periodically for fault tolerance. Meanwhile,

the cohort coordinator continuously monitors the progress

of cohorts for resource management and failure recovery.

7 EVALUATION
We evaluate Auxo’s effectiveness for six different ML tasks

as well as different choices of FL algorithms. Our evaluation

shows the following key highlights:

Dataset #Clients #Samples

Google Speech [76] 2,618 105K

FEMNIST [14] 3,400 640K

OpenImage-Easy 10,133 1M

OpenImage [56] 13,771 1.3M

Amazon Review [33] 42,031 2M

Reddit [60] 63,058 5M

Table 2: Statistics of the six datasets in evaluation.

(1) Auxo speeds up model convergence on different FL

datasets up to 2.2×, while improving final test accu-

racy by 3.4%-8.2%. Auxo cooperates with existing FL

efforts (e.g., personalization) and boosts final test ac-

curacy by 2.1%–6.7%. Auxo can mitigate model bias

across devices by 4.8% and 53.8% and improve resource

efficiency (§7.2).

(2) Auxo outperforms existing clustered FL solutions up

to 4.8× in time and 5.2× in resources (§7.3).

(3) Auxo performs well across a broad range of its param-

eter settings (§7.4).

7.1 Experiment Setup
Evaluation environment. We use 24 NVIDIA Tesla P100

GPUs on CloudLab [17] to emulate the large-scale client

training in our evaluations. The client data distribution fol-

lows the real-world partition, where client data can vary

in quantities, data, and label distribution. We use the open-

source benchmark FedScale [36] with standardized setup

including realistic device capacity, data, and client availabil-

ity traces. We report the simulated wall clock time by relying

on these realistic FL system and data traces.

Datasets and models. We run three categories of applica-

tions with six FL datasets [36] of different scale factors using

real-world partitions, whose statistics are reported in Table 2.

The clients for all datasets can check-in with Auxo multiple

times following the availability trace.

(1) Speech Recognition: We train Resnet-34 [27] on a small-

scale Google Speech dataset with 35 commands.

(2) Image Classification: We train Resnet-18 on small-scale

FEMNIST with 62 handwritten digits to classify. Also,

we train ShuffleNet [87] and MobileNet [66] on middle-

scale OpenImage with 596 classes to classify, whereas

OpenImage-Easy only has 60 classes.

(3) Language Modeling: We train logistic regression (LR)

on middle-scale Amazon Review for ratings predic-

tion, and Albert model [39] on large Reddit for word

prediction.

These applications are widely used in real end-device ap-

plications [80], and these models are lightweight.
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Task Dataset Model Target Acc. Auxo Speedup Auxo Acc. Impr.

FEMNIST ResNet-18 82.2% 1.2× 7.3%

MobileNet 56.5% 1.3× 4.8%

OpenImg

ShuffleNet 58.2% 2.2× 5.0%

MobileNet 65.4% 1.4× 3.4%

Image Classification

OpenImg-Easy

ShuffleNet 64.8% 1.2× 4.4%

Amazon Review Logistic Regression 65.3% 1.2× 8.2%

Language Modeling

Reddit Albert 7 perplexity 1× 0 perplexity

Speech Recognition Google Speech ResNet-34 78.5% 1.5× 5.7%

Table 3: Summary of improvements on time to accuracy. We target the highest accuracy attainable by YoGi.
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(b) MobileNet (OpenImg)

0 20 40 60
Time (h)

0

20

40

60

Te
st

 A
cc

ur
ac

y 
(%

)
Auxo + YoGi
YoGi

(c) ShuffleNet (OpenImg-E)
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(d) MobileNet (OpenImg-E)
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(e) LR (Amazon)
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(f) ResNet (FEMNIST)
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Figure 9: Time-to-Accuracy performance on different dataset. For the language modeling (LM) task, a lower
perplexity is better. The solid line reflects the average test accuracy. The shaded portion covers the test accuracy
performance among all cohorts generated by Auxo.

Parameters. We follow the standardized experiment and

parameter settings in FedScale.We adopt an over-commitment

strategy to mitigate stragglers which allow 25% failures or

stragglers every round as in real FL deployments [10]. We

set the number of participants per round to be 200, the local

minibatch size to be 6, and the initial learning rate to be 4e-5

for the Albert model, and 0.05 for other models. And we use

the linear scaling rule [23] to scale the learning rate.

Metrics. The time-to-accuracy performance, final test accu-
racy, and model bias are our key metrics. We use the cohort

member’s test data, which follows the realistic data partition,

to evaluate each cohort model. The test data would be the

global test data if we end up with one global model. For each

experiment, we report the average top-1 accuracy based on

the results over 3 runs.

7.2 End-to-End Performance
Auxo’s performance on different datasets. We first evaluate

Auxo’s performance on different real-world FL datasets. In

the following experiments, we adopt YoGi as the FL algorithm

because it outperforms other FL algorithms most of the time.

Table 3 summarizes the key time-to-accuracy performance

of all datasets, where we tease apart the overall improvement

with statistical and system ones. We quantify the time-to-

accuracy as speedup by Auxo, which measures how many

times Auxo can speed up to achieve the target accuracy

compared to the baseline time cost. Figure 9 reports the
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Figure 10: Auxo with different FL algorithms.

timeline of training to achieve different accuracy, as different

cohorts perform FL asynchronously. The shaded portion

covers the test accuracy among all cohorts generated by

Auxo.

We notice that Auxo speeds up the wall-clock time to

reach target accuracy up to 2.2× faster. Moreover, the final

accuracy for different datasets is improved by 3.4%–8.2%. The

benefit of Auxo varies over datasets. For most of the datasets,

Auxo can achieve significant final accuracy improvement.

Nevertheless, Auxo does not improve Reddit task because the

clients’ texting behavior is similar to each other that makes

it hard to identify significant groups as shown in Figure 3.

Hence, Auxo decides not to partition into multiple cohorts

to maximize the benefit of clustering in FL training.

Auxo’s performance on different FL algorithms. We then

evaluate Auxo’s performance on ShuffleNet-OpenImagewith

different FL Algorithms, which are complementary to Auxo.

We refer to YoGi running atop Auxo as YoGi+Auxo, and

similarly for FedProx, q-FedAvg and PyramidFL+YoGi.

As shown in Figure 10, Auxo speeds up the time to reach

the target accuracy of baseline algorithms, from 1.2× to 2.2×
faster and improve the final test accuracy by 3%–6.8%.

As for the personalization algorithm FTFA, we adopt the

cohort models generated by Auxo to conduct local training

using FTFA on corresponding cohort members. In addition to

faster convergence of the initial model, Auxo also improves

the average test accuracy of FTFA from 63.18% to 67.40%

with local fine-tuning.

Auxo’s benefit on resource efficiency. We finally show that

Auxo can optimize resource efficiency on OpenImg dataset

by saving 55% training resources. We also account for the

affinity maintaining overhead into the client resource usage,

which is around 0.02% of the total resource consumption.

Auxo’s benefit on model bias. We show that Auxo can also

mitigate the model bias due to smaller intra-cohort statistical

heterogeneity. We report the variance of the final accuracy

distributions, the worst and best 10% test accuracy in Table 4.

Our experiment show that the variance of test accuracy is

decreased for all the datasets by 4.8% and 53.8%.
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Figure 11: Comparison with clustered FL (FEMNIST).

7.3 Clustered FL Comparison
We compare Auxo with four existing clustered FL algorithms

CFL, FL+HC, FlexCFL, and IFCA in terms of three metrics:

time-to-accuracy, resource-to-accuracy, and final accuracy.

Since these algorithms do not meet some real-world FL con-

straints (Table 1), we simplify the settings accordingly.

We comparewith CFL in small-scale settings (∼ 100 clients)

from the FEMNIST dataset to meet their full participation

assumption. We observe little difference between CFL, Auxo,

and baseline (i.e., no cohorts) in terms of time and resources

used due to the absence of significant clusters within small

populations. However, this highlights the need for large-

scale FL settings, where CFL cannot even be applied as it

does not support partial participation.

To compare with FL+HC, FlexCFL and IFCA, we conduct

experiments with the full FEMNIST and Amazon Review

datasets without the client availability traces to align with

their constraints. As shown in Table 5 and Figure 11, Auxo

achieve better time efficiency 1.4×−4.8× and better resource
efficiency 1.3 × −4.8× compared to the related works espe-

cially for the large-scale Amazon dataset, due to our efficient

and scalable algorithm design. Also, our result for IFCA are

consistent with Motley [77].

7.4 Sensitivity Analysis
Impact of different degrees of heterogeneity. We generate

different statistical heterogeneity by applying affine shift [61]



Auxo: Efficient Federated Learning via Scalable Client Clustering SoCC ’23, October 30–November 1, 2023, Santa Cruz, CA, USA

Dataset Setting

Worst 10%

(%)

Best 10%

(%)

Variance

OpenImg Auxo 38 83 267

Baseline 34 79 296

OpenImg Auxo 38 88 234

-Easy Baseline 33 84 273

Review Auxo 50 100 460

Baseline 32 100 995

FEMNIST Auxo 63 97 171

Baseline 60 93 185

Speech Auxo 57 100 479

Baseline 52 100 503

Table 4: Summary of improvements on model bias.

FL+HC FlexCFL IFCA Auxo

Speedup 1.7× 1.3× 0.5× 2.4×
Efficiency 1.6× 1.8× 0.5× 2.4×FEMNIST

Final acc. 5.8% 7.1% 1.3% 9.1%

Amazon Speedup 0.4× 0.4× 0.5× 2.3×
Review Efficiency 0.4× 0.5× 0.5× 2.1×

Final acc. -2.9% -2.7% 0.6% 5.4%

Table 5: Summary of improvements over baseline (i.e.,
no cohorts) in terms of time, resource and accuracy.

on OpenImage, then we evaluate Auxo with YoGi across dif-

ferent degrees of statistical heterogeneity. Figure 13a reports

the final test accuracy as well as top 10% and worst 10%

client test accuracy on different degrees of heterogeneity.

We observe that Auxo can improve model accuracy and mit-

igate model bias under different degrees of heterogeneity.

Moreover, similar to the previous experiment, Auxo achieves

faster time-to-accuracy performance from 1.2× to 1.8×.

Impact of time to partition. We investigate the impact of

different cohort partition times on the model convergence.

As mentioned in Section 4.4, the partition time relates to the

trade-off between model generalizability and intra-cohort

heterogeneity. As shown in Figure 13b, we choose differ-

ent partition times with the same cohort composition and

report the test accuracy to time performance on FEMNIST.

We observe that cohort-based training all outperform the

baseline experiment with one cohort. However, early parti-

tions such as FlexCFL and IFCA are worse than intermediate

partitions, because it sacrifices the model generalizability.

Similarly, late partition after convergence as CFL does not

outperform intermediate partition, because it slows down the

model convergence to a smaller heterogeneous population.

Impact of time to start clustering. We investigate the im-

pact of the clustering start time on themodel convergence. As

mentioned in Section 4.4, different clustering start time may

affect the clustering accuracy and efficiency. To quantify how

well the gradient similarity correlates with data similarity, we
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Figure 12: Impact of cluster start time.

use Pearson correlation coefficient 𝑟 =
∑𝑛
𝑖=1 (𝐺𝑖−𝐺) (𝐷𝑖−𝐷̄)√∑𝑛

𝑖=1 (𝐺𝑖−𝐺)2
∑𝑛
𝑖=1 (𝐷𝑖−𝐷̄)2

,

where D and G are pairwise data similarity and gradient

similarity. As shown in Figure 12, the similarity correlation

slightly increases over training rounds, which suggests a

slightly later cluster start time.

Impact of the number of cohorts. We investigate the impact

of the number of cohorts generated by Auxo, which relates

to the trade-off between training resources and intra-cohort

heterogeneity (§4.4). As shown in Figure 13c, we observe

that the model convergence is negatively affected once the

number of cohorts exceeds 4 under the same resource bud-

get. By further comparing the reduce of heterogeneity with

different number of cohorts indicated in Figure 3, this result

verifies that better model convergence can be achieved as

long as the heterogeneity can proportionally compensate the

reduced training resources

7.5 Auxo Resilience
Impact of differential privacy. Auxo is robust to local differ-

ential privacy (LDP). LDP is used to protect user-level privacy

by adding Gaussian noise to the client update before sending

it to the server, but it hurts model accuracy. We evaluate

Auxo’s performance under LDP for a learning task on the

Amazon Review dataset. To achieve (𝜖, 𝛿)-differential privacy,

where 𝛿 = 10
−6

based on the training scale and 𝜖 = 2, 4, 8, we

set the noise scale 𝜎 = 1.0, 0.77, 0.6. As shown in Figure 14a,

Auxo can still benefit FL training across different differential

privacy guarantees.

Impact of malicious attacks. We investigate the robustness

of Auxo by manually involving corrupted clients. Following

a popular adversarial ML setting that introduces local model

poisoning [20], we randomly flip the ground-truth data la-

bels for these corrupted clients. As shown in Figure 14b, we

introduce different percentages of corrupted clients to the

OpenImg task. We set the percentage of corruption below

15%, which is a practical percentage under the real-world set-

ting [20]. We observe that Auxo still improves performance

across different degrees of corruption through identifying

malicious clients and eliminating their interference.

Impact of unstable client. Finally, we show Auxo is ro-

bust with unstable clients who fail to maintain their affinity

records, which may result in less accurate clustering results.
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Figure 13: Sensitivity analysis.
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Figure 14: Robustness of Auxo under different scenarios.

We consider loss rates from 0% to 20% and report the corre-

sponding final test accuracy in Figure 14c. We notice Auxo

outperforms the baseline across different affinity loss rates.

8 RELATED WORK
Distributed Machine Learning. Distributed ML in data cen-

ters has been well-studied [49, 55, 85], where homogeneous

data and workers are assumed [24]. With the same train-

ing goal, FL raises its unique challenges including the data

heterogeneity and system heterogeneity. As a result, Auxo

aims at speeding up the training process through directly

reducing the intra-cohort heterogeneity at scale.

Federated Learning. FL is a distributed machine learning

paradigm [10, 34] with two key challenges: statistical and

system heterogeneity. State-of-the-art FL algorithms try to

tackle these two challenges and optimize different targets

including model convergence [38, 41, 45, 46, 59, 88], fair-

ness [40, 42], privacy [9, 62–64], efficiency [5, 26, 51, 79],

and robustness [25, 40]. However, they underperform in FL

because they do not tackle the root cause of FL challenges

but mitigate the negative effect caused by heterogeneity.

Federated Analytics. There has been significant work on

geo-distributed data analytics [29, 35, 58, 74]. They mainly

optimize the execution latency [37] and resource efficiency [28,

78]. To further preserve privacy for distributed data, Or-

chard [64] and Honeycrisp [63] have been proposed to enable

large-scale differentially private analytics. Helen [91] and

Cerebro [90] allow multiple parties to securely train models

without revealing their data.

Traditional Clustering Algorithms. Clustering algorithms [7,

81] are used in popular data mining techniques, which usu-

ally assume access to all data. However, under FL setting, it

is non-trivial to design a clustering algorithm because of the

unavailability of data. Auxo proposes a clustering algorithm

that can be applicable to the FL settings.

FL Client Clustering. In order to leverage the nature of

clusters in real-world FL dataset, many algorithms have been

proposed to identify the clusters among FL clients. However,

existing clustered FL solutions [11, 16, 22, 67] mainly suffer

from scalability and practicality, which are hard to adapt

to large-scale, low-participation, and resource-constraint FL

training. Considering all real-world constraints, Auxo build

a practical system to identify cohorts and benefit FL training.

9 CONCLUSION
We presented Auxo, which builds on top of the observation

that there exist natural groups of statistically similar clients

(cohorts) in large real-world FL populations. Auxo identifies

cohorts with reduced intra-cohort heterogeneity at scale,

addressing heterogeneity-borne FL challenges at their roots.

Auxo proposes an efficient algorithm and practical system

that can be applied under real-world FL constraints to signif-

icantly benefit FL training in terms of model convergence,

final accuracy, and model bias.
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A PROOF OF LEMMA 4.1
We first make precise some definitions that are related to the

proof from SCAFFOLD and then see the proof of Lemma 4.1.

A.1 Additional definitions
Assumption 1. 𝑔𝑖 (𝑤) is unbiased stochastic gradient of 𝑓𝑖

with bounded variance, where 𝑓𝑖 represents the loss function

on client 𝑖 .

E𝑥𝑖 [| |𝑔𝑖 (𝑤) − ∇𝑓𝑖 (𝑤) | |2] ≤ 𝜎2,∀𝑖, 𝑥 .
where𝑤 is the aggregated server model. Note that 𝜎 only

bounds the variance within clients not across clients.

Assumption 2. {𝑓𝑖 } are 𝛽-smooth and satisfy:

| |∇𝑓𝑖 (𝑤) − ∇𝑓𝑖 (𝑣) | | ≤ 𝛽 | |𝑤 − 𝑣 | |,∀𝑖,𝑤, 𝑣 .

Assumption 3. 𝑓𝑖 is 𝜇-convex for 𝜇 ≥ 0 and satisfies:

⟨∇𝑓𝑖 (𝑤), 𝑣 −𝑤⟩ ≤ −(∇𝑓𝑖 (𝑤) − ∇𝑓𝑖 (𝑣) +
𝜇

2

| |𝑤 − 𝑣 | |2),∀𝑖,𝑤, 𝑣 .

Assumption 4. (G, B)-BGD or Bounded Gradient Similarity:

there exist constants 𝐺 ≥ 0 and 𝐵 ≥ 1 such that

1

𝑁

𝑁∑︁
𝑖=1

| |∇𝑓𝑖 (𝑤) | |2 ≤ 𝐺2 + 𝐵2∇𝑓 (𝑤)),∀𝑤.

A.2 Theoretical Results
Lemma 1. If the population and training resources are

partitioned into up to 𝐾 cohorts, to theoretically achieve

better model convergence, intra-cohort heterogeneity should

be reduced by

√
𝐾 times when the training resource |P |

is larger than 𝛼
√︃
|P0 |
𝐽 2
0

. 𝛼 is a constant setting specified in

SCAFFOLD that elaborates the relationship between model

convergence and training resources.

Proof. We first borrow the proof of convergence analysis

on FedAvg (Theorem 1) from SCAFFOLD following the same

assumptions mentioned above:

E[𝑓 (𝑤𝑅)] − 𝑓 (𝑤∗) ≤ 3| |𝑤0 −𝑤∗ | |2𝜇𝑒−
𝜂

2
𝑅

+𝜂 ( 2𝜎
2

𝑘𝑃
(1 + 𝑃

𝜂2𝑔
) + 8𝐺2

𝑃
(1 − 𝑃

𝑁
)) + 𝜂2 (36𝛽𝐺2),

∀ 1

𝜇𝑅
≤ 𝜂 ≤ 1

8(1 + 𝐵2)𝛽
where P denotes the training resources, k is the number

local steps, 𝜂𝑙 is the local step-size, 𝜂𝑔 is the global step-size

and 𝜂 = 𝑘𝜂𝑙𝜂𝑔 is the effective step-size

Since we only care about the effect of training resources 𝑃

and heterogeneity𝐺 on the convergence analysis, we further

simplify the right hand side equation to be

ℎ(𝑃,𝐺) = 𝜃

𝑃
+ 𝛾𝐺

2

𝑃
+ 𝜌𝐺2 + 𝜉

where 𝜃,𝛾, 𝜌 and 𝜉 are constant settings. Since we propor-

tionally partition the population and training resources, we

can assume (1− 𝑆
𝑁
) to be constant before and after partition.

In order to have no worse model convergence bound after

partitioning, we need ℎ(𝑃,𝐺) to be non-increasing with the

reduction of training resources 𝑃 . As proposed in Lemma 4.1,

Auxo partitions𝐾 cohorts when the intra-cohort heterogene-

ity can be reduced by

√
𝐾 times, which approximately give

𝐺2

𝑃
be constant as the one before partition

𝐺2

0

𝑃0
. By substituting

this relationship into ℎ(𝑃,𝐺), we can derive the lower bound

for the range of training resources required to achieve better

convergence bound:

𝑃 ≥
√︄
𝜃𝑃0

𝐺2

0
𝜌
=

√︄
𝜎2

18𝑘𝜂2𝛽

𝑃0

𝐺2

0

= 𝛼
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