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ABSTRACT

Traditional knowledge modeling methods have primarily focused
on student knowledge modeling using assessed learning activities,
often overlooking the critical interplay between students’ knowl-
edge and behavioral preferences. However, students typically inter-
act with multiple types of learning materials, such as questions (as-
sessed), video lectures (non-assessed), and textbooks (non-assessed).
We argue that student knowledge can affect their behavioral pref-
erences, and the choice of learning material type can influence
their knowledge. In this paper, we address this gap by proposing
a novel framework that models student knowledge and behavior
as a multi-task learning problem with two objectives. Our dual
objectives are to predict student performance and their preferences
for selecting different types of learning materials. We utilize the
Pareto Multi-Task Learning (MTL) algorithm to effectively han-
dle the complexities of this multi-objective optimization, applying
it to two advanced multi-activity knowledge modeling methods,
TAMKOT and GMKT, which we refer to as Pareto-TAMKOT and
Pareto-GMKT, respectively. We evaluate the framework on one
real-world dataset. Our experimental results demonstrate that both
Pareto-TAMKOT and Pareto-GMKT improve upon their original
models and outperform all baseline models. This underscores the
benefits of treating the modeling of student knowledge and behavior
as a multi-task learning problem and addresses this multi-objective
challenge through the application of Pareto MTL.
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1 INTRODUCTION

Recently, the demand for online education systems has surged,
significantly enhancing their importance [35]. A vast amount of
data from student interactions, provided by these systems, is bene-
ficial for automatically understanding each student’s knowledge
and learning behaviors. Traditionally, research has focused only
on student knowledge modeling [4, 8, 10, 23], which models stu-
dent knowledge based on their interaction history with learning
materials and aims to predict future performance [13, 16, 22, 24,
26, 29, 31, 31]. However, this often overlooks the modeling of
student behavioral preferences. Early student knowledge mod-
els mainly addressed only assessed activities like solving ques-
tions [4, 5, 10, 17, 19, 20, 23]. Recently, there has been a shift to-
wards multi-activity models that also account for non-assessed
activities, such as watching video lectures [1, 6, 30, 33-35]. These
multi-activity knowledge models can represent how students learn
from both assessed and non-assessed activities. Although these
models are crucial for understanding how different activities con-
tribute to knowledge growth, they often neglect the potential in-
sights from behavioral signals, particularly the relationship between
student knowledge and their behavioral preferences.

Studies have shown that student knowledge and behavior mu-
tually influence each other [2, 3, 21, 34, 35]. For example, some
students repeatedly attempt questions they have already answered
correctly to boost their confidence, although this behavior may
not effectively enhance their knowledge. Essentially, while stu-
dents’ choice of material is partly driven by their preferences, their
knowledge state also determines their choice of material [15, 25].
A student confident about a topic may choose to skip additional
materials on the same topic. Moreover, the selection of materials
based on student’s personal behavior preferences can shape their
knowledge acquisition. By choosing topics that align with their
interests, students encounter a variety of materials that can enrich
their knowledge in diverse ways. Consequently, it is crucial to un-
derstand the interplay between students’ knowledge and behavioral
preferences.

We propose a framework that treats the simultaneous learning of
student knowledge and behavior as a multi-task learning problem
with dual objectives: (1) predicting student performance, and (2)
predicting the types of materials students will interact with. We uti-
lize the Pareto MTL algorithm [18], to address this multi-objective
optimization challenge. We apply this framework to two transition-
aware multi-activity knowledge modeling methods, TAMKOT(35]
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and GMKT [33], hereafter referred to as Pareto-TAMKOT and
Pareto-GMKT, to evaluate the effectiveness of the proposed frame-
work. Our evaluation is conducted on a real-world dataset. The
results of our experiments show that Pareto-TAMKOT and Pareto-
GMKT enhance their original models and outperform all other
baseline models in both tasks, demonstrating that capturing both
student knowledge and behavior can mutually benefit learning in
each task. It is worth noting that our approach represents a pre-
liminary exploration of the use of multi-objective optimization for
knowledge and behavior modeling, and to the best of our knowl-
edge, this is the first attempt in this direction.

2 PROBLEM FORMULATION

Our goal is not only to predict students’ upcoming performance
on assessed materials but also to anticipate their selection of fu-
ture material types. Accordingly, consider an education system
that provides two types of learning materials, one assessed (e.g.,
questions) and one non-assessed (e.g., video lectures). We represent
a student’s entire trajectory of learning activities as a set of tuples
(i1,d1), ..., (it,d;), where each tuple (i, d;) denotes a student’s
learning activity at time step t. Here, d; € {0, 1} is a binary indica-
tor to represent the type of material being interacted with at time
step t, where 0 signifies the assessed material type, and 1 signifies
(q;,rt) lfdt =0 . .
indi-
lt lf dt =1
cates the specific learning material and, for assessed activities, the
corresponding student response at time step ¢. Specifically, (g, r;)
denotes that the student interacted with assessed material g; at
time step t, and their performance is recorded as r;. Conversely,
I; represents the non-assessed material with which the student
interacted at time step t. Eventually, given a student’s historical
trajectory learning activities, {({i1,d1), ..., (it, dt)}, our objective
is to predict the material type d;4+; that the student will interact
with at the next time step ¢ + 1, as well as the student’s upcoming
performance r;41 on the assessed material g¢41, if dryq = 0.

the non-assessed material type. And, i; =

3 METHODOLOGY

As we aim to simultaneously model student knowledge and behav-
ior preferences, which differ from traditional knowledge models
focused solely on predicting student performance, we frame this as
a multi-task learning problem with two objectives: (1) L, for pre-
dicting student performance, and (2) L for predicting material type
they will choose. Then, we apply a Pareto learning optimization al-
gorithm, specifically Pareto MTL [18], to learn the model and solve
this multi-objective problem, thereby finding well-representative
solutions for both tasks. An overview of this framework is presented
in Figure 1. We first briefly introduce Pareto-Based Multi-Objective
Learning.

3.1 Pareto-Based Multi-Objective Learning

Assuming a series of m correlated tasks, characterized by a loss
vector: ming £(0) = (£1(0), £L2(0), ..., L;m(0))T, with L£;(6) rep-
resenting the objective function associated with the i-th task [36].
This scenario represents a multi-objective optimization challenge,
where it’s not possible to simultaneously optimize all objectives to
their fullest extent [18]. Instead, Pareto learning aims to identify a
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collection of Pareto optimal solutions. These solutions offer a range
of optimal trade-offs between the various objectives, as described
in [18, 36]: Pareto dominance: Let 8% and 6 be two solutions, 6%
is said to dominate 8% (9% < 6) if and only if £;(0%) < £;(6?),
Vie{l,..,m}and L;(6%) < Lj(Gb), 3j € {1, .., m}. Pareto opti-
mality: 0* is a Pareto optimal point and £(6*) is a Pareto optimal
objective vector if it does not exist 6 < 0*. The set of all Pareto
optimal points is called the Pareto set [18].

3.2 Pareto MTL for Student Knowledge and
Behavior Modeling

Suppose there is a model that learns hidden student knowledge
and behavioral states based on the historical sequence of learning
activities {(i1,d1),..., (ir,dr—1)}. Predictions for future student
performance, p;, and learning material type, y;, are calculated using
the learned knowledge and behavioral state at time step ¢ — 1. The
two objective functions for student performance, £,, and material
type prediction, L, are determined using a summed binary cross-
entropy loss for each time step t, as follows:

Ly == (rilogps + (1= rs)log(1 - ps)) (1)
t

La==" (dlogy, + (1~ d;)log(1 - yy)) ®
t

Here, r; and d; represent the actual student response and the type of
learning material the student interacts with at time ¢, respectively.
This dual-objective problem could be initially addressed by mini-
mizing a combination of £, and L, setting a trade-off to balance
between the contributions of the student performance objective
and the activity-type objective. However, determining how to effec-
tively combine the student performance objective and the activity
type objective and establish a proper trade-off among them is a
challenging issue [18], and it is time-consuming to experiment with
various trade-off values.

Recent developments have introduced strategies to address the
multi-objective optimization problem by identifying a single Pareto
optimal solution [9, 11, 12, 28, 36]. However, one multi-objective
problem can have many optimal trade-offs among its tasks, po-
tentially infinite, and the single solution obtained by this method
might not always meet the needs of multi-objective problem practi-
tioners. The Pareto MTL algorithm [18], is designed to identify a
collection of representative Pareto optimal solutions at the same
time, each offering a different trade-off among tasks. We adopt
the Pareto MTL algorithm for training our model, which allows
us to effectively solve our dual-objective problem of both student
performance and material type tasks. As illustrated in Figure 2,
the algorithm employs a series of dividing vectors kq, ko, ..., ky, to
decompose our dual-objective optimization challenge into multiple
constrained sub-problems. Each sub-problem represents a trade-off
preference, and these sub-problems are solved concurrently. To
this end, we obtain a set of well-representative Pareto solutions for
the dual-objective problem of predicting student performance and
material type, enabling us to select our preferred solution(s) from
the set of Pareto optimal solutions.
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Figure 1: The framework of modeling student knowledge and Figure 2: The illustration of Pareto MTL, it finds a set of Pareto

behavior as dual-objective problem and learning via Perato
MLT.

3.3 Knowledge Model

We utilize multi-activity student knowledge models that handle
various types of learning materials to simultaneously model student
knowledge and behavior. We implement a Pareto multi-objective
knowledge and behavior modeling framework on two models:
TAMKOT [35] and GMKT [33]. These are two transition-aware
student knowledge models that both learn different knowledge
transfer matrices to model the transfer of knowledge across dif-
ferent types of learning activities. Binary indicators are used to
represent permutations of transitions between material types from
t — 1 to t, and are used to determine which transfer matrix should
be activated for update knowledge. We briefly introduce the key
concepts of these models; for the more detailed models, please refer
to their original papers in [33, 35].

3.3.1 TAMKOT. The knowledge modeling component of TAMKOT
is built upon LSTM [14], where the student’s latent knowledge is
represented by the LSTM’s hidden state, h;. Different transfer ma-
trices are applied to transmit information from h;_; to h; for each
gate and cell of the LSTM. Subsequently, we propose that h; is used
to predict student future performance and material type through
two distinct MLPs, as follows:

pre1 =0 (Wylht © graa] +byp) (©)]
Yrs1 = (WL he +by) )

3.3.2 GMKT. GMKT is designed with a knowledge transfer layer
based on memory-augmented neural networks (MANN [31]). It
utilizes a static key matrix M¥ to represent N latent concept fea-
tures and a dynamic value matrix M? to track the student’s mastery
state in concepts. The erase-followed-by-add mechanism updates
the memory value matrix M7. This process involves erasing previ-
ous redundant information before adding new information to M?,
based on different knowledge transfer matrices. A read content
ct+1 is then retrieved to summarize the student’s knowledge state
for question g;+1. This summary is obtained using the weighted
sum of all memory slots in the value matrix M?, calculated using
an attention weight vector w41 that determines the correlation
between question g;+1 and each of the N latent concepts from Mk
Additionally, another read content for learning material type ¢
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solutions through a series of unit dividing vectors k.

summarizes a student’s behavior state of material type at each time
t, using an attention weight vector w{ calculated from MK The
predictions for student performance and material type are then
calculated through two distinct MLPs, as follows:

Pr+1 = o’(WI,(Tanh(W}[cHl ®©qq]+bp)+bp) (5)

Yyrsr = o(ds - Whed +(1—dy) - Whef +by) (6)

4 EXPERIMENTS

We evaluate the effectiveness of multi-objective behavior and knowl-
edge modeling using a Pareto multi-task algorithm through two
sets of experiments. First, we evaluate the predictive capabilities
of Perato-TAMKOT and Perato-GMKT in comparison to baseline
knowledge modeling methods in terms of student performance
Second, we examine how well Perato-TAMKOT and Perato-GMKT
predict the types of learning materials students will choose to in-
teract with. Our code and sample data are available at GitHub 1.

4.1 Dataset

We use the EdNet? [7] dataset to perform the experiments. This
dataset is sourced from a multi-platform Al tutoring service named
Santa®, which is designed to help Korean students prepare for the
TOEIC* English testing. For our research, we use a preprocessed
version of the dataset, which utilized questions (assessed) and their
associated explanations (non-assessed) as the two learning material
types, as detailed in previous studies [33, 35]. To summarize, the
dataset includes data from a total of 1,000 students, encompass-
ing 11, 249 questions and 8, 324 question explanations, along with
200, 931 question solving activities and 150, 821 explanation review
activities.

Uhttps://github.com/persai-lab/2024-UMAP-Pareto- GMKT-Pareto- TAMKOT
Zhttps://github.com/riiid/ednet

Shttps://www.aitutorsanta.com/

“https://www.ets.org/toeic
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4.2 Baselines

4.2.1 Performance Prediction Baselines. We compare Pareto-GMKT
and Pareto-TAMKOT with six baseline knowledge modeling meth-
ods to examine their effectiveness in predicting student perfor-
mance. This evaluation includes two supervised knowledge model-
ing methods that focus solely on assessed activities and two multi-
activity knowledge modeling methods. Additionally, we extend
the two assessed-only supervised modeling methods to also in-
clude non-assessed activities. These modified models are denoted
by adding ‘+M’ to their original names.

The assessed-only baselines are as follows: DKT [24] is the first
deep learning method in modeling methods, utilizing recurrent
neural networks (RNN) to trace students’ knowledge acquisition
over time. AKT [13] is an attention-based method, that adopts a
context-aware strategy using a monotonic attention mechanism
to prioritize past student performances that are relevant to the
current question. The following are multi-activity baseline models:
DKT+M [32] is an extension of DKT that incorporates both as-
sessed and non-assessed learning activities. It enhances the original
DKT by appending embeddings of non-assessed materials encoun-
tered between two assessed activities as additional input features,
alongside the original question embeddings. AKT+M adapts the
AKT framework by incorporating embeddings of non-assessed ma-
terials encountered between two assessed activities as an additional
feature. It also includes position encoding for each learning ma-
terial’s embedding to enhance the model’s context awareness [6].
TAMKOT [35] is a transition-aware model that utilizes LSTM [14]
technology. It stands out by employing multiple knowledge trans-
fer matrices, which explicitly model the transfer of knowledge
across various types of learning activities. GMKT [33] is another
transition-aware method, that leverages MANN technology and
incorporates a Graph Neural Network (GNN) to enhance the model-
ing of student knowledge through non-assessed learning activities.
It is the only existing method that also has an objective on the
selection of learning material types, but it does not utilize Pareto
learning.

4.2.2 Type Prediction Baselines. To assess the effectiveness of Pareto-
TAMKOT and Pareto-GMKT in predicting the types of learning
materials, we conduct experiments to compare Pareto-TAMKOT
and Pareto-GMKT against four deep sequential baseline models. To
facilitate the comparison, we employ learning material embeddings
along with the material type as inputs to these baselines and focus
on predicting only the upcoming type of material.

The baselines are as follows: L§TM [14] is a type of recurrent
neural network architecture known for its proficiency in learning
long-term dependencies. Its design is particularly effective for tasks
that require an understanding of entire data sequences. MANN [27]
augments neural networks with an external memory component,
which facilitates the storage and retrieval of information over long
sequences. Such a feature is highly beneficial for tasks that necessi-
tate sustained information retention and manipulation. Addition-
ally, variants of two multi-activity knowledge modeling methods
are employed: TAMOKT and GMKT. For these two baselines, we
retain the architecture of modeling knowledge and apply a Mul-
tilayer Perceptron (MLP) to the learned hidden behavior states,
specifically for only predicting the type of learning material. These
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two methods bypass the objectives of student performance predic-
tion.

4.3 Experiments Setup

We employ a 5-fold student-stratified cross-validation approach
to split the training, testing, and validation datasets [33, 35]. Se-
quences from 80% of the students constitute the training set, while
those from the remaining 20% are used for testing. Additionally, 20%
of the students from the training set are allocated as a validation set
for hyperparameter tuning. We use five evenly distributed dividing
vectors {(cos(%, sin( %)) |k =0,1,..., 5} for Pareto MTL optimiza-
tion. To avoid the potential issue of exploding gradients, we employ
the norm clipping. We ensure uniform sequence lengths by trun-
cating or padding them as necessary [24, 30, 33, 35]. The length
of these sequences, denoted as Ly, is considered as another hyper-
parameter and is tuned using the validation set. Sequences longer
than L are truncated into multiple sequences, while those shorter
than Lg are extended using padding with 0s. A coarse-grained grid
search is conducted to determine the best hyperparameters.

4.4 Prediction Performance Comparison

Since our experiments with the Ednet dataset involve two types
of learning materials, we employ the Area Under the Curve (AUC)
metric to evaluate the effectiveness of each model in predicting
learning material type. Additionally, since student responses to
questions are binary (success or failure), we also use the AUC as
the metric to assess the effectiveness of each model in predicting
student response. A higher AUC value indicates greater predictive
performance. To ensure fair comparisons among different methods,
we present the average results across five folds, complete with their
confidence intervals, at a significance level of 0.05 for each model.
The results of our experiments on student performance predictions
and material type predictions are presented in Table 1 and Table 2,
respectively.

As mentioned in Section 4.3, for our experiments, we employed
five evenly distributed dividing vectors in the Pareto MTL algo-
rithm to identify a well-distributed set of Pareto solutions for our
dual-objectives problem. Our experiments showed that both Pareto-
TAMKOT and Pareto-GMKT models achieved improvements in
predictions for both student performance and material type when

the dividing vector was set to (‘/TE, ‘/TE), which corresponds to the
direction of %, as illustrated by the middle vector k3 in Figure 2.
Conversely, the optimal prediction performance for each specific
task was consistently achieved using the corresponding extreme
dividing vectors, such as (0, 1) or (1,0). Under these settings, the
improvement in one task was substantial, while the other task often
experienced very limited improvement or even a negative impact.
Moreover, altering the dividing vector to other values typically
resulted in significant improvements in student performance pre-
dictions but only slight or limited enhancements for material type
predictions, and vice versa. This underscored the importance of
selecting an appropriate dividing vector to achieve balanced perfor-
mance across both objectives. Due to space limitations, we report

VZ V2

results using the (57, %) dividing vector exclusively in Table 1
and Table 2, which ensures a meaningful comparison that achieves
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Table 1: Student performance prediction results (AUC). The
best and second-best result are in boldface and underline.

Methods AUC
DKT 0.6393 + 0.01370
AKT 0.63933 £ 0.0104
DKT+M 0.6372 £ 0.0120
AKT+M 0.6404 + 0.0067
TAMKOT 0.6786 + 0.0063
GMKT 0.6819 + 0.0070
Pareto-TAMKOT | 0.6809 + 0.0063
Pareto-GMKT 0.6853 +0.0071

two our objectives that enhance the prediction performance of both
student response and material type.

4.4.1 Student Performance Prediction. First, we can see that Pareto-
TAMKOT and Pareto-GMKT outperform their counterparts, TAMKOT
and GMKT, which do not utilize Pareto MTL, respectively. This
demonstrated that incorporating the objective of material type
prediction and utilizing Pareto MTL can enhance performance
in predicting student responses. However, it was observed that
Pareto-TAMKOT does not outperform GMKT, and Pareto-GMKT
greatly outperforms Pareto-TAMKOT. These two observations sug-
gested that while applying the Pareto MTL algorithm can improve
model optimization for our multi-objective problem of student per-
formance and material type predictions, the inherent strength of
the model itself is crucial for accurately learning student knowl-
edge and behavioral preferences. Additionally, the superior per-
formance of GMKT supports the idea that focusing on both stu-
dent response and learning material type predictions can facilitate
student knowledge modeling and improve predictions of student
responses. In summary, the strong performance of Pareto-TAMKOT
and Pareto-GMKT demonstrated that simultaneously modeling stu-
dents’ knowledge and behaviors, and formulating it as a multi-task
learning problem with multiple objectives, optimized using Pareto-
MTL, can further enhance the modeling of student knowledge.

4.4.2  Material Type Prediction. Similarly, we observed that Pareto-
TAMKOT and Pareto-GMKT outperform all baseline methods in
the material type prediction task. Specifically, Pareto-TAMKOT and
Pareto-GMKT showed superior performance compared to TAMKOT
and GMKT, respectively. This underscored the effectiveness of for-
mulating a multi-objective problem, optimized with the Pareto-MTL
algorithm, which improves our understanding of students’ learning
material behavior preferences. However, when comparing Pareto-
TAMKOT to Pareto-GMKT, it is evident that the improvement with
Pareto-GMKT is slight. We hypothesized that this is due to the
already high performance of all baseline models in the learning ma-
terial type prediction task, which poses a challenge for significant
enhancements; thus, the model itself should have more strength
in modeling behavior. The modest improvement of GMKT com-
pared to TAMKOT also supports this observation. Nonetheless,
both Pareto-TAMKOT and Pareto-GMKT still managed to enhance
material type prediction performance. This again demonstrated
that simultaneously modeling students’ knowledge and behaviors,
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Table 2: Material type prediction results (AUC). The best and
second-best result are in boldface and underline.

Methods AUC
LSTM 0.8768 + 0.0041
MANN 0.8933 + 0.0030
TAMKOT 0.8929 + 0.0042
GMKT 0.8932 £ 0.0046
Pareto-TAMKOT | 0.8987 + 0.0042
Pareto-GMKT 0.8992 + 0.0066

and formulating it as a multi-task learning problem with multiple
objectives, optimized using Pareto-MTL, can further enhance the
modeling of student behavior.

Overall, our results from both the Pareto-TAMKOT and Pareto-
GMKT for both student performance and material type prediction,
demonstrated that simultaneously modeling student knowledge
and tracking their material selection behaviors leads to a deeper mu-
tual understanding of these aspects, ultimately benefiting learning
in each task. Consequently, it was evident that framing student per-
formance and learning material type prediction as a multi-objective
problem is essential to enhance both tasks. Moreover, applying the
Pareto-MTL optimization algorithm proves effective in identifying
the optimal solutions for these two tasks. In summary, our approach
to addressing the multi-objectives of student performance and ma-
terial type prediction through Pareto-MTL is crucial for accurately
capturing both student knowledge and behaviors related to learn-
ing material selection, thereby improving predictions of student
performance and material preferences.

5 CONCLUSIONS

We addressed the overlooked relationship between students’ knowl-
edge and behavioral preferences by introducing a novel multi-
task learning framework with multiple objectives. Utilizing the
Pareto MTL algorithm, we applied this framework to two enhanced
multi-activity knowledge modeling methods, TAMKOT and GMKT,
termed Pareto-TAMKOT and Pareto-GMKT. Our approach outper-
formed existing models in predicting both student performance and
material preferences. This demonstrated the benefits of treating the
modeling of student knowledge and behavior as a multi-task learn-
ing problem and effectively tackles this multi-objective challenge
through the application of Pareto MTL.
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