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Significance

Multistability has emerged as a 
powerful platform to design 
functional structures for shape 
change, property tuning, and 
multimodal actuation. Most 
multistable structures are 
constructed by connecting 
multiple bistable units. Here, we 
introduce a concept of segmented 
rings with intrinsic multistability 
by programming the natural 
curvature of the rod segments. 
Guided by theoretical modeling, 
simulation, and experimental 
validation, we demonstrate that a 
segmented ring with a rectangular 
cross- section can exhibit up to six 
distinct planar stable states 
characterized by uniform bending 
in each segment. The segmented 
rings constitute what are probably 
the simplest elastic structural 
entities with multiple stable 
states, and they will serve to 
expand the application space of 
functional multistable structures.
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Multistable structures have widespread applications in the design of deployable aerospace 
systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due 
to their capability of shape reconfiguration between multiple stable states. Recently, the 
snap- folding of rings, often in the form of circles or polygons, has shown the capability 
of inducing diverse stable configurations. The natural curvature of the rod segment 
(curvature in its stress- free state) plays an important role in the elastic stability of these 
rings, determining the number and form of their stable configurations during folding. 
Here, we develop a general theoretical framework for the elastic stability analysis of seg-
mented rings (e.g., polygons) based on an energy variational approach. Combining this 
framework with finite element simulations, we map out all planar stable configurations 
of various segmented rings and determine the natural curvature ranges of their multi-
stable states. The theoretical and numerical results are validated through experiments, 
which demonstrate that a segmented ring with a rectangular cross- section can show up 
to six distinct planar stable states. The results also reveal that, by rationally designing 
the segment number and natural curvature of the segmented ring, its one-  or multiloop 
configuration can store more strain energy than a circular ring of the same total length. 
We envision that the proposed strategy for achieving multistability in the current work 
will aid in the design of multifunctional, reconfigurable, and deployable structures.

multistability | structural instability | segmented rings | natural curvature

Multistability, the feature of elastic structures or solids having multiple stable equilibrium 
states, has recently emerged as a powerful platform used toward the design of shape- 

 reconfigurable architectures and aerospace structures (1–3), energy- trapping metamaterials 
(4, 5), flexible electronics (6, 7), and multimodal morphing robots (8–11). Under an external 
stimulus to overcome the energy barrier between stable states, a multistable structure transi-
tions between its stable configurations for shape change and property tunability. Fig. 1A 
shows an example of the shape reconfiguration of a multisegment ring toy, which demonstrates 
the transitions from a planar configuration to three- dimensional (3D) architectures with 
tunable height. Among the various strategies to design functional multistable structures, one 
common method is to connect together multiple bistable units, such as curved beams and 
shells, which can be selectively actuated to switch between different stable states through 
structural instability (12–15). Recently, the snap- folding of rings has shown the capability of 
inducing diverse stable configurations with great area- tuning ability (16–19). These rings are 
often presented as circles, polygons, or their modified counterparts which can be folded into 
shapes with significantly reduced area and distinct morphology (18–22). In addition to the 
cross- sectional shape of the rod and geometry of the rings, the natural curvature of the rod 
segment (curvature in the stress- free state) plays an important role in the elastic stability of 
these rings, determining the number and form of their stable configurations during folding 
(23–30). Despite the elastic stability of rings having been studied by several works, most 
attention has been focused on circular rings (27–30), and the influence of natural curvature 
on the elastic stability of segmented rings (e.g., polygons) remains largely unexplored.

Recently, we have found that segmented rings exhibit intrinsically multistable config-
urations when their natural curvatures are rationally selected in coordination with the 
rod cross- sectional geometry. Fig. 1 B, i shows a rod segment as a building block of the 
multisegment ring. The rod of length L has a curvature κn in its stress- free state (referred 
to as the natural curvature) in the (i1, i2) plane of the ring and a curvature κ0 in the 
initially stressed state (referred to as the initial curvature). When connecting multiple 
identical rod segments, a 1- loop segmented ring can be constructed. There is no twist in 
the 1- loop segmented ring, and each rod segment is subject to uniform bending in the 
plane of the ring which depends on κn and κ0. An example of an 8- segment ring (i.e., 
octagon) with κ0 = 0 is shown in Fig. 1 B, ii. This 8- segment ring can also form the 2- loop 
curved- sided square shown in Fig. 1 B, iii by disconnecting one corner shared by two D
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adjacent segments, winding one end by 2π, and reconnecting the 
two ends. The 2- loop ring also has no twist, but one loop crosses 
over the other. Due to the elastic deformation introduced during 
the winding process, each rod which was straight in the 1- loop 
state has an initial radius R = LT/2π in the 2- loop state (with  
LT = 8L being the total length of all rod segments). By using this 
strategy, we can also build 2- loop rings with straight segments 
that possess predefined natural curvatures (SI Appendix, Fig. S1). 
The segmented rings can transform into other stable states with 
larger loop numbers under application of external load (e.g., 
bending or twisting). For example, the 1- loop segmented ring 
can fold into a 3- loop state, and the 2- loop segmented ring can 
fold into a 4- loop state, as shown in Fig. 1C and Movie S1 for 
an 8- segment ring.

By increasing the natural curvature of the rod segment, the 
1- loop and 2- loop segmented rings can transform into additional 
stable states spontaneously by structural instability or under exter-
nal load. Fig. 1C presents the first twelve planar equilibrium states 
of the 1- loop and 2- loop 8- segment rings. Remarkably, with one 
exception that will be mentioned later, the rod segments in all 
states shown in Fig. 1C have a uniform bending moment. For a 
specific rod cross- section, stability of each of these states can be 
achieved by adjusting the natural curvature of the rod segments. 
These states include all the nonrepeating planar configurations of 
the 8- segment ring with zero or positive natural curvature (the 
segment with positive natural curvature bends toward the center 
of the ring). States with loop numbers larger than 12 are 
smaller- sized repeated configurations (SI Appendix, Fig. S2).  

Fig. 1.   Multistable segmented rings. (A) Multiple states of a multisegment ring toy with tunable height. The toy can transform into different states by selectively 
controlling the configuration of different layers. (B) Construction of 1- loop and 2- loop rings using multiple rod segments. The rod segment of length L (blue) has 
a natural curvature κn that can be elastically reconfigured via bending to an initial state (orange) with initial curvature κ0 (i). Note that both κn and κ0 can be either 
zero or nonzero. Connecting multiple segments end- to- end will result in a planar 1- loop segmented ring (ii), such as an 8- segment ring (i.e., octagon) with κ0 = 0.  
Disconnecting this 1- loop segmented ring and winding one end by 2π and then reconnecting will result in a 2- loop segmented ring (iii), which has a uniform 
edge radius R = LT/2π. (C) The first 12 planar equilibrium states of an 8- segment ring. Each of these states is stable within a specific range of the natural curvature 
depending on the rod cross- sectional geometry. States with loop numbers larger than 12 are repeating configurations of smaller sizes. The m- loop state has a 
uniform edge radius R = LT/[2(m−1)π] except for the 8- loop state with a nonuniform radius.

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 S

T
A

N
F

O
R

D
 U

N
IV

E
R

S
IT

Y
 o

n
 J

u
ly

 2
4
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

7
1
.6

6
.1

3
0
.1

0
1
.



PNAS  2024  Vol. 121  No. 31 e2405744121 https://doi.org/10.1073/pnas.2405744121 3 of 11

By decreasing the natural curvature of the rod segments such that 
they bend away from the center of the ring, we can obtain a new 
group of planar equilibrium states of the 8- segment ring with 
negative natural curvature (SI Appendix, Fig. S3). The planar equi-
librium states of the 8- segment ring with negative natural curva-
ture are inverted configurations of the ring with zero or positive 
natural curvatures. Additionally, when considering the self- contact 
between the layers (31), the ring can be stable in some 3D states 
(SI Appendix, Fig. S4). In this work, we mainly focus on the planar 
equilibrium states of the segmented ring with nonnegative natural 
curvatures. The planar states are named by the loop number, which 
is characterized by the number of loops needed to wind the dis-
connected 1- loop ring to achieve a specified state. Specifically, to 
form the m- loop state (m is an integer), we need to wind one end 
of the disconnected 1- loop state with additional (m−1) loops, or 
equivalently to wind by 2(m−1)π (Movie S2). As a result, if the 
m- loop state has a uniform edge radius, the radius is equal to

 [1]R =
LT

2(m − 1)�
.

All the states with a loop number larger than or equal to 3 can be 
achieved by folding either the 1- loop or the 2- loop configuration of 
the segmented ring. Additionally, higher loop number states can be 
mutually stable and transform between one another, depending on 
the natural curvature, loading method, and cross- sectional geometry. 
Therefore, as will be illustrated, rational design methods can be 
employed to construct segmented rings that are stable in multiple 
states.

In this paper, we thoroughly investigate the multistability of 
segmented rings by seeking all possible planar stable states and 
identifying their corresponding natural curvature ranges. For this 
purpose, we use a combination of theoretical modeling, finite ele-
ment analysis (FEA), and experimental validation. In particular, 
1- loop and 2- loop rings with different segment numbers are con-
sidered (see SI Appendix, Figs. S2 and S5–S10 for the planar equi-
librium states of rings with segment numbers n varying from 4 to 
10). The natural curvature range within which the segmented rings 
are stable is predicted by a stability analysis based on requiring 
positive energy variations about the equilibrium state. The transi-
tions between different stable states of 1- loop and 2- loop segmented 
rings are studied using FEA and are validated experimentally. To 
highlight just one finding, it will be shown that 1- loop 8- segment 
rings can be designed to have up to six planar stable states, three 
of which are associated with the 1- loop state and three with the 
2- loop state. We believe such rings may be the simplest elastic 
structural systems capable of displaying this level of multistability. 
In addition, we envision that the strategy of programming natural 
curvature of segmented rings to guide their multistability could be 

which they are stable. The approach is carried out within the 
framework of Kirchhoff rod theory, which is a generalized version 
of the basic framework introduced in ref. 27. Compared to the 
basic framework, which applies only to several specific rings (e.g., 
circular rings in ref. 27 and curved- sided hexagram that can fold 
into a 3- loop line in ref. 23), this general framework can be used 
for the elastic stability analysis of arbitrary planar segmented rings 
with uniform edge curvature, regardless of the number of segments 
or layers. As shown in Fig. 1B, consider a n- segment ring lying in 
the (i1, i2) plane with each segment having length L and a uniform 
radius of curvature R = 1/κ0 about the i3- axis in the initial equi-
librium state (κ0 = 0 for a straight- sided segment). In this state, 
the principal axis along the thickness direction of the cross- section 
lies in the (i1, i2) plane with bending stiffness B1 about this axis, 
and the principal axis along the height direction of the cross- 
section is aligned with the i3- axis with bending stiffness B3. The 
torsional stiffness about the rod axis is denoted by B2. The curva-
tures about the respective principal axes are κ1, κ2, and κ3. In the 
planar equilibrium state, the uniform natural curvature κn is about 
the i3- axis such that the bending moment in each segment of the 
ring about this axis is B3(R

−1−κn). Adjacent segments are “welded” 
at the joints to form the planar configuration. The rod segments 
are inextensible and unshearable with linear bending and twisting 
constitutive behavior. Thereby, the strain energy in a rod segment 
in any state is given by

 [2]SE =
1

2 ∫
L

0

[

B1�
2
1
+ B2�

2
2
+ B3

(

�3−�n

)2
]

ds,

where κ1, κ2 vanish in the initial state and s is the arc length 
coordinate.

The rings lose stability via deformations that involve out- of- plane 
deflections and twists that are described using Euler angles to 
measure changes from the initial state. The curvature components 
can be expressed in terms of the Kirchhoff theory Euler angles  
(α, β, γ) as in ref. 27

  [3]

�1=
d�

ds
−
�

R
+O3,

�2=
d�

ds
+
�

R
+O3,

�3=
1

R

(

1−
�2

2
−
�2

2

)

−�
d�

ds
+
d (��)

ds
+O4,

with ω = α + γ, and the definition of the Euler angles is shown in 
SI Appendix, Fig. S11. Here, O3 and O4 represent the terms of 
order cubic and quartic, respectively, which can be neglected in 
evaluating the energy change to order O2. This energy change for 
a n- segment ring is

 [4]

Here, the superscript i denotes the quantity associated with the 
i- th segment, and M = 1 − Rκn is a dimensionless parameter measuring 
the bending moment introduced by the natural curvature in the initial 
state. The condition required for the state in question to be stable is 
that P2 > 0 for all nonzero admissible displacements, excluding rigid 
body motions, and this generates the stability eigenvalue problem. 
Obviously, when Rκn = 1, i.e., M = 0, P2 satisfies the condition because 

used for the design of other multifunctional, reconfigurable, and 
deployable structures.

Elastic Stability Analysis of Segmented Rings

We begin by briefly outlining the elastic stability analysis of seg-
mented rings to determine the natural curvature range within 

P2=
1

2

∑n

i=1 ∫
L

0

{

B1

(

d�(i)

ds
−
�(i)

R

)2

+B2

(

d�(i)

ds
+
�(i)

R

)2

−B3M

[

(

�(i)

R

)2

+

(

�(i)

R

)2

+
2�(i)

R

d�(i)

ds
−
2

R

d
(

�(i)�(i)
)

ds

]}

ds.
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dβ
(i)/ds−ω

(i)/R and dω
(i)/ds+β

(i)/R vanish for rigid body motions, 
meaning that the segmented ring is always stable when its natural 
curvature κn = 1/R. In the stability analysis, we determine the natural 
curvature range, R𝜅−

n
< R𝜅n < R𝜅+

n
 , such that the stability condi-

tion is satisfied, where R�−

n
 is the largest eigenvalue smaller than 1 

and R�+

n
 the smallest eigenvalue larger than 1 for which P2 is station-

ary with respect to all admissible displacements.
The details on finding the stability limits for κn are provided in 

SI Appendix, section S1. In particular, the last term in Eq. 4 involv-
ing α

(i)
β

(i) can be replaced by terms involving ω
(i) and β

(i) by 
making use of conditions at the segment corners (SI Appendix, 
Eq. S18). The final form of the stability functional is expressed in 
terms of the out- of- plane displacement and the twist, and the 
geometric constraints that must be satisfied at the corners joining 
the segments are specified (SI Appendix, Eq. S30). For 1- loop rings 
formed by straight rod segments, 1/R = 0 in Eq. 3, and their 
stability ranges can be determined following the same solution 
process (SI Appendix, section S2).

1- Loop Segmented Rings

Next, we introduce the multiple transition states of 1- loop seg-
mented rings with nonnegative natural curvatures, as shown in 
Fig. 2. When the loop number is an integer multiple of the seg-
ment number, i.e., m = kn (k = 1, 2, ⋯), the state has a nonuni-
form radius. All these states have the same total length LT and can 
be stable when their natural curvatures are within a specific range 
(see SI Appendix, Table S1 for stability limits of the dimensionless 
natural curvature κnLT/2π of the states with cross- sectional height- 
to- thickness ratio h/t = 4 and Poisson’s ratio ν = 0.3), which are 
determined using the method introduced in Elastic Stability 
Analysis of Segmented Rings (Verification of this method using FEA 

is presented in SI Appendix, Fig. S13 and section S3). These states 
are first found by examining the transition behavior of the 1- loop 
segmented rings with different natural curvatures through FEA. 
They are then validated experimentally (SI Appendix, Fig. S12). 
Details on FEA and the experiments are provided in Materials and 
Methods, and details on how to find all achievable planar stable 
states of 1- loop segmented rings are presented in SI Appendix, 
Fig. S14 and section S4. Here, seven types of 1- loop rings with 
segment numbers ranging from 2 to 8 are studied, which are 
referred to as birod, triangle, square, pentagon, hexagon, hepta-
gon, and octagon, respectively (Fig. 2A). Dimensionless natural 
curvature ranges for the stability and the dimensionless strain 
energy (ULT/B3) at the stability limits of these 1- loop segmented 
rings are shown in Fig. 3 A and B, which are dependent on the 
cross- sectional geometry. Note that the strain energy at the stabil-
ity limits of a segmented ring is given by U = B3LT(R−1−κn)

2/2. 
The stability range of the natural curvature gradually widens as 
h/t increases. At the upper stability limit, the triangle (n = 3) has 
the highest natural curvature and strain energy among various 
1- loop segmented rings, followed by the birod. As a result, the 
triangle can store the most strain energy without losing stability 
at the upper limit (Fig. 3B), surpassing even that of the 1- loop 
circular ring with the same total length. By contrast, the square 
(n = 4) has the lowest natural curvature and strain energy at the 
upper limit. At the lower stability limit (represented by dashed 
lines in Fig. 3 A and B), the magnitude of the natural curvature 
and strain energy of 1- loop segmented rings monotonically 
increases with the segment number. It is interesting that the 1- loop 
segmented rings can store much more strain energy at the lower 
stability limit than at the upper stability limit. Moreover, as the 
segment number n increases, the strain energy at the stability limits 
gradually converges to that of a 1- loop circular ring (with the same 

Fig. 2.   Transition states of 1- loop segmented rings with nonnegative natural curvatures. All these states can be stable within specific natural curvature ranges, 
which are provided in SI Appendix, Table S1 for the case of rectangular cross- sections with h/t = 4 and Poisson’s ratio ν = 0.3. (A) The 1- loop segmented rings are 
regular polygons when the segment number is larger than 2. The 1- loop 2- segment ring is composed of two straight rods welded at both ends and is referred to 
as a birod. (B) By applying a pair of bending loads at the loading points (blue dots), the 1- loop segmented rings can transform into the 3- loop states with uniform 
edge radii R = LT/4π (except for the 3- segment ring). (C) The 3- loop states transform into the 5- loop states with uniform edge radii R = LT/8π (except for the 5- segment 
ring). (D) The 5- loop states can transform into 7- loop states with uniform edge radii R = LT/12π (except for the 7- segment ring). By increasing the natural curvature 
of the rod segments, additional stable transition states with higher loop numbers can be achieved under external bending loads. Experimental validation for 
the 1- loop 8- segment ring is shown in the rightmost column. (Scale bars: 10 cm.) Experimental images of all these states are presented in SI Appendix, Fig. S12.
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total length). The natural curvature at the stability limits converges 
to that of a 1- loop circular ring minus one due to the difference 
between their initial edge curvatures: The initial edge curvature 
of the 1- loop circular ring is 1/R while that of the 1- loop seg-
mented ring is zero. In particular, the natural curvature range for 
the stability of a 1- loop circular ring can be analytically solved 
(SI Appendix, section S5), which is given by

 [5]1 − b1 <
𝜅nLT

2𝜋
<

2 − b1 − b2 +

√

b2
1
+ 14b1b2 + b2

2

2
.

Here, b1 = B1/B3 = (h/t)2 and b2 = B2/B3 = 2[1 − (192/π5)(t/h)
tanh(πh/2t)]/(1 + ν) are the dimensionless out- of- plane bending 
and torsional stiffnesses of a rod with rectangular cross- section 
and ν is the Poisson’s ratio. Note that the analytical solution for 

the stability range of the 1- loop circular ring was first obtained by 
Manning and Hoffman in ref. 29, although it was denoted by 
different symbols.

By applying a pair of bending loads (blue arrows) at the two 
loading points (blue dots), the stable 1- loop segmented rings 
(with nonnegative natural curvatures) transform into various 3-   

loop states with curved edges, as shown in Fig. 2B and Movie S3. 
Note that the transitions between these stable configurations are 
path independent. For the ease of applying bending, the loading 
points on the 1- loop state are at a pair of opposite corners for 
rings with even segment numbers, and are at one corner and the 
middle point of its opposite edge for rings with odd segment 
numbers. The transition of 1- loop segmented rings to 3- loop and 
higher odd- numbered loop states, all of which are untwisted, but 
not to even- numbered loops, is the topological counterpart of 

Fig. 3.   Stability ranges of 1- loop segmented rings having rectangular cross- section with height- to- thickness ratio h/t and ν = 0.3. (A) Stability limits for the 
dimensionless natural curvature κnLT/2π of 1- loop rings (i.e., birod and polygons) with different segment numbers n. (B) Dimensionless strain energy ULT/B3 at 
the stability limits of 1- loop rings with different segment numbers n. (C) Stability limits for the dimensionless natural curvature κnLT/2π of the m- loop state of 
1- loop 8- segment ring. (D) Dimensionless strain energy ULT/B3 at the stability limits of the m- loop state of 1- loop 8- segment ring.
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the behavior of 1- loop circular rings which transition to higher 
odd- numbered circular loops (28, 29). Except for the 3- segment 
ring, all of the 3- loop states have the same edge radius R = LT/4π. 
In particular, the 3- loop state of the 2- segment ring is an “8” 
shape consisting of two circles, and the 3- loop state of the 
6- segment ring is a 3- layer fully overlapping peach core shape 
(denoted by green). The natural curvature ranges for the stability 
and the corresponding strain energy at the stability limits of 
3- loop states with different segment numbers are provided in 
SI Appendix, Fig. S15. Results show that in the 3- loop states, the 
7- segment ring has the highest natural curvature and strain 
energy, and the 8- segment ring has the lowest natural curvature 
and strain energy at the upper stability limit. Moreover, the 3- loop 
states of the 2- segment, 3- segment, and 6- segment rings have the 
same upper limit for the natural curvature and strain energy. At 
the lower stability limit, the 5- segment and 4- segment rings can 
store the most and least strain energy, respectively. Additionally, 
with the increasing segment number, the strain energy at the 
stability limits of 3- loop segmented rings approaches that of the 
3- loop circular ring (with the same total length), and the natural 
curvature at the stability limits approaches that of the 3- loop 
circular ring minus one. The stability range of a 3- loop circular 
ring also has an analytical solution. In SI Appendix, section S6, 
we derived the stability limits for the natural curvature of an 
m- loop circular ring (m ≥ 2), as

 [6]
�
±

n
LT

2�
=

1

2

[

m
(

2 − b1 − b2

)

+

√

m2b2
1
+

(

2m2 ± 8m + 4
)

b1b2 +m2b2
2

]

.

Note that the plus- minus sign is minus at the lower stability 
limit and plus at the upper stability limit. The stable 3- loop states 
can transition to the 5- loop states and the stable 5- loop states can 
transition to the 7- loop states under external bending loads, as 
shown in Fig. 2 C and D and Movie S3. Apart from the 5- loop 
5- segment ring and the 7- loop 7- segment ring, all other 5- loop 
and 7- loop states have uniform edge radii of LT/8π and LT/12π, 
respectively. The natural curvature ranges for the stability and the 
strain energy at the stability limits of the 5- loop and 7- loop states 
with different segment numbers are presented in SI Appendix, 
Figs. S16 and S17. Similarly, the strain energy of the 5- loop and 
7- loop states at the stability limits tends to converge to those of 
5- loop and 7- loop circular rings with the same total lengths, and 
their natural curvature limits approach those of 5- loop and 7- loop 
circular rings minus one.

As an example, the transition behavior of a 1- loop 8- segment 
ring with different natural curvatures under external bending loads 
is further examined by FEA in SI Appendix, Fig. S18 and sec-
tion S7, where the moment and energy curves during transition 
and the transition processes are presented. It is shown that for an 
initially stable 1- loop 8- segment ring, when the natural curvature 
is smaller than zero, it transitions to the inverted 1- loop state 
under external bending loads (other inverted states in SI Appendix, 
Fig. S3 are possible by further decreasing the natural curvature). 
When the natural curvature is between zero and the upper stability 
limit (κnLT/2π = 2.81), the 1- loop 8- segment ring transitions to 
the 3- loop state. However, when the natural curvature exceeds the 
upper stability limit, the 1- loop ring is no longer stable. In this 
case, the ring first snaps to one stable state and then transitions to 
another state under external bending loads. Experimental images 
of the transition states (3- loop, 5- loop, and 7- loop) of the 1- loop 

8- segment ring are shown in the rightmost part of Fig. 2, demon-
strating a good agreement with FEA results. Experimental images 
for all other states are presented in SI Appendix, Fig. S12, and 
transition processes between different states from FEA are shown 
in Movie S3. It is worth noting that additional planar transition 
states with higher loop numbers are also possible by further 
increasing the natural curvature of the rod segments (see 
SI Appendix, Figs. S2 and S5–S8 for more planar equilibrium 
states of segmented rings with the segment number varying from 
4 to 8). For 2- segment and 3- segment rings, the higher loop num-
ber states have the same configurations as their 3- loop and 5- loop 
states, respectively.

The different transition states of 1- loop segmented rings can be 
mutually stable when their natural curvature ranges for stability 
overlap. The natural curvature ranges for mutually stable states of 
1- loop rings with different segment numbers are presented in 
SI Appendix, Table S2 for the case of h/t = 4 and ν = 0.3. It is shown 
that, apart from the 2- segment and 3- segment rings, the other 
1- loop segmented rings can only be mutually stable in at most three 
neighboring transition states. To better illustrate this, Fig. 3C plots 
the natural curvature ranges for the stability of different transition 
states of the 8- segment ring with h/t varying from 1 to 4. One can 
see that the natural curvatures at the stability limits increase with 
the loop number m. For two neighboring transition states, they can 
be mutually stable in a wide natural curvature range. For example, 
the 1- loop and 3- loop states are mutually stable in the range between 

the gray solid line and the red dashed line when h/t > 1.2. However, 
three neighboring transition states can only be mutually stable in a 
relatively narrow range, such as the range between the gray solid 
line and the blue dashed line when h/t > 3 within which the 1- loop, 
3- loop, and 5- loop states are mutually stable. Strain energy at the 
stability limits of the different states of the 8- segment ring is com-
pared in Fig. 3D. It is evident that the 8- segment ring can store the 
most strain energy in its 1- loop state. Particularly, at the lower sta-
bility limit, the strain energy of the 1- loop state is one order of 
magnitude larger than that of other states when h/t > 3.

2- Loop Segmented Rings

As noted in Fig. 1, 1- loop segmented rings can be wound to form 
2- loop segmented rings (the experimental winding process is 
shown in Movie S1). In this section, we will demonstrate that the 
2- loop segmented rings can transition into a series of even- 

numbered, untwisted, multiloop states under external loads. Now, 
odd- numbered loop states without twist are topologically excluded. 
In analogy to the 1- loop case, we obtain these states (Fig. 4) by 
studying the transition behavior of the 2- loop segmented rings with 
different nonnegative natural curvatures using FEA. Also, these 
new states have nonuniform radii when the loop number is an 
integer multiple of the segment number, i.e., m = kn (k = 1, 2, ⋯). 
The stable states are validated through experiments (SI Appendix, 
Fig. S19). For the 2- loop segmented rings, we consider the seg-
ment numbers varying from 4 to 10, and they have the same total 
length as the 1- loop rings. Stability limits for the dimensionless 
natural curvature κnLT/2π of these 2- loop segmented rings and 
their transition states are provided in SI Appendix, Table S3 for 
the case of h/t = 4 and ν = 0.3. As shown in Fig. 4A, with odd 
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segment numbers (n = 5, 7, 9), the edges of the 2- loop rings cross 
each other, forming the shapes of curved- sided pentagram, hep-
tagram, and nonagram, respectively. With even segment numbers 
(n = 4, 6, 8, 10), the 2- loop rings are 2- layer overlapping (denoted 
by orange), and are presented as peach core shape, curved- sided 
triangle, curved- sided square, and curved- sided pentagon, respec-
tively. All these 2- loop segmented rings have the same edge radius 
R = LT/2π in the initial state and their stability ranges for the 
natural curvature and the strain energy at the stability limits as a 
function of h/t are plotted in Fig. 5 A and B. It is seen that at the 
upper stability limit, the curved- sided pentagram (n = 5) has the 
highest natural curvature and strain energy, and the 2- layer over-
lapping curved- sided triangle (n = 6) has the lowest natural cur-
vature and strain energy among various 2- loop segmented rings. 
In particular, the strain energy at the upper limit of the curved- 

sided pentagram is even higher than that of a 2- loop circular ring 
(with the same total length), indicating that it can store more 
strain energy than the 2- loop circular ring. At the lower stability 
limit, the 2- layer overlapping peach core (n = 4) has the highest 
natural curvature and strain energy. As in the case of the 1- loop 
rings, when the segment number increases, the strain energy of 
2- loop segmented rings at the stability limits converges to that of 
the 2- loop circular ring, and the natural curvature at the stability 
limits approaches that of the 2- loop circular ring minus one. Note 
that the natural curvature at the stability limits of a 2- loop circular 
ring can be obtained using Eq. 6 with m = 2.

When subjected to a pair of bending loads at the location of 
the red dots (for the 2- layer overlapping state, the bending loads 
are applied at the same position but in different layers), sta-
ble 2- loop segmented rings transform into their 4- loop states 
(Fig. 4B and Movie S4). Apart from the 4- loop state of the 
4- segment ring, all other 4- loop states share a uniform edge radius 

R = LT/6π. In particular, the 4- loop states of the 6- segment and 
10- segment rings are 2- layer overlapping (denoted by orange), 
and that of the 8- segment ring is 4- layer overlapping (denoted by 
blue). The stability limits for the natural curvature and the corre-
sponding strain energy of 4- loop states with different segment 
numbers are presented in SI Appendix, Fig. S20, which indicates 
that the 9- segment ring has the highest natural curvature and 
strain energy at the upper stability limit and the 7- segment ring 
has the highest natural curvature and strain energy at the lower 
stability limit among various 2- loop segmented rings. As expected, 
in the 4- loop states, the strain energy at the stability limits con-
verges to that of the 4- loop circular ring, and the natural curvature 
at the stability limits converges to that of the 4- loop circular ring 
minus one. By applying a pair of bending loads at the loading 
points (red dots), stable 4- loop states can transform into 6- loop 
states and stable 6- loop states can transform into 8- loop states, as 
shown in Fig. 4 C and D and Movie S4. Except for the 6- layer 
overlapping state of the 6- segment ring and the 8- layer overlap-
ping state of the 8- segment ring, all other 6- loop and 8- loop states 
have uniform edge radii, which are LT/10π and LT/14π, respec-
tively. The natural curvature range for the stability and the corre-
sponding strain energy at the stability limits of various 6- loop and 
8- loop states are provided in SI Appendix, Figs. S21 and S22, 
respectively. Again, the strain energy of these states at the stability 
limits converges to the circular ring with the same loop number 
and total length, and the natural curvature approaches that of the 
circular ring minus one.

To demonstrate the effect of natural curvature on the transition 
behavior of 2- loop segmented rings, we take the 2- loop 8- segment 
ring as an example and study its moment and energy variations 
during transition using FEA (SI Appendix, Fig. S23 and section S8). 
It is shown that when the natural curvature is within the stability 

Fig. 4.   Transition states of 2- loop segmented rings with nonnegative natural curvatures. The natural curvature ranges for the stability of these states are 
provided in SI Appendix, Table S3 for the case of h/t = 4 and ν = 0.3. (A) The 2- loop segmented rings have a uniform edge radius R = LT/2π. (B) By applying a pair of 
bending loads at the loading points (red dots), the 2- loop segmented rings can transform into the 4- loop states with a uniform edge radius R = LT/6π (except for 
the 4- segment ring). (C) The 4- loop states can transform into the 6- loop states with a uniform radius R = LT/10π (except for the 6- segment ring). (D) The 6- loop 
states can transform into the 8- loop states with a uniform edge radius R = LT/14π (except for the 8- segment ring). By increasing the natural curvature of the rod 
segments, additional stable transition states with higher loop numbers can be achieved. Experimental validation for the 2- loop 10- segment ring is shown off to 
the Right. (Scale bars: 10 cm.) Experimental images of all these states are presented in SI Appendix, Fig. S19.
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range (but still larger than zero), by applying a pair of bending 
loads, the 2- loop 8- segment ring folds into the 4- loop state. 
Otherwise, it first snaps to a stable state and then transitions to 
another state under external bending loads. Experimental demon-
strations for the 4- loop, 6- loop, and 8- loop states of the 10- segment 
ring are provided in the rightmost part of Fig. 4, which agree with 
the FEA results very well. Experimental images of all other states 
are presented in SI Appendix, Fig. S19, and transition processes 
between different states from FEA are provided in Movie S4. Note 
that if the natural curvature of the rod segment is further increased, 
the 2- loop segmented rings could achieve additional planar tran-
sition states with higher loop numbers. In SI Appendix, Figs. S2 
and S5–S10, we summarized the planar equilibrium states of seg-
mented rings with segment numbers n varying from 4 to 10. It is 
shown that for an n- segment ring, its first n planar equilibrium 
states have different configurations with corners pointing outward. 
Starting from the (n+1)- loop state, the ring shows periodic planar 

configurations with corners pointing inward, and the periodicity 
of the repeating configurations is n. Additionally, the rotational 
symmetry of these states also exhibits periodicity with a period of 
n. In one period, the ring can have a planar state with the rota-
tional symmetry corresponding to each divisor of its segment 
number. For example, the 6- segment ring has 1- fold, 2- fold, 
3- fold, and 6- fold rotational symmetry in its 6- loop, 3- loop, 
2- loop, and 1- loop states, respectively. Rotational symmetry of 
the first ten planar equilibrium states of various segmented rings 
is summarized in SI Appendix, Table S4. More interestingly, for 
2- layer and 3- layer overlapping rings, loadings applied to different 
numbers of layers of the same ring would lead to different con-
figurations. Take the 6- loop state of the 9- segment ring as an 
example. When bending is applied to a single layer, i.e., one bend-
ing load is applied to the bottom layer and the other bending load 
is applied to the top layer (loading points denoted by the red dots), 
the 6- loop 9- segment ring transitions to the 8- loop state. When 

Fig. 5.   Stability ranges of 2- loop segmented rings having rectangular cross- section with height- to- thickness ratio h/t and ν = 0.3. (A) Stability limits for the 
dimensionless natural curvature κnLT/2π of 2- loop rings with different segment numbers n. (B) Dimensionless strain energy ULT/B3 at the stability limits of 2- loop 
rings with different segment numbers n. (C) Stability limits for the dimensionless natural curvature κnLT/2π of the m- loop state of the 2- loop 8- segment ring.  
(D) Dimensionless strain energy ULT/B3 at the stability limits of the m- loop state of the 2- loop 8- segment ring.
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the bending loads are applied to all layers (loading points denoted 
by blue dots), however, the 6- loop 9- segment ring folds into a 
12- loop state (SI Appendix, Fig. S24).

Like the 1- loop segmented rings, the 2- loop segmented rings 
can be stable in two or three neighboring transition states simul-
taneously, and the natural curvature ranges for the mutual stability 
of 2- loop segmented rings with h/t = 4 and ν = 0.3 are provided 
in SI Appendix, Table S5. As an example, Fig. 5C plots the natural 
curvatures at the stability limits of different transition states of the 
8- segment ring with respect to h/t. As can be seen, the mutual 
stability ranges between two neighboring transition states (e.g., 
2- loop and 4- loop states) are wide, while the mutual stability ranges 
between three neighboring transition states (e.g., 4- loop, 6- loop, 
and 8- loop states) are relatively narrow. Strain energy at the stability 
limits of the 8- segment rod in different states are shown in Fig. 5D. 
Results indicate that the 4- loop state has the highest strain energy 
at the upper stability limit, and the 2- loop state has the lowest 
strain energy at the lower stability limit. In other multiloop states, 
there is no significant difference in the strain energy.

Multistable Segmented Rings

Having explored the various stable states of 1- loop and 2- loop 
segmented rings, we next present an approach to rationally choose 
the natural curvature to achieve multiple stable states for seg-
mented rings, with the 8- segment ring of h/t = 4 and ν = 0.3 as 
an example. The stability ranges of dimensionless natural curva-
ture κnLT/2π for the first twelve states of the 8- segment ring are 
shown in Fig. 6A. These twelve states comprise all the nonrepeat-
ing stable planar configurations of the 8- segment ring with non-
negative natural curvatures (SI Appendix, Fig. S2). States with 
loop numbers larger than 12 are smaller- sized repeated configu-
rations. Note that the 1- loop to 3- loop states can also be stable 
when the natural curvature is negative, but we only present the 
stability regions with nonnegative natural curvatures here. 
Moreover, the stability regions with dimensionless natural cur-
vature larger than 10 include stable states from the 13- loop to 
16- loop states (see SI Appendix, Table S6 for their stability 
ranges). It is seen that the 8- segment ring can have up to six stable 

Fig. 6.   Phase diagram for the multistability and transitions of 8- segment rings with h/t = 4 and ν = 0.3. (A) Stability ranges of dimensionless natural curvature κnLT/2π 

for the first twelve stable states of 8- segment rings. States with loop numbers larger than 12 are smaller- sized repeated configurations (SI Appendix, Fig. S2). The 
stability regions with κnLT/2π >10 include stable states from the 13- loop, 14- loop, 15- loop, and 16- loop states. The red dots denote the stable states corresponding 
to κnLT/2π = 1, 4, 7, and 10. The numbers in parentheses are the stability range of each state. (B) Transitions between the odd- numbered loop states of 1- loop 
8- segment rings with κnLT/2π = 1, 4, 7, and 10. (C) Transitions between the even- numbered loop states of 2- loop 8- segment rings with κnLT/2π = 1, 4, 7, and 10.  
The solid arrows denote single- layer folding while the dashed arrows denote double- layer folding. Unidirectional arrows indicate that the initial state is unstable.D
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states (green region) within a narrow natural curvature range of 
(2.78, 2.81), three of which are associated with the 1- loop state 
(1- loop, 3- loop, and 5- loop states) and three with the 2- loop state 
(2- loop, 4- loop, and 6- loop states). There are twelve different 
natural curvature ranges for the 8- segment ring to have five stable 
states (light blue regions), and these ranges cover various combi-
nations of stable states. Further, the 8- segment ring exhibits four 
stable states (light red regions) in eleven different natural curva-
ture ranges and has three stable states (gray region) when its 
natural curvature is near zero, i.e., (0, 0.74), within which the 
1- loop, 2- loop, and 3- loop states are stable. Based on the stability 
phase diagram, one can easily determine the corresponding stable 
states of a segmented ring for a given natural curvature or design 
a segmented ring to achieve the desired stable states by rationally 
selecting the natural curvature.

Finally, we show how to achieve the transitions between differ-
ent states of multistable 8- segment rings. Here, we consider four 
representative dimensionless natural curvatures, i.e., κnLT/2π = 1, 
4, 7, and 10. The corresponding stable states of these four selected 
natural curvatures are denoted by red dots in Fig. 6A, which cover 
all the 12 nonrepeating stable configurations of 8- segment rings 
with nonnegative natural curvatures. The achievable transition 
paths between states are grouped with respect to their basic state, 
i.e., the 1- loop state for rings with odd loop numbers (Fig. 6B) 
and the 2- loop state for rings with even loop numbers (Fig. 6C). 
Note that transitions between the states within either of these 
groups can be achieved by directly applying a pair of bending 
loads. Unidirectional arrows denote a transition from an initially 
unstable state to a stable folded state while bidirectional arrows 
denote a transition between two stable states. Solid arrows indicate 
that the state transition occurs by single- layer folding, in which 
bending loads are applied to two different single- layers, while 
dashed arrows indicate double- layer folding (bending loads are 
applied to all layers).

For κnLT/2π = 1 (case- i), the 8- segment ring is stable in the 
1- loop to 4- loop states. From Figs. 2 and 4, transitions between 
the 1- loop and 3- loop states, and the 2- loop and 4- loop states 
can be achieved by single- layer folding. For κnLT/2π = 4 (case- ii), 
the stability analysis predicts that the 8- segment ring has five 
stable states (i.e., 3- loop to 7- loop states), however, we surpris-
ingly observed six stable states experimentally, in which the 
2- loop state was also stable. This may be a result of the contact 
between different layers. Also, the small corners created at the 
joints of two adjacent segments in experiments may play a small 
role in the stability of the segmented ring. In this case, the unsta-
ble 1- loop 8- segment ring snaps to a stable 5- loop state once the 
constraints are released. The stable 5- loop state can either trans-
form into a stable 3- loop state or transition to a stable 7- loop 
state under single- layer folding. The 2- loop state can fold into 
the 4- loop state under single- layer folding while transforming 
into the 6- loop state under double- layer folding. The 6- loop 
state can also be obtained from the 4- loop state by single- layer 
folding. The experimental demonstration for the transitions 
between the six stable states with κnLT/2π = 4 is provided in 
Movie S5. For κnLT/2π = 7 (case- iii), there are five stable states 
for the 8- segment ring (i.e., 6- loop to 10- loop states). Starting 
with the unstable 1- loop state, the 8- segment ring spontaneously 
snaps to the 7- loop state, and the 7- loop state can invert into 
the 9- loop state by single- layer folding. Alternatively, the unsta-
ble 2- loop state can spontaneously snap to the 6- loop state. The 
6- loop state can fold into the 8- loop state through single- layer 
folding and invert into the 10- loop state through double- layer 
folding (SI Appendix, Fig. S25 and Movie S6). Interestingly, we 

find that such an inversion process for the 8- segment ring (with 
nonnegative natural curvature) only occurs between two states 
when the sum of their loop numbers is 8k (k = 2, 4, ⋯) (see 
SI Appendix, Fig. S26 for the inversion transitions between the 
7- loop and 9- loop states, and the 15- loop and the 17- loop 
states). Moreover, the transition between the 8- loop and 10- loop 
states can be achieved by single- layer folding. The experimental 
realization for the transitions between the five stable states with 
κnLT/2π = 7 is provided in Movie S7. For κnLT/2π = 10 (case- iv), 
the 8- segment rod has four stable states (i.e., 9- loop to 12- loop 
states). Through single- layer folding, the 9- loop state folds into 
the 11- loop state, and the 10- loop state transitions to the 12- loop 
state. These findings demonstrate that the natural curvature of 
the rod segments can be tuned to decide the stable states of the 
segmented ring, while the applied bending loads decide the tran-
sitions between available states.

Conclusions

In summary, we have uncovered the intrinsic multistability of 
segmented rings consisting of rod segments with the same nat-
ural and initial curvatures. All possible planar equilibrium states 
of segmented rings with different segment numbers were iden-
tified by studying their transition behavior under external stimuli 
over a wide range of relevant natural curvatures through finite 
element simulations. To guide the rational design of these dif-
ferent states, we developed a general theoretical framework for 
assessing the elastic stability of segmented rings based on energy 
variations, from which the natural curvature ranges for the sta-
bility of a single state or the mutual stability between different 
states can be determined. Experiments were conducted to vali-
date the theoretical and numerical results as well as to demon-
strate the rational selection of the natural curvature to achieve 
multistability. We find that a segmented ring with a rectangular 
cross- section can have up to six distinct planar stable states, three 
of which are associated with the 1- loop state and three with the 
2- loop state, while the stable states having the same basic state 
can transition between one another under appropriate external 
stimuli (Movie S5).

The proposed method to enable multistability for segmented 
rings is powerful in that it applies for arbitrary segment numbers 
and initial segment curvatures, although, of necessity, only lim-
ited cases were presented as design paradigms. Additionally, 
within the elastic deformation regime, the design method applies 
across different sizes, ranging from centimeter to meter level. 
We believe that the study of multistability of these segmented 
rings can be used to develop reconfigurable metamaterials for 
tunable properties due to their ability to transition between 
different stable states. On the other hand, the extreme packing 
ability and self- guided deployment/folding of these segmented 
rings hold tremendous application potential in deployable aer-
ospace structures, where the structures need to be packed into 
a small volume state to facilitate the transportation and then 
deployed into a large volume state to fulfill certain functionality. 
These multistable rings can also serve as building blocks to create 
large ring assemblies for deployable aerospace structures and 
metamaterials.

Materials and Methods

Fabrication of Segmented Rings. The segmented rings are fabricated using 
multiple stainless- steel rods with rectangular cross- sections (h = 2 mm and 
t = 0.5 mm). The rod segment can be manually reshaped by applying plastic 
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deformation to achieve the desired natural curvature. Connections between 
adjacent rod segments are achieved by plastically deforming a long rod, which 
introduces small “corners” in the segmented ring. The corners have negligible 
effects on the overall behavior of the segmented ring when the corner size is 
small enough. In our experiments, the radius of the corners is roughly 5 mm.

FEA Simulations. Transition behavior of the 1- loop and 2- loop segmented 
rings under external stimuli are simulated using the commercial software 

ABAQUS 2021 (Dassault Systèmes, France) and simulation details are provided 
in SI Appendix, section S3.

Data, Materials, and Software Availability. All study data are included in the 
article and/or supporting information.
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