

1 **Satellite-based Soybean Yield Prediction in Argentina: a comparison between**
2 **Panel Regression and Deep Learning Methods**

3 **Yuhao Wang ¹, Kuishuang Feng ^{1,*}, Laixiang Sun ¹, Yiqun Xie ¹ and Xiao-Peng Song ¹**

4 ¹Department of Geographical Science, University of Maryland, College Park, Maryland 20742,
5 United States

6 *Correspondence: kfeng@umd.edu

7 **Abstract:** The accurate prediction of soybean yield is vital for global food market stabilization
8 and food security. Recent advancements in remote sensing technology have significantly amplified
9 interest in leveraging satellite-based methods for predicting crop yield. These methods offer in-
10 season yield estimates. By utilizing this timely information, decision-makers can formulate
11 strategic, well-informed choices that preemptively mitigate potential food price hikes, ultimately
12 bolstering food security. While simple regression models have been widely utilized for satellite-
13 based yield prediction, researchers have recently begun to explore the use of deep learning
14 algorithms. This study compares the performance of panel regression and deep learning models
15 for in-season soybean yield prediction at the Department (county-equivalent) level in Argentina.
16 Data sources include the latest soybean land use products and MODIS bi-weekly vegetation index
17 products. Results indicate that deep learning models significantly outperform panel regression.
18 Deep learning Long Short-Term Memory (LSTM) models, which incorporate attention
19 mechanism and a series of peak NDVI images, generate more accurate and time-sensitive
20 predictions. Among competing LSTM models, the one with attention mechanism applied to the
21 entire growing season's NDVI data yields the highest prediction accuracy, with a Root Mean
22 Square Error (RMSE) of 505.78 kg/ha and Normalized Root Mean Square Error (NRMSE) of
23 0.0726. The LSTM model with attention on the three highest NDVI images attains a satisfactory
24 prediction accuracy (RMSE = 627.28 kg/ha, NRMSE = 0.089) six weeks prior to harvest. This
25 study presents a robust model for predicting crop yields, promoting sustainable production of
26 soybeans and facilitating knowledgeable choices among farmers and policymakers.

27 **Keywords:** Argentina; Deep Learning; LSTM With Attention; NDVI; Yield Prediction; Soybean

28

29 **1. Introduction**

30 As the global population grows and living standards improve, the demand for agricultural
31 products has been increasing and this trend will continue in the future. Accurate and timely
32 predictions of agricultural production are vital for ensuring food security worldwide. Output of
33 crop production, the most crucial indicator of agricultural performance in growing season, has a
34 profound impact on human society. Reliable and timely yield predictions are essential for crop
35 mapping, market planning, and harvest management, but they remain challenging due to the
36 complex environmental factors affecting crop growth (Pastor et al., 2019; Yu et al., 2016).

37 Soybean, one of the most important agricultural products as a source of protein (H. Tian et al.,
38 2021), has gained global significance in recent years. Currently Argentina is standing as the
39 world's third-largest producer and exporter of soybean. Sly (2017) reveals that export incomes of
40 soybean and soybean products constitute a substantial 31.8% of the country's total export
41 revenue in 2016. Furthermore, the FAO delineates that the global soybean production averaged
42 356 Mt from 2018 to 2021, with Argentina significantly contributing averaged 43 Mt during the
43 same period (FAOSTAT, 2023). This underscores the imperative of precise soybean yield
44 predictions for Argentina. However, compared with the top-two soybean producers – the US and
45 Brazil – the volume of soybean yield prediction research emanating from Argentina is relatively
46 sparse. While the USDA furnishes rich datasets to facilitate US soybean studies, accurate
47 soybean maps become available only very recently (Song et al., 2021). This identifies a critical
48 knowledge gap that needs to be addressed. The primary objective of this paper is to fill this gap.

49 Researchers have explored a variety of remote-sensing measurement to facilitate crop yield
50 prediction, including the use of different vegetation indices, of which NDVI (Normalized
51 difference vegetation index) has been the most used one. NDVI is a dimensionless index that
52 captures the difference between visible red light and near-infrared regions of vegetation and is
53 widely used to characterize the greenness of a study area (Weier & Herring, 2000). By
54 incorporating vegetation indices into their models, researchers can consider the spectral
55 characteristics of crops and their relationship with environmental factors, leading to improved
56 prediction timeliness and accuracy.

57 Statistical-based methods have been commonly used to establish relationships between yields
58 and selected explanatory factors, including NDVI from remote-sensing (Franch et al., 2019; Ji et

59 al., 2021; Z. Tian et al., 2012). For example, Becker-Reshef et al. (2010) employed simple linear
60 regression to predict winter wheat yields in Kansas and Ukraine using NDVI, achieving
61 relatively satisfactory prediction accuracy. Cai, Yu and Oppenheimer (2014) employed a
62 geographically weighted panel regression approach for corn yield prediction. Franch et al. (2015)
63 improved upon the linear regression model developed by Becker-Reshef et al., applying it to the
64 same study areas. Salehnia et al. (2020) utilized pooled panel regression for wheat yield
65 prediction. However, these traditional regression methods exhibit limitations, as their models
66 tend to be localized to specific regions owing to the constrained generalization abilities of linear
67 regression models. This results in a lack of spatial generalization capability (Becker-Reshef et
68 al., 2010; Franch et al., 2019).

69 With advancements of computer science, deep learning techniques have gained popularity for
70 predicting food production. These techniques offer higher accuracy with less reliance on local
71 survey data, making them an appealing choice in the field. Remote sensing data combined with
72 deep learning techniques offers a better solution for yield prediction, as it provides a reliable and
73 timely forecast (Cai et al., 2018; Khaki et al., 2020; Schwalbert et al., 2020; Sun et al., 2019; Xu
74 et al., 2020). Long Short-Term Memory (LSTM) models, which are modifications of Recurrent
75 Neural Network (RNN) models, are commonly used for time-series dataset classification and
76 prediction, making it a suitable option for soybean yield prediction (Sun et al., 2019; H. Tian et
77 al., 2021). Cai et al. (2018) introduced an in-season crop classification system using deep
78 learning models, demonstrating higher accuracy than the USDA's Cropland Data Layer product.
79 Xu et al. (2020) further reinforced the effectiveness of multi-temporal deep learning models in
80 accurate crop mapping. Sun et al. (2019) leveraged a Convolutional Neural Network-Long Short-
81 Term Memory (CNN-LSTM) framework to predict soybean yields at the county level in the
82 United States, proving LSTM's utility in crop prediction. Continuing this trend, Tian et al. (2021)
83 adopted an attention mechanism to forecast wheat yields in China, achieving a commendable
84 average Root Mean Square Error (RMSE) of 502.71 kg/ha. Despite these advancements, there
85 has been a lack of comprehensive quantitative comparison between deep learning models and
86 traditional regression models, especially when applied to the same or similar datasets. This
87 paper also addresses this knowledge gap. In more detail, the second objective of this paper is to
88 evaluate a classic linear regression method, which has been widely used in the field of remote-
89 sensing based crop harvest forecasting, against more contemporary deep learning models in the

90 context of soybean in Argentina. Please note that this paper does not intend to make comparison
91 across advanced machine learning techniques.

92 For achieving the above two objectives, we developed a set of deep learning models for in-
93 season soybean yield predictions that utilized NDVI and other relevant and available data (Song
94 et al., 2021). Then we compared the performance of these deep learning models with that of
95 traditional panel regression models in terms of in-season soybean yield prediction at the
96 Department (county-equivalent) level in Argentina, using remote sensing data captured during
97 the growing season as inputs. This comparison is essential, as it not only evaluates the predictive
98 accuracy of each approach but also examines their applicability in real-world agricultural
99 practices.

100 The implications of our findings extend beyond academic interest. By establishing a clearer
101 understanding of the comparative effectiveness of deep learning models versus traditional
102 regression methods, our research contributes to the enhancement of crop yield prediction
103 techniques. This is not only relevant for soybean production in Argentina but can also be applied
104 to other crops and regions. By providing farmers, policymakers, and agricultural stakeholders
105 with more accurate and reliable yield predictions, the application of the enhanced yield
106 prediction techniques can support informed decision-making processes, leading to improved
107 efficiency and sustainability in agricultural operations.

108

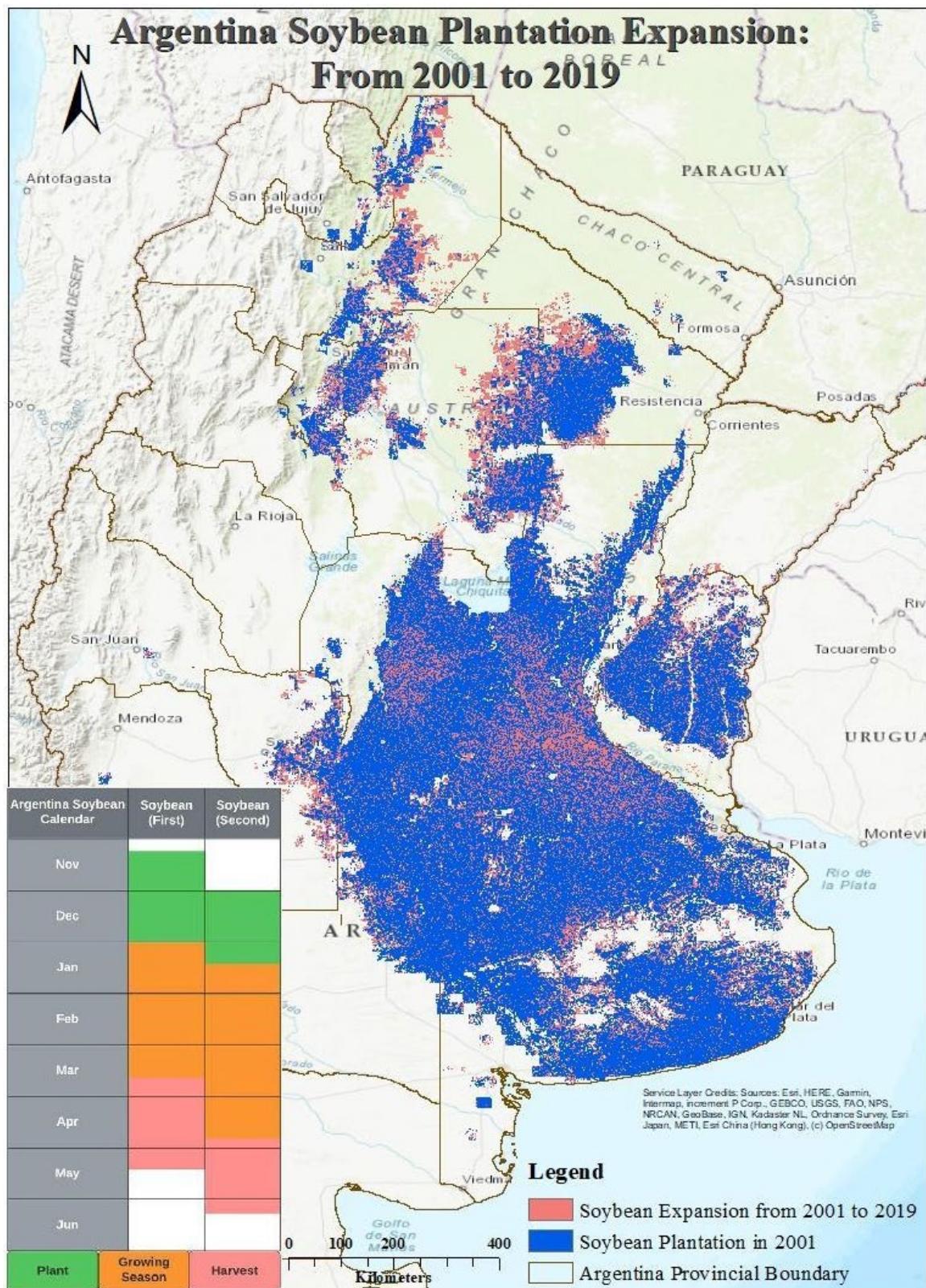
109 **2. Study Area, Data and Methodology**

110 **2.1. Study Area**

111 This study focuses on Argentina, a South American country that is renowned for its
112 agricultural strength, particularly as one of the world's major soybean producers and exporters.
113 The country also holds significant shares in other agricultural markets such as maize, wheat,
114 beef, and sunflower seed. Argentina's climate is favorable for rainfed crop production, especially
115 soybean, and it has dedicated a vast majority of its 166 million hectares of agricultural land to
116 livestock farming and crop production. Experimental soybean plantations existed in the early
117 20th century, but commercial planting did not commence until the mid-20th century (Klein &
118 Vidal Luna, 2021). Soybean cultivation has spread across the country, including in regions like

119 the Pampas, and all provinces except Mendoza are now producing soybeans. According to Song
120 et al. (2021), soybean plantation areas in Argentina increased from 11.4 million hectares in 2001
121 to 19.9 million hectares in 2015, with an average growth rate of 5.3% (0.6 million hectares) per
122 year, before declining to 16.3 million hectares in 2019. Soybean plants in Argentina have two
123 seasons, with the first season planted in November and harvested in April. The second season is
124 part of the double wheat-soybean rotation, planted after wheat being harvested in late December
125 and harvested in May. However, the planting area and total production of soybean's second
126 season are significantly smaller than those in the first soybean season due to the relatively small
127 extent of wheat-soybean double rotation lands. Thus, this study focuses solely on the first season
128 of soybean. In 2020, the agricultural sector accounted for 6.1% of Argentina's GDP (World
129 Bank, 2022).

130 Argentina has a rich historical legacy in soybean production, which has witnessed a
131 considerable upsurge in cultivation across the country, driven by both agricultural innovation and
132 growing international market demand. Notably, the record-high international soybean prices in
133 the early 1970s played a crucial role in the expansion of soybean cultivation in Argentina
134 (Schnepf et al., 2001). Over the period from 1970 to 2021, soybean production in Argentina has
135 escalated substantially from 26,800 tons to 48,796,661 tons (FAOSTAT, 2023). Owing to its
136 immense contribution as one of the largest soybean exporters worldwide, Argentina has become
137 indispensable for the global food supply chain. Figure 1 illustrates the expansion of soybean
138 plantations in Argentina from 2001 to 2019.



139

140 **Figure 1.** Argentina Soybean Plantation Expansion from 2001-2019, with a simple soybean crop
141 calendar demonstrating two soybean seasons in Argentina.

142 **2.2. Data collection and processing**

143 The soybean land use dataset was produced by Song et al. (2021). Song et al. created a
144 classification model using satellite data, machine learning and ground survey to precisely detect
145 the presence of soybean crops throughout the South American continent. The model functions at
146 a spatial resolution of 30 m and was utilized annually during the soybean growing season from
147 2000 to 2019. The map product has an overall accuracy of 96% based on a probability sample
148 and in situ reference data. The soybean categorization map generated by the algorithm is a
149 dependable indicator of soybean production because of the strong association between the crop
150 regions identified in the high-resolution map and the actual soybean production.

151 A pixel qualifies as soybean if it undergoes a complete growth cycle within a single growing
152 season and has a sufficient level of greenness in the spectral feature space. Therefore, the
153 soybean pixels that have been mapped represent the cultivated fields that are farmed and have
154 reached a stage where the crops can be harvested. Any crops that do not reach full maturity or
155 exhibit reduced greenness as a result of abnormal weather conditions are excluded from the
156 mapping process.

157 This study employed the MODIS (Moderate Resolution Imaging Spectroradiometer) product
158 and the yearly South American soybean land-use product developed by Song et al. (2021) in
159 conjunction with the Argentina departmental boundary data. Google Earth Engine (GEE)
160 platform offers a variety of MODIS products, and this study utilized MOD13Q1.006, a terra
161 vegetation indices product with a temporal resolution of 16 days and a spatial resolution of 250
162 meters. This product features two primary vegetation index layers, the Normalized Difference
163 Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), as well as an additional
164 pixel quality layer. Researchers process NDVI and EVI products based on MODIS imagery that
165 has undergone bi-directional surface reflectance atmospheric correction and masking for water,
166 clouds, heavy aerosols, and cloud shadow pixels (Didan et al., 2015). This study chose NDVI as
167 the vegetation index for prediction. MOD13Q1.006 also includes four surface reflectance bands,
168 namely Surface Reflectance Band 1 (Red), Surface Reflectance Band 2 (Near Infrared), Surface
169 Reflectance Band 3 (Blue), and Surface Reflectance Band 7 (Mid-Infrared) (Didan et al., 2015).
170 These bands were also employed as input parameters for the prediction model.

171 In this study, MOD13Q1.006 data for Argentina from 2001 to 2019 was extracted using the
172 GEE platform based on its availability in the study area. To define the soybean land use areas in
173 Argentina, the annual South American soybean land-use product published by Song et al.
174 (2021)) was used as a mask. This product provides an annual classification of soybean land use
175 for the entire South American continent between 2000 and 2019, based on Landsat imagery. This
176 allowed the extraction of soybean land's NDVI products from the MODIS data only within the
177 defined regions of soybean cultivation. During the aggregation process, the pixels were carefully
178 selected based on their band summary QA, which was limited to 0, indicating data of high
179 quality as stated in the MOD13Q1.006 user document (Didan et al., 2015).

180 To spatially integrate the MODIS NDVI data and soybean yield data, we employed an
181 Argentina departmental administration boundary dataset that was published by the Food and
182 Agriculture Organization of the United Nations. This boundary dataset was used to spatially
183 summarize the soybean pixels' NDVI to the departmental level. We obtained the soybean yield
184 dataset from the Argentina Ministry of Agriculture, Livestock and Fisheries, which provided
185 departmental-level data for soybean production, including the first and second seasons of
186 soybean harvest, total production, and yield production. The first season of soybean harvest was
187 selected for this study since it is the primary contributor to Argentina's soybean production. We
188 also spatially joined the selected first season soybean yields to the same departmental
189 administration boundary dataset. The soybean yield dataset indicated that 306 departments
190 planted soybean in the first soybean season between 2000 and 2019. For having sufficient data to
191 train both panel regression and deep learning models, we opted to include 190 departments from
192 nine different provinces that continuously cultivated soybean throughout the 20-year study
193 period. Additionally, two out of the nine provinces only had a few departments with complete
194 records, which were also dropped in order to fit the panel linear regression. As a result, we used
195 a total of 183 departments in our study. The summarized datasets used in this study are provided
196 in Table 1.

197

198

199

200

Table 1. Datasets Used in the Study and Their Sources

Data	Source	Year
MOD13Q1.006	NASA LP DAAC at the USGS EROS Center	2001-2019
Commodity Crop Mapping and Monitoring in South America	GLAD Landsat Analysis Ready Data and Tools	2000-2019
Soybean planting, harvesting production and yield data	Argentina Ministry of Agriculture, Livestock and Fisheries	2000-2019
Global Administrative Unit Layers 2015, Second-Level Administrative Units	FAO GUAL, UN	2015

203 The data processing workflow is comprised of two stages. The first stage involves filtering
 204 and aggregating spatial data from three data sources: MODIS terra vegetation indices product,
 205 soybean land-use product, and administrative boundary product. Specifically, MODIS images
 206 captured from January 1st to April 30th, which is the critical growing period of soybean, were
 207 selected. The soybean land cover products were used to mask the extracted images. Given the
 208 disparity in spatial resolution between the soybean land-use product (30 meters) and the MODIS
 209 product (250 meters), the MODIS pixels were resampled to 30 meters to facilitate the masking
 210 process. The masked images were then aggregated at the departmental level, with statistical
 211 summaries including the mean, max, min, mode, variance, quantiles and standard deviation of
 212 soybean land's NDVI and surface reflectance bands being derived from GEE. The second stage
 213 involves joining the soybean yield dataset for the period between 2000 and 2019 to Argentina
 214 departmental boundaries. However, since the MOD13Q1.006 only dates back to 2001, the yield
 215 data for the year 2000 was excluded from the analysis.

216 We devised several image combinations to determine the optimal model inputs, given the
 217 availability of eight MOD13Q1.006 images during each growing season. It is imperative to
 218 explore the images that contribute most to accurate crop yield estimation. Thus, we established
 219 four image combinations: In the first combination, we utilized all eight images from each
 220 growing season as input, which we will refer to as “NDVI-Eight” for clarity and brevity in the
 221 rest of this paper. In the second combination, we selected the image with the highest vegetation
 222 index among the eight images as the input, which we will refer to as “NDVI-Max”. In the third

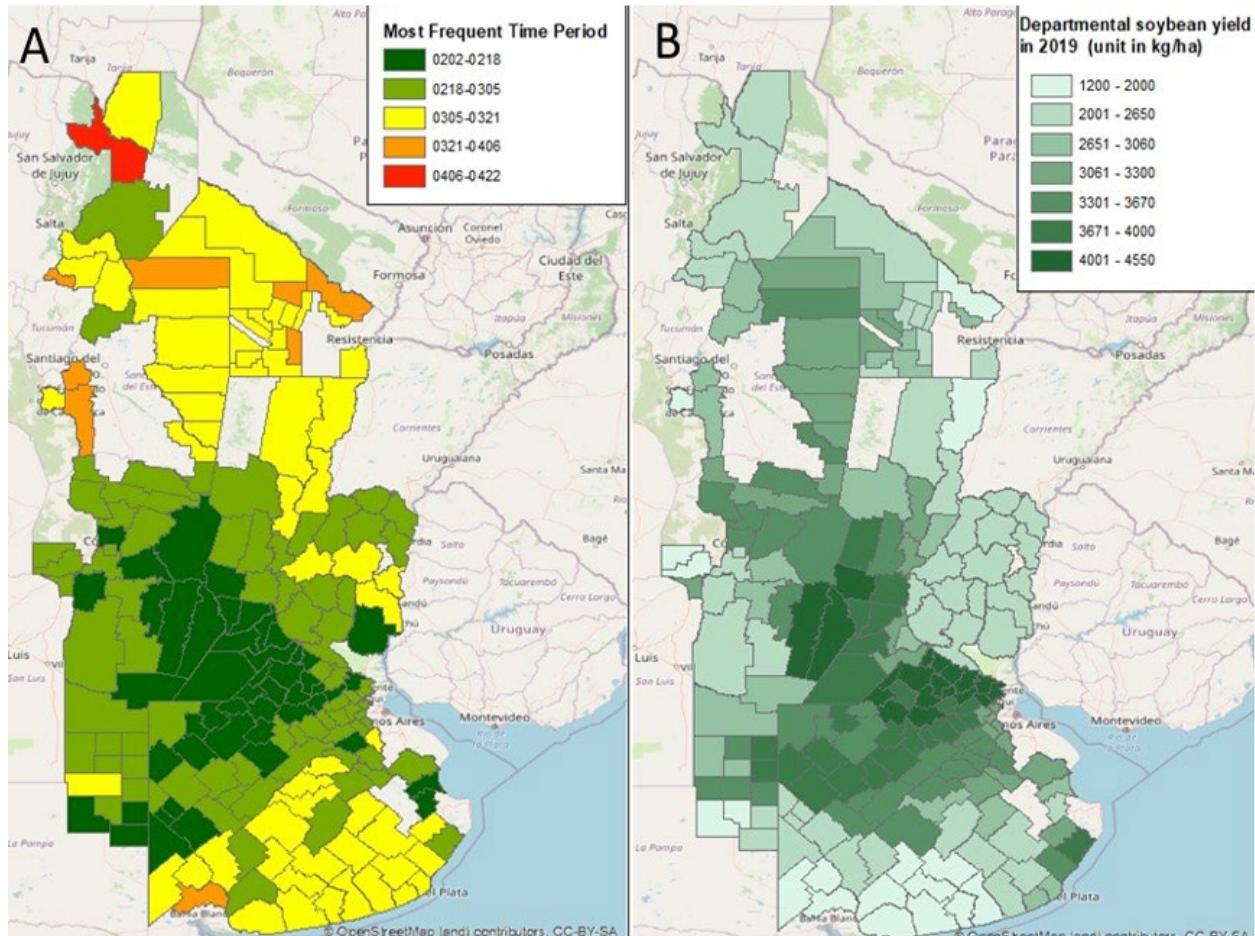
223 combination, we chose three images which include the image at the peak, the next one before the
224 peak, and the next one after the peak. We will refer to this combination as “NDVI-During Peak”.
225 In the fourth combination, we selected three images that represented the growing season at and
226 after the peak. These images included the peak NDVI and two subsequent images, which we will
227 refer to as “NDVI-After Peak”.

228 We used the maximum vegetation index value to determine the peak of the soybean growing
229 season and constructed the peak curve using data from the previous and subsequent dates.
230 However, some regions and specific years presented issues where the peak vegetation index and
231 the first or last two images during the growing season exceeded the allowable range. In these
232 cases, we made necessary adjustments by shifting the three images earlier or later to resolve the
233 issue.

234 To answer the question whether a simple NDVI product during the soybean's growing season
235 can predict yield with satisfactory accuracy, we explored various independent variables settings
236 that involve the previous year's yields. One setting solely uses the NDVI image combinations,
237 while the other includes not only the NDVI combinations but also the previous year's yields. We
238 also created different combinations of input explanatory variables based on the number of
239 statistical summarization variables being input into the prediction models. In the first setting,
240 only statistical summarization from NDVI was selected for the model, including the maximum,
241 mean, median, and minimum. In the second setting, in addition to the previous four variables
242 from NDVI, we added four spectral bands' (surface reflectance 1, 2, 3, 4) statistical summarization
243 from MOD13Q1.006 as well, namely the maximum, mean, median, and minimum. We named
244 the first input variable set as "Var 1" while the second input variable set as "Var 2". We
245 combined Var 1 and Var 2 with the previous year's yields or not as explanatory variables,
246 resulting in a total of four groups of explanatory variables. Multiply them by four NDVI
247 combinations, which will give us a total of 16 explanatory variable sets for prediction models.
248 This approach provides a thorough analysis of the input variables and enables the identification
249 of the optimal combination for predicting soybean yields accurately.

250 Figure 2 illustrates the soybean yields at the department level in 2019 and the most frequent
251 NDVI peak time during 2001-2019 for the departments in Argentina. The findings demonstrate
252 that the primary soybean production region in Argentina is concentrated in the provinces of

253 Buenos Aires and La Pampa, where the peak NDVI dates occur around Early to Mid-February.
 254 Notably, departments in Buenos Aires provinces are relatively smaller than those in La Pampa
 255 provinces, resulting in smaller total productions; however, these departments exhibit the highest
 256 yields. In contrast, the departments located in the Northern and Middle parts of Argentina
 257 experience later NDVI peaks and lower soybean yields.



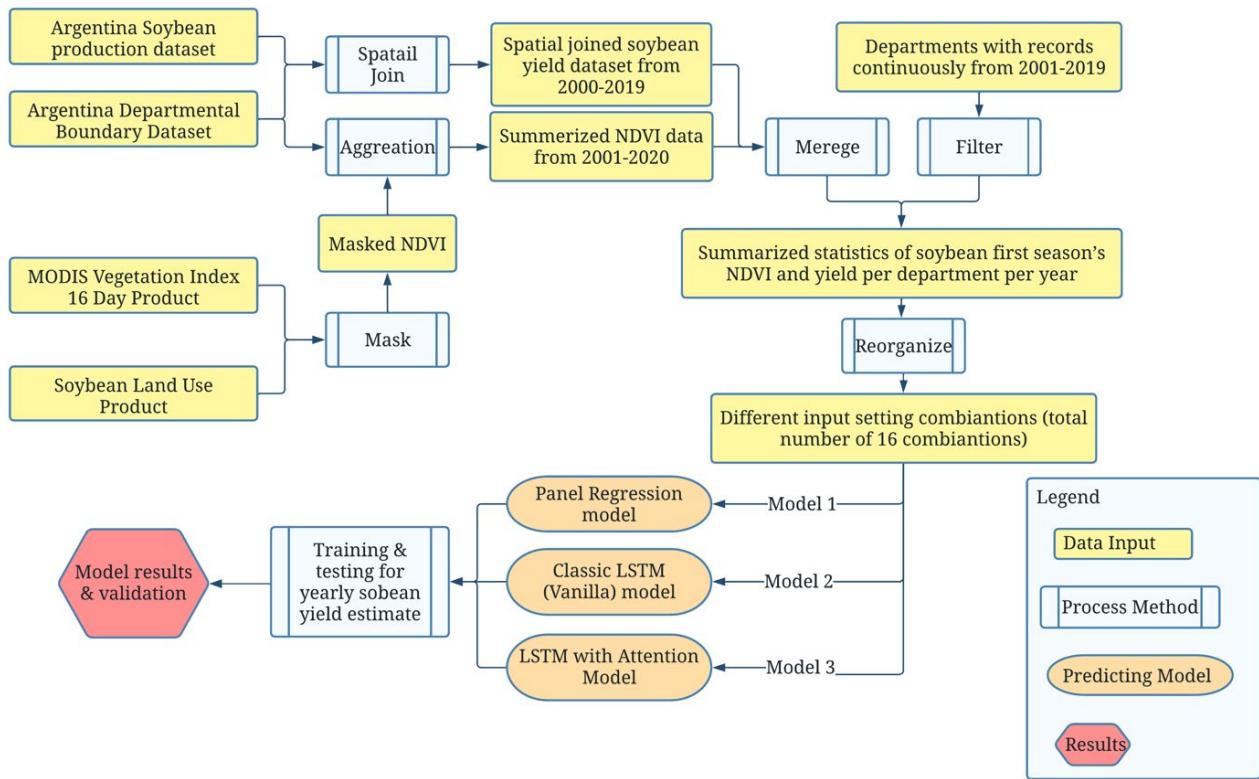
258
 259 **Figure 2. (A)** Most frequent NDVI peak time period during 2001-2019; **(B)** Soybean yields at
 260 the departmental level (kg/ha) in 2019
 261

262 **2.3. Modeling Methodology**

263 The primary objective of this study is to accurately estimate (fit) and predict soybean yields at
 264 the departmental level in Argentina. To achieve this goal, we have developed a methodology that
 265 encompasses the entire workflow of the study, starting from data retrieval and data processing to
 266 the use of processed data in different prediction models. The flow diagram below (Figure 3)
 267 depicts the methodology used in this study. First, we determine whether using the entire NDVI

268 during the growing season or just a few key indices would achieve satisfactory accuracy in
 269 predicting soybean yield. If the latter is true, we attempt to identify which NDVI records should
 270 be utilized for accurate predictions. Then, we will evaluate the performance of the panel
 271 regression model and deep learning models for predicting yield production and identify the best
 272 model capable of predicting soybean yields with acceptable accuracy using only the first few
 273 images of the predicting season to make in-season predictions.

274



275

276 **Figure 3.** The flow diagram of the methodology. The legend describes what each type of
 277 shape/color represents.

278

279 Table 2 and Figure 4 demonstrate how our prediction model works using configurations 1-4 of
 280 training and testing data. Each local model has separate training and testing phases which use
 281 independent inputs. Figure 4 presents an example for predicting soybean yields for 2011 using
 282 configuration 4. The actual yield of 2011 is denoted as y_7 . The entire training data has six years of
 283 yield data (denoted as $y_1, y_2, y_3, y_4, y_5, y_6$) paired with three years of vegetation index data (denoted
 284 as x_4, x_5, x_6), before the testing year. No testing labels have been used during the training stage.
 285 The training model is evaluated by the difference between fitted yield ($\hat{y}_4, \hat{y}_5, \hat{y}_6$) and actual yield

286 (y₄, y₅, y₆). For the testing year, the testing data include the testing year's vegetation index (x₇),
 287 along with yields in the previous three years (y₄, y₅, y₆) for testing evaluation between predicted
 288 yield \hat{y}_7 and actual yield y₇.

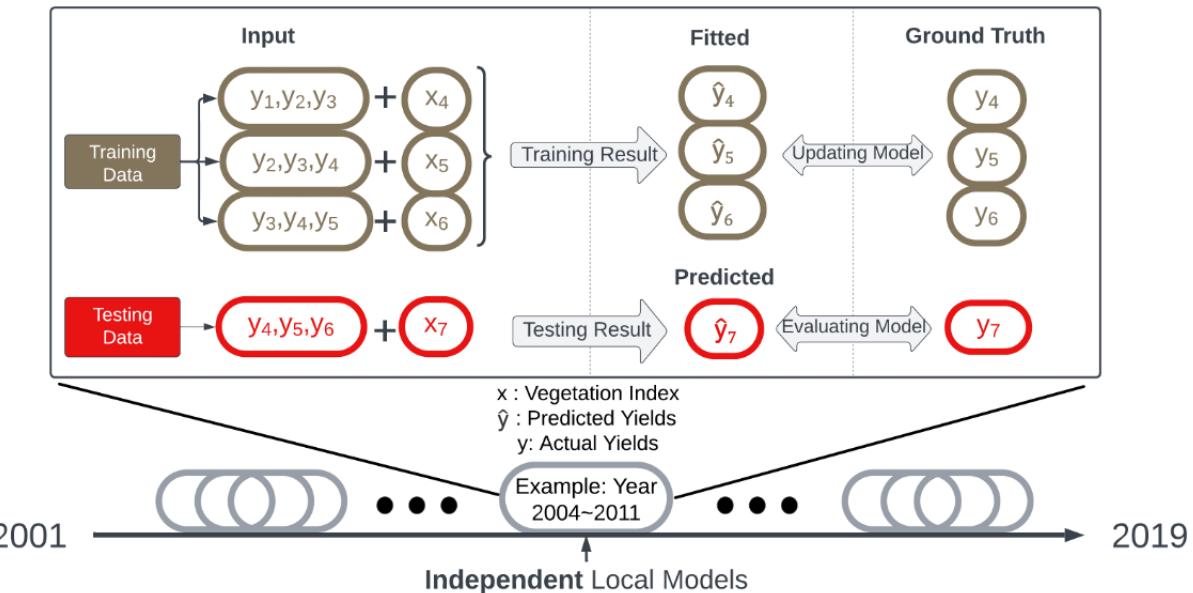
289
 290

Table 2. Configuration of Training and Testing Data

Configuration	Training Data & Fitted Yield	Testing Data & Predicted Yield
Configuration 1	$x_{t-1} \rightarrow \hat{y}_{t-1}$	VI data $x_t \rightarrow \hat{y}_t$
Configuration 2	$x_{t-3} \rightarrow \hat{y}_{t-3}; x_{t-2} \rightarrow \hat{y}_{t-2}; x_{t-1} \rightarrow \hat{y}_{t-1};$	$x_t \rightarrow \hat{y}_t$
Configuration 3	3-yr yield data (y _{t-4} to y _{t-2}) & 1-yr VI data (x _{t-1}) $\rightarrow \hat{y}_{t-1}$	3-yr yield data (y _{t-3} to y _{t-1}) & current year VI data (x _t) $\rightarrow \hat{y}_t$
Configuration 4	see figure 4	see figure 4

291 Note: 't' represents testing year, x vegetation index data, y actual yield, and \hat{y} represents fitted or
 292 predicted yield.

293
 294



295
 296

Figure 4. Example of Training, Testing and Prediction Using Configuration 4

298

299 This study uses three models as Figure 3 illustrates. The first is a panel regression model, which
 300 is arguably one of the most used models in econometrics. While the independent variables are the
 301 four combinations as the previous section explained. The dependent variable is the department's

302 soybean yield. In each combination, the panel model is organized at the departmental level for
303 each province, with a one-year time-step. Among alternative estimators of panel regression, we
304 choose the fixed effects estimator since it is more suitable for prediction purposes. This fixed effect
305 panel regression model is in the form of:

306

$$Y_{it} = \beta_1 x_{1it} + \beta_2 x_{2it} + \beta_3 x_{3it} + \dots + \beta_k x_{kit} + a_i + \varepsilon_{it} \quad (1)$$

307 Where Y_{it} is soybean yield of unit i at time t ; a_i is the fixed effect for unit i , which captures any
308 time-invariant features of unit i that may affect the outcome variable; $x_1, x_2, x_3, \dots, x_k$ are
309 independent variables specified in each input combination for unit i at time t , $\beta_1, \beta_2, \beta_3, \dots, \beta_k$ are
310 the coefficients that represent the marginal effect of each independent variable on the dependent
311 variable, ε_{it} is the error term, which captures any other factors that affect the dependent variable
312 but are not included in the model.

313 The second model is a deep learning model, namely the LSTM (Long Short-Term Memory).
314 Since this research is not trying to advance the technique itself, but rather to apply different models
315 under the same combination of variables to determine the best suitable one for the best prediction
316 performance in this research. A simple LSTM model and a LSTM with Attention model were
317 chosen for this study. Both models were designed to have the same number of epochs and batch
318 size to enable a fair comparison of their performance. Additionally, we employed an early stop
319 mechanism to prevent overfitting and improve the generalization ability of the models.

320 LSTM is a type of recurrent neural network (RNN) architecture that was first introduced by
321 Hochreiter and Schmidhuber (1997). The goal of LSTM architecture is to solve the vanishing
322 gradient problem that arises when training traditional RNN models. Overall, the LSTM
323 architecture is effective for modeling sequential data with long-term dependencies, such as natural
324 language processing and time series forecasting. In this study, the classic LSTM was used as one
325 of the deep learning models to predict soybean yields.

326 The third model is LSTM with Attention mechanism. The Attention mechanism in deep
327 learning is a technique that enables the model to focus on specific parts of the input data when
328 making predictions (Vaswani et al., 2017). The model does this by assigning different weights to
329 different parts of the input data, which helps it prioritize significant data and downplay irrelevant

330 data. In our study, the attention mechanism is applied to the hidden state outputs of LSTMs for
331 more accurate predictions.

332 **2.4. Model Comparison**

333 RMSE (Root Mean Square Error) and its normalization (NRMSE) are commonly used metrics
334 to evaluate the accuracy of prediction models. RMSE measures the square root of the average of
335 the squared differences between the actual values and the predicted values. In other words, it
336 represents the standard deviation of the residuals, or the differences between the predicted values
337 and the actual values. It has the following form:

338
$$RMSE = \sqrt{\frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n}} \quad (2)$$

339 Its normalization by the range of the true results (actual yield), \bar{o} , is:

340
$$NRMSE = \frac{RMSE}{\bar{o}} \quad (3)$$

341 The RMSE is a useful metric for measuring the accuracy of models in terms of their ability to
342 predict values close to the actual values. A lower RMSE indicates a better fit between the predicted
343 values and the actual values, and therefore a more accurate model. However, it should be noted
344 that the RMSE may not always provide a complete picture of a model's performance, as it does
345 not account for the direction of the errors (over- or under-predictions).

346 In this study, the RMSE is used to compare the performance of the panel regression, simple
347 LSTM, and LSTM with Attention models in predicting soybean yields. By calculating the RMSE
348 for each model, the study can identify which model has the smallest difference between predicted
349 and actual values, indicating a more accurate prediction.

350 To effectively compare and determine the best prediction scenario in this study, a simple
351 comparison of the RMSEs values is insufficient. As each prediction scenario comprises a series of
352 RMSEs calculated over a period of 15 years (2004-2019), additional statistical tests are required
353 to prove the effectiveness of different models and data combinations. Therefore, this study
354 incorporates a Kruskal-Wallis H test, which is a non-parametric test, to identify any significant
355 differences among different model and data combinations. This test is chosen over the regular t-
356 test as the RMSEs values may not follow a normal distribution. The null hypothesis of the Kruskal-

357 Wallis H test is that there is no significant difference among the groups, while the alternative
358 hypothesis is that there is a significant difference between at least one of the groups and the others.

359 Furthermore, to determine the preferred model combination for Argentina's soybean yield
360 prediction, an average of RMSEs values will be calculated across all prediction model
361 combinations. This approach will provide a more robust and comprehensive evaluation of different
362 prediction scenarios and enable the identification of the optimal model and data combination.

363 Overall, the inclusion of statistical tests such as the Kruskal-Wallis H test, post-hoc analysis,
364 and confidence intervals, as well as the use of averaged RMSE values, will provide a more
365 thorough evaluation of different prediction scenarios and enable the identification of the best
366 scenario for predicting Argentina's soybean yield.

367 **3. Results**

368 There are three distinct sub-sections in the results section. Using RMSE and H-tests, the first
369 subsection presents and analyzes the outcomes of the predictive models aggregated at the national
370 level. The second subsection uses two specific provinces as examples to give a more in-depth
371 review of the performance of the models, analyzing the accuracy of the predictions at a finer spatial
372 resolution. Lastly, the third subsection conducts a comparison analysis of the two algorithms,
373 highlighting their respective advantages and disadvantages and providing insight into their overall
374 performance.

375 **3.1. Prediction results of yield at the national level**

376 Through the utilization of panel regression and deep learning techniques, we have effectively
377 generated predictive models for soybean yields in Argentina between 2004 and 2019. As outlined
378 in the methodology section, our testing process encompassed 16 different explanatory variable
379 sets, with three prediction models applied to each. This yielded a total of 64 predictions per year,
380 covering every department in Argentina. It is important to note that, while predictions were made
381 for each department, our training and testing procedures were conducted at the provincial level.
382 To gauge the accuracy of our predictions, we calculated the root mean squared error (RMSE) for
383 each prediction, which enabled us to rapidly rank the performance of different variable sets and
384 prediction models. Table 2 presents the averaged soybean yield RMSE at the national level for all
385 predictions conducted between 2004 and 2019.

386 **Table 3.** Mean Soybean yield RMSE (kg/ha) with NRMSE in Brackets by Different Variable
 387 Combinations over 2004-2019

Predicting combinations	Max	During Peak	Eight	After Peak
Attention with var2 & previous yields	795.48 (0.1142)	627.28 (0.0890)	505.78 (0.0726)	633.57 (0.0905)
LSTM with var2 & previous yields	878.28 (0.1247)	689.62 (0.1000)	507.32 (0.0727)	667.95 (0.0945)
Attention with var1 & previous yields	831.75 (0.1183)	721.11 (0.1492)	549.84 (0.0784)	754.35 (0.1094)
LSTM with var1 & previous yields	1422.44 (0.2012)	1049.38 (0.1181)	752.94 (0.1068)	1009.92 (0.1436)
Attention with only var2	814.88 (0.1153)	813.75 (0.1167)	824.50 (0.1196)	807.68 (0.1159)
Attention with only var1	888.02 (0.1242)	837.33 (0.2083)	828.28 (0.1173)	834.58 (0.2070)
LSTM with only var2	885.18 (0.1236)	835.80 (0.1195)	867.25 (0.1236)	833.45 (0.1186)
Panel regression with only var1	863.36 (0.1223)	911.88 (0.1306)	1030.79 (0.1465)	924.32 (0.1318)
Panel regression with var1 & previous yields	1016.19 (0.1504)	1057.81 (0.1539)	1078.54 (0.1560)	1032.25 (0.1503)
LSTM with only var1	1850.26 (0.2593)	1441.86 (0.2029)	1186.99 (0.1669)	1462.20 (0.2177)
Panel regression with var2 & previous yields	1051.95 (0.1539)	2049.53 (0.3124)	1373.80 (0.1924)	1511.10 (0.2217)
Panel regression with only var2	953.31 (0.1352)	1610.27 (0.2272)	1647.07 (0.2329)	1304.17 (0.1824)

388

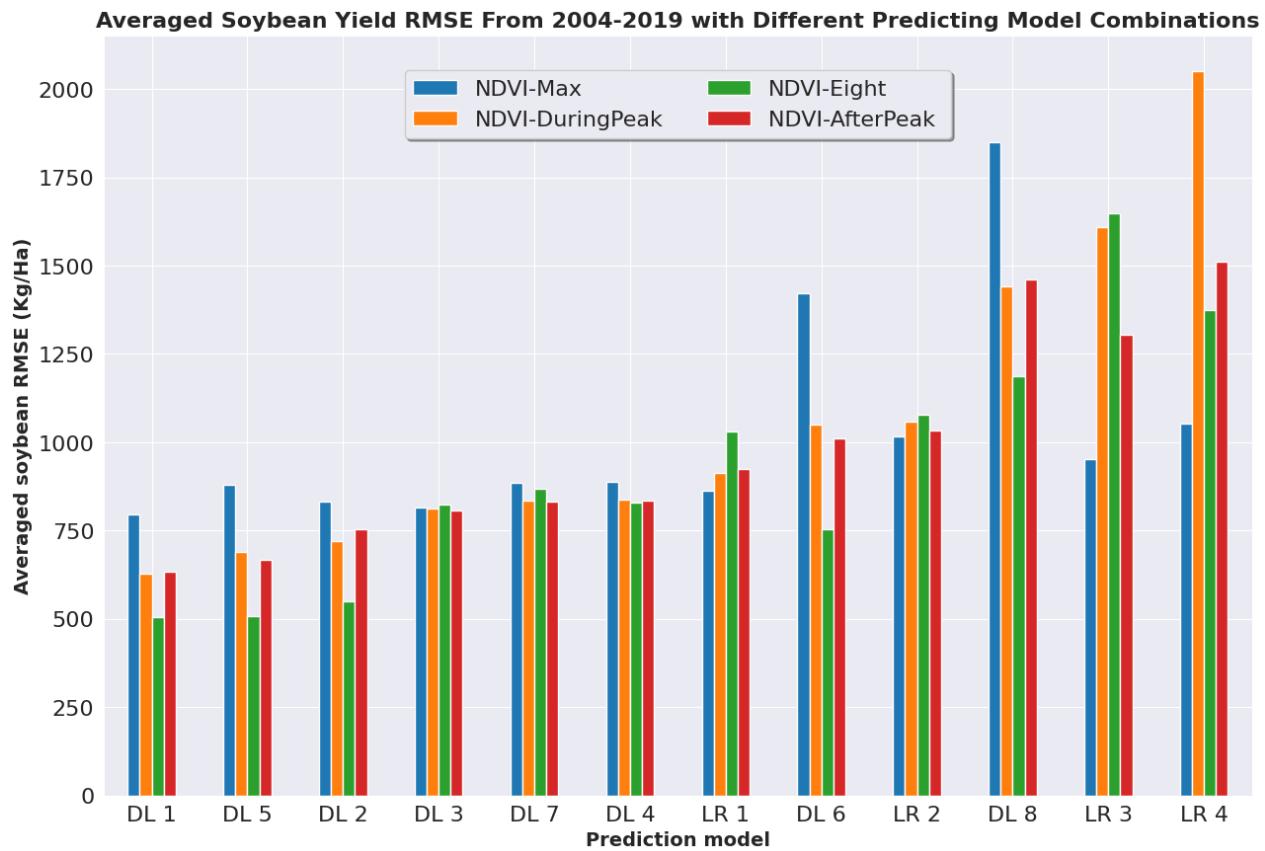
389 The findings from Table 2 indicate that, at the national level, the LSTM with Attention model
 390 using an explanatory variable set of NDVI Eight on var 2 with previous year's yields is the best
 391 combination, with the lowest RMSE of 505.78 kg/ha during 2004-2019. On the other hand, the
 392 worst combination is the Panel Regression model using an explanatory variable set of NDVI
 393 During Peak on var 2 with previous year's yields, with the lowest RMSE of 2049.53 kg/ha. Overall,
 394 deep learning models perform better than Panel Regression models, with RMSE ranging from
 395 505.78 kg/ha (NRMSE = 0.0726) to 1850.26 kg/ha (NRMSE = 0.2593) for deep learning models
 396 and from 863.36 kg/ha (NRMSE = 0.1223) to 2049.53 kg/ha (NRMSE = 0.3124) for Panel
 397 Regression models.

398 It is important to note that the worst prediction made by the deep learning models is LSTM with
399 NDVI-Max on var 1 with previous year's yields, whereas the best prediction RSME created by the
400 Panel Regression model is made from NDVI-Max on var 1. In addition, there is a trend in deep
401 learning models wherein the use of a larger input, be it the number of NDVI images or the number
402 of explanatory variables, results in a lower RMSE. This trend is not observed in Panel Regression
403 models, where the best prediction results were obtained with a smaller set of input variables, both
404 for the number of NDVI images and explanatory variables.

405 Another interesting finding is that the deep learning models' prediction errors are more widely
406 dispersed, as shown by the fact that LSTM with only var 1 or var1 with previous year's yield has
407 worse performance than Panel Regression with only var 1 or var1 with previous year's yield.
408 Moreover, Panel Regression shows a different trend than deep learning models, where a larger
409 explanatory variable set would result in worse performance than a smaller input explanatory
410 variable set. The figure below provides a clearer illustration of this trend. In order to make the
411 representation of these models in the multiple figures below more concise, Table 3 provides the
412 names of the combined models and (Table 4) shows the model combinations and their
413 abbreviations used in Figures 4-10.

414 **Table 4.** Model Combinations and Their Abbreviations used in Figures 4-10.

Model Combinations	Abbreviation in figures
Attention with var2 & previous year's yields	DL1
LSTM with var2 & previous year's yields	DL5
Attention with var1 & previous year's yields	DL2
LSTM with var1 & previous year's yields	DL6
Attention with only var2	DL3
Attention with only var1	DL4
LSTM with only var2	DL7
Panel regression with only var1	LR1
Panel regression with var1 & previous year's yields	LR2
LSTM with only var1	DL8
Panel regression with var2 & previous year's yields	LR3
Panel regression with only var2	LR4

416 **Figure 5.** Averaged soybean yield RMSE over 2004-2019 by predicting model combination.

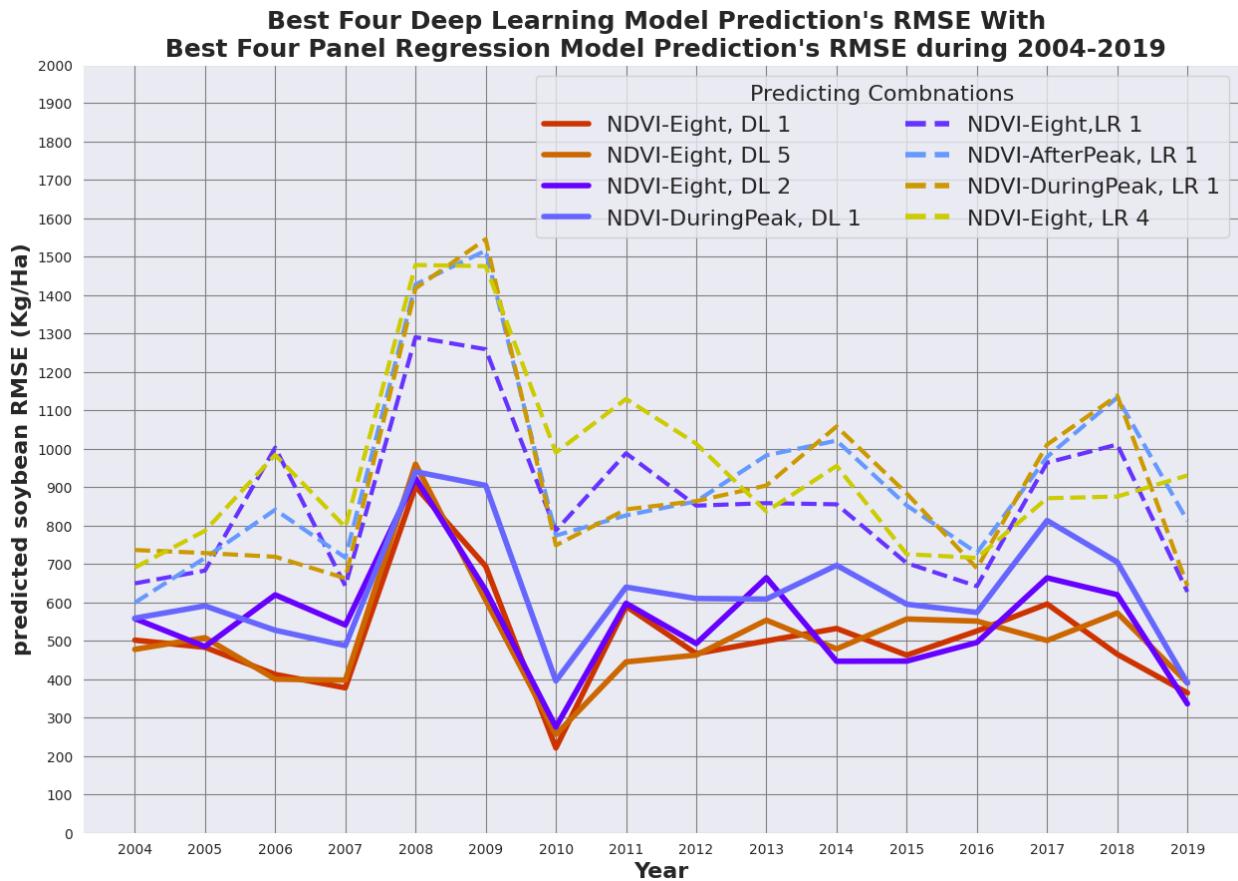
417

418 Figure 5 visualizes the averaged performance of these models as presented in Table 2. However,
 419 it is important to also examine the annual average of RMSE from the best four deep learning
 420 models' predictions and best four panel regression model's predictions during the same time
 421 period. Figure 5 demonstrates the yearly trend in prediction accuracy, with lower RMSE indicating
 422 better model performance. The figure clearly illustrates that all predictions follow a similar trend
 423 in each year's prediction accuracy, with the worst predictions occurring in 2008 and 2017. Panel
 424 Regression models also had relatively high prediction errors in 2011. Additionally, it is evident
 425 from Figure 5 that deep learning models' predictions were consistently more accurate than those
 426 of the Panel Regression models throughout the entire time period.

427 Interestingly, despite having similar error trends over the course of 16 years, the lowest
 428 prediction errors for deep learning models occurred in 2010 and 2019, while the lowest prediction
 429 error for the Panel Regression model occurred in 2016. The result suggests that even though each

430 prediction model uses different input variable settings, the error trends share some similarities. It
431 should be noted that Figure 6 only summarizes the best four deep learning models' RMSE and
432 best four Panel Regression model's RMSE from 2004 to 2019. The worst performance of either
433 model type is not plotted in the figure 6, as the RMSE for these worst performances were too high,
434 rendering the predictions unreliable.

435



436
437 **Figure 6.** Comparison of the Best Four Deep Learning Model Predictions' RMSEs with the Best
438 Four Panel Regression Model Predictions' RMSEs by year over 2004-2019
439

440 An additional key finding in this study is the importance of previous year's yield data as an
441 explanatory variable for deep learning models in predicting soybean yield. Here, we found that in
442 panel regression models, including previous year's yield data resulted in a worse RMSE than
443 models without these data. As discussed earlier, deep learning models benefit from larger set of
444 input training variables, with smaller set resulting in worse predictions. In contrast, panel

445 regression models achieved relatively good accuracy using only key variables, but this accuracy
446 was not as good as the deep learning models with their minimum number of input variables.

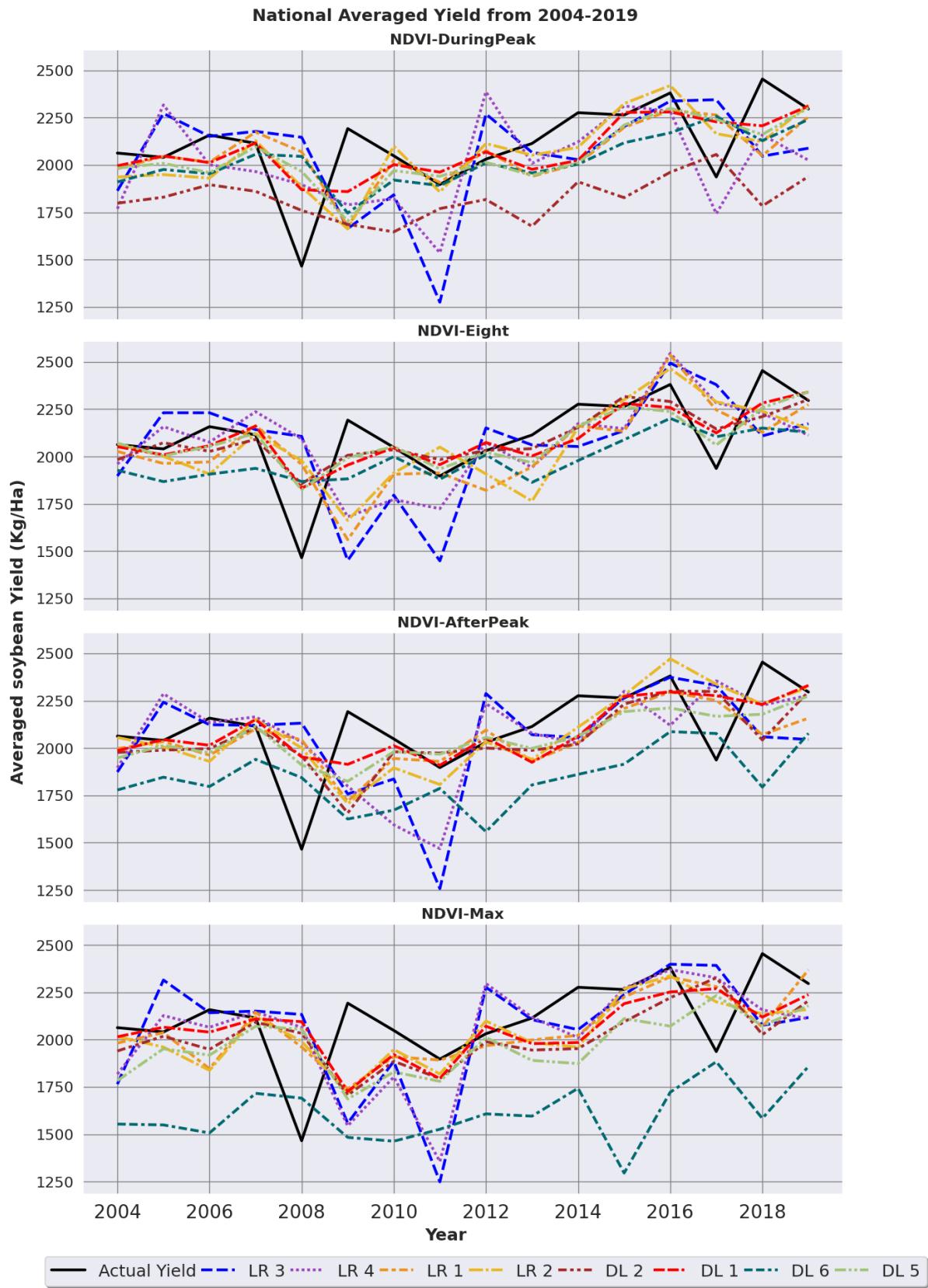
447 The worst deep learning prediction was made using a simple LSTM model with the input
448 combination of NDVI-Max and only var 1, indicating that for each time step in the LSTM model,
449 only one image with four variables was used as training data. This prediction was even worse than
450 the panel regression model's predictions using the same input variable. Overall, the results suggest
451 that the more training variables that are used for deep learning models, the better the model's
452 prediction accuracy will be, while panel regression models may achieve relatively good accuracy
453 among regression models with only key variables.

454 Figure 6 illustrates the national average yield changes from 2004 to 2019. The blue continuous
455 line represents actual yields, while the dotted lines represent various prediction models. From top
456 to bottom, different NDVI image combinations are utilized by each model. Among these, the
457 NDVI-Eight combination demonstrates the best prediction accuracy across different prediction
458 settings. This is because NDVI-Eight includes all images captured during the soybean growing
459 season until harvest. However, since this study aims to establish an early in-season prediction for
460 Argentina's soybean production, using the entire growing season's images would not meet the
461 objective. Therefore, predictions made using NDVI-During Peak or NDVI-After Peak are
462 preferred when employing deep learning models.

463 NDVI-During Peak demonstrates superior performance when compared to NDVI-After Peak.
464 Moreover, because NDVI-During Peak is based on peak NDVI images in addition to one preceding
465 and one subsequent image, it can generate yield predictions sooner than NDVI-After Peak, which
466 uses the peak NDVI image and two subsequent images. In particular, NDVI-During Peak can
467 predict yields approximately two weeks earlier than NDVI-After Peak.

468 Figure 6 also displays the general yield changes from 2004 to 2019, revealing three periods of
469 soybean yield reduction in 2008, 2009-2011, and 2017. The most severe reduction occurred in
470 2008, followed by 2017 and 2009-2011. Comparing these reductions with the predictions, all
471 models exhibited relatively high prediction errors for 2008 and 2017. While the prediction models
472 successfully learned from the series of soybean reductions during 2009-2011, they failed to adjust
473 for 2008 and 2017. This discrepancy could be attributed to the extreme weather conditions
474 experienced in those years, when Argentina's soybean crops suffered from drought. The high

475 prediction errors in 2008 and 2017 also led to high prediction errors in 2009 and 2018, with actual
476 yields exceeding all predicted yields. This may be due to the three-year training data length for all
477 models, causing the models to be misguided by the preceding drought reductions in 2009 and 2018.



478

479

Figure 7. National Average Yield from 2004 to 2019

480 Large prediction errors were also observed in 2011, when Argentina's soybean production was
 481 affected by warm weather. However, the models overestimated the impact of the warm weather,
 482 leading to an underestimation of actual production. These underestimations were predominantly
 483 reflected in panel regression models, whereas deep learning models were able to generate more
 484 accurate predictions. By incorporating historical yield data, deep learning models were capable of
 485 minimizing the effects of sudden NDVI changes for in-season predictions, particularly in the
 486 context of extreme weather events. This demonstrates the potential advantages of deep learning
 487 models in capturing complex relationships and mitigating the impact of external factors on yield
 488 predictions.

489
 490 **Figure 8.** Comparison of the Best Four Deep Learning Model Predictions' RMSEs with the Best
 491 Four Panel Regression Model Predictions' RMSEs during 2004-2019.
 492

493 We further investigated the most suitable prediction combination for accurately predicting
494 soybean yields in Argentina. Figure 8 displays the root mean square error (RMSE) of the four best
495 deep learning model predictions and the four best panel regression model predictions from 2004
496 to 2019. The best prediction models are ranked from left to right based on their mean RMSE. From
497 the plot, the LSTM with Attention model using NDVI-Eight on var2 with previous year's yields
498 exhibits the lowest mean RMSE. However, as previously discussed, NDVI-Eight may not provide
499 a timely pre-season prediction before soybean harvest. Therefore, the third-best prediction
500 combination, an LSTM with Attention model using NDVI-During Peak on var2 with previous
501 year's yields, is the most recommended soybean yield prediction model. Not only does this model
502 have the smallest mean RMSE (548.84 kg/ha), but also the smallest RMSE variance (157.10
503 kg/ha).

504 Comparing the four best deep learning models to the four best panel regression models reveals
505 that the deep learning models not only have smaller RMSEs, but also smaller variances. To further
506 determine whether the predictions are statistically significantly different from each other, a
507 Kruskal-Wallis H test is conducted for these models. If the p-value of the H test is smaller than
508 0.05, there is a significant difference among the groups, otherwise, the null hypothesis cannot be
509 rejected. From the H-test, the p-value is 3.504e-13 for all eight predictions; p-value is 2.05e-05
510 between the best deep learning model and the best panel regression model; p-value is 3.98e-05
511 between the LSTM with Attention model using NDVI-During Peak on var2 with previous year's
512 yields and the best panel regression model. These results indicate a significant difference between
513 deep learning and panel regression models in a broad comparison. With lower mean RMSE and
514 lower RMSE variance, deep learning models outperform panel regression models.

515 The H test between the LSTM with Attention models using NDVI-Eight on var2 with previous
516 year's yields and NDVI-During Peak on var2 with previous year's yields generated a p-value of
517 0.25, meaning that there is no substantial difference between these projections. Therefore, using
518 NDVI-During Peak images can provide a satisfactory prediction for soybean yield in Argentina at
519 the national level, with an average RMSE of 549.84 kg/ha from 2004 to 2019.

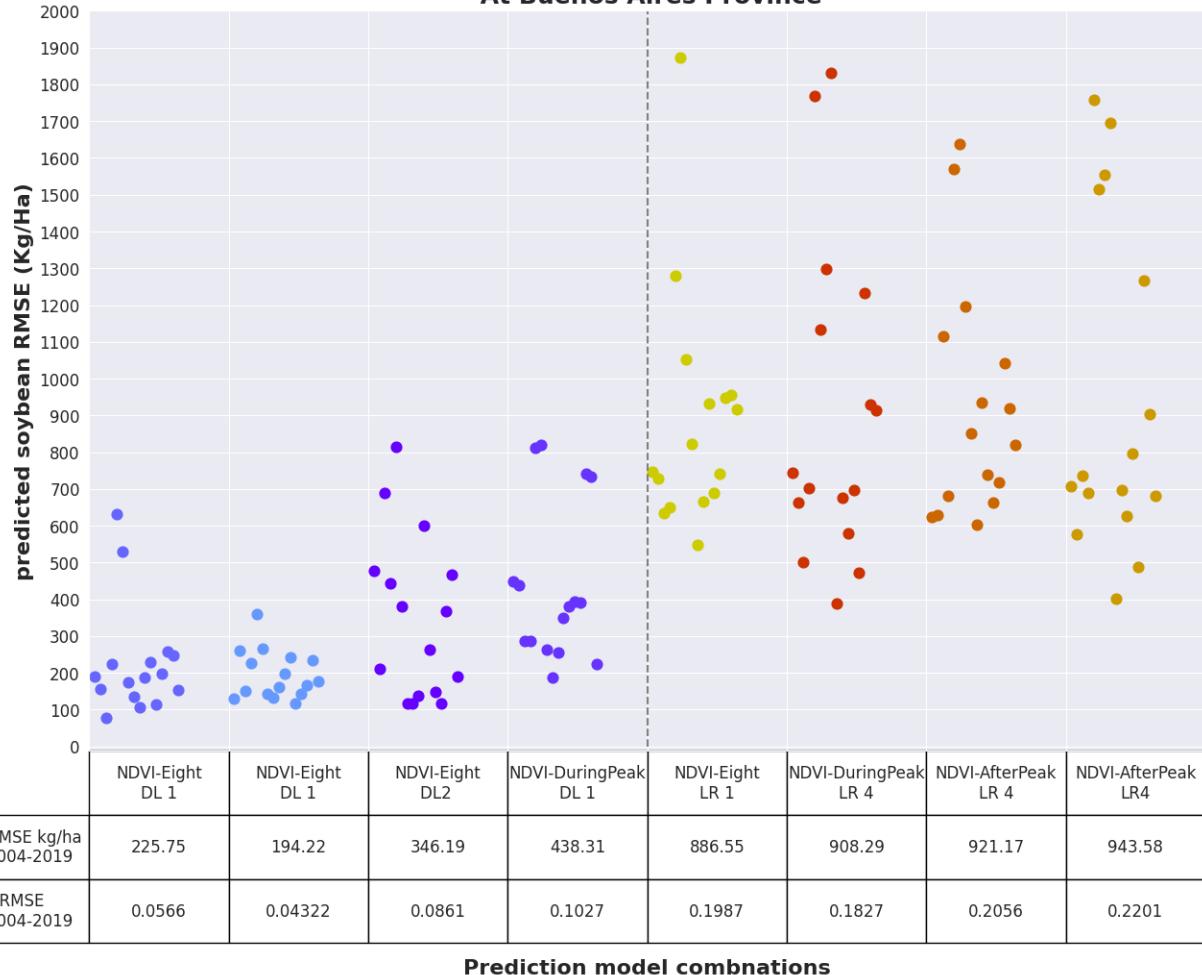
520 **3.2. Prediction results of yield at provincial level**

521 According to the methodology outlined, the model training and testing are conducted at the
522 departmental level for each province and then aggregated to the national level for model

523 comparison. However, it is important to note that not all provinces have the same number of
524 departments with continuously planted soybeans from 2001-2019. For example, Buenos Aires has
525 88 departments, Chaco has 17 departments, Cordoba has 22 departments, Entre Rios has 15
526 departments, Santa Fe has 18 departments, and Santiago Del Estero has 12 departments. This
527 uneven distribution of departments leads to varying levels of prediction accuracy across provinces.

528 In this section, we focus on the performance analysis of the provincial models in Buenos Aires
529 and Cordoba. Figures 9 and 10 show the Root Mean Square Error (RMSE) of the four best deep
530 learning models and the four best panel regression models from 2004 to 2019 in Buenos Aires and
531 Cordoba, respectively. To test the significance of the RMSEs, the H test was performed for both
532 provinces. In Buenos Aires, the H test result for the four best deep learning models and the four
533 best panel regression models was 4.38e-15, while for Cordoba, the H test result was 1.39e-09.

**Best Four Deep Learning Model Prediction's RMSE With
Best Four Panel Regression Model Prediction's RMSE during 2004-2019
At Buenos Aires Province**

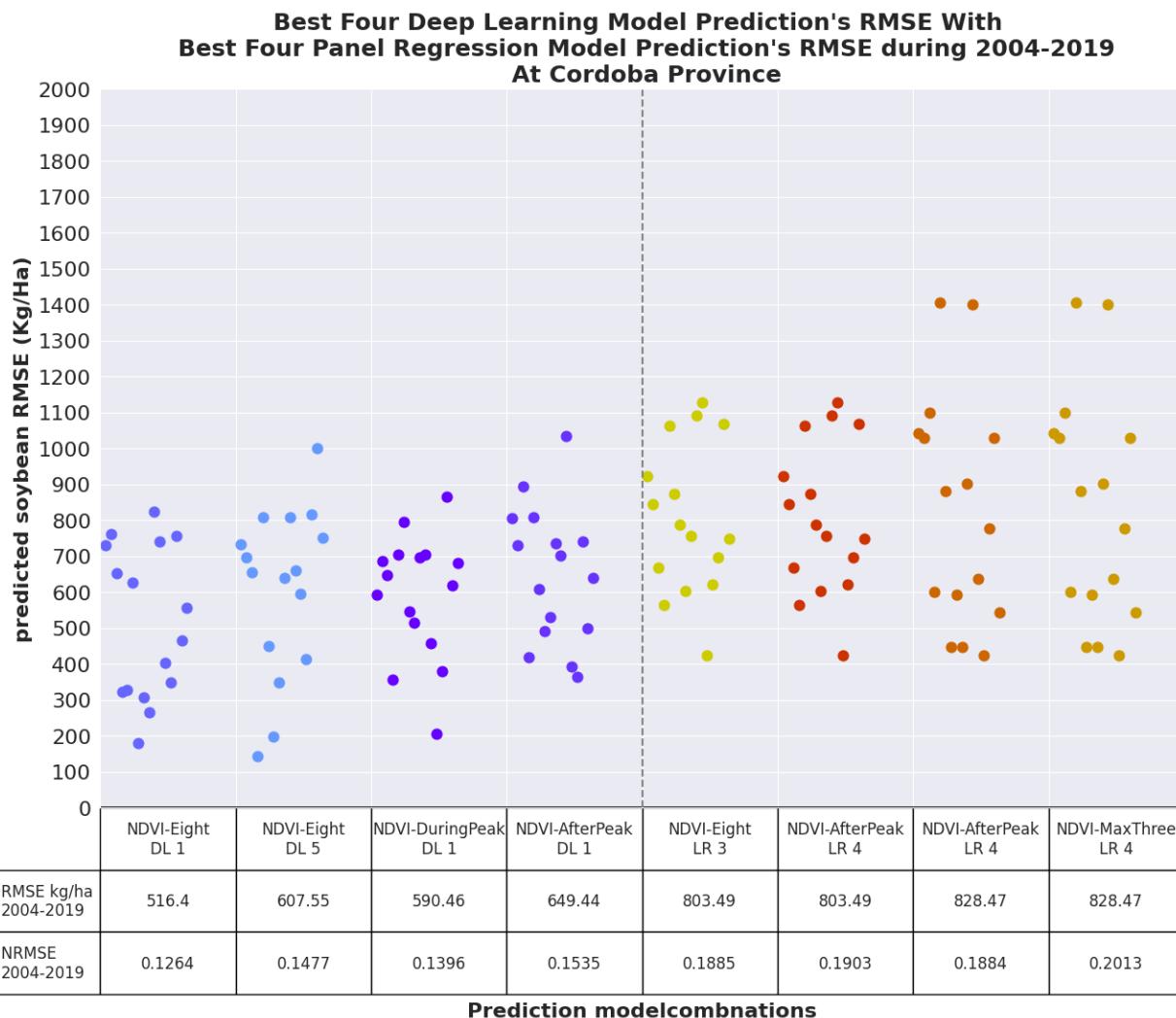


536 **Figure 9.** RMSE Comparison between the Best Four Deep Learning Models and the Best Four
537 Panel Regression Models for Buenos Aires Province during 2004-2019
538

539 Additionally, the H test result between the NDVI-DuringPeak with Var2 and previous year's
540 yields using an Attention model and the best panel regression model was 0.0002 in Buenos Aires
541 and 0.045 in Cordoba. The best panel regression model in both provinces was NDVI-Eight with
542 Var1 and previous year's yields, which requires all images to make a prediction, while the
543 recommended deep learning model only requires the three images at, preceding and following the
544 peak to achieve a satisfactory level of accuracy. Hence, while panel regression may provide
545 accurate predictions close to those made during the peak NDVI, it requires the entire season's data

546 to achieve the same level of accuracy as the Attention model, which is designed to make early in-
547 season predictions.

548



549

550 **Figure 10.** RMSE Comparison between the Best Four Deep Learning Models and the Best Four
551 Panel Regression Models for Cordoba Province during 2004-2019

552

553 **4. Discussion**

554 The comparative analysis of deep learning models and panel regression models for soybean yield
555 prediction in Argentina reveals several key findings and implications. This discussion section will
556 delve into the performance, advantages, and limitations of the models, as well as the potential for
557 future research in this area.

558 **4.1. Deep Learning Model Performance and Advantages Against Panel Regression**

559 The results of this study demonstrate that deep learning models, particularly the LSTM with
560 Attention module using the NDVI-DuringPeak with Var2 and previous year's yields, provide the
561 most accurate predictions for in-season soybean yields in Argentina. The superior performance of
562 deep learning models can be attributed to their ability to capture complex non-linear relationships
563 between input variables and yield outcomes. This is particularly evident when multiple NDVI
564 images are used during the prediction process, as the models can better learn and adapt to the
565 temporal patterns in the data.

566 Furthermore, deep learning models exhibit a significant advantage in their ability to incorporate
567 previous year's yield data for more accurate predictions. The Attention mechanism in the LSTM
568 model is especially effective in capturing the contribution of previous year's yield by assigning
569 different weights to NDVI images and attending to time steps in the data. This feature allows the
570 model to better understand the historical context and trends in soybean yields, leading to improved
571 prediction accuracy.

572 The study also highlights the importance of data availability and selection of input variables for
573 different types of models. Deep learning models require more data to achieve good performance
574 and benefit from a larger set of input variables. In contrast, panel regression models can perform
575 well with only key variables, but may not necessarily benefit from a large number of input
576 variables, which can lead to worse predictions in some cases.

577

578 **4.2. Spatial Variability in Model Performance**

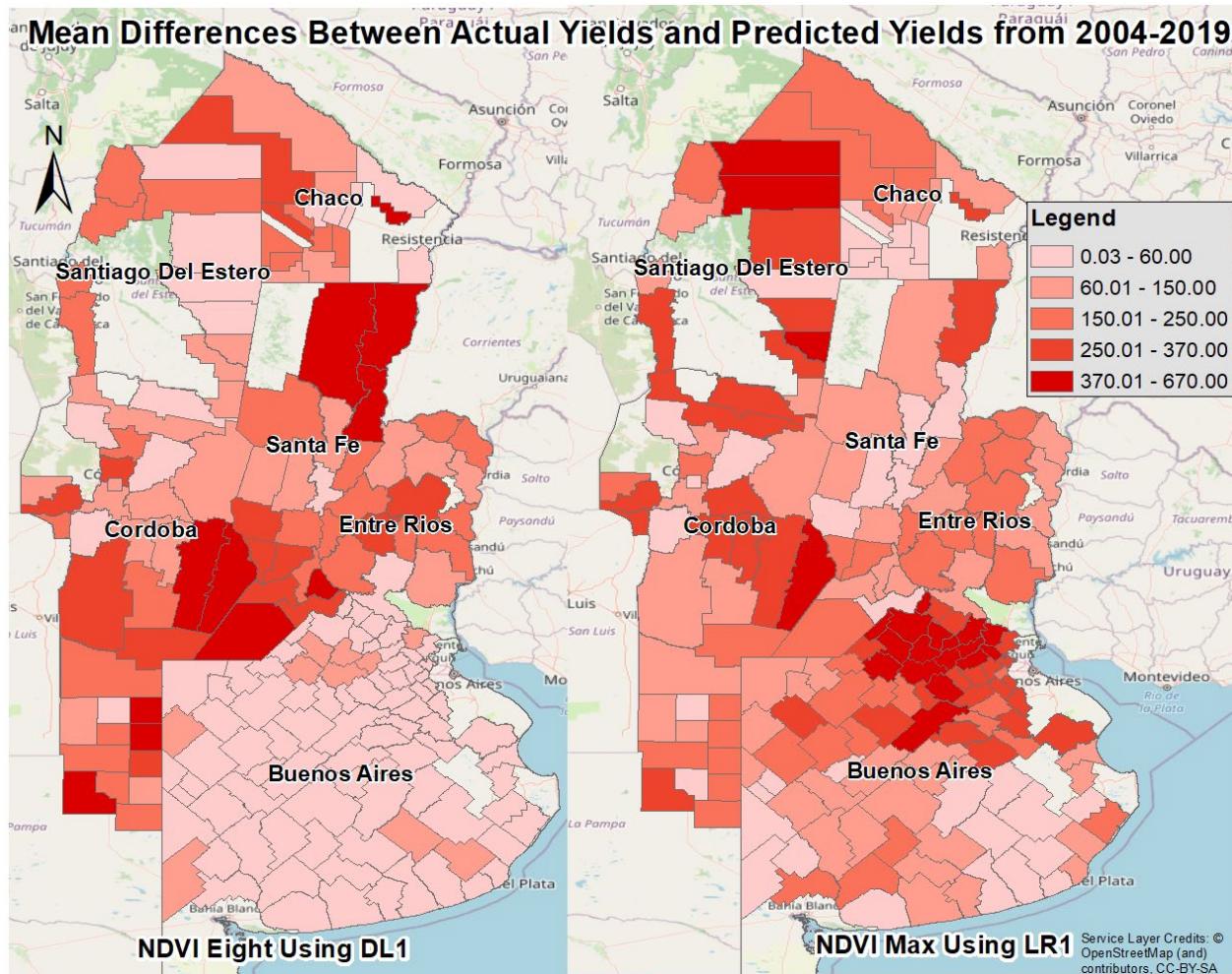
579 The spatial analysis of model performance, as depicted in Figure 11, reveals interesting patterns
580 and insights. The results demonstrate that the deep learning model outperforms the panel
581 regression model in terms of prediction accuracy, particularly in the southeast region of the study
582 area, which primarily consists of the Buenos Aires Province. This region exhibits a lower
583 difference between the actual yields and predicted yields compared to the northeastern part of the
584 study area, which includes the Santa Fe, Chaco, and Cordoba Provinces.

585 Within the Buenos Aires Province, only nine departments have high differences (> 60 kg/ha)
586 between actual yield and predicted yields by the deep learning model, whereas the panel regression

587 model has 22 departments with such high differences. This finding suggests that the deep learning
588 model is more effective in capturing the spatial heterogeneity of soybean yields in this region,
589 which may be attributed to its ability to learn from a larger set of input variables and its capacity
590 to model complex, non-linear relationships.

591 In other provinces, the deep learning model also demonstrates better performance, with 95
592 departments having a difference of less than 60 kg/ha between actual and predicted yields,
593 compared to only 36 departments in the case of the panel regression model. This further highlights
594 the superiority of deep learning models in capturing the spatial variability of soybean yields across
595 different regions in Argentina.

596 The spatial analysis also reveals that the panel regression model tends to have larger differences
597 between actual and predicted yields, as well as a higher number of departments with differences
598 exceeding 60 kg/ha, compared to the deep learning model. This finding underscores the limitations
599 of traditional regression models in capturing the complex spatial patterns and relationships that
600 influence soybean yields, and emphasizes the need for more advanced modeling techniques, such
601 as deep learning, to improve prediction accuracy.



602 **Figure 11.** Mean Differences Between Actual Yields and Predicted Yields over 2004-2019

603 **4.3. Limitations and Future Research**

604 Despite the promising results, this study also reveals some limitations that should be
 605 addressed in future research. One major limitation is the short time span of training data, which
 606 may not fully capture the impact of agricultural technology innovation on soybean production.
 607 The three-year training period used in this study confirms that a simple soybean prediction using
 608 yields and NDVI does not require long-term data availability. However, it can also cause a
 609 delayed response effect on predictions in the event of sudden changes in yields or vegetation
 610 indices. Future research should explore the use of longer training periods and investigate
 611 methods to incorporate the effects of technological advancements in crop yield prediction
 612 models.

615 Another limitation of this study is the reliance on only NDVI and the previous year's yield for
616 prediction. While these variables provide a good basis for yield prediction, incorporating
617 additional data sources, such as precipitation, temperature, and soil moisture, could potentially
618 improve the accuracy of the models. Future research should focus on integrating these additional
619 variables and assessing their impact on prediction performance.

620 Moreover, the study highlights the challenge of predicting yields during years with extreme
621 weather conditions, such as severe drought or flooding. Both deep learning and panel regression
622 models exhibit relatively larger errors in these abnormal years. Developing methods to reduce
623 prediction errors under these circumstances is crucial for providing more practical and reliable
624 forecasting products to stakeholders in the agricultural sector. Future research should investigate
625 techniques to better capture the effects of extreme weather events on crop yields and explore
626 ways to improve model resilience in these situations.

627 The findings of this study have important implications for future research in crop yield
628 prediction. The superior performance of deep learning models, particularly the LSTM with
629 Attention model, underscores the potential for further exploration and refinement of these
630 techniques. Researchers should continue to investigate novel architectures and algorithms that
631 can better capture the complex dynamics of crop growth and yield formation. Additionally, the
632 development of user-friendly interfaces and tools that enable stakeholders to easily access and
633 utilize these advanced prediction models is essential for translating research findings into
634 practical applications.

635

636 **5. Conclusion**

637 In this study, we employed two different approaches to predict soybean yields over the period
638 of 2004-2019. We explored the explanatory power of in-season NDVI data for yield prediction in
639 Argentina, compared the accuracy of using all growing season NDVI versus a few key NDVI, and
640 examine the advantages and disadvantages of deep learning models compared to traditional
641 regression models in yield prediction. The prediction results demonstrate that while using
642 departmental NDVI data can relatively accurately predict soybean yield, the three images at,
643 preceding and following the peak NDVI are sufficient for making a good in-season prediction as
644 early as six weeks before the harvest. Although the LSTM model with the attention mechanism

645 applied to the entire growing season NDVI values and three years of training data performed the
646 best, using the entire season's NDVI for prediction may not be timely or efficient for the current
647 season, as the results would be available after the actual harvest. Therefore, the optimal
648 combination for accurate and more useful soybean yield prediction is the LSTM with three years
649 of training data and the attention mechanism applied to three images at, preceding and following
650 the maximum NDVI during the growing season.

651 Our comparison results demonstrated that the best-performing panel regression does not adhere
652 to the same pattern as deep learning models, in which a larger number of training data leads to a
653 lower RMSE. Contrariwise, larger training data sizes do not necessarily result in a lower RMSE.
654 Possible explanations include a misspecification issue in a simple linear regression setting. Deep
655 learning models have superior generalization abilities. The low RMSE produced by the deep
656 learning models in this study indicates a robust capacity for generalization. Using the yield data of
657 the previous year as a proxy for biophysical variables, the current NDVI serves as an explanatory
658 variable to identify the potential departure of the current season from the NDVI/yield values of
659 previous years. Thus, the incorporation of previous year's yield information improves the accuracy
660 of yield projections.

661 Here, we also highlight the limitations of this study. First, the use of only NDVI and the
662 previous year's yield for prediction may not provide the most accurate results, and the inclusion of
663 additional data such as precipitation and land surface temperature may improve the accuracy.
664 Secondly, the models exhibit relatively larger errors in years with extreme weather conditions such
665 as severe drought or flooding. As some research indicates, estimating crop yields during extreme
666 weather conditions like drought or flooding could be very challenging (Feng et al., 2019; Prodhan,
667 Zhang, Hasan, et al., 2022; Prodhan, Zhang, Pangali Sharma, et al., 2022). However, as accurate
668 predictions during abnormal years would benefit local farmers and other stakeholders, additional
669 research is required to determine how to reduce the prediction error under these circumstances in
670 order to provide more practical forecasting products.

671

672 **Funding**

673 Xiaopeng Song is supported in part by the National Aeronautics and Space Administration's
674 (NASA) (Grant number: 80NSSC20K1490). Yiqun Xie is supported in part by the National

675 Science Foundation (Grant number: 2105133, 2126474, and 2147195) and NASA (Grant
676 number: 80NSSC22K1164).

677 **CRediT authorship contribution statement**

678 **Yuhao Wang:** Conceptualization, Formal analysis, Investigation, Methodology, Software,
679 Writing – original draft. **Kuishuang Feng:** Conceptualization, Investigation, Supervision,
680 Writing – review & editing. **Laixiang Sun:** Conceptualization, Investigation, Supervision,
681 Writing – review & editing. **Yiqun Xie:** Methodology, Software, Writing – review &
682 editing. **Xiao-Peng Song:** Methodology, Writing – review & editing.

683 **Declaration of competing interest**

684 The authors declare that they have no known competing financial interests or personal
685 relationships that could have appeared to influence the work reported in this paper.

686

687

688

689

690

691 **References**

692 Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized regression-
693 based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data.
694 *Remote Sensing of Environment*, 114(6), 1312–1323.
695 <https://doi.org/10.1016/j.rse.2010.01.010>

696 Cai, R., Yu, D., & Oppenheimer, M. (2014). Estimating the Spatially Varying Responses of Corn
697 Yields to Weather Variations using Geographically Weighted Panel Regression. *Journal of*
698 *Agricultural and Resource Economics*, 39(2), 230–252.

699 Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., & Li, Z. (2018). A high-
700 performance and in-season classification system of field-level crop types using time-series
701 Landsat data and a machine learning approach. *Remote Sensing of Environment*, 210, 35–47.
702 <https://doi.org/10.1016/j.rse.2018.02.045>

703 Didan, K., Barreto Munoz, A., Solano, R., & Huete, A. (2015). *MODIS vegetation index user's*
704 *guide (MOD13 series) version 3.00*. <http://vip.arizona.edu/FAOSTAT>. (2023). *Crops and*
705 *livestock products*. License: CC BY-NC-SA 3.0 IGO.
706 <https://www.fao.org/faostat/en/#data/QCL>

707 Feng, P., Wang, B., Liu, D. L., & Yu, Q. (2019). Machine learning-based integration of
708 remotely-sensed drought factors can improve the estimation of agricultural drought in South-
709 Eastern Australia. *Agricultural Systems*, 173, 303–316.
710 <https://doi.org/10.1016/j.agsy.2019.03.015>

711 Franch, B., Vermote, E. F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., Justice, C., &
712 Sobrino, J. A. (2015). Improving the timeliness of winter wheat production forecast in the
713 United States of America, Ukraine and China using MODIS data and NCAR Growing Degree
714 Day information. *Remote Sensing of Environment*, 161, 131–148.
715 <https://doi.org/10.1016/j.rse.2015.02.014>

716 Franch, B., Vermote, E. F., Skakun, S., Roger, J. C., Becker-Reshef, I., Murphy, E., & Justice, C.
717 (2019). Remote sensing based yield monitoring: Application to winter wheat in United States
718 and Ukraine. *International Journal of Applied Earth Observation and Geoinformation*, 76,
719 112–127. <https://doi.org/10.1016/j.jag.2018.11.012>

720 Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. *Neural Computation*, 9(8),
721 1735–1780. <https://doi.org/10.1162/neco.1997.9.8.1735>

722 Ji, Z., Pan, Y., Zhu, X., Wang, J., & Li, Q. (2021). Prediction of crop yield using phenological
723 information extracted from remote sensing vegetation index. *Sensors (Switzerland)*, 21(4), 1–
724 17. <https://doi.org/10.3390/s21041406>

725 Khaki, S., Wang, L., & Archontoulis, S. V. (2020). A CNN-RNN Framework for Crop Yield
726 Prediction. *Frontiers in Plant Science*, 10. <https://doi.org/10.3389/fpls.2019.01750>

727 Klein, H. S., & Vidal Luna, F. (2021). The growth of the soybean frontier in South America: the
728 case of Brazil and Argentina. *Revista de Historia Económica / Journal of Iberian and Latin*
729 *American Economic History*, 39(3), 427–468. <https://doi.org/10.1017/S0212610920000269>

730 Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., Kabat, P., &
731 Ludwig, F. (2019). The global nexus of food–trade–water sustaining environmental flows by
732 2050. *Nature Sustainability*, 2(6), 499–507. <https://doi.org/10.1038/s41893-019-0287-1>

733 Prodhan, F. A., Zhang, J., Hasan, S. S., Pangali Sharma, T. P., & Mohana, H. P. (2022). A
734 review of machine learning methods for drought hazard monitoring and forecasting: Current
735 research trends, challenges, and future research directions. In *Environmental Modelling and*
736 *Software* (Vol. 149). Elsevier Ltd. <https://doi.org/10.1016/j.envsoft.2022.105327>

737 Prodhan, F. A., Zhang, J., Pangali Sharma, T. P., Nanzad, L., Zhang, D., Seka, A. M., Ahmed,
738 N., Hasan, S. S., Hoque, M. Z., & Mohana, H. P. (2022). Projection of future drought and its
739 impact on simulated crop yield over South Asia using ensemble machine learning approach.
740 *Science of the Total Environment*, 807. <https://doi.org/10.1016/j.scitotenv.2021.151029>

741 Salehnia, N., Salehnia, N., Saradari Torshizi, A., & Kolsoumi, S. (2020). Rainfed wheat
742 (*Triticum aestivum* L.) yield prediction using economical, meteorological, and drought
743 indicators through pooled panel data and statistical downscaling. *Ecological Indicators*, 111.
744 <https://doi.org/10.1016/j.ecolind.2019.105991>

745 Schnepf, R. D., Dohlman, E., & Bolling, C. (2001). *Agriculture in Brazil and Argentina: Developments and Prospects for Major Field Crops*. International Agriculture and Trade
746 Outlook No. WRS-013, USDA, Washington DC. 85 pp.
747 <https://www.ers.usda.gov/publications/pub-details/?pubid=40353>

748 Schwalbert, R. A., Amado, T., Corassa, G., Pott, L. P., Prasad, P. V. V., & Ciampitti, I. A.
749 (2020). Satellite-based soybean yield forecast: Integrating machine learning and weather data
750 for improving crop yield prediction in southern Brazil. *Agricultural and Forest Meteorology*,
751 284. <https://doi.org/10.1016/j.agrformet.2019.107886>

752 Sly, M. J. H. (2017). The Argentine portion of the soybean commodity chain. *Palgrave
753 Communications*, 3(1). <https://doi.org/10.1057/palcomms.2017.95>

754 Song, X. P., Hansen, M. C., Potapov, P., Adusei, B., Pickering, J., Adami, M., Lima, A., Zalles,
755 V., Stehman, S. V., Di Bella, C. M., Conde, M. C., Copati, E. J., Fernandes, L. B., Hernandez-
756 Serna, A., Jantz, S. M., Pickens, A. H., Turubanova, S., & Tyukavina, A. (2021). Massive
757 soybean expansion in South America since 2000 and implications for conservation. *Nature
758 Sustainability*, 4(9), 784–792. <https://doi.org/10.1038/s41893-021-00729-z>

759 Sun, J., Di, L., Sun, Z., Shen, Y., & Lai, Z. (2019). County-level soybean yield prediction using
760 deep CNN-LSTM model. *Sensors (Switzerland)*, 19(20). <https://doi.org/10.3390/s19204363>

761 Tian, H., Wang, P., Tansey, K., Han, D., Zhang, J., Zhang, S., & Li, H. (2021). A deep learning
762 framework under attention mechanism for wheat yield estimation using remotely sensed
763 indices in the Guanzhong Plain, PR China. *International Journal of Applied Earth
764 Observation and Geoinformation*, 102. <https://doi.org/10.1016/j.jag.2021.102375>

765 Tian, Z., Zhong, H., Shi, R., Sun, L., Fischer, G., & Liang, Z. (2012). Estimating potential yield
766 of wheat production in China based on cross-scale data-model fusion. *Frontiers of Earth
767 Science*, 6(4), 364–372. <https://doi.org/10.1007/s11707-012-0332-0>

768 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
769 Polosukhin, I. (2017). *Attention Is All You Need*. <http://arxiv.org/abs/1706.03762>

770 Weier, J., & Herring, D. (2000). *Measuring vegetation (NDVI and EVI)*.
771 https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_1.php

772 World Bank. (2022). *World Development Indicators: Agriculture, forestry, and fishing, value
773 added (% of GDP)*.
774 <https://databank.worldbank.org/reports.aspx?source=2&series=NV.AGR.TOTL.ZS&country=ARG>

775 Xu, J., Zhu, Y., Zhong, R., Lin, Z., Xu, J., Jiang, H., Huang, J., Li, H., & Lin, T. (2020).
776 DeepCropMapping: A multi-temporal deep learning approach with improved spatial
777 generalizability for dynamic corn and soybean mapping. *Remote Sensing of Environment*,
778 247. <https://doi.org/10.1016/j.rse.2020.111946>

782 Yu, Y., Feng, K., Hubacek, K., & Sun, L. (2016). Global Implications of China's Future Food
783 Consumption. *Journal of Industrial Ecology*, 20(3), 593–602.
784 <https://doi.org/10.1111/jiec.12392>
785