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Abstract: The accurate prediction of soybean yield is vital for global food market stabilization 7 

and food security. Recent advancements in remote sensing technology have significantly amplified 8 

interest in leveraging satellite-based methods for predicting crop yield. These methods offer in-9 

season yield estimates. By utilizing this timely information, decision-makers can formulate 10 

strategic, well-informed choices that preemptively mitigate potential food price hikes, ultimately 11 

bolstering food security. While simple regression models have been widely utilized for satellite-12 

based yield prediction, researchers have recently begun to explore the use of deep learning 13 

algorithms. This study compares the performance of panel regression and deep learning models 14 

for in-season soybean yield prediction at the Department (county-equivalent) level in Argentina. 15 

Data sources include the latest soybean land use products and MODIS bi-weekly vegetation index 16 

products. Results indicate that deep learning models significantly outperform panel regression. 17 

Deep learning Long Short-Term Memory (LSTM) models, which incorporate attention 18 

mechanism and a series of peak NDVI images, generate more accurate and time-sensitive 19 

predictions. Among competing LSTM models, the one with attention mechanism applied to the 20 

entire growing season's NDVI data yields the highest prediction accuracy, with a Root Mean 21 

Square Error (RMSE) of 505.78 kg/ha and Normalized Root Mean Square Error (NRMSE) of 22 

0.0726. The LSTM model with attention on the three highest NDVI images attains a satisfactory 23 

prediction accuracy (RMSE = 627.28 kg/ha, NRMSE = 0.089) six weeks prior to harvest. This 24 

study presents a robust model for predicting crop yields, promoting sustainable production of 25 

soybeans and facilitating knowledgeable choices among farmers and policymakers. 26 
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1.  Introduction  29 

As the global population grows and living standards improve, the demand for agricultural 30 

products has been increasing and this trend will continue in the future. Accurate and timely 31 

predictions of agricultural production are vital for ensuring food security worldwide.  Output of 32 

crop production, the most crucial indicator of agricultural performance in growing season, has a 33 

profound impact on human society. Reliable and timely yield predictions are essential for crop 34 

mapping, market planning, and harvest management, but they remain challenging due to the 35 

complex environmental factors affecting crop growth (Pastor et al., 2019; Yu et al., 2016). 36 

Soybean, one of the most important agricultural products as a source of protein (H. Tian et al., 37 

2021), has gained global significance in recent years. Currently Argentina is standing as the 38 

world's third-largest producer and exporter of soybean. Sly (2017) reveals that export incomes of 39 

soybean and soybean products constitute a substantial 31.8% of the country's total export 40 

revenue in 2016. Furthermore, the FAO delineates that the global soybean production averaged 41 

356 Mt from 2018 to 2021, with Argentina significantly contributing averaged 43 Mt during the 42 

same period (FAOSTAT, 2023). This underscores the imperative of precise soybean yield 43 

predictions for Argentina. However, compared with the top-two soybean producers – the US and 44 

Brazil – the volume of soybean yield prediction research emanating from Argentina is relatively 45 

sparse. While the USDA furnishes rich datasets to facilitate US soybean studies, accurate 46 

soybean maps become available only very recently (Song et al., 2021). This identifies a critical 47 

knowledge gap that needs to be addressed. The primary objective of this paper is to fill this gap. 48 

Researchers have explored a variety of remote-sensing measurement to facilitate crop yield 49 

prediction, including the use of different vegetation indices, of which NDVI (Normalized 50 

difference vegetation index) has been the most used one. NDVI is a dimensionless index that 51 

captures the difference between visible red light and near-infrared regions of vegetation and is 52 

widely used to characterize the greenness of a study area (Weier & Herring, 2000). By 53 

incorporating vegetation indices into their models, researchers can consider the spectral 54 

characteristics of crops and their relationship with environmental factors, leading to improved 55 

prediction timeliness and accuracy. 56 

Statistical-based methods have been commonly used to establish relationships between yields 57 

and selected explanatory factors, including NDVI from remote-sensing  (Franch et al., 2019; Ji et 58 
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al., 2021; Z. Tian et al., 2012). For example, Becker-Reshef et al. (2010) employed simple linear 59 

regression to predict winter wheat yields in Kansas and Ukraine using NDVI, achieving 60 

relatively satisfactory prediction accuracy. Cai, Yu and Oppenheimer (2014) employed a 61 

geographically weighted panel regression approach for corn yield prediction. Franch et al. (2015) 62 

improved upon the linear regression model developed by Becker-Reshef et al., applying it to the 63 

same study areas.  Salehnia et al. (2020) utilized pooled panel regression for wheat yield 64 

prediction. However, these traditional regression methods exhibit limitations, as their models 65 

tend to be localized to specific regions owing to the constrained generalization abilities of linear 66 

regression models. This results in a lack of spatial generalization capability (Becker-Reshef et 67 

al., 2010; Franch et al., 2019).  68 

With advancements of computer science, deep learning techniques have gained popularity for 69 

predicting food production. These techniques offer higher accuracy with less reliance on local 70 

survey data, making them an appealing choice in the field. Remote sensing data combined with 71 

deep learning techniques offers a better solution for yield prediction, as it provides a reliable and 72 

timely forecast (Cai et al., 2018; Khaki et al., 2020; Schwalbert et al., 2020; Sun et al., 2019; Xu 73 

et al., 2020). Long Short-Term Memory (LSTM) models, which are modifications of Recurrent 74 

Neural Network (RNN) models, are commonly used for time-series dataset classification and 75 

prediction, making it a suitable option for soybean yield prediction (Sun et al., 2019; H. Tian et 76 

al., 2021). Cai et al. (2018) introduced an in-season crop classification system using deep 77 

learning models, demonstrating higher accuracy than the USDA's Cropland Data Layer product. 78 

Xu et al. (2020) further reinforced the effectiveness of multi-temporal deep learning models in 79 

accurate crop mapping. Sun et al. (2019) leveraged a Convolutional Neural Network-Long Short-80 

Term Memory (CNN-LSTM) framework to predict soybean yields at the county level in the 81 

United States, proving LSTM's utility in crop prediction. Continuing this trend, Tian et al. (2021) 82 

adopted an attention mechanism to forecast wheat yields in China, achieving a commendable 83 

average Root Mean Square Error (RMSE) of 502.71 kg/ha. Despite these advancements, there 84 

has been  a lack of comprehensive quantitative comparison between deep learning models and 85 

traditional regression models, especially when applied to the same or similar datasets.  This 86 

paper also addresses this knowledge gap. In more detail, the second objective of this paper is  to 87 

evaluate a classic linear regression method, which has been widely used in the field of remote-88 

sensing based crop harvest forecasting, against more contemporary deep learning models in the 89 
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context of soybean in Argentina. Please note that this paper does not intend to make comparison 90 

across advanced machine learning techniques.  91 

For achieving the above two objectives, we developed a set of deep learning models for in-92 

season soybean yield predictions that utilized NDVI and other relevant and available data (Song 93 

et al., 2021). Then we compared the performance of these deep learning models with that of 94 

traditional panel regression models in terms of in-season soybean yield prediction at the 95 

Department (county-equivalent) level in Argentina, using remote sensing data captured during 96 

the growing season as inputs. This comparison is essential, as it not only evaluates the predictive 97 

accuracy of each approach but also examines their applicability in real-world agricultural 98 

practices.  99 

The implications of our findings extend beyond academic interest. By establishing a clearer 100 

understanding of the comparative effectiveness of deep learning models versus traditional 101 

regression methods, our research contributes to the enhancement of crop yield prediction 102 

techniques. This is not only relevant for soybean production in Argentina but can also be applied 103 

to other crops and regions. By providing farmers, policymakers, and agricultural stakeholders 104 

with more accurate and reliable yield predictions, the application of the enhanced yield 105 

prediction techniques can support informed decision-making processes, leading to improved 106 

efficiency and sustainability in agricultural operations. 107 

 108 

2. Study Area, Data and Methodology  109 

2.1. Study Area 110 

This study focuses on Argentina, a South American country that is renowned for its 111 

agricultural strength, particularly as one of the world's major soybean producers and exporters. 112 

The country also holds significant shares in other agricultural markets such as maize, wheat, 113 

beef, and sunflower seed. Argentina's climate is favorable for rainfed crop production, especially 114 

soybean, and it has dedicated a vast majority of its 166 million hectares of agricultural land to 115 

livestock farming and crop production. Experimental soybean plantations existed in the early 116 

20th century, but commercial planting did not commence until the mid-20th century (Klein & 117 

Vidal Luna, 2021). Soybean cultivation has spread across the country, including in regions like 118 
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the Pampas, and all provinces except Mendoza are now producing soybeans. According to Song 119 

et al. (2021), soybean plantation areas in Argentina increased from 11.4 million hectares in 2001 120 

to 19.9 million hectares in 2015, with an average growth rate of 5.3% (0.6 million hectares) per 121 

year, before declining to 16.3 million hectares in 2019. Soybean plants in Argentina have two 122 

seasons, with the first season planted in November and harvested in April. The second season is 123 

part of the double wheat-soybean rotation, planted after wheat being harvested in late December 124 

and harvested in May. However, the planting area and total production of soybean's second 125 

season are significantly smaller than those in the first soybean season due to the relatively small 126 

extent of wheat-soybean double rotation lands. Thus, this study focuses solely on the first season 127 

of soybean. In 2020, the agricultural sector accounted for 6.1% of Argentina's GDP (World 128 

Bank, 2022).  129 

Argentina has a rich historical legacy in soybean production, which has witnessed a 130 

considerable upsurge in cultivation across the country, driven by both agricultural innovation and 131 

growing international market demand. Notably, the record-high international soybean prices in 132 

the early 1970s played a crucial role in the expansion of soybean cultivation in Argentina 133 

(Schnepf et al., 2001). Over the period from 1970 to 2021, soybean production in Argentina has 134 

escalated substantially from 26,800 tons to 48,796,661 tons (FAOSTAT, 2023). Owing to its 135 

immense contribution as one of the largest soybean exporters worldwide, Argentina has become 136 

indispensable for the global food supply chain. Figure 1 illustrates the expansion of soybean 137 

plantations in Argentina from 2001 to 2019. 138 
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 139 
Figure 1. Argentina Soybean Plantation Expansion from 2001-2019, with a simple soybean crop 140 

calendar demonstrating two soybean seasons in Argentina. 141 
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2.2. Data collection and processing  142 

The soybean land use dataset was produced by Song et al. (2021). Song et al. created a 143 

classification model using satellite data, machine learning and ground survey to precisely detect 144 

the presence of soybean crops throughout the South American continent. The model functions at 145 

a spatial resolution of 30 m and was utilized annually during the soybean growing season from 146 

2000 to 2019. The map product has an overall accuracy of 96% based on a probability sample 147 

and in situ reference data. The soybean categorization map generated by the algorithm is a 148 

dependable indicator of soybean production because of the strong association between the crop 149 

regions identified in the high-resolution map and the actual soybean production.  150 

A pixel qualifies as soybean if it undergoes a complete growth cycle within a single growing 151 

season and has a sufficient level of greenness in the spectral feature space. Therefore, the 152 

soybean pixels that have been mapped represent the cultivated fields that are farmed and have 153 

reached a stage where the crops can be harvested. Any crops that do not reach full maturity or 154 

exhibit reduced greenness as a result of abnormal weather conditions are excluded from the 155 

mapping process. 156 

This study employed the MODIS (Moderate Resolution Imaging Spectroradiometer) product 157 

and the yearly South American soybean land-use product developed by Song et al. (2021) in 158 

conjunction with the Argentina departmental boundary data. Google Earth Engine (GEE) 159 

platform offers a variety of MODIS products, and this study utilized MOD13Q1.006, a terra 160 

vegetation indices product with a temporal resolution of 16 days and a spatial resolution of 250 161 

meters. This product features two primary vegetation index layers, the Normalized Difference 162 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI), as well as an additional 163 

pixel quality layer. Researchers process NDVI and EVI products based on MODIS imagery that 164 

has undergone bi-directional surface reflectance atmospheric correction and masking for water, 165 

clouds, heavy aerosols, and cloud shadow pixels (Didan et al., 2015).This study chose NDVI as 166 

the vegetation index for prediction. MOD13Q1.006 also includes four surface reflectance bands, 167 

namely Surface Reflectance Band 1 (Red), Surface Reflectance Band 2 (Near Infrared), Surface 168 

Reflectance Band 3 (Blue), and Surface Reflectance Band 7 (Mid-Infrared) (Didan et al., 2015). 169 

These bands were also employed as input parameters for the prediction model. 170 
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In this study, MOD13Q1.006 data for Argentina from 2001 to 2019 was extracted using the 171 

GEE platform based on its availability in the study area. To define the soybean land use areas in 172 

Argentina, the annual South American soybean land-use product published by Song et al.  173 

(2021)) was used as a mask. This product provides an annual classification of soybean land use 174 

for the entire South American continent between 2000 and 2019, based on Landsat imagery. This 175 

allowed the extraction of soybean land's NDVI products from the MODIS data only within the 176 

defined regions of soybean cultivation.  During the aggregation process, the pixels were carefully 177 

selected based on their band summary QA, which was limited to 0, indicating data of high 178 

quality as stated in the MOD13Q1.006 user document (Didan et al., 2015).  179 

To spatially integrate the MODIS NDVI data and soybean yield data, we employed an 180 

Argentina departmental administration boundary dataset that was published by the Food and 181 

Agriculture Organization of the United Nations. This boundary dataset was used to spatially 182 

summarize the soybean pixels’ NDVI to the departmental level. We obtained the soybean yield 183 

dataset from the Argentina Ministry of Agriculture, Livestock and Fisheries, which provided 184 

departmental-level data for soybean production, including the first and second seasons of 185 

soybean harvest, total production, and yield production. The first season of soybean harvest was 186 

selected for this study since it is the primary contributor to Argentina's soybean production. We 187 

also spatially joined the selected first season soybean yields to the same departmental 188 

administration boundary dataset. The soybean yield dataset indicated that 306 departments 189 

planted soybean in the first soybean season between 2000 and 2019. For having sufficient data to 190 

train both panel regression and deep learning models, we opted to include 190 departments from 191 

nine different provinces that continuously cultivated soybean throughout the 20-year study 192 

period. Additionally, two out of the nine provinces only had a few departments with complete 193 

records, which were also dropped in order to fit the panel linear regression. As a result, we used 194 

a total of 183 departments in our study. The summarized datasets used in this study are provided 195 

in Table 1. 196 

 197 

 198 

 199 

 200 



9 
 

Table 1. Datasets Used in the Study and Their Sources 201 

Data Source Year 

MOD13Q1.006 NASA LP DAAC at the USGS 
EROS Center 2001-2019 

Commodity Crop Mapping and 
Monitoring in South America 

GLAD Landsat Analysis Ready 
Data and Tools 2000-2019 

Soybean planting, harvesting 
production and yield data 

Argentina Ministry of Agriculture, 
Livestock and Fisheries 2000-2019 

Global Administrative Unit Layers 
2015, Second-Level Administrative 
Units 

FAO GUAL, UN 2015 

 202 

The data processing workflow is comprised of two stages. The first stage involves filtering 203 

and aggregating spatial data from three data sources: MODIS terra vegetation indices product, 204 

soybean land-use product, and administrative boundary product. Specifically, MODIS images 205 

captured from January 1st to April 30th, which is the critical growing period of soybean, were 206 

selected. The soybean land cover products were used to mask the extracted images. Given the 207 

disparity in spatial resolution between the soybean land-use product (30 meters) and the MODIS 208 

product (250 meters), the MODIS pixels were resampled to 30 meters to facilitate the masking 209 

process. The masked images were then aggregated at the departmental level, with statistical 210 

summaries including the mean, max, min, mode, variance, quantiles and standard deviation of 211 

soybean land’s NDVI and surface reflectance bands being derived from GEE. The second stage 212 

involves joining the soybean yield dataset for the period between 2000 and 2019 to Argentina 213 

departmental boundaries. However, since the MOD13Q1.006 only dates back to 2001, the yield 214 

data for the year 2000 was excluded from the analysis. 215 

 We devised several image combinations to determine the optimal model inputs, given the 216 

availability of eight MOD13Q1.006 images during each growing season. It is imperative to 217 

explore the images that contribute most to accurate crop yield estimation. Thus, we established 218 

four image combinations: In the first combination, we utilized all eight images from each 219 

growing season as input, which we will refer to as “NDVI-Eight” for clarity and brevity in the 220 

rest of this paper. In the second combination, we selected the image with the highest vegetation 221 

index among the eight images as the input, which we will refer to as “NDVI-Max”. In the third 222 
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combination, we chose three images which include the image at the peak, the next one before the 223 

peak, and the next one after the peak. We will refer to this combination as “NDVI-During Peak”. 224 

In the fourth combination, we selected three images that represented the growing season at and 225 

after the peak. These images included the peak NDVI and two subsequent images, which we will 226 

refer to as “NDVI-After Peak”. 227 

We used the maximum vegetation index value to determine the peak of the soybean growing 228 

season and constructed the peak curve using data from the previous and subsequent dates. 229 

However, some regions and specific years presented issues where the peak vegetation index and 230 

the first or last two images during the growing season exceeded the allowable range. In these 231 

cases, we made necessary adjustments by shifting the three images earlier or later to resolve the 232 

issue. 233 

To answer the question whether a simple NDVI product during the soybean's growing season 234 

can predict yield with satisfactory accuracy, we explored various independent variables settings 235 

that involve the previous year's yields. One setting solely uses the NDVI image combinations, 236 

while the other includes not only the NDVI combinations but also the previous year's yields. We 237 

also created different combinations of input explanatory variables based on the number of 238 

statistical summarization variables being input into the prediction models. In the first setting, 239 

only statistical summarization from NDVI was selected for the model, including the maximum, 240 

mean, median, and minimum. In the second setting, in addition to the previous four variables 241 

from NDVI, we added four spectral bands' (surface reflectance 1, 2,3,4) statistical summarization 242 

from MOD13Q1.006 as well, namely the maximum, mean, median, and minimum. We named 243 

the first input variable set as "Var 1" while the second input variable set as "Var 2". We 244 

combined Var 1 and Var 2 with the previous year’s yields or not as explanatory variables, 245 

resulting in a total of four groups of explanatory variables. Multiply them by four NDVI 246 

combinations, which will give us a total of 16 explanatory variable sets for prediction models. 247 

This approach provides a thorough analysis of the input variables and enables the identification 248 

of the optimal combination for predicting soybean yields accurately. 249 

Figure 2 illustrates the soybean yields at the department level in 2019 and the most frequent 250 

NDVI peak time during 2001-2019 for the departments in Argentina. The findings demonstrate 251 

that the primary soybean production region in Argentina is concentrated in the provinces of 252 
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Buenos Aires and La Pampa, where the peak NDVI dates occur around Early to Mid-February. 253 

Notably, departments in Buenos Aires provinces are relatively smaller than those in La Pampa 254 

provinces, resulting in smaller total productions; however, these departments exhibit the highest 255 

yields. In contrast, the departments located in the Northern and Middle parts of Argentina 256 

experience later NDVI peaks and lower soybean yields. 257 

 258 
Figure 2. (A) Most frequent NDVI peak time period during 2001-2019; (B) Soybean yields at 259 

the department level (kg/ha) in 2019 260 
 261 

2.3. Modeling Methodology 262 

The primary objective of this study is to accurately estimate (fit) and predict soybean yields at 263 

the departmental level in Argentina. To achieve this goal, we have developed a methodology that 264 

encompasses the entire workflow of the study, starting from data retrieval and data processing to 265 

the use of processed data in different prediction models. The flow diagram below (Figure 3) 266 

depicts the methodology used in this study. First, we determine whether using the entire NDVI 267 
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during the growing season or just a few key indices would achieve satisfactory accuracy in 268 

predicting soybean yield. If the latter is true, we attempt to identify which NDVI records should 269 

be utilized for accurate predictions. Then, we will evaluate the performance of the panel 270 

regression model and deep learning models for predicting yield production and identify the best 271 

model capable of predicting soybean yields with acceptable accuracy using only the first few 272 

images of the predicting season to make in-season predictions. 273 

 274 

 275 
Figure 3. The flow diagram of the methodology. The legend describes what each type of 276 

shape/color represents. 277 
 278 

Table 2 and Figure 4 demonstrate how our prediction model works using configurations 1-4 of 279 

training and testing data. Each local model has separate training and testing phases which use 280 

independent inputs. Figure 4 presents an example for predicting soybean yields for 2011 using 281 

configuration 4. The actual yield of 2011 is denoted as y7. The entire training data has six years of 282 

yield data (denoted as y1, y2, y3, y4, y5, y6) paired with three years of vegetation index data (denoted 283 

as x4, x5, x6), before the testing year. No testing labels have been used during the training stage. 284 

The training model is evaluated by the difference between  fitted yield (y�4, y�5, y�6) and actual yield 285 
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(y4, y5, y6). For the testing year, the testing data  include the testing year’s vegetation index (x7), 286 

along with yields in the previous three years (y4, y5, y6) for testing evaluation between predicted 287 

yield y�7 and actual yield y7. 288 

 289 
Table 2. Configuration of Training and Testing Data  290 

Configuration Training Data & Fitted Yield  Testing Data & Predicted Yield 

Configuration 1 xt-1 → y�t-1 VI data xt → y�t 
Configuration 2 xt-3→ y�t-3; xt-2→ y�t-2; xt-1→ y�t-1; xt → y�t 
Configuration 3 3-yr yield data (yt-4 to yt-2) & 1-yr VI 

data (xt-1) → y�t-1 
3-yr yield data (yt-3 to yt-1) & 
current year VI data (xt) → y�t 

Configuration 4 see figure 4  
 

see figure 4 

Note: ‘t’ represents testing year, x vegetation index data, y actual yield, and y� represents fitted or 291 
predicted yield. 292 
 293 
 294 

  295 
  296 

Figure 4. Example of Training, Testing and Prediction Using Configuration 4  297 
 298 

This study uses three models as Figure 3 illustrates. The first is a panel regression model, which 299 

is arguably one of the most used models in econometrics. While the independent variables are the 300 

four combinations as the previous section explained. The dependent variable is the department’s 301 
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soybean yield. In each combination, the panel model is organized at the departmental level for 302 

each province, with a one-year time-step. Among alternative estimators of panel regression, we 303 

choose the fixed effects estimator since it is more suitable for prediction purposes. This fixed effect 304 

panel regression model is in the form of: 305 

 306 

Where  𝑌𝑌𝑖𝑖𝑖𝑖 is soybean yield of unit i at time t; ai is the fixed effect for unit i, which captures any 307 

time-invariant features of unit i that may affect the outcome variable; x1, x2, x3, …, xk are 308 

independent variables specified in each input combination for unit i at time t, β1, β2, β3, …, βk are 309 

the coefficients that represent the marginal effect of each independent variable on the dependent 310 

variable, εit is the error term, which captures any other factors that affect the dependent variable 311 

but are not included in the model. 312 

The second model is a deep learning model, namely the LSTM (Long Short-Term Memory). 313 

Since this research is not trying to advance the technique itself, but rather to apply different models 314 

under the same combination of variables to determine the best suitable one for the best prediction 315 

performance in this research. A simple LSTM model and a LSTM with Attention model were 316 

chosen for this study. Both models were designed to have the same number of epochs and batch 317 

size to enable a fair comparison of their performance. Additionally, we employed an early stop 318 

mechanism to prevent overfitting and improve the generalization ability of the models. 319 

 LSTM is a type of recurrent neural network (RNN) architecture that was first introduced by 320 

Hochreiter and Schmidhuber (1997). The goal of LSTM architecture is to solve the vanishing 321 

gradient problem that arises when training traditional RNN models. Overall, the LSTM 322 

architecture is effective for modeling sequential data with long-term dependencies, such as natural 323 

language processing and time series forecasting. In this study, the classic LSTM was used as one 324 

of the deep learning models to predict soybean yields.  325 

The third model is LSTM with Attention mechanism. The Attention mechanism in deep 326 

learning is a technique that enables the model to focus on specific parts of the input data when 327 

making predictions (Vaswani et al., 2017). The model does this by assigning different weights to 328 

different parts of the input data, which helps it prioritize significant data and downplay irrelevant 329 

           𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝑥𝑥1𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑥𝑥2𝑖𝑖𝑖𝑖+. . +𝛽𝛽𝑘𝑘𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖               (1)        
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data. In our study, the attention mechanism is applied to the hidden state outputs of LSTMs for 330 

more accurate predictions. 331 

2.4. Model Comparison   332 

RMSE (Root Mean Square Error) and its normalization (NRMSE) are commonly used metrics 333 

to evaluate the accuracy of prediction models. RMSE measures the square root of the average of 334 

the squared differences between the actual values and the predicted values. In other words, it 335 

represents the standard deviation of the residuals, or the differences between the predicted values 336 

and the actual values. It has the following form:  337 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                     (2) 338 

Its normalization by the range of the true results (actual yield), 𝑜̅𝑜, is:  339 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑜𝑜�

                               (3) 340 

The RMSE is a useful metric for measuring the accuracy of models in terms of their ability to 341 

predict values close to the actual values. A lower RMSE indicates a better fit between the predicted 342 

values and the actual values, and therefore a more accurate model. However, it should be noted 343 

that the RMSE may not always provide a complete picture of a model's performance, as it does 344 

not account for the direction of the errors (over- or under-predictions). 345 

In this study, the RMSE is used to compare the performance of the panel regression, simple 346 

LSTM, and LSTM with Attention models in predicting soybean yields. By calculating the RMSE 347 

for each model, the study can identify which model has the smallest difference between predicted 348 

and actual values, indicating a more accurate prediction. 349 

To effectively compare and determine the best prediction scenario in this study, a simple 350 

comparison of the RMSEs values is insufficient. As each prediction scenario comprises a series of 351 

RMSEs calculated over a period of 15 years (2004-2019), additional statistical tests are required 352 

to prove the effectiveness of different models and data combinations. Therefore, this study 353 

incorporates a Kruskal-Wallis H test, which is a non-parametric test, to identify any significant 354 

differences among different model and data combinations. This test is chosen over the regular t-355 

test as the RMSEs values may not follow a normal distribution.  The null hypothesis of the Kruskal-356 
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Wallis H test is that there is no significant difference among the groups, while the alternative 357 

hypothesis is that there is a significant difference between at least one of the groups and the others.  358 

Furthermore, to determine the preferred model combination for Argentina's soybean yield 359 

prediction, an average of RMSEs values will be calculated across all prediction model 360 

combinations. This approach will provide a more robust and comprehensive evaluation of different 361 

prediction scenarios and enable the identification of the optimal model and data combination. 362 

Overall, the inclusion of statistical tests such as the Kruskal-Wallis H test, post-hoc analysis, 363 

and confidence intervals, as well as the use of averaged RMSE values, will provide a more 364 

thorough evaluation of different prediction scenarios and enable the identification of the best 365 

scenario for predicting Argentina's soybean yield. 366 

3. Results 367 

There are three distinct sub-sections in the results section. Using RMSE and H-tests, the first 368 

subsection presents and analyzes the outcomes of the predictive models aggregated at the national 369 

level. The second subsection uses two specific provinces as examples to give a more in-depth 370 

review of the performance of the models, analyzing the accuracy of the predictions at a finer spatial 371 

resolution. Lastly, the third subsection conducts a comparison analysis of the two algorithms, 372 

highlighting their respective advantages and disadvantages and providing insight into their overall 373 

performance. 374 

3.1. Prediction results of yield at the national level 375 

Through the utilization of panel regression and deep learning techniques, we have effectively 376 

generated predictive models for soybean yields in Argentina between 2004 and 2019. As outlined 377 

in the methodology section, our testing process encompassed 16 different explanatory variable 378 

sets, with three prediction models applied to each. This yielded a total of 64 predictions per year, 379 

covering every department in Argentina. It is important to note that, while predictions were made 380 

for each department, our training and testing procedures were conducted at the provincial level. 381 

To gauge the accuracy of our predictions, we calculated the root mean squared error (RMSE) for 382 

each prediction, which enabled us to rapidly rank the performance of different variable sets and 383 

prediction models. Table 2 presents the averaged soybean yield RMSE at the national level for all 384 

predictions conducted between 2004 and 2019. 385 
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Table 3. Mean Soybean yield RMSE (kg/ha) with NRMSE in Brackets by Different Variable 386 

Combinations over 2004-2019 387 

Predicting combinations Max During Peak Eight After Peak 

Attention with var2 & previous yields 795.48 
(0.1142) 

627.28 
(0.0890) 

505.78 
(0.0726) 

633.57 
(0.0905) 

LSTM with var2 & previous yields 878.28 
(0.1247) 

689.62 
(0.1000) 

507.32 
(0.0727) 

667.95 
(0.0945) 

Attention with var1 & previous yields 831.75 
(0.1183) 

721.11 
(0.1492) 

549.84 
(0.0784) 

754.35 
(0.1094) 

LSTM with var1 & previous yields 1422.44 
(0.2012) 

1049.38 
(0.1181) 

752.94 
(0.1068) 

1009.92 
(0.1436) 

Attention with only var2 814.88 
(0.1153) 

813.75 
(0.1167) 

824.50 
(0.1196) 

807.68 
(0.1159) 

Attention with only var1 888.02 
(0.1242) 

837.33 
(0.2083) 

828.28 
(0.1173) 

834.58 
(0.2070) 

LSTM with only var2 885.18 
(0.1236) 

835.80 
(0.1195) 

867.25 
(0.1236) 

833.45 
(0.1186) 

Panel regression with only var1  863.36 
(0.1223) 

911.88 
(0.1306) 

1030.79 
(0.1465) 

924.32 
(0.1318) 

Panel regression with var1 & previous yields 1016.19 
(0.1504) 

1057.81 
(0.1539) 

1078.54 
(0.1560) 

1032.25 
(0.1503) 

LSTM with only var1 1850.26 
(0.2593) 

1441.86 
(0.2029) 

1186.99 
(0.1669) 

1462.20 
(0.2177) 

Panel regression with var2 & previous yields 1051.95 
(0.1539) 

2049.53 
(0.3124) 

1373.80 
(0.1924) 

1511.10 
(0.2217) 

Panel regression with only var2 953.31 
(0.1352) 

1610.27 
(0.2272) 

1647.07 
(0.2329) 

1304.17 
(0.1824) 

 388 

The findings from Table 2 indicate that, at the national level, the LSTM with Attention model 389 

using an explanatory variable set of NDVI Eight on var 2 with previous year’s yields is the best 390 

combination, with the lowest RMSE of 505.78 kg/ha during 2004-2019. On the other hand, the 391 

worst combination is the Panel Regression model using an explanatory variable set of NDVI 392 

During Peak on var 2 with previous year’s yields, with the lowest RMSE of 2049.53 kg/ha. Overall, 393 

deep learning models perform better than Panel Regression models, with RMSE ranging from 394 

505.78 kg/ha (NRMSE = 0. 0726) to 1850.26 kg/ha (NRMSE = 0.2593) for deep learning models 395 

and from 863.36 kg/ha (NRMSE = 0.1223) to 2049.53 kg/ha (NRMSE = 0.3124) for Panel 396 

Regression models.  397 
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It is important to note that the worst prediction made by the deep learning models is LSTM with 398 

NDVI-Max on var 1 with previous year’s yields, whereas the best prediction RSME created by the 399 

Panel Regression model is made from NDVI-Max on var 1. In addition, there is a trend in deep 400 

learning models wherein the use of a larger input, be it the number of NDVI images or the number 401 

of explanatory variables, results in a lower RMSE. This trend is not observed in Panel Regression 402 

models, where the best prediction results were obtained with a smaller set of input variables, both 403 

for the number of NDVI images and explanatory variables. 404 

Another interesting finding is that the deep learning models’ prediction errors are more widely 405 

dispersed, as shown by the fact that LSTM with only var 1 or var1 with previous year’s yield has 406 

worse performance than Panel Regression with only var 1 or var1 with previous year’s yield. 407 

Moreover, Panel Regression shows a different trend than deep learning models, where a larger 408 

explanatory variable set would result in worse performance than a smaller input explanatory 409 

variable set. The figure below provides a clearer illustration of this trend. In order to make the 410 

representation of these models in the multiple figures below more concise, Table 3 provides the 411 

names of the combined models and (Table 4) shows the model combinations and their 412 

abbreviations used in Figures 4-10. 413 

Table 4. Model Combinations and Their Abbreviations used in Figures 4-10. 414 

Model Combinations  Abbreviation in figures  

Attention with var2 & previous year’s yields DL1 
LSTM with var2 & previous year’s yields DL5 
Attention with var1 & previous year’s yields DL2 
LSTM with var1 & previous year’s yields DL6 
Attention with only var2 DL3 
Attention with only var1 DL4 
LSTM with only var2 DL7 
Panel regression with only var1  LR1 
Panel regression with var1 & previous year’s yields LR2 
LSTM with only var1 DL8 
Panel regression with var2 & previous year’s yields LR3 
Panel regression with only var2 LR4 
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 415 

Figure 5. Averaged soybean yield RMSE over 2004-2019 by predicting model combination. 416 
 417 

Figure 5 visualizes the averaged performance of these models as presented in Table 2. However, 418 

it is important to also examine the annual average of RMSE from the best four deep learning 419 

models’ predictions and best four panel regression model’s predictions during the same time 420 

period. Figure 5 demonstrates the yearly trend in prediction accuracy, with lower RMSE indicating 421 

better model performance. The figure clearly illustrates that all predictions follow a similar trend 422 

in each year’s prediction accuracy, with the worst predictions occurring in 2008 and 2017. Panel 423 

Regression models also had relatively high prediction errors in 2011. Additionally, it is evident 424 

from Figure 5 that deep learning models’ predictions were consistently more accurate than those 425 

of the Panel Regression models throughout the entire time period. 426 

Interestingly, despite having similar error trends over the course of 16 years, the lowest 427 

prediction errors for deep learning models occurred in 2010 and 2019, while the lowest prediction 428 

error for the Panel Regression model occurred in 2016. The result suggests that even though each 429 
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prediction model uses different input variable settings, the error trends share some similarities. It 430 

should be noted that Figure 6 only summarizes the best four deep learning models’ RMSE and 431 

best four Panel Regression model’s RMSE from 2004 to 2019. The worst performance of either 432 

model type is not plotted in the figure 6, as the RMSE for these worst performances were too high, 433 

rendering the predictions unreliable. 434 

 435 

436 
Figure 6. Comparison of the Best Four Deep Learning Model Predictions’ RMSEs with the Best 437 

Four Panel Regression Model Predictions’ RMSEs by year over 2004-2019 438 
 439 

An additional key finding in this study is the importance of previous year’s yield data as an 440 

explanatory variable for deep learning models in predicting soybean yield. Here, we found that in 441 

panel regression models, including previous year’s yield data resulted in a worse RMSE than 442 

models without these data. As discussed earlier, deep learning models benefit from larger set of 443 

input training variables, with smaller set resulting in worse predictions. In contrast, panel 444 
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regression models achieved relatively good accuracy using only key variables, but this accuracy 445 

was not as good as the deep learning models with their minimum number of input variables. 446 

The worst deep learning prediction was made using a simple LSTM model with the input 447 

combination of NDVI-Max and only var 1, indicating that for each time step in the LSTM model, 448 

only one image with four variables was used as training data. This prediction was even worse than 449 

the panel regression model’s predictions using the same input variable. Overall, the results suggest 450 

that the more training variables that are used for deep learning models, the better the model’s 451 

prediction accuracy will be, while panel regression models may achieve relatively good accuracy 452 

among regression models with only key variables. 453 

Figure 6 illustrates the national average yield changes from 2004 to 2019. The blue continuous 454 

line represents actual yields, while the dotted lines represent various prediction models. From top 455 

to bottom, different NDVI image combinations are utilized by each model. Among these, the 456 

NDVI-Eight combination demonstrates the best prediction accuracy across different prediction 457 

settings. This is because NDVI-Eight includes all images captured during the soybean growing 458 

season until harvest. However, since this study aims to establish an early in-season prediction for 459 

Argentina’s soybean production, using the entire growing season’s images would not meet the 460 

objective. Therefore, predictions made using NDVI-During Peak or NDVI-After Peak are 461 

preferred when employing deep learning models. 462 

NDVI-During Peak demonstrates superior performance when compared to NDVI-After Peak. 463 

Moreover, because NDVI-During Peak is based on peak NDVI images in addition to one preceding 464 

and one subsequent image, it can generate yield predictions sooner than NDVI-After Peak, which 465 

uses the peak NDVI image and two subsequent images. In particular, NDVI-During Peak can 466 

predict yields approximately two weeks earlier than NDVI-After Peak. 467 

Figure 6 also displays the general yield changes from 2004 to 2019, revealing three periods of 468 

soybean yield reduction in 2008, 2009-2011, and 2017. The most severe reduction occurred in 469 

2008, followed by 2017 and 2009-2011. Comparing these reductions with the predictions, all 470 

models exhibited relatively high prediction errors for 2008 and 2017. While the prediction models 471 

successfully learned from the series of soybean reductions during 2009-2011, they failed to adjust 472 

for 2008 and 2017. This discrepancy could be attributed to the extreme weather conditions 473 

experienced in those years, when Argentina’s soybean crops suffered from drought. The high 474 



22 
 

prediction errors in 2008 and 2017 also led to high prediction errors in 2009 and 2018, with actual 475 

yields exceeding all predicted yields. This may be due to the three-year training data length for all 476 

models, causing the models to be misguided by the preceding drought reductions in 2009 and 2018. 477 
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 478 
Figure 7. National Average Yield from 2004 to 2019 479 
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Large prediction errors were also observed in 2011, when Argentina’s soybean production was 480 

affected by warm weather. However, the models overestimated the impact of the warm weather, 481 

leading to an underestimation of actual production. These underestimations were predominantly 482 

reflected in panel regression models, whereas deep learning models were able to generate more 483 

accurate predictions. By incorporating historical yield data, deep learning models were capable of 484 

minimizing the effects of sudden NDVI changes for in-season predictions, particularly in the 485 

context of extreme weather events. This demonstrates the potential advantages of deep learning 486 

models in capturing complex relationships and mitigating the impact of external factors on yield 487 

predictions. 488 

  489 
Figure 8. Comparison of the Best Four Deep Learning Model Predictions’ RMSEs with the Best 490 

Four Panel Regression Model Predictions’ RMSEs during 2004-2019. 491 
 492 



25 
 

We further investigated the most suitable prediction combination for accurately predicting 493 

soybean yields in Argentina. Figure 8 displays the root mean square error (RMSE) of the four best 494 

deep learning model predictions and the four best panel regression model predictions from 2004 495 

to 2019. The best prediction models are ranked from left to right based on their mean RMSE. From 496 

the plot, the LSTM with Attention model using NDVI-Eight on var2 with previous year’s yields 497 

exhibits the lowest mean RMSE. However, as previously discussed, NDVI-Eight may not provide 498 

a timely pre-season prediction before soybean harvest. Therefore, the third-best prediction 499 

combination, an LSTM with Attention model using NDVI-During Peak on var2 with previous 500 

year’s yields, is the most recommended soybean yield prediction model. Not only does this model 501 

have the smallest mean RMSE (548.84 kg/ha), but also the smallest RMSE variance (157.10 502 

kg/ha). 503 

Comparing the four best deep learning models to the four best panel regression models reveals 504 

that the deep learning models not only have smaller RMSEs, but also smaller variances. To further 505 

determine whether the predictions are statistically significantly different from each other, a 506 

Kruskal-Wallis H test is conducted for these models. If the p-value of the H test is smaller than 507 

0.05, there is a significant difference among the groups, otherwise, the null hypothesis cannot be 508 

rejected. From the H-test, the p-value is 3.504e-13 for all eight predictions; p-value is 2.05e-05 509 

between the best deep learning model and the best panel regression model; p-value is 3.98e-05 510 

between the LSTM with Attention model using NDVI-During Peak on var2 with previous year’s 511 

yields and the best panel regression model. These results indicate a significant difference between 512 

deep learning and panel regression models in a broad comparison. With lower mean RMSE and 513 

lower RMSE variance, deep learning models outperform panel regression models. 514 

The H test between the LSTM with Attention models using NDVI-Eight on var2 with previous 515 

year’s yields and NDVI-During Peak on var2 with previous year’s yields generated a p-value of 516 

0.25, meaning that there is no substantial difference between these projections. Therefore, using 517 

NDVI-During Peak images can provide a satisfactory prediction for soybean yield in Argentina at 518 

the national level, with an average RMSE of 549.84 kg/ha from 2004 to 2019. 519 

3.2. Prediction results of yield at provincial level 520 

According to the methodology outlined, the model training and testing are conducted at the 521 

departmental level for each province and then aggregated to the national level for model 522 
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comparison. However, it is important to note that not all provinces have the same number of 523 

departments with continuously planted soybeans from 2001-2019. For example, Buenos Aires has 524 

88 departments, Chaco has 17 departments, Cordoba has 22 departments, Entre Rios has 15 525 

departments, Santa Fe has 18 departments, and Santiago Del Estero has 12 departments. This 526 

uneven distribution of departments leads to varying levels of prediction accuracy across provinces. 527 

In this section, we focus on the performance analysis of the provincial models in Buenos Aires 528 

and Cordoba. Figures 9 and 10 show the Root Mean Square Error (RMSE) of the four best deep 529 

learning models and the four best panel regression models from 2004 to 2019 in Buenos Aires and 530 

Cordoba, respectively. To test the significance of the RMSEs, the H test was performed for both 531 

provinces. In Buenos Aires, the H test result for the four best deep learning models and the four 532 

best panel regression models was 4.38e-15, while for Cordoba, the H test result was 1.39e-09. 533 
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  534 

 535 
Figure 9. RMSE Comparison between the Best Four Deep Learning Models and the Best Four 536 

Panel Regression Models for Buenos Aires Province during 2004-2019 537 
 538 

Additionally, the H test result between the NDVI-DuringPeak with Var2 and previous year’s 539 

yields using an Attention model and the best panel regression model was 0.0002 in Buenos Aires 540 

and 0.045 in Cordoba. The best panel regression model in both provinces was NDVI-Eight with 541 

Var1 and previous year’s yields, which requires all images to make a prediction, while the 542 

recommended deep learning model only requires the three images at, preceding and following the 543 

peak to achieve a satisfactory level of accuracy. Hence, while panel regression may provide 544 

accurate predictions close to those made during the peak NDVI, it requires the entire season’s data 545 
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to achieve the same level of accuracy as the Attention model, which is designed to make early in-546 

season predictions. 547 

 548 

 549 
Figure 10. RMSE Comparison between the Best Four Deep Learning Models and the Best Four 550 

Panel Regression Models for Cordoba Province during 2004-2019 551 
 552 

4. Discussion  553 

The comparative analysis of deep learning models and panel regression models for soybean yield 554 

prediction in Argentina reveals several key findings and implications. This discussion section will 555 

delve into the performance, advantages, and limitations of the models, as well as the potential for 556 

future research in this area. 557 
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4.1. Deep Learning Model Performance and Advantages Against Panel Regression 558 

The results of this study demonstrate that deep learning models, particularly the LSTM with 559 

Attention module using the NDVI-DuringPeak with Var2 and previous year's yields, provide the 560 

most accurate predictions for in-season soybean yields in Argentina. The superior performance of 561 

deep learning models can be attributed to their ability to capture complex non-linear relationships 562 

between input variables and yield outcomes. This is particularly evident when multiple NDVI 563 

images are used during the prediction process, as the models can better learn and adapt to the 564 

temporal patterns in the data. 565 

Furthermore, deep learning models exhibit a significant advantage in their ability to incorporate 566 

previous year's yield data for more accurate predictions. The Attention mechanism in the LSTM 567 

model is especially effective in capturing the contribution of previous year's yield by assigning 568 

different weights to NDVI images and attending to time steps in the data. This feature allows the 569 

model to better understand the historical context and trends in soybean yields, leading to improved 570 

prediction accuracy. 571 

The study also highlights the importance of data availability and selection of input variables for 572 

different types of models. Deep learning models require more data to achieve good performance 573 

and benefit from a larger set of input variables. In contrast, panel regression models can perform 574 

well with only key variables, but may not necessarily benefit from a large number of input 575 

variables, which can lead to worse predictions in some cases. 576 

 577 

4.2. Spatial Variability in Model Performance 578 

The spatial analysis of model performance, as depicted in Figure 11, reveals interesting patterns 579 

and insights. The results demonstrate that the deep learning model outperforms the panel 580 

regression model in terms of prediction accuracy, particularly in the southeast region of the study 581 

area, which primarily consists of the Buenos Aires Province. This region exhibits a lower 582 

difference between the actual yields and predicted yields compared to the northeastern part of the 583 

study area, which includes the Santa Fe, Chaco, and Cordoba Provinces. 584 

Within the Buenos Aires Province, only nine departments have high differences (> 60 kg/ha) 585 

between actual yield and predicted yields by the deep learning model, whereas the panel regression 586 
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model has 22 departments with such high differences. This finding suggests that the deep learning 587 

model is more effective in capturing the spatial heterogeneity of soybean yields in this region, 588 

which may be attributed to its ability to learn from a larger set of input variables and its capacity 589 

to model complex, non-linear relationships. 590 

In other provinces, the deep learning model also demonstrates better performance, with 95 591 

departments having a difference of less than 60 kg/ha between actual and predicted yields, 592 

compared to only 36 departments in the case of the panel regression model. This further highlights 593 

the superiority of deep learning models in capturing the spatial variability of soybean yields across 594 

different regions in Argentina. 595 

The spatial analysis also reveals that the panel regression model tends to have larger differences 596 

between actual and predicted yields, as well as a higher number of departments with differences 597 

exceeding 60 kg/ha, compared to the deep learning model. This finding underscores the limitations 598 

of traditional regression models in capturing the complex spatial patterns and relationships that 599 

influence soybean yields, and emphasizes the need for more advanced modeling techniques, such 600 

as deep learning, to improve prediction accuracy. 601 
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 602 
Figure 11. Mean Differences Between Actual Yields and Predicted Yields over 2004-2019 603 

 604 
4.3. Limitations and Future Research 605 

Despite the promising results, this study also reveals some limitations that should be 606 

addressed in future research. One major limitation is the short time span of training data, which 607 

may not fully capture the impact of agricultural technology innovation on soybean production. 608 

The three-year training period used in this study confirms that a simple soybean prediction using 609 

yields and NDVI does not require long-term data availability. However, it can also cause a 610 

delayed response effect on predictions in the event of sudden changes in yields or vegetation 611 

indices. Future research should explore the use of longer training periods and investigate 612 

methods to incorporate the effects of technological advancements in crop yield prediction 613 

models. 614 
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Another limitation of this study is the reliance on only NDVI and the previous year's yield for 615 

prediction. While these variables provide a good basis for yield prediction, incorporating 616 

additional data sources, such as precipitation, temperature, and soil moisture, could potentially 617 

improve the accuracy of the models. Future research should focus on integrating these additional 618 

variables and assessing their impact on prediction performance. 619 

Moreover, the study highlights the challenge of predicting yields during years with extreme 620 

weather conditions, such as severe drought or flooding. Both deep learning and panel regression 621 

models exhibit relatively larger errors in these abnormal years. Developing methods to reduce 622 

prediction errors under these circumstances is crucial for providing more practical and reliable 623 

forecasting products to stakeholders in the agricultural sector. Future research should investigate 624 

techniques to better capture the effects of extreme weather events on crop yields and explore 625 

ways to improve model resilience in these situations. 626 

The findings of this study have important implications for future research in crop yield 627 

prediction. The superior performance of deep learning models, particularly the LSTM with 628 

Attention model, underscores the potential for further exploration and refinement of these 629 

techniques. Researchers should continue to investigate novel architectures and algorithms that 630 

can better capture the complex dynamics of crop growth and yield formation. Additionally, the 631 

development of user-friendly interfaces and tools that enable stakeholders to easily access and 632 

utilize these advanced prediction models is essential for translating research findings into 633 

practical applications. 634 

 635 
5. Conclusion 636 

In this study, we employed two different approaches to predict soybean yields over the period 637 

of 2004-2019.  We explored the explanatory power of in-season NDVI data for yield prediction in 638 

Argentina, compared the accuracy of using all growing season NDVI versus a few key NDVI, and 639 

examine the advantages and disadvantages of deep learning models compared to traditional 640 

regression models in yield prediction. The prediction results demonstrate that while using 641 

departmental NDVI data can relatively accurately predict soybean yield, the three images at, 642 

preceding and following the peak NDVI are sufficient for making a good in-season prediction as 643 

early as six weeks before the harvest.  Although the LSTM model with the attention mechanism 644 



33 
 

applied to the entire growing season NDVI values and three years of training data performed the 645 

best, using the entire season's NDVI for prediction may not be timely or efficient for the current 646 

season, as the results would be available after the actual harvest. Therefore, the optimal 647 

combination for accurate and more useful soybean yield prediction is the LSTM with three years 648 

of training data and the attention mechanism applied to three images at, preceding and following 649 

the maximum NDVI during the growing season. 650 

Our comparison results demonstrated that the best-performing panel regression does not adhere 651 

to the same pattern as deep learning models, in which a larger number of training data leads to a 652 

lower RMSE. Contrariwise, larger training data sizes do not necessarily result in a lower RMSE. 653 

Possible explanations include a misspecification issue in a simple linear regression setting. Deep 654 

learning models have superior generalization abilities. The low RMSE produced by the deep 655 

learning models in this study indicates a robust capacity for generalization. Using the yield data of 656 

the previous year as a proxy for biophysical variables, the current NDVI serves as an explanatory 657 

variable to identify the potential departure of the current season from the NDVI/yield values of 658 

previous years. Thus, the incorporation of previous year’s yield information improves the accuracy 659 

of yield projections. 660 

Here, we also highlight the limitations of this study. First, the use of only NDVI and the 661 

previous year's yield for prediction may not provide the most accurate results, and the inclusion of 662 

additional data such as precipitation and land surface temperature may improve the accuracy. 663 

Secondly, the models exhibit relatively larger errors in years with extreme weather conditions such 664 

as severe drought or flooding. As some research indicates, estimating crop yields during extreme 665 

weather conditions like drought or flooding could be very challenging (Feng et al., 2019; Prodhan, 666 

Zhang, Hasan, et al., 2022; Prodhan, Zhang, Pangali Sharma, et al., 2022). However, as accurate 667 

predictions during abnormal years would benefit local farmers and other stakeholders, additional 668 

research is required to determine how to reduce the prediction error under these circumstances in 669 

order to provide more practical forecasting products. 670 
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