Brief Announcement: Upper and Lower Bounds for Edit Distance
in Space-Efficient MPC

Debarati Das® Jacob Gilbert™ MohammadTaghi Hajiaghayi®
Pennsylvania State University University of Maryland University of Maryland
State College, Pennsylvania, USA College Park, Maryland, USA College Park, Maryland, USA
debaratix710@gmail.com jgilber8@umd.edu hajiaghayi@gmail.com

Tomasz Kociumaka
Max Planck Institute for Informatics
Saarland Informatics Campus
Saarbriicken, Saarland, Germany
tomasz.kociumaka@mpi-inf.mpg.de

ABSTRACT

In the Massively Parallel Computation (MPC) model, data is dis-
tributed across multiple processors, and we call an algorithm space-
efficient if each machine has n'~¢*°(1) memory with a machine
count of Q(n¢).

In this paper, we study the string edit distance problem in the
MPC model, presenting both a new algorithm and lower-bound
results. A space-efficient MPC algorithm computing the exact edit
distance using O (n®) communication rounds is known by updating
the algorithm of Chowdhury and Ramachandran (SPAA 2008). A
key contribution of our work is the introduction of the first space-
efficient MPC algorithm, which uses subpolynomial number of
rounds and provides an no() -approximation of edit distance, where
n denotes the length of the input strings.

Further, we complement this algorithm with new lower-bound
results. The Orthogonal Vector (O.V.) conjecture states that no
truly subquadratic time algorithm exists for the Orthogonal Vector
problem, and it follows directly from the Strong Exponential Time
Hypothesis (SETH). Drawing inspiration from this, we propose the
Strong O.V. Conjecture that posits that there is no space-efficient
MPC algorithm capable of solving O.V. using n€=2M) communi-
cation rounds. The Strong O.V. conjecture has far-reaching con-
sequences, yielding the first (or strengthened) lower bounds for a
myriad of problems in the MPC model including graph diameter
estimation, computing Fréchet distance, longest common subse-
quence, and dynamic time warping. Via an MPC reduction from
O.V. to edit distance, we give the first conditional lower bound for
string edit distance in the MPC model showing that there does not

“This project is partially supported by NSF CAREER Award CCF 2337832.

TPartially supported by DARPA QuICC, ONR MURI 2024 award on Algorithms, Learn-
ing, and Game Theory, Army-Research Laboratory (ARL) grant W911NF2410052, NSF
AF:Small grants 2218678, 2114269, 2347322.

*This project is partially supported by NSF grants 1652303, 1909046, 2112533, and
EnCORE:HDR TRIPODS Phase II grant 2217058.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA °24, June 17-21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0416-1/24/06.

https://doi.org/10.1145/3626183.3660265

Barna Saha*
University of California, San Diego
San Diego, California, USA
barnas@ucsd.edu

e—-Q(1)

exist any space-efficient, n -round MPC exact edit distance

algorithm.

CCS CONCEPTS

« Theory of computation — Massively parallel algorithms;
MapReduce algorithms.

KEYWORDS

Massively Parallel Computations, Edit Distance, Approximation,
Hardness

ACM Reference Format:

Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Koci-
umaka, and Barna Saha. 2024. Brief Announcement: Upper and Lower
Bounds for Edit Distance in Space-Efficient MPC. In Proceedings of the
36th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
"24), June 17-21, 2024, Nantes, France. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3626183.3660265

1 INTRODUCTION

The Massively Parallel Computations (MPC) model has emerged
as a theoretical model of interest in the last decade to reason about
popular distributed processing frameworks such as MapReduce,
Spark, and Hadoop, which are widely used for large-scale data
analysis. The MPC model consists of multiple processors each with
local memory sublinear in the size of input. The input is distributed
across processors and computation happens in synchronous rounds.
Between consecutive rounds, the partial results through local com-
putations are communicated across processors subject to their local
memory constraints. This inter-round communication poses a ma-
jor bottleneck in the MPC setting. More formally, in the MPC model,
each machine has n!~¢**(1) memory for ¢ > 0 where n is the in-
put size, and the number of machines is Q(n€) which is sufficient
to hold all the data across the machines. An MPC algorithm is
called space-efficient if the total memory across all the processors is
n1*() The primary goal here is to design space-efficient MPC al-
gorithms minimizing the number of rounds, aka round complexity,
which is directly proportional to inter-round communications.
One of the challenging and extensively studied problems in the
domain of fine-grained complexity is the string edit distance prob-
lem, which also serves as a primary focus in this paper. The edit

https://orcid.org/0000-0003-2232-4279
https://orcid.org/0000-0001-9860-5558
https://orcid.org/0000-0003-4842-0533
https://orcid.org/0000-0002-2477-1702
https://orcid.org/0000-0002-6494-3839
https://doi.org/10.1145/3626183.3660265
https://doi.org/10.1145/3626183.3660265

SPAA 24, June 17-21, 2024, Nantes, France

distance between two strings is the minimum number of insertions,
deletions, and substitutions needed to transform one string into the
other. Edit distance is one of the fundamental measures of string
similarity, serving as the foundational principle that propels ap-
plications from small-scale applications such as diff and awk to
large-scale problems including database queries, genomics, search
engines, and even social networks. Computing edit distance in the
MPC model has also received significant attention [6, 7, 14]. Ha-
jiahgayi, Seddighin, and Sun [14] and Boroujeni, Ehsani, Ghodsi,
Hajiaghayi, and Seddighin [6] give MPC algorithms for edit dis-
tance in constant and logarithmic rounds, respectively, achieving
(1+e€), and (3 + €) approximations. However, their algorithms are
not space-efficient due to the utilization of superlinear total mem-
ory. Later works [7, 14] improved the total memory requirement
but still failed to achieve space-efficiency. A space-efficient exact
edit distance algorithm in MPC can be achieved via the tiling ap-
proach of [11], which was initially proposed as a cache-efficient
algorithm, but takes up to O (n€) rounds given n® MPC machines.
Presently, there does not exist any algorithm to compute edit dis-
tance exactly or approximately in the MPC model with total space
O(n'*°()) and subpolynomial rounds. The existing MPC lower
bounds [12, 15] do not shed any light on this stark absence, and
prior PRAM results [4] cannot be simulated in MPC as the number
of MPC machines is limited to sublinear.

2 OUR CONTRIBUTION AND TECHNIQUES

In this paper we investigates the edit distance problem in the MPC
model while presenting a new space-efficient algorithm and lower
bound results.

Approximate MPC Edit Distance. We give the first space-efficient
MPC algorithm to approximate the edit distance in subpolynomial
communication rounds. We say an algorithm A a-approximates a
problem X if, for all instances v of problem X, it holds that X (v) /a <
A(v) < aX(v). Formally we show the following.

THEOREM 2.1. Let X and Y be strings withn = |X|. Fore € (0,1)

and©(1) <r < @(lolgoign) where n'=€ > nl/" there is an MPC

algorithm thatO(r-nl/')—approximafes ed(X,Y) inO(r-e~1) rounds
of MPC using O(n€) processors and O (n - (log n) 9 total memory.

In the statement of Theorem 2.1, the parameter r governs a trade-
off between the round complexity, the total space complexity, and
the approximation ratio of our MPC algorithm. As the focus of
this work is on space-efficient MPC algorithms, we observe that
the total memory becomes nt*+o(1) a5 long as r = o(lolgol%). In
particular, when r = ©(4/log n/loglog n), the algorithm achieves a
20 (Vlognloglogn) approximation ratio using sublogarithmic com-
munication rounds and n - 20(Vlognloglogn) t4ta] memory. It re-
mains an open problem to find a poly-logarithmic-factor approx-
imation algorithm that still uses n'*°(1) total memory and n°(!)
communication rounds.

Next, we provide a brief overview of the algorithm that is an MPC
simulation of the approximate edit distance algorithm of Andoni,
Krauthgamer, and Onak [3] (or, more precisely, its recent simplified
implementation by Bringmann, Cassis, Fischer, and Nakos [9]).
We approximate edit distances between substrings of X and Y

Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, and Barna Saha

using a tree with a small height and low degree. Each node in the
tree corresponds to a substring of X, and each level represents
a partition of X. At each node, we determine the minimum edit
distance between its corresponding substring of X and various
substrings of Y. These fragment approximations are recursively
combined, starting from the leaf nodes and ending at the root, which
produces our approximation for ed(X, Y).

During the above computation, we may need to compute the
edit distance between up to k > ed(X,Y) substrings of Y for each
substring of X. Therefore, one primary challenge in simulating this
algorithm in MPC arises when k is large. In such cases, assigning
a single processor with local memory O(S) to each node of the
tree proves inadequate, as a more sophisticated method is required
to compute k approximations per node. To address this, we allo-
cate k/S processors for each node, with each processor computing
a specific subset of the k different approximations. Additionally,
when recursively combining the approximation results, a careful
and synchronized approach is necessary to keep the number of
communication rounds bounded. A pivotal step in this approach
involves an elegant reduction to the prefix sums problem (with re-
spect to various associative operators), that is solvable in constant
rounds and with nearly linear total memory in MPC [13]. We show
that leveraging the prefix sum problem enables the combination
of k approximations across multiple processors in constant com-
munication rounds and nearly linear total memory. For a more
comprehensive understanding of the algorithm and this non-trivial
reduction, please refer to the full version of the work.

Another big challenge in simulating the serial approximate edit
distance algorithm arises when each of the O(n) leaf nodes (and
subsequent internal nodes) demands k computations. This becomes
particularly problematic when k is large, posing a risk of surpass-
ing our total linear memory budget in MPC. To this end, the serial
algorithm [3, 9] employs a randomized pruning mechanism. While
this slightly degrades the approximation guarantees, it effectively
manages the challenge. The expected number of remaining nodes
becomes n'*o() /k, thereby requiring nearly linear total memory
for the entire algorithm. The challenge lies in the fact that since
the randomness is determined after the MPC algorithm starts, our
algorithm needs to adaptively allocate processors to nodes without
the ability to schedule assignments deterministically (the schedule
remains unknown before the algorithm runs). To address this, we
create a request set for processors to be assigned to node computa-
tions and utilize a reduction to the prefix sum problem to allocate
processors and provide them with the necessary data for their tasks.

MPC Orthogonal Vector Conjectures. We complement the above
algorithm by introducing new lower-bound results for computing
edit distance in the MPC model. To achieve this, we present the
Strong O.V. conjecture and subsequently provide a reduction from
O.V. to edit distance in the MPC model. Motivated by the fine-
grained complexity and lack of lower bounds in the MPC model,
our proposed Strong Orthogonal Vector Conjecture serves as the
first super-logarithmic lower bound in MPC as well as the first
lower bound conjecture for a non-graph problem in MPC.

Conjecture 2.2 (Strong (MPC) Orthogonal Vector Conjecture). For
every constant € € (0, 1), there is no MPC algorithm that solves O.V.

Brief Announcement: Upper and Lower Bounds for Edit Distance in Space-Efficient MPC

e—Q(1) 1+0(1)

using n communication rounds, ®(n®) processors, and n

total memory.

Next, we provide some insights guiding our conjecture. A di-
rect solution to O.V. involves computing the product of all O(n?)
pairs of vectors, which poses a considerable communication chal-
lenge in MPC. The computation of the dot product necessitates
the vectors to be co-located on the same processor at a given time
step. Consider a processor in our MPC model with local memory
denoted as S = n!1=¢*9(1) where € € (0,1). If the total memory
across all processors is n1+0(1) implying O(n€) processors, then
in a single communication round, at most O(n2~<*°(1)) pairs of
vectors can be stored together on some processor. Consequently,

any O.V. algorithm required to check all vector pairs will need
2

Q(m) =n¢~2() communication rounds in MPC. Despite a
processor having the capability for unlimited local computations
in a single round, the restricted local memory mandates that an
O.. algorithm employs multiple communication rounds to ensure
the vectors are on the same processor at some point. For further
discussion on intuition for the conjecture, please refer to the full

version of the work.

From MPC O.V. Conjectures to Edit Distance in the MPC model.
Next, we introduce a reduction from O.V. to edit distance that, to-
gether with the Strong O.V. conjecture, establishes the first hardness
for space-efficient edit distance computation in the MPC model.

THEOREM 2.3. For every constant € € (0,1), if there is an MPC
algorithm that solves exact string edit distance in MPC using R com-
munication rounds, ©(n€) processors, and n1*o(1) total memory, then
there is an MPC algorithm that solves O.V. in O(R) rounds with the
same space complexity.

Our MPC reduction builds on the reduction of Backurs and Indyk
[5] converting an instance of O.V. to an instance of edit distance.
The key technique in their reduction involves vector gadgets, that
converts each input vector into a string with size linear in the
dimension d of the vectors. In this construction, orthogonal vectors
have an edit distance of d, while non-orthogonal vectors have an
edit distance of 3m + (d — m), where m is the dot product of the
vectors. These vector gadgets are concatenated with additional
padding to ensure that any optimal edit sequence must align the
gadgets of orthogonal vectors rather than non-orthogonal ones.
Consequently, if the edit distance between the final pair of strings
is below a certain threshold, the original sets of vectors must have
included an orthogonal pair. This reduction can be performed in
MPC with O(n) total memory and O(1) communication rounds
and provide the reduction for completeness.

Using the above theorem, we can then give the first conditional
hardness for edit distance in MPC. This justifies the significance of
our approximation algorithm and provides a matching lower bound
for the exact algorithm of [11].

Corollary 2.4. If the Strong MPC Orthogonal Vector Conjecture is
true, then any MPC exact string edit distance algorithm using O (n€)
processors for e € (0,1) and n'*°(V) total memory requires n€=°(1)
communication rounds.

Further Consequences of Strong MPC O.V. Conjecture. The Strong
MPC Orthogonal Vector Conjecture has significant implications

SPAA 24, June 17-21, 2024, Nantes, France

for proving hardness results in the MPC model. This is because,
in fine-grained complexity, SETH-based lower bounds typically
require reducing k-SAT to the O.V. problem. Typical properties seen
in these reductions are (i) the gadgets employed in the reduction
are of small size and (ii) they can be computed independently for
each vector. This allows the reductions to be implemented in the
MPC model using a constant number of rounds and 0(nl+0(1))
total space. Consequently, there is a broad range of problems e.g.,
LCS [1], dynamic time warping [10], Fréchet distance [8], graph
diameter [16], single source max flow [2] etc., for which there
does not exist any n€~°()-round MPC algorithm using O (n€)
processors and n!*°(1) total memory space assuming the Strong
MPC OWV. conjecture. Formally one can show the following.

THEOREM 2.5. For any problem X if there exists a reduction f
from O.V. (with binary vector sets A, B C {0, 1}4) to X such that (i)
for each vectorv € A U B, size of the gadget f(v) is polynomial in
d, and (ii) the gadgets f(v) can be computed locally, then assuming
the Strong MPC O.V. conjecture, no MPC algorithm can solve X with
O(n®) processors fore € (0,1), ni*to() torq] memory and ne= Q)
communication rounds.

REFERENCES

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight
Hardness Results for LCS and Other Sequence Similarity Measures. In FOCS 2015.
59-78.

[2] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. 2015. Matching
Triangles and Basing Hardness on an Extremely Popular Conjecture. In STOC.
41-50.

[3] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarith-

mic Approximation for Edit Distance and the Asymmetric Query Complexity. In

FOCS 2010. 377-386.

Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin.

1990. Efficient Parallel Algorithms for String Editing and Related Problems. SIAM

J. Comput. 19, 5 (1990), 968-988.

Arturs Backurs and Piotr Indyk. 2018. Edit distance cannot be computed in

strongly subquadratic time (unless SETH is false). SIAM J. Comput. (2018), 1087—

1097.

[6] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Ha-
jiaghayi, and Saeed Seddighin. 2018. Approximating Edit Distance in Truly
Subquadratic Time: Quantum and MapReduce. In SODA 2018, 2018. 1170-1189.

[7] Mahdi Boroujeni and Saeed Seddighin. 2019. Improved MPC algorithms for
edit distance and Ulam distance. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures. 31-40.

[8] Karl Bringmann. 2014. Why Walking the Dog Takes Time: Frechet Distance Has
No Strongly Subquadratic Algorithms Unless SETH Fails. In FOCS 2014. IEEE
Computer Society, 661-670.

[9] Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. 2022.

Almost-optimal sublinear-time edit distance in the low distance regime. In STOC,

2022.1102-1115.

Karl Bringmann and Marvin Kiinnemann. 2015. Quadratic Conditional Lower

Bounds for String Problems and Dynamic Time Warping. In FOCS, 2015. 79-97.

Rezaul Alam Chowdhury and Vijaya Ramachandran. 2008. Cache-efficient dy-

namic programming algorithms for multicores. In SPAA, 2008. 207-216.

[12] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional Hardness

Results for Massively Parallel Computation from Distributed Lower Bounds. In

FOCS. 1650-1663.

Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,

and Simulation in the MapReduce Framework. In ISAAC 2011. 374-383.

[14] MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun. 2019. Massively

Parallel Approximation Algorithms for Edit Distance and Longest Common

Subsequence. In SODA, 2019. 1654-1672.

Danupon Nanongkai and Michele Scquizzato. 2020. Equivalence Classes and

Conditional Hardness in Massively Paralle]l Computations. CoRR abs/2001.02191

(2020).

Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algo-

rithms for the diameter and radius of sparse graphs. In STOC 2013. 515-524.

[4

5

[10

[11

[13

=
&

[16

Received 23 January 2024

	Abstract
	1 Introduction
	2 Our Contribution and Techniques
	References

